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Abstract 

Estimation of parameters of random effects models from samples collected via complex 

multistage designs is considered. One way to reduce estimation bias due to unequal probabilities 

of selection is to incorporate sampling weights. Many researchers have been proposed various 

weighting methods (Korn, & Graubard, 2003; Pfeffermann, Skinner, Holmes, Goldstein, & 

Rasbash, 1998) in estimating the parameters of hierarchical models, including random effects 

models as a special case. In this paper, the bias of the weighted analysis of variance (ANOVA) 

estimators of the variance components for a two-level, one-way random effects model is 

evaluated. For these estimators, analytic bias expressions are first developed, the expressions are 

then used to examine the impact of sample size, intraclass correlation coefficient (ICC), and the 

sampling design on the bias of the estimators. In addition, two-stage sampling designs are 

considered, with a general probability design at the first stage (Level 2) and simple random 

sampling without replacement (SRS) at the second stage (Level 1). The study shows that first-

order weighted variance component estimators perform well when for moderate cluster sizes and 

ICC values. However, noticeable estimation bias can be found with this weighting method for 

small cluster sizes (less than 20), particularly when ICC is small (less than 0.2). In such 

scenarios, scaled first-order weighted estimators can be an alternative. This paper is discussed in 

the context of National Assessment of Educational Progress (NAEP) 2003 4th Grade Reading 

National and State Assessment data, with Level 1 being the student level and Level 2 being the 

school level.  

Key words: random effects model, variance components, estimation bias, ANOVA estimators, 

complex sampling designs, selection probability, sampling weights, ICC, NAEP 
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1. Introduction 

The National Assessment of Educational Progress (NAEP) is a large-scale educational 

assessment designed to give information on what U.S. students know and can do. Data for the 

NAEP are collected from a complex multistage sample of schools and students, therefore 

sampling weights are required for proper analysis of these data. Online documentation from the 

National Center for Education Statistics (NCES) provides secondary data analysts with 

information on how to use weights on the NAEP data file when estimating means, population 

totals, and regression coefficients but nothing on how to use weights when fitting hierarchical 

models. Because these models are increasingly popular in educational research and several 

different weighting methods have been proposed for estimating the model parameters, guidance 

for data analysts is needed. The motivation for the research reported here was to offer such 

guidance for secondary analysts of NAEP data. 

Pfeffermann, Skinner, Holmes, Goldstein, and Rasbash (1998) and Graubard and Korn 

(1996) presented two methods for incorporating sampling weights in estimation of hierarchical 

models. The former used only first-order weights and the latter used both first- and second-order 

weights. First-order weights are (before adjustments for nonsampling errors) reciprocals of the 

inclusion probabilities of sampling units, while second-order weights are reciprocals of the joint 

inclusion probabilities of pairs of units. Estimates for parameters of hierarchical models that use 

only first-order weights are currently available in commercial software (e.g., HLM 6.0, MLWIN, 

LISREL, and Stata GLLAMM), but those using second-order weights are not available. Further, 

second-order weights are not typically provided on data files, so users have to produce them 

from knowledge of the sampling design, which is difficult for all but the most expert users.  

Estimators that are linear in the data (such as estimators of totals) are design-unbiased if 

they incorporate the appropriate first-order weights. However, weighting might not reduce 

design bias for those that are nonlinear in the data (such as estimators of variance components). 

In fact, Korn and Graubard (2003) noted that estimators of variance components that used only 

first-order weights could be substantially biased, even for designs with simple random sampling 

without replacement (SRS) at each stage. The goal of the current study is to determine when 

first-order weighted estimators of variance components are adequate and when they are not by 

focusing on data and designs related to those found in NAEP. 
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Section 2 reviews the background of sampling weights and hierarchical models. Section 3 

presents analytical expressions for bias of the first-order weighted ANOVA estimators under the 

random effects model. Section 4 characterizes the conditions under which the first-order 

weighted estimators studied in section 3 have an unacceptably high bias. In section 5, first- and 

second-order weighted ANOVA estimators are computed for a random effects model fit to the 

NAEP 2003 fourth-grade reading data. First-order weighted estimators adjusted by scaling are 

evaluated in section 6. Finally, a summary and recommendations for users of NAEP data follows 

in section 7. 

2. Hierarchical Models and Sampling Weights  

When the purpose of an educational assessment program is to make valid inferences from 

a sample to a population of students, the students must be chosen according to a probability 

design; that is, the probability of selection of each sampled student must be known. Sampling 

designs for educational assessments often have a two-stage structure because it is cost-efficient 

to test groups of students from the same school. The selection probabilities for different schools 

and different students within a school may be unequal, and if they are, the estimation procedure 

must take this into account by weighting in order to assure approximately design unbiased 

estimation. One estimator that is design unbiased for the total for any probability design is the 

Horvitz-Thompson (H-T) estimator. It weights each student’s score by the inverse of his or her 

selