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Abstract

Recently, the literature has seen increasing interest in subscores for their potential diagnostic

values; for example, one study suggested the report of weighted averages of a subscore and

the total score, whereas others showed, for various operational and simulated data sets, that

weighted averages, as compared to subscores, lead to more accurate diagnostic information.

To report weighted averages, the averages should be comparable across different test forms;

that is, the averages should be equated. This report discusses how to equate weighted

averages. Results from operational and simulated data sets demonstrate the small error

found when equating weighted averages.
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The literature evidences increased interest in subscores, that is, scores on subtests,

because they have great potential diagnostic value. The No Child Left Behind Act of 2001

requires in part that students get access to diagnostic reports developed to allow teachers

to address students’ specific academic needs; it is clear that subscores could be useful in the

creation of diagnostic reports of this sort.

To determine the added value of subscores, Haberman (2008b) advised the use of a

method with a basis in classical test theory (CTT). Haberman (2008b) also suggested that

a weighted average of a subscore and the total score (an example of a weighted average is 0.4

× Reading subscore + 0.1 × total score) should be reported in lieu of the subscore—these

averages are special cases of augmented subscores (Wainer et al., 2001). A disadvantage of

weighted averages is that they can sometimes be difficult to explain; additionally, clients

may balk at a reported Reading score being based not only on the observed Reading

score but also on the observed Writing, Listening, and Speaking scores. However, in

their research, Sinharay and Haberman (2008) and Sinharay (2010) showed that weighted

averages, for a number of operational and simulated data sets, can lead to more accurate

diagnostic information than subscores. For several tests, subscores do not have added value,

but weighted averages do. Dwyer, Boughton, Yao, Steffen, and Lewis (2006) found that the

augmented subscores (Wainer et al., 2001), which are very close to the weighted averages

(Sinharay, 2010), performed noticeably well in a comparison study. Thus weighted averages

are promising options for testing programs aiming to report diagnostic scores.

For weighted averages to be reported, the averages should be comparable across

different forms of a given test. This comparability can be achieved by equating those forms.

However, we see a dearth of research on the equating of weighted averages. For single- and

equivalent-groups designs, weighted-average equating is straightforward and involves, for

example, simple linear or equipercentile equating. In contrast, for nonequivalent groups with

anchor test (NEAT) designs, graphically described in Table 1, equating weighted averages

is not straightforward, and in this case, methods that perform accurately in equating the

total score may not be used for equating weighted averages. One reason for this observation

is that usually, only a few items in the anchor test belong to any single subscore; for
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Table 1
The NEAT Design

Population New form X Old form Y Anchor A
New form population P

√ √
Old form population Q

√ √

example, a test with four subscores that uses an anchor test with 24 items to equate the

total score on the new form to the total score on the old form has 6 items that belong

to each subscore in the anchor test. In typical cases, six items are not sufficient to allow

the accurate equating of weighted averages and/or subscores. Consider also that weighted

averages are often fractional in nature, but in contrast, most software packages for equating

operations can only work with integer values of scores (one way around this restriction is

to round the weighted averages; however, particularly for tests of minimal length, this can

result in inaccurate equating). Therefore the primary objective of this report is to take a

closer look at the equating of weighted averages.

There are operational tests in which scores are reported on several subareas, but

the anchor test does not cover all subareas. For example, a new TOEFL R© form may have

some Reading and Listening items in common with an older form, but there would be no

common Speaking and Writing items owing to item exposure concerns. One goal of this

report, therefore, is to examine the extent of the error in equating (either systematic error

or random error) the subscores and weighted averages from such a test.

In the following section, we discuss the CTT-based approach of Haberman (2008b)

and the related weighted averages. The methods section begins by reviewing methods

for the equating of subscores discussed by Puhan and Liang (in press); following that,

the methods section covers our suggested methods for equating weighted averages. The

following two sections cover the results of applying our suggested methods to two operational

data sets, and in continuation, the next section, titled “Simulation Study,” provides the

results of applying our suggested methods to several simulated data sets. The report then

concludes, and we give some recommendations.
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Weighted Averages and the Classical Test Theory–Based Approach

We denote the subscore by s and the total score of an examinee by x. Taking a

CTT viewpoint, Haberman (2008b) assumed that a reported subscore is intended to be an

estimate of the true subscore st and considered the following estimates of the true subscore:

• An estimate ss = s̄ + α(s− s̄) based on the observed subscore, where s̄ is the average

subscore for the sample of examinees and α is the estimated reliability of the subscore

• An estimate sx = s̄+c(x− x̄) based on the observed total score, where x̄ is the average

total score and c is a constant that depends on the estimated reliabilities and standard

deviations of the subscore and the total score and the estimated correlations between

the subscores

• An estimate ssx = s̄ + a(s − s̄) + b(x − x̄) that is a weighted average of the observed

subscore and the observed total score, where a and b are constants that depend on the

estimated reliabilities and standard deviations of the subscore and the total score and

the estimated correlations between the subscores—the weighted average

For a given sample, the average of the weighted averages will be the same as the average

of the subscores. Therefore the weighted averages and the subscores are of the same

magnitude; however, the weighted averages have smaller variance than the subscores

because the weighted average corresponding to an extremely low or high subscore is pooled

to the mean and is not as extreme. See the appendix for further details.

It is also possible to consider an augmented subscore saug (Wainer et al., 2001), an

appropriately weighted average of all subscores of an examinee, as an estimate of the true

subscore; however, the results provided by saug are very similar to the results provided by

ssx (Sinharay, 2010; Sinharay & Haberman, 2008). Note also that the estimate ssx is a

special case of the augmented subscore saug; ssx places the same weight on all subscores

other than the subscore of interest rather than weighing them differently.

To compare the performances of ss, sx, and ssx as estimates of st, Haberman (2008b)

suggested a proportional reduction in mean squared error (PRMSE), which is similar to
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reliability conceptually. Let us denote the PRMSEs corresponding to ss, sx, and ssx as

PRMSEs, PRMSEx, and PRMSEsx, respectively; the larger the PRMSE, the more accurate

is the estimate. For a subscore to have added value, PRMSEs has to be larger than

PRMSEx (Haberman, 2008b). Haberman (2008b) also recommended that for the weighted

average to have added value, PRMSEsx has to be substantially larger than both PRMSEs

and PRMSEx. (The appendix provides more details on PRMSEs.)

Sinharay and Haberman (2008) and Sinharay (2010) showed that for several

operational and simulated data sets, weighted averages, compared to subscores, lead to

more accurate diagnostic information. For example, these authors demonstrated that

subscores do not have added value, but weighted averages do, for several tests; additionally,

Sinharay (2010) demonstrated that weighted averages typically perform nearly as well

as augmented subscores (Wainer et al., 2001), and so for testing programs interested in

reporting diagnostic scores, weighted averages are promising.

However, though Puhan and Liang (in press) suggested several methods for equating

subscores, no techniques for equating weighted averages exist for the NEAT design.

Equating of weighted averages is covered in the following section.

Methods

In this section, we discuss methods suggested by Puhan and Liang (in press) for

the equating of subscores, facilitating discussion of methods for the equating of weighted

averages, covered next.

Methods for Equating Subscores

Puhan and Liang (in press) suggested two approaches for equating subscores, both

making use of linear and nonlinear equating methods. Here we focus only on the nonlinear

equating methods. We denote as A the anchor test (external or internal) used to equate

the total score of a test. The first method equates a subscore in a new form (X) to the

corresponding subscore in an old form (Y ) using as an anchor score the score on the items

that are in A and that belong to the same subscore (Puhan & Liang, in press). The method
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Figure 1. The first method of equating subscores shown graphically.

is illustrated graphically in Figure 1.

In Figure 1, the score on the items that are in A and belong to a subscore are

referred to as the anchor (sub)score. A one-sided arrow indicates a single group equating of

the score adjacent to the source of the arrow to the score adjacent to the destination of the

arrow. A line indicates that the scores connected by the line are on the same scale.

The second method proceeds in a similar manner. The total score (i.e., the sum of

all subscores) on the new form is equated first to the total score on the old form. Then this

method uses the total score on the old form as an anchor score for the old form population

and, for the new form population, the equated total score on the new form. Thus it can be

seen, using this method, that one transforms, using a single-group equipercentile equating

on the new form population, a subscore SN on the new form to a equated total score T (SN)

on the new form. Because the latter is on the scale of the total score on the old form,

one then transforms T (SN) to a subscore SO(T (SN)) on the old form using a single-group

equipercentile equating on the old form population. The method is illustrated graphically

in Figure 2.

It has been found (Puhan & Liang, in press) that when the proportion of a subtest

common between the old and new form is small, the second method performs better than

the first, and vice versa. The same authors found that equating the subscores using one of

these methods is better than not equating the subscores in terms of producing scores that

are more fair.

Puhan and Liang (in press) also referred to a third method whereby the total score
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Figure 2. The second method of equating subscores shown graphically.
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Figure 3. The third method of equating subscores shown graphically.

on the anchor test is used as an anchor score to equate the subscores. The method is

illustrated graphically in Figure 3.

The third method performs in a similar way to the second and so is not discussed

further in this report. Note as well that the second and third methods can be employed to

equate a subscore that is not represented in the anchor test.1

Methods for Equating Weighted Averages

Here we discuss our suggested methods for equating weighted averages under the

NEAT design. All the methods use some kind of anchor score to do what is essentially the

chain equipercentile equating (Kolen & Brennan, 2004). Here the anchor score is actually

a score that is on the same scale for both the new form and old form population; it allows

one to adjust for the difference in difficulty of the two test forms. The weighted average

on the current form is equated to the anchor score for the new form population, which is

on the same scale as the anchor score for the old form population, and then the anchor
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Figure 4. The first method of equating weighted averages shown graphically.

score on the old form population is equated to the weighted average on the old form. The

methods only differ in the way in which the anchor scores are defined.

The first method proceeds like the first method of Puhan and Liang (in press) by

equating a weighted average on a new form to the corresponding weighted average on an

old form and using the anchor (sub)score as an anchor score. This is illustrated graphically

in Figure 4.

The reader should note that in this method as well as in the following methods, the

weights on the weighted averages that are being equated are determined by the formula

from Haberman (2008b); consequently, the weights between the old and new forms differ

(i.e., we may be equating 0.4 × Reading subscore + 0.1 × total score on the new form to

0.3 × Reading subscore + 0.16 × total score on the old form). It is therefore possible to (a)

compute weighted averages on several forms of a test and then, if the weights are very close

(or the weighted averages based on different weights are highly correlated), to (b) fix the

weights at a specific set of values (e.g., at the average of the weights) and (c) equate the

weighted averages with fixed weights between forms (i.e., equate 0.35 × Reading subscore

+ 0.13 × total score on the new form to 0.35 × Reading subscore + 0.13 × total score

on the old form). However, in the remainder of this report, we do not consider equating

of weighted averages with fixed weights. Weighted averages with varying weights are the

regression estimates of the corresponding true subscores, and equating them makes more

sense (i.e., we are essentially equating the regression estimate of true subscores in the new

form to the regression estimate of true subscores in the old form). Weighted averages with
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Figure 5. The second method of equating weighted averages shown graphically.

fixed weights, though convenient, will not have this property.

The second method of equating weighted averages is similar to the second method

of Puhan and Liang (in press) for equating subscores: The total score (i.e., the sum of all

subscores) on the new form is first equated to the total score on the old form. Following

that, the investigator uses as an anchor score the total score on the old form for the old

form population and the total equated score on the new form for the new form population.

This method is illustrated graphically in Figure 5.

The third method uses as an anchor score a weighted average of the scores on the

subareas on the anchor test. This is illustrated graphically in Figure 6. Any set of weights

can be employed for computation of the anchor scores. One can fix the weights based on

experience obtained from previous administrations of the test or estimate the weights from

the current sample. Here we employ the average of the weights on the subscores from the

new form and old form populations. As an example, consider that the interest here is in

equating the weighted average corresponding to Subtest 1. In that case, one first computes

the weights on Subscore 1 and the total score in Weighted Average 1 in the new and old

form populations and then averages these values. The average weights are then imposed on

the anchor (sub)scores to compute an anchor score to equate Weighted Average 1. We plan

to explore other weights in future research.
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Figure 7. The fourth method of equating weighted averages shown graphically.

The fourth method is similar to the second method and uses the total score on the

anchor test as an anchor score to equate the weighted averages. This method is illustrated

graphically in Figure 7. Because this method is performed exactly like the second method,

this report does not discuss any further results on this method. Also, it should be noted that

the previous three methods can be employed to equate a subscore that is not represented in

the anchor test.2

The last two methods of equating subscores and the last three methods of equating

weighted averages use, as anchor scores, not only the corresponding subscore but also the

other subscores. For example, in the equating of a Reading subscore or weighted average

for reading, scores on mathematics, science, or writing items may also contribute to the

anchor score. Though this may seem counterintuitive, it leads to sufficiently accurate

results because subscores are most often highly correlated with each other in operational

tests (see, e.g., Sinharay, 2010). Additionally, these methods show some similarities to the

equating of AP R© examinations, incorporating both multiple choice (MC) and constructed
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response (CR) items. In these examinations, the MC score on a new form is equated to the

MC score on an old form using an MC anchor test, and because the MC score on the old

form has been equated to the MC score on a base form, it is equated to the MC score on a

base form. Following this, the composite score on the new form, a weighted average of the

MC and CR scores, is linked to the MC score on the new form using single-group linking.

Together these equatings create a link from the MC score on the base form to the composite

score on the new form. The final link, used later to convert cut scores from the scale of

MC scores on the base form to the scale of composite scores on the new form, is accurate

owing to the high correlation between the MC and composite scores (see, e.g., Sinharay &

Holland, 2007). In this report, the correlation between the score to be equated and the

anchor score is expected to be moderate for the last two methods of equating subscores and

high for the last three methods of equating weighted averages. For this reason, we expect

these methods to lead to accurate equating.

Additionally, the literature has suggested using scores on MC items as anchors for

equating for several tests involving CR items (Ercikan et al., 1998; ETS, 2007), even though

it is believed that CR and MC items often measure slightly different skills. In a study using

data from several operational tests, Livingston (1994) found that for tests with only a few

CR items, it is preferable to use a related test with MC items as an anchor for equating.

In the following section, we show the results of the performance of the previously

mentioned methods in two applications to two operational data sets. We have as an

objective the examination of the accuracy of the methods and a comparison of the methods.

Application 1

Data

The original data for this example are from one form of a licensing test for

prospective teachers. The test form included 119 MC items, approximately equally divided

among four content areas, including mathematics, language arts, science, and social studies.

Scores on each of these content areas are reported; these are treated as the subscores in this
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report. Previously, the original form had been used at two test administrations; the two

examinee populations are represented by P and Q in this analysis.

The item responses from the original test were used to construct two pseudotests:

X (new form) and Y (old form). A pseudotest consists of a subset of the test items from

the original 119-item test, and the score on the pseudotest for an examinee is found from

the responses of that examinee to the items in the pseudotest. Each of Pseudotests X and

Y contains 44 items, including 11 items from each of the four content areas mentioned

earlier. Pseudotests X and Y had no items in common and were adapted to be parallel

in content. A set of 24 items (6 from each content area) was selected to be representative

of the original test and to serve as the external anchor A, which had no items in common

with either Pseudotest X or Pseudotest Y . The mean percentage correct on the anchor test

approximately equaled that for the 119-item original test. One can find further details on

the construction of these pseudotests in the work of von Davier et al. (2006) and Holland,

Sinharay, von Davier, and Han (2008).

Pseudotest X was constructed to be considerably easier than Pseudotest Y ; for

example, on Q, the mean score for X is larger than the mean score for Y by 133% of the

standard deviation of Y . In addition, Q is more able than P with a mean A score that is

higher than P by approximately a quarter of a standard deviation in P + Q.

These pseudotests were designed to produce an equating problem for which solutions

would be nonlinear and the different equating methods would be expected to give different

results. The great difference in difficulty between Pseudotest X and Pseudotest Y ensured

that the equating functions would be nonlinear and the relatively large difference in test

performance between P and Q ensured that different equating methods would produce

different results.

For this test, four subscores, one corresponding to one content area, are reported

operationally. Figure 8 shows the average proportion of correct scores of P and Q on the

four subtests and the total test for the original 119-item test. The figure shows that the

difference between the two populations is mostly similar across the four subscores, and this

finding is true even if the subscores belong to a variety of content areas.
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Table 2
Proportional Reduction in Mean Squared Errors
of the Subscores for Application 1

Subscore PRMSEs PRMSEx PRMSEsx

1 0.57 0.75 0.77
2 0.62 0.68 0.73
3 0.49 0.67 0.69
4 0.62 0.75 0.78

Note. PRMSE = proportional reduction in mean squared error.

Table 2 provides the values of the PRMSEs computed from the data on X in P .

The PRMSEs are very similar if they are computed on Y instead of X or on Q instead of

P , or both. The reliability of the scores on X in P is .82. Table 2 shows that though the

subscores do not have added value, the weighted averages do, and thus this data set is seen

as appropriate for applying the previously mentioned methods for the equating of weighted

averages.

Analyses and Results

As all examinees for P and Q took all 119 items on the original test, all the

examinees for P and Q have scores on X, Y , and A. To mimic the structure of the NEAT

design, in this study, we ignore the scores on X in Q and on Y in P and perform the

equatings described previously. We also consider that because the data usually missing

in the NEAT design are in fact available for the pseudotest data, there is a possibility

to compute the true equating of the subscores and of weighted averages by performing a

single-group equating of the subscores or weighted averages on X to the corresponding

quantities on Y using the group P + Q.

We used the two subscore equating methods described in the methods section in

equating the subscores using these data. These data were also used to equate the weighted

averages using the three methods for equating weighted averages discussed in the methods

section. Consider also that the weighted averages can have fractional values, for example,

the possible number of weighted averages corresponding to Subscore 1 on X in P was found
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to be 408 for the data set: They are 2.43, 2.59, . . ., 10.79, 10.95. Therefore it is possible

to compute a function equating any real value between 0 (minimum possible value on

the subtest) and 11 (maximum possible value on the subtest) of a weighted average on a

subtest on X to a weighted average on a subtest on Y . By way of simplification, here we

compute the function equating weighted averages only at integer values between 0 and 11

(and we note that the weighted averages on X in P or Y in Q were not rounded before

the equating). We treated the anchor test as external, although the methods discussed

in this report apply also to internal anchor tests. We used polynomial loglinear models

(Holland & Thayer, 2000) to presmooth the joint and conditional distributions of subscores

and total score, the linear interpolation method (Kolen & Brennan, 2004) to continuize the

discrete subscore distributions during the equating, and a version of the linear interpolation

method appropriate for fractional scores to continuize the discrete distributions of weighted

averages during the equating.

We show in Figure 9, for each content area, the equating functions for the subscores

and weighted averages for Method 2, which uses the total test score as an anchor score.

The 45◦ line shows identity equating or no equating,3 and we see a substantial difference

between the identity equating and equating functions for Subscores 1, 2, and 4.

We show with Figure 10, for each method, the differences in the equating and true

equating functions for each subscore. The figure also shows the 5th and 95th percentiles of

the subscores in the combined population using vertical lines. In each panel of the figure,

the range of the X axis is the 1st and 99th percentile of the corresponding subscore in P .

Furthermore, as a baseline for comparison, differences for no equating are also added. The

standard deviation of the subscores on X range between 2.5 and 3.1 for the four subtests.

For each subscore and method, we computed an overall measure of difference

between an observed equating function and the true equating function by computing the

square root of the weighted average of the square difference between the observed and true

equating functions, where the weight at a subscore point is proportional to the frequency

of that subscore on X in P + Q. If the observed equating function, the true equating

function, and the weight at subscore point i are denoted by oi, ti, and wi (where
∑

i wi = 0),
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respectively, then the measure is given by
√∑

i wi(oi − ti)2. We refer to this measure as

the root mean squared difference (RMSD). The values of the measure for the four subscores

and the two methods and no equating are given in Columns 2–4 of Table 3.

Table 3
Comparative Performance of the Methods for Equating Subscores and
Weighted Averages for Application 1

Subscore equating Equating of weighted average
Content Method Method No Method Method Method No

area 1 2 equating 1 2 3 equating
1 .06 .19 3.25 0.15 0.08 0.09 3.22
2 .14 .15 2.23 0.14 0.07 0.06 2.17
3 .10 .32 0.29 0.14 0.09 0.08 0.38
4 .12 .05 3.00 0.26 0.16 0.16 2.93

Figure 10 and Columns 2–4 of Table 3 show that there is a substantial difference

between Method 1 and Method 2 for equating subscores: Specifically, Method 1 performs

better (in terms of having lower RMSD) for the first three subscores, whereas Method

2 performs better for the fourth subscore. Versus no equating, any of the methods for

equating is better. In addition, the RMSD in any of these methods is small; for example, the

RMSD values previously computed are in units of raw subscore points, where a difference

of 0.5 or more is usually a difference that matters (DTM). In other words, only a difference

more than a DTM usually leads to different equated raw scores (Dorans & Feigenbaum,

1994). The RMSD values of Table 3 are all less than 0.5; that is, they are all less than the

DTM.

For each of the three methods, Figure 11 shows the differences of the equatings of

the weighted averages and the true equating function. The figure also shows, using vertical

lines, the 5th and 95th percentiles of the weighted averages in the combined population.

The standard deviations of the weighted averages on X range between 1.8 and 2.6 for the

four subtests.

The last four columns of Table 3 show the values of a measure similar to that

reported in Columns 2–4 for the four weighted averages. To compute the weights wis, we
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Figure 11. The differences between the observed and true equating functions

for equating weighted averages for Application 1.
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rounded the values of the weighted averages on X in P + Q to the nearest integers and

computed the weights as proportional to the frequency of a rounded weighted average.4

Figure 11 and the last three columns of Table 3 show that Methods 2 and 3 for

equating weighted averages perform very similarly and better than Method 1. As with the

subscores, any method for equating weighted averages is better than no equating at all.

Columns 2–4 of Table 4 show the correlation between the subscore and the anchor

score for population Q for the two methods for equating subscores. The last three columns

of Table 4 show the correlation between the weighted average and the anchor score for

population Q for the three methods of equating weighted averages.

Table 4
Correlation of the Subscore and the Anchor Score and Weighted
Average and Anchor Score in Q

Content Correlations for subscores Correlations for weighted averages
area Method 1 Method 2 Method 1 Method 2 Method 3

1 0.46 0.75 0.55 0.99 0.73
2 0.64 0.78 0.69 0.96 0.76
3 0.37 0.70 0.45 0.98 0.71
4 0.46 0.78 0.52 0.99 0.74

In Table 4, we associate Method 2 with highest correlations for both subscores and

weighted averages. Thus we are not surprised by the good performance of Method 2 for

equating weighted averages. However, the good performance of Method 1 for equating

subscores compared to Method 2 is slightly unexpected given these correlations, which

indicates that we require more than high anchor score–total score correlation for accurate

equating.

Analyses and Results for the Case When the Anchor Test Is Nonrepresentative

In this analysis, we use the same Pseudotests X and Y as in the earlier analysis;

however, we use a shorter 12-item anchor test A1 that has six items each from the first

two content areas (the same items as in A) and no items belonging to the last two content

areas, instead of the 24-item anchor test A mentioned earlier; that is, the anchor test is

nonrepresentative of the tests to be equated in this situation. We use Method 2 to equate
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the subscores and Method 2 for equating weighted averages. Note that Method 1 for

equating either the subscores or the weighted averages cannot be used for the last two

content areas, and so we did not do so in this study. Table 5 shows the RMSD values for

the equatings of subscores and weighted averages.

Note that even in this case, the RMSD for no equating is given by the corresponding

numbers in Table 3, and also, equating is seen to be much better than no equating at

all. Table 5 shows that the equating methods lead to accurate results even in the case

considered here. The RMSD values are only slightly worse than the values of Table 3. In

addition, the RMSD values for the last two content areas are small, despite that the anchor

test does not contain any items belonging to these two content areas. This is possible

because the total scaled scores perform well as anchor scores; in other words, the difference

in the average total scaled score between P and Q reflects the difference in any average

subscore between P and Q (as evident from Figure 8). The length of the anchor test (of 12

items) in this case is less than the length recommended by most equating experts (see, e.g.,

Kolen & Brennan, 2004), but, similar to earlier, equating with such a short anchor test is

better than no equating at all.

Table 5
Comparative Performance of the Three Methods for
Equating Weighted Averages in Application 1
When the Anchor Is Nonrepresentative

Content Subscore equating: Equating weighted averages:
area Method 2 Method 2

1 0.19 0.08
2 0.16 0.07
3 0.34 0.11
4 0.07 0.18
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Application 2

Data

The pseudotests in this example were constructed in a similar way to how they were

constructed in the first example and use data from two administrations of a different form

of the same testing program (data used by Puhan, Moses, Grant, & McHale, 2009). This

form had 120 MC items. Two Pseudotests X and Y , both with 48 items, and an external

anchor A, with 24 items, were created from the original test. As earlier, this anchor had no

items in common with either Pseudotest X or Pseudotest Y .

This example is less extreme than the example given earlier. Though the pseudotests

are substantially different in terms of difficulty, with Pseudotest X being harder than

Pseudotest Y , the difference is not as large as it was in the preceding section; for example,

in Q, the mean score on Pseudotest X is smaller than the mean score on Pseudotest Y , but

only by about 43% of the standard deviation of Y . In the same way, Q is more able than P

and has a mean A score that is higher than the A score in P by only 14% of the standard

deviation in P + Q. Nevertheless, these differences were expected to be large enough to

lend the equating functions a significant nonlinear component and to cause various equating

methods to differ. As in the preceding operational data example, only one of the four

subscores has added value, and all the weighted averages have added value here.

Analyses and Results

Figure 12 shows, for each of the three methods, the differences of the equatings

of the weighted averages and the true equating function. Table 6 shows the root mean

squared error (RMSE) values described previously. As in our first application, Figure 12

and Table 6 show that Method 2 performs differently from Method 1 for both subscores

and weighted averages. Similar to the preceding application, Methods 2 and 3 for equating

weighted averages perform mostly better than Method 1, and equating using any method is

better than no equating.
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Figure 12. The differences between the observed and true equating functions

for equating weighted averages for Application 2.
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Table 6
Comparative Performance of the Methods for Equating Subscores
and Weighted Averages for Application 2

Subscore equating Equating of weighted average
Content Method Method No Method Method Method No

area 1 2 equating 1 2 3 equating
1 0.08 0.09 1.13 0.15 0.11 0.11 1.18
2 0.10 0.17 0.54 0.21 0.26 0.19 0.56
3 0.04 0.16 1.12 0.17 0.11 0.11 1.08
4 0.19 0.15 1.29 0.19 0.05 0.06 1.34

Table 7 shows the correlation between the weighted average and the anchor score

for population Q for the three methods of equating weighted averages. The correlations in

Table 7 are mostly higher than those in Table 4.

Table 7
Correlation of the Weighted Average and the
Anchor Score for Q

Content area Method 1 Method 2 Method 3
1 0.81 0.99 0.96
2 0.73 0.99 0.96
3 0.77 0.99 0.95
4 0.78 0.99 0.96

Analyses and Results for the Case When the Anchor Test Is Nonrepresentative

Similar to Application 1, we used a shorter 12-item anchor test A1 comprising six

items each from the first two content areas (the same items as in A) and with no items from

the last two content areas. We used Method 2 for equating subscores and Method 2 for

equating weighted averages. Table 8 shows the RMSE values for the equatings of subscores

and weighted averages for this case.

Similar to the preceding application, the RMSE of equating the subscores and

weighted averages is small even for the content areas that do not contribute any items to

the anchor test. Also, even though the anchor is shorter than what is recommended by

experts, equating using it is better than no equating.
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Simulation Study

Though the two operational data examples have given us some insight into the

performance of our suggested methods, the examples represent only a small fraction of

all possible equating scenarios. For example, they do not involve long subtests. For this

reason, we performed a simulation study to examine the performance of the earlier equating

methods under several more scenarios; the study is similar to the studies reported by

Sinharay and Holland (2007) and Sinharay (2010).

Simulation Design

We obtained a data set from a licensing test for prospective teachers. The 118 MC

items on the test belonged to four subscores: Items 1–29 were on language arts, Items

30–59 were on mathematics, Items 60–88 were on social studies, and Items 89–118 were on

science. Because the subscores measure four different but correlated dimensions, we fitted

a multidimensional item response theory (IRT) model (MIRT; e.g., Reckase, 2007) with a

response function (for item i):

ea1iθ1+a2iθ2+a3iθ3+a4iθ4−bi

(1 + ea1iθ1+a2iθ2+a3iθ3+a4iθ4−bi)
, θ = (θ1, θ2, θ3, θ4)

′ ∼ N4 (µ = (0, 0, 0, 0)′, Σ) , (1)

where aji are slope parameters and bi are location parameters. Each component of θ

belongs to an operational subscore. The diagonals of Σ are set to 1 to ensure identifiability

of the model parameters. For item i, only one of either a1i, a2i, a3i, or a4i is assumed to be

nonzero, depending on the item content (e.g., for an item from the first content area, a1i is

nonzero, whereas a2i = a3i = a4i = 0) so that the MIRT model has a simple structure.

The estimated item parameter values from the fitting of the model given in

Equation (1) to the data set were instrumental in obtaining the generating item parameters

of Pseudotests X and Y in the simulations. A bivariate normal distribution Dk was

fitted to the log-slope and difficulty parameter estimates corresponding to the kth content

area, k = 1, 2, 3, 4. The generating item parameters for the kth content area of Y were

randomly drawn from Dk. To compute the generating item parameters for the kth content

area of X, we made random draws from Dk and then added a constant ∆d = 0.25 to the
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Table 8
Performance of the Methods for Equating Subscores
and Weighted Averages in Application 2 When
the Anchor Is Nonrepresentative

Content Subscore equating: Equating of weighted average:
area Method 2 Method 2

1 0.12 0.10
2 0.08 0.16
3 0.22 0.09
4 0.19 0.07

difficulty parameter component of all the draws. This strategy ensured that Pseudotest

X was slightly more difficult than Pseudotest Y , and the difference was similar over all

subscores. Because we are generating data from a MIRT model, Pseudotest X can differ

from Pseudotest Y in other ways (see, e.g., Sinharay & Holland, 2007), but this report does

not consider those ways.

We assume that the length of the anchor test is about 40% of that of Pseudotest

X or Y . To compute the generating item parameters for the kth content area for the

anchor test A, we made random draws from the distribution Dk and then added a constant

∆d/2 to the difficulty parameter component of all the draws. This strategy ensured that

the difficulty of A was between the Pseudotest X and Y difficulties. The generating item

parameters for Pseudotest X, Y , and A were identical for all R replications in a given

simulation condition.

Factors controlled in the simulation. The following two factors were controlled

in the simulation:

1. Length of the subscores. This report used three length values: 12, 20, and 30. The

reliability of a test increases as the test length increases. For simplicity, this report

assumes that the different subscores for a given test have the same length.

2. Level of correlation (ρ) among the components of θ. This report used three levels of

.70, .80, and .90; a survey of operational data (Sinharay, 2010) showed this to be a

realistic range. If the correlation level for a simulation case is ρ, the mean of all the

off-diagonal elements of Σ (denoting the correlations between the components of θ)
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in Equation (1) was set equal to ρ to simulate the data sets. The starting point in

obtaining such a Σ was

C =




1.00 .78 .80 .84

1.00 .72 .78

1.00 .88

1.00




.

This is the estimated correlation matrix C between the components of θ from the fit

of the model given by Equation (1) to the previously mentioned data set from the

licensing test. To obtain a Σ with a mean correlation ρ, we computed the mean of the

correlations of C, m. Afterward, the (i, j)th element of Σ was set as the (i, j)th element

of C − m + ρ, where i 6= j.5 Through this strategy, we were able to ensure that the

average of the correlations in Σ was ρ, but the strategy also allowed the correlations

between the subscores to be different in a realistic way.

The steps of the simulation. For each simulation condition (determined by

a correlation and a subscore length), the generating item parameters of Pseudotest X,

Pseudotest Y , and the anchor test A were randomly drawn (as we described previously)

once. Afterward, we performed the R = 100 replications. The sample size of both P and Q

was set to 2000. Each replication involved the following steps: (a) We generated the ability

parameters, (b) simulated the scores, and (c) performed equating. Step details are provided

in the following:

1. Generate the ability parameters θ for the populations P and Q from ability dis-

tributions gP (θ) and gQ(θ), respectively. We used gQ(θ) = N4(0, Σ), where Σ is

obtained as described earlier, to ensure that the average correlation is ρ. We used

gP (θ) = N4(µP , Σ̂), where µP , which quantifies the difference between P and Q, given

by µP = (∆a, ∆a, ∆a, ∆a)
′; that is, the difference between the old form and new form

populations is the same for all the components of the ability. The value ∆a was set

to .25, a borderline extreme ability difference that is rarely surpassed for large-scale
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operational tests. From Figure 8, which is the pattern mostly observed in operational

testing, this choice of µP is reasonable.

2. Simulate scores on X in P , Y in Q, and those on A for both P and Q from the MIRT

model using the draws of θ from Step 1 and the generated item parameters for X, Y ,

and A.

a. Perform equating of subscores and weighted averages using the previously men-

tioned methods using the scores of X in P , Y in Q and A in P and Q. To simplify

matters, equating of weighted averages was computed only for the possible values

of the corresponding subscore (i.e., for a simulation case with 12-item subtests,

the equating was computed for 0, 1, . . ., 12).

b. Ignore the scores on the items on the anchor test that belong to the third and

fourth subscores, equate the subscores using Method 2 for subscore equating, and

equate the weighted averages using Method 2 for equating weighted averages only

using the items on the anchor test that belong to Subscores 1 and 2. This repre-

sents the nonrepresentative anchor test case that was considered in the operational

data examples.

Computation of the true–population equating function. We can understand

the true–population equating function for any subscore for a simulation case as the

population value of the IRT observed score equating (e.g., Kolen & Brennan, 2004) for the

subscore using linear interpolation as the continuization method. Consider a subscore Xs

on Pseudotest X and the corresponding subscore Ys on Pseudotest Y . The true–population

equating function equating Xs to Ys is the single-group equipercentile equating using the

true raw subscore distributions corresponding to Xs and Ys in a synthetic population T that

places equal weights on P and Q. An iterative approach (Lord & Wingersky, 1984) was used

to arrive at P (Xs = xs|θ), which is an examinee’s probability of obtaining a raw subscore

of Xs = xs with ability θ. This approach involves the values of the item parameters; in

this study, we used the generating item parameters for the items contributing to Xs. Once
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P (Xs = xs|θ) is computed, r(xs), we can assign a probability of a raw subscore of xs to test

Xs in population T , which can be obtained, using numerical integration, with the following:

r(xs) =

∫

θ

P (Xs = xs|θ)gT (θ)dθ, (2)

where gT (θ) = 0.5gP (θ) + 0.5gQ(θ). As we assumed a simple structure, there is a function

P (Xs = xs|θ) of the corresponding component of θ for any subscore s; that is, θs and the

preceding integration results in a one-dimensional integration, with one over the marginal

(standard normal) distribution of θs. The same approach provided us with q(ys), the

probability of a raw score of ys on Pseudotest Y in population T . The true raw score

distributions r(xs) and q(ys), both discrete distributions, are then continuized using linear

interpolation (Kolen & Brennan, 2004). Let us denote the corresponding continuized

cumulative distributions, respectively, as R(xs) and Q(ys). The true equating function for

subscore s is then obtained as Q−1(R(xs)). The true equating function is the same for each

replication and correlation level; however, it varies with subscore length. Also, the true

equating function for the subscores is used as the true equating function for the weighted

averages as the weighted average is an estimate of the true subscore (Haberman, 2008b),

and the true equating function computed earlier equates the true subscore distributions:

the distributions of Xs and Ys.

We can compute the true equating function using simulation (e.g., as in Sinharay

& Holland, 2007) by generating scores of a huge sample of examinees on Pseudotests X

and Y using the true item parameters, computing subscores and weighted averages, and

performing a single-group equating of subscores or weighted averages. The values of the

true equating function obtained using simulation were essentially identical for the equating

of subscores. The two methods of computing the true equating functions for weighted

averages had some differences. As an example, the simulation-based true equating function

leads to slightly better values of performance criteria for the weighted averages than what

is reported here. Henceforth, we do not discuss the simulation-based true equating function

in this report.
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Computation of the performance criteria: Equating bias, standard

deviation, and root mean squared error. After we obtained equating results from M

replications, we computed bias (a measure of systematic error in equating) and standard

deviation (a measure of random error in equating) as performance criteria. For simulation,

let êi(xs) be the equating function in the ith replication, providing the transformation of a

raw (sub)score point xs on X to the raw (sub)score scale of Y . Suppose e(xs) denotes the

value of the corresponding true equating function. The bias at (sub)score point xs is then

obtained as follows:

Bias(xs) =
1

M

M∑
i=1

[êi(xs)− e(xs)] = ¯̂e(xs)− e(xs),

where

¯̂e(xs) =
1

M

M∑
i=1

êi(xs).

We then obtain the corresponding standard deviation as follows:

SD(xs) =

{
1

M

M∑
i=1

[êi(xs)− ¯̂e(xs)]
2

} 1
2

.

The corresponding RMSE is computed as follows:

RMSE(xs) =

{
1

M

M∑
i=1

[êi(xs)− e(xs)]
2

} 1
2

.

It can then be shown that

[RMSE(xs)]
2 = [SD(xs)]

2 + [Bias(xs)]
2 ;

that is, the RMSE combines information from both random and systematic errors.

The overall performance of a method for a simulation case can be judged by the

overall (or weighted average of) bias,
∑

xs
r(xs)Bias(xs); the overall standard deviation,√∑

xs
r(xs)SD2(xs); and the overall RMSE,

√∑
xs

r(xs)RMSE2(xs).

Simulation Results

We present some summary statistics in Table 9 for the several simulation conditions,

whereas Table 10 shows the weighted average of bias, standard deviation, and RMSE
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for Methods 1 and 2 for equating of subscores. The table also shows the values of the

performance measures for no equating. Also, Table 11 shows the weighted average of

bias, standard deviation, and RMSE for the equating of weighted averages. Table 10

shows the weighted average of bias, standard deviation, and RMSE for the equating of

subscores when the scores on the items on the anchor test that belonged to the third and

fourth subscores are ignored before performing the equating, that is, when the anchor

test is nonrepresentative of the total test. Table 13 shows the weighted average of bias,

standard deviation, and RMSE for the equating of weighted averages when the anchor test

is nonrepresentative of the total test.

The values for the no equating column in Tables 11–13 are the same as those for

the no equating column in Table 10. In interpreting the standard deviation and RMSE

in the preceding tables, one should note that as test length increases, the standard error

of measurement also increases; hence standard deviation and RMSE are also expected to

increase.

The tables show the following:

• In Table 9, the percentage of the weighted averages that have added value is larger than

50% for all but two simulation cases, whereas the percentage of subscores that have

added value is less than 50% for all but two simulation cases. Hence these simulation

cases are appropriate for discussing equating of weighted averages.

• The methods seem to perform accurately. The bias, standard deviation, and RMSE of

all the methods are small; that is, they are less than the DTM. This is in agreement

with the results observed previously for the operational data examples.

• Any method leads to a substantial improvement over no equating for all simulation

cases. Table 10 shows that the RMSE for no equating is more than the DTM for all

but one simulation case; therefore the use of any of the suggested methods will most

often lead to a more fair reported score.

• As we move toward the bottom left of Table 10, we notice a tendency for Method 1 of
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Table 9
Summary Statistics From the Simulation Study

Correlation
Subscore length Quantity .70 .80 .90

12 α .82 .84 .85
r .42 .48 .55

PRMSEs .61 .61 .61
PRMSEx .64 .71 .79
PRMSEsx .72 .75 .81

% sub 25 22 0
% wtd 100 98 32

20 α .89 .90 .91
r .50 .58 .65

PRMSEs .72 .72 .72
PRMSEx .69 .76 .84
PRMSEsx .79 .82 .86

% sub 66 25 7
% wtd 100 100 46

30 α .92 .93 .93
r .55 .63 .71

PRMSEs .79 .79 .79
PRMSEx .71 .79 .86
PRMSEsx .84 .86 .89

% sub 100 32 25
% wtd 100 100 62

Note. Here α denotes average reliability of the total score;
r denotes 100× the average correlation between the subscores;
% sub denotes the overall percentage of subscores that have
added value; and % wtd denotes the overall percentage of
weighted averages that have added value.
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Table 10
Overall Bias, Standard Deviation, and Root Mean Squared Error (RMSE; All Multiplied
by 100) for Equating of Subscores in the Simulation Study

Correlation = .70 Correlation = .80 Correlation = .90
Subscore Subscore Subscore Subscore
length Measure Method 1 2 3 4 1 2 3 4 1 2 3 4

12 Bias 1 –15 –9 –13 –7 –15 –10 –13 –7 –15 –10 –13 –7
2 5 4 7 6 4 3 6 5 3 1 5 4

SD 1 10 12 10 11 11 12 10 11 11 12 11 11
2 10 11 10 10 10 11 10 10 10 11 10 10

RMSE 1 19 16 16 15 18 16 17 15 18 16 17 16
2 12 12 12 12 11 11 12 11 10 11 11 10

None 65 57 63 47 65 57 63 47 65 57 63 47

20 Bias 1 –12 –6 –6 –9 –12 –6 –6 –9 –12 –7 –6 –10
2 15 14 15 14 12 10 13 11 9 7 10 8

SD 1 15 17 14 15 16 16 14 15 15 16 14 15
2 15 19 15 14 14 18 14 14 13 16 14 13

RMSE 1 20 18 15 18 20 18 16 18 20 17 16 18
2 21 24 22 20 19 21 19 18 16 18 18 16

None 89 76 84 80 89 76 84 80 89 76 84 80

30 Bias 1 –9 –9 –6 –8 –9 –9 –5 –7 –9 –9 –5 –7
2 18 19 22 19 14 13 19 15 10 8 15 11

SD 1 21 20 20 19 21 20 19 19 21 21 19 19
2 22 21 19 19 20 19 18 18 19 18 19 17

RMSE 1 23 23 21 22 23 23 21 22 23 23 20 23
2 29 28 31 28 25 23 27 24 22 20 25 21

None 126 123 136 138 126 123 136 138 126 123 136 138
Note. None refers to no equating. For these cases, SD = 0 and bias = RMSE, and hence bias and SD are
not included in the table.
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Table 11
Overall Bias, Standard Deviation, and RMSE (All Multiplied by 100) for Equating of
Weighted Averages in the Simulation Study

Correlation = .70 Correlation = .80 Correlation = .90
Subscore Subscore Subscore

SL Mea. Meth. 1 2 3 4 1 2 3 4 1 2 3 4
12 Bias 1 −30 −24 −27 −14 −28 −23 −26 −14 −26 −22 −26 −15

2 −19 −18 −19 −16 −17 −17 −19 −15 −16 −17 −18 −16
3 −21 −21 −22 −18 −18 −19 −20 −15 −16 −18 −18 −16

SD 1 13 17 17 12 13 13 16 12 13 13 16 12
2 15 16 17 15 14 15 16 15 14 14 15 14
3 15 15 17 15 14 15 16 15 14 15 15 14

RMSE 1 36 33 39 41 34 32 37 38 32 30 36 37
2 25 25 31 25 23 24 30 24 22 23 29 24
3 27 27 34 26 25 25 31 24 23 24 30 24

20 Bias 1 −30 −23 −25 −27 −28 −22 −25 −27 −26 −22 −25 −25
2 −12 −10 −14 −11 −11 −12 −15 −12 −11 −14 −16 −12
3 −17 −18 −18 −15 −14 −16 −17 −14 −11 −15 −16 −12

SD 1 20 19 17 18 18 17 18 19 18 18 27 18
2 20 22 19 18 17 20 18 17 17 18 26 16
3 19 19 19 17 17 18 18 17 16 17 26 15

RMSE 1 40 36 38 35 36 35 37 34 34 34 42 33
2 25 26 28 24 22 26 27 24 21 25 34 24
3 27 28 29 24 23 26 28 24 21 25 34 22

30 Bias 1 −32 −30 −33 −31 −30 −29 −31 −30 −27 −28 −30 −28
2 −12 −08 −13 −10 −13 −12 −14 −12 −13 −14 −15 −13
3 −20 −20 −21 −18 −17 −19 −18 −16 −13 −17 −17 −14

SD 1 23 21 24 20 23 22 22 21 22 22 22 20
2 26 23 23 22 23 22 21 20 20 21 20 19
3 23 21 24 21 21 21 21 20 20 21 20 18

RMSE 1 45 40 46 42 42 41 42 41 39 40 41 41
2 32 27 29 27 28 29 27 27 25 30 27 31
3 32 31 33 30 29 31 29 28 25 30 28 29

Note. The RMSE for no equating for any simulation case shown in the table is identical to the RMSE for
the same simulation case in Table 10. Mea. = measure, meth. = method, SL = subscore length.
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Table 12
Overall Bias, Standard Deviation, and RMSE (All Multiplied by 100) for Equating of
Subscores When the Anchor Is Nonrepresentative in the Simulation Study

Correlation = .70 Correlation = .80 Correlation = .90
Subscore Subscore Subscore Subscore
length Measure Method 1 2 3 4 1 2 3 4 1 2 3 4

12 Bias 2 −2 −4 −0 −1 −3 −5 −1 −2 −3 −6 −1 −2
SD 2 11 12 11 12 11 12 11 12 10 11 10 10

RMSE 2 11 12 11 12 11 13 11 12 11 13 10 11

20 Bias 2 5 3 6 3 4 1 5 2 3 –1 4 1
SD 2 16 18 17 16 15 17 16 16 15 17 16 15

RMSE 2 17 18 18 17 16 17 17 16 15 17 16 15

30 Bias 2 9 7 14 10 6 4 11 8 4 1 9 5
SD 2 22 19 23 24 21 20 23 23 20 18 22 20

RMSE 2 24 21 28 27 23 21 26 25 21 19 24 22

Table 13
Overall Bias, Standard Deviation, and RMSE (All Multiplied by 100) for Equating
of Weighted Averages When the Anchor Is Nonrepresentative in the Simulation Study

Correlation = .70 Correlation = .80 Correlation = .90
Subscore Subscore Subscore

SL Mea. Meth. 1 2 3 4 1 2 3 4 1 2 3 4
12 Bias 2 −23 −23 −23 −21 −21 −22 −22 −19 −20 −22 −21 −20

SD 2 15 16 18 16 14 16 17 16 14 14 15 14
RMSE 2 29 29 34 29 27 28 33 28 25 27 31 27

20 Bias 2 −19 −19 −19 −19 −17 −19 −19 −18 −15 −20 −19 −17
SD 2 20 21 19 19 17 19 18 18 17 19 27 17

RMSE 2 29 30 31 28 26 29 30 28 24 29 36 27

30 Bias 2 −19 −17 −20 −18 −19 −19 −19 −18 −17 −20 −20 −18
SD 2 26 22 27 26 24 22 25 25 23 22 23 22

RMSE 2 36 30 35 34 33 32 33 33 30 33 32 35
Note. Mea. = measure, meth. = method, SL = subscore length.
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equating of subscores to perform better when compared to Method 2. This means that

when subscores are longer and more uncorrelated to each other, a subscore is more

likely to stand on its own, and an equating with the anchor items contributing only to

that subscore is expected to be more accurate than an equating with the total (scaled)

score as an anchor score.

• Both Methods 2 and 3 for equating weighted averages perform better than Method 1,

as is clear from Table 11. Among Methods 2 and 3, the former performs slightly better

than the latter overall—the RMSE is more often smaller for the former than for the

latter.

• As the correlation level increases, the RMSE for Method 2 for equating of subscores

becomes less because the total score becomes more similar to a subscore as correlation

among the subscores increases. The same phenomenon is observed for all the methods

for equating of weighted averages but not for Method 1 of equating of subscores.

• If Tables 10 and 11 are compared, the performance measures for any simulation case

have higher absolute values for weighted averages than for subscores. Even so, the

values of the measures for the weighted averages are less than the DTM.

• Bias, standard deviation, and RMSE are larger for longer subtests than for shorter

subtests.

• Tables 10 and 13 show that the equating appears to be accurate even for the simulation

cases with a nonrepresentative anchor test. The quality of equating with nonrepresen-

tative anchors is mostly worse than that with representative anchors; this is clear from

a comparison of Tables 11 and 13. However, equating with nonrepresentative an-

chors is much better than no equating at all. This is clear from a comparison of the

values given in Tables 12 and 13 with the values for no equating shown in Table 10.

The small error of equating with nonrepresentative anchors in the simulations is in

agreement with results from the operational data sets because, we believe, the anchor

test is supposed to reflect the differences in the two populations on the subscores to
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be equated, and the assumption of equal difference for all subscores in the preceding

simulation causes the scaled total score, which is used as the anchor score in Method

2, to reflect the difference accurately.

Additional Simulations

The preceding simulations assumed that µP = (∆a, ∆a, ∆a, ∆a)
′; that is, the

difference in the ability of the two populations is the same for all subscores. The simulations

also assumed that the difference in the difficulty of the two tests is the same for all four

content areas. In the literature, Sinharay and Holland (2007) discussed other possible

patterns of differences between the two populations and the two tests when data are

generated from a MIRT model, and for our purposes here, it is of interest to determine

whether the results reported in Tables 10–13 hold under those patterns.

Table 14 considers the case when the two populations are of the same ability, that

is, all the components of µP are 0 and the two tests are of the same difficulty for all four

content areas. This is the ideal equating scenario because there is no need to equate in this

case. Table 14 shows the values of RMSE for Method 2 for equating subscores and Method

2 for equating weighted averages, both for the case when the anchor test is representative

and for the case when the anchor test is nonrepresentative. In this case, the methods’

comparative performance is similar to what is shown in Tables 10–13, and hence results

for other methods are not provided in this report. Table 14 shows the results for the three

lengths of subscores (12, 20, and 20) and the two levels of correlations (70 and 90). These

values are mostly slightly lower than those reported in Tables 10–13.

Next we performed some additional simulations under different patterns. Different

patterns of difference in difficulty of the two tests did not affect results, so the pattern was

set as in preceding simulations; that is, Pseudotest X is more difficult than Pseudotest Y

in all four content areas. However, different patterns of differences in ability of the two

populations substantially affected the results; therefore we report results for two of these

patterns. Table 15 shows results for the case in which µP = (0.1, 0.15, 0.2, 0.25), which

is likely to occur in practice, as demonstrated by Figure 8. Table 16 provides results
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for the case in which µP = (0.1, 0.1,−0.1,−0.1). This kind of pattern was discussed

by Klein and Jarjoura (1985; see their Figures 2 and 3). The preceding results were

obtained when the anchor test length was 40% of the total test length. Table 17 provides

results for the case in which the anchor test length is 24 (i.e., six items per subtest)

and µP = (0.25, 0.25, 0.25, 0.25). The table helps in understanding how the methods are

performed as the total test length to anchor test length decreases from 50% (in the case of

12 items per subscore) to 20% (in the case of 30 items per subscore).

Table 14
Overall RMSE (Multiplied by 100) for Equating of Subscores (Method 2)
and Weighted Averages (Method 2) When the Two Populations Are of
the Same Ability and the Two Tests Are of Equal Difficulty

Correlation = .70 Correlation = .90
Subscore Subscore Anchor Subscore Subscore
length or wtd. av. type 1 2 3 4 1 2 3 4

12 Subscore Representative 12 12 11 12 11 12 11 11
12 Wtd. av. Representative 18 17 25 18 16 14 23 18
12 Subscore Nonrepresentative 12 13 12 13 12 12 11 11
12 Wtd. av. Nonrepresentative 18 17 25 19 16 15 23 18
12 Both None 20 10 09 03 20 10 09 03

20 Subscore Representative 15 18 15 15 14 17 14 13
20 Wtd. av. Representative 21 20 23 19 20 17 23 18
20 Subscore Nonrepresentative 16 18 17 17 15 17 16 15
20 Wtd. av. Nonrepresentative 22 20 24 20 21 18 23 19
20 Both None 20 11 04 08 20 11 04 08

30 Subscore Representative 22 22 20 20 19 19 19 17
30 Wtd. av. Representative 26 23 24 23 22 21 22 22
30 Subscore Nonrepresentative 23 21 25 25 21 19 22 21
30 Wtd. av. Nonrepresentative 27 22 28 27 24 21 25 24
30 Both None 20 07 17 20 20 07 17 20

Note. RMSE = root mean squared error, wtd. av. = weighted average.
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Table 15
Overall RMSE (Multiplied by 100) for Equating of Subscores and Weighted
Averages When µP = (0.1, 0.15, 0.2, 0.25)

Subscore Correlation = .70 Correlation = .90
Subscore or wtd. av. Anchor Subscore Subscore
length and method type 1 2 3 4 1 2 3 4

12 Subscore 1 Representative 12 13 14 15 12 13 15 16
12 Subscore 2 Representative 20 15 10 14 18 13 10 15
12 Wtd. av. 1 Representative 26 28 36 41 24 24 34 36
12 Wtd. av. 2 Representative 19 19 31 31 16 17 30 31
12 Wtd. av. 3 Representative 20 21 32 31 16 18 31 31
12 Subscore 2 Nonrepresentative 11 14 16 26 11 14 15 26
12 Wtd. av. 2 Nonrepresentative 21 24 36 39 18 23 34 38
12 Both None 66 57 64 47 66 57 64 47
20 Subscore 1 Representative 16 17 15 18 16 16 15 18
20 Subscore 2 Representative 35 27 16 20 31 22 14 21
20 Wtd. av. 1 Representative 28 31 36 35 26 28 34 36
20 Wtd. av. 2 Representative 24 23 30 37 24 19 29 39
20 Wtd. av. 3 Representative 22 22 30 33 22 19 29 37
20 Subscore 2 Nonrepresentative 19 19 23 39 18 18 23 39
20 Wtd. av. 2 Nonrepresentative 22 28 38 52 20 27 37 52
20 Both None 91 77 85 80 91 77 85 80
30 Subscore 1 Representative 21 21 21 21 21 20 20 23
30 Subscore 2 Representative 49 35 21 27 42 27 19 31
30 Wtd. av. 1 Representative 34 31 42 43 30 32 37 45
30 Wtd. av. 2 Representative 34 26 32 49 29 24 30 54
30 Wtd. av. 3 Representative 24 24 34 41 25 23 30 50
30 Subscore 2 Nonrepresentative 27 22 32 55 24 23 32 57
30 Wtd. av. 2 Nonrepresentative 27 31 49 72 24 33 46 73
30 Both None 129 125 137 138 129 125 141 141

Note. RMSE = root mean squared error, wtd. av. = weighted average.
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Table 16
Overall RMSE (Multiplied by 100) for Equating of Subscores and Weighted
Averages When µP = (0.1, 0.1,−0.1,−0.1)

Subscore Correlation = .70 Correlation = .90
Subscore or wtd. av. Anchor Subscore Subscore
length and method type 1 2 3 4 1 2 3 4

12 Subscore 1 Representative 12 13 11 11 12 13 11 11
12 Subscore 2 Representative 20 25 17 20 20 25 17 19
12 Wtd. av. 1 Representative 26 27 30 45 23 22 27 40
12 Wtd. av. 2 Representative 29 31 27 23 28 29 26 23
12 Wtd. av. 3 Representative 28 26 28 21 27 25 26 22
12 Subscore 2 Nonrepresentative 11 12 32 34 11 12 31 33
12 Wtd. av. 2 Nonrepresentative 23 23 32 30 20 20 31 31
12 Both None 66 57 65 49 66 57 65 49
20 Subscore 1 Representative 16 17 15 16 16 16 15 15
20 Subscore 2 Representative 31 39 30 34 31 39 30 34
20 Wtd. av. 1 Representative 29 29 32 23 26 27 30 21
20 Wtd. av. 2 Representative 39 44 32 33 36 43 32 34
20 Wtd. av. 3 Representative 31 29 26 25 33 31 29 32
20 Subscore 2 Nonrepresentative 16 18 56 64 15 17 55 63
20 Wtd. av. 2 Nonrepresentative 25 24 46 54 21 23 48 56
20 Both None 91 77 87 82 91 77 87 82
30 Subscore 1 Representative 21 20 19 18 21 20 18 19
30 Subscore 2 Representative 50 59 45 50 48 58 44 49
30 Wtd. av. 1 Representative 35 29 31 28 33 31 27 26
30 Wtd. av. 2 Representative 57 62 41 46 56 61 40 47
30 Wtd. av. 3 Representative 39 32 29 27 48 39 32 42
30 Subscore 2 Nonrepresentative 23 21 88 97 20 20 85 94
30 Wtd. av. 2 Nonrepresentative 31 25 70 64 29 27 71 85
30 Both None 129 125 141 141 129 125 141 141

Note. RMSE = root mean squared error, wtd. av. = weighted average.
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Table 17
Overall RMSE (Multiplied by 100) for Equating of Subscores and Weighted
Averages When the Anchor Test Length Is 24 and µP = (0.25, 0.25, 0.25, 0.25)

Subscore Correlation = .70 Correlation = .90
Subscore or wtd. av. Anchor Subscore Subscore
length and method type 1 2 3 4 1 2 3 4

12 Subscore 1 Representative 14 15 15 12 14 15 15 11
12 Subscore 2 Representative 14 14 15 12 12 12 13 11
12 Wtd. av. 1 Representative 32 35 36 28 28 33 34 27
12 Wtd. av. 2 Representative 24 26 30 24 20 25 29 25
12 Wtd. av. 3 Representative 25 28 32 24 20 25 29 24
12 Subscore 2 Nonrepresentative 11 12 12 10 10 12 11 10
12 Wtd. av. 2 Nonrepresentative 26 30 32 27 23 28 30 26
12 Both None 65 45 60 48 65 45 60 48
20 Subscore 1 Representative 25 27 21 23 25 27 22 22
20 Subscore 2 Representative 19 20 21 18 15 17 17 15
20 Wtd. av. 1 Representative 45 47 43 43 40 45 41 39
20 Wtd. av. 2 Representative 28 29 29 27 24 28 28 25
20 Wtd. av. 3 Representative 32 36 34 30 24 28 28 25
20 Subscore 2 Nonrepresentative 17 19 18 17 17 19 16 16
20 Wtd. av. 2 Nonrepresentative 34 36 35 34 30 35 33 31
20 Both None 89 85 82 81 89 85 82 81
30 Subscore 1 Representative 33 38 41 38 33 37 41 39
30 Subscore 2 Representative 24 27 23 25 20 24 20 20
30 Wtd. av. 1 Representative 58 57 65 59 53 57 60 55
30 Wtd. av. 2 Representative 33 36 37 37 29 39 35 33
30 Wtd. av. 3 Representative 40 45 47 41 30 41 38 31
30 Subscore 2 Nonrepresentative 24 29 26 28 24 29 25 26
30 Wtd. av. 2 Nonrepresentative 41 43 46 46 37 46 42 40
30 Both None 126 123 138 123 126 123 138 123

Note. RMSE = root mean squared error, wtd. av. = weighted average.

Tables 15 and 16, which have similar results, draw a slightly different picture

concerning the performance of the suggested equating methods from that drawn by

Tables 10–13 in that the former show the following:

1. The RMSEs are often much larger in Tables 15 and 16 in comparison to those in

Tables 10–13. For example, the largest RMSE in Tables 10 and 12 for any equating

method was .31, whereas for subscore equating, the RMSE can be as large as .97 in

Table 16. Even then, equating with some method is better than no equating, according

to Tables 15 and 16. Also, the RMSE is less than the DTM of 0.50 more than 90% of

the time.

2. Unlike Table 10, when the content is representative, Method 2 for subscore equating
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is worse than Method 1 for almost all cases in Tables 15 and 16, including for 12-

item subtests. This is expected. In the simulations underlying Tables 15 and 16, the

difference in the total scaled score between the two populations does not reflect the

difference in any single subscore between the two populations. For example, when

µP = (0.1, 0.1,−0.1,−0.1), which led to Table 16, the average total scores for the two

populations are close, whereas the average of any of the subscores differs over the two

populations. Hence, in Tables 15 and 16, the total score does not perform as an anchor

as well as it does in Tables 10–13.

3. Unlike Table 11, Method 2 for equating weighted averages is often the worst of the

three methods, especially as shown in Table 16.

4. Unlike in Table 12, a nonrepresentative anchor often leads to much worse equating of

subscores compared to the representative anchor of Tables 15 and 16. For example, the

RMSE for the fourth 30-item subscore for correlation = .70 in Table 16 is .97 for the

nonrepresentative anchor case compared to .18 and .50 (Methods 1 and 2, respectively)

for the representative anchor case. This is because the total scaled score, which acts

as the anchor score, in the nonrepresentative anchor case is based on the first two

subscores, and P is better than Q in these two subscores (the first two components of

µP are positive); however, P is worse than Q on the third and fourth subscores, so a

substantial equating error is expected in the equating of these subscores. The equating

error for the first two subscores is small for the nonrepresentative anchor case because

the total score accurately reflects the differences between the two populations for these

two subscores.

5. A comparison of results from Tables 17 and 10 for subtest lengths 20 and 30 supports

the findings of Puhan and Liang (in press), which suggest that Method 2 of subscore

equating performs better than Method 1 when the proportion of a subtest that is

common between the old and new forms is small. In Table 10, for subtest length

30, for which the anchor test length is 48, Method 1 performs better than Method 2.

However, in Table 17, for subtest length 30, for which the anchor test length is 24,
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Method 1 performs worse than Method 2.

Conclusions

This report reviewed several methods, working under the NEAT design, for the

equating of subscores and suggested several methods for the equating of weighted averages.

The report also examined the performance of the discussed and described methods using

several operational and simulated data sets. The results demonstrated that the suggested

methods perform quite accurately; that is, the extent of equating error (both systematic

and random) is small in most situations. Even in the case when the anchor test is

nonrepresentative of the test (i.e., some content areas covered in the test were not covered

in the anchor test), the suggested methods still perform quite well in most cases. Through

the study, we also demonstrated that borrowing information from other subscores in an

anchor score can lead to an increase in accuracy of the equating of subscores and weighted

averages.

The results of this report are subject to the usual limitations of simulation studies;

however, the following facts make our simulations somewhat realistic:

• In essence, the results from the simulation study are shown to be in agreement with

results from the operational data sets. As an example, when the difference in the

populations is in the same direction for all the subscores, the equating error is small

both for the simulated data and for the operational data.

• To make the data sets more realistic, the simulations used item parameters estimated

from operational data to generate the simulated data sets.

• The data sets simulated in our study were found to reproduce adequately the raw

subscore distributions of the operational data set. Because the functions equating

subscores or weighted averages are completely determined by the corresponding raw

subscore distributions, our simulations are realistic for our purpose.

• Haberman, von Davier, and Lee (2008) found that MIRT models fit operational data

better than univariate IRT models and that they provide a reasonably good fit to
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operational data sets; therefore the data simulated from a MIRT model in this study

can be expected to retain the important features of the operational data reasonably

well.

Several issues should be examined further:

• More operational data sets and simulated data sets, especially those different in nature

from those considered in this report, should be analyzed using the methods we suggest

here. For example, data involving polytomous items and internal anchor tests were

not analyzed in this report and should be studied further.

• Also to be examined is population invariance of equating (e.g., Dorans & Holland,

2000) of subscores and weighted averages. Practitioners often argue that differences

between subscores vary over different subgroups, in which case, the equating method

that uses the total score as an anchor score may be more prone to lack of invariance.

• This report considered chain equipercentile equating using linear interpolation (Kolen

& Brennan, 2004). Other equating methods, for example, kernel equating (von Davier,

Holland, & Thayer, 2003) and equating using continuous exponential families (Haber-

man, 2008a), could also be applied—these methods would replace the linear interpola-

tion (Kolen & Brennan, 2004) that was used in this report by more elegant smoothing

techniques. The existing software for equating using continuous exponential families

(Haberman, 2008a) has the advantage that it can handle fractional scores.

• It would be useful to perform a study of scale drift in the context of equating of

subscores and weighted averages. One method considered here may be more prone to

scale drift than another method.

• A study of whether the weights on the weighted averages vary too much over the

different forms of a test may be worthwhile. If they do not, then it may be possible

to fix the weights once and then use those weights in the future to report weighted

averages. In addition, the equating performance of weighted averages with fixed weight

should be studied.
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Notes

1 Of course, one must check the accuracy of such equating before the implementation of the

methods for such situations.

2 Of course, the accuracy of such equating has to be checked before its implementation.

3 This is important because several testing programs operationally report subscores that

are not equated.

4 If weighted averages are operationally used, they are likely to be rounded to their nearest

integers; therefore this strategy is reasonable.

5 When the level of correlation is .90, the (3,4)th element of C was changed to .85 before

this calculation so that Σ was ensured to be positive definite.
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Appendix

Description of the Methodology of Haberman (2008b)

In this appendix, we describe the methodology of Haberman (2008b) and Haberman,

Sinharay, and Puhan (2009), used in this report to determine whether and how to report

examinee-level subscores. The analysis involves the observed subscore s, the true subscore

st, the observed total score x, and the true total score xt. It is assumed that st, xt, s− st,

and x− xt all have positive variances. As usual in CTT, s and st have common mean E(s),

x and xt have common mean E(x), and the true scores st and xt are uncorrelated with the

errors s− st and x− xt. Let ρ(a, b) denote the correlation between a and b. It is assumed

that the true subscore st and true total score xt are not collinear so that |ρ(st, xt)| is less

than 1. This assumption also implies that |ρ(s, x)| < 1. Haberman (2008b) considered

several approaches for estimation of the true score st.

In the first approach, st is estimated by the constant E(s) so that the corresponding

mean squared error in estimation is E[st − E(s)]2 = σ2(st). In the second, the linear

regression

ss = E(s) + ρ2(st, s)[s− E(s)]

of st on the observed subscore s estimates st, and the corresponding mean squared error is

E(st − ss)
2 = σ2(st)[1− ρ2(st, s)], where ρ2(st, s) is the reliability of the subscore. In the

third approach, the linear regression

sx = E(s) + ρ(st, x)[σ(st)/σ(x)][x− E(x)]

of st on the observed total score x estimates st, and the corresponding mean squared error

is E(st − sx)
2 = σ2(st)[1− ρ2(st, x)].

Haberman (2008b) compared the last two approaches with respect to their PRMSE.

Relative to using E(s), the PRMSE corresponding to the use of ss as the estimate of st is

given by

PRMSEs =
σ2(st)− σ2(st)[1− ρ2(st, s)]

σ2(st)
= ρ2(st, s),

which is the reliability of the subscore. Relative to using E(s), the PRMSE corresponding
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to the use of sx as the estimate of st is PRMSEt = ρ2(st, x), where

ρ2(st, x) = ρ2(st, xt)ρ
2(xt, x), (A1)

where ρ2(xt, x) is the total score reliability. The computation of ρ2(st, xt) is described

shortly.

Haberman (2008b) argued on the basis of these results that the true subscore is

better approximated by sx (which is an estimate based on the total score) than by ss

(which is an estimate based on the subscore) if ρ2(st, s) is smaller than ρ2(st, x), and hence

subscores should not be reported in that case.

The fourth approach consists of reporting an estimate of the true subscore st based

on the linear regression ssx of st on both the observed subscore s and the observed total

score x. The regression is given by

ssx = E(s) + β[s− E(s)] + γ[x− E(x)],

where

γ =
σ(s)

σ(x)
ρ(st, s)τ,

τ =
ρ(xt, x)ρ(st, xt)− ρ(s, x)ρ(st, s)

1− ρ2(s, x)
,

β = ρ(st, s)[ρ(st, s)− ρ(s, x)τ ].

The mean squared error is then E(st − ssx)
2 = σ2(st){1− ρ2(st, s)− τ 2[1− ρ2(s, x)]} so

that the PRMSE relative to E(s) is given by

PRMSEst = ρ2(st, ssx) = ρ2(st, s) + τ 2[1− ρ2(s, x)].

Computation of ρ2(st, xt)

The quantity ρ2(st, xt) can be expressed as

ρ2(st, xt) =
[Cov(st, xt)]

2

V (st)V (xt)
.

The variances are computed by multiplying the observed variance by the reliabilities; for

example,

V (st) = ρ2(st, s)× observed variance of s.
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The covariance Cov(st, xt) can be expressed, where skt denotes the true kth subscore, as

Cov(st, xt) = Cov

(
st,

∑

k

skt

)
=

∑

k

Cov (st, skt) .

The right-hand side of the equation is the sum of the tth row of CT , the covariance matrix

between the true subscores. The off-diagonal elements of CT are the same as those of the

covariance matrix between the observed subscores; the kth diagonal element of CT is

obtained as variance of the kth observed subscore × reliability of the kth subscore.
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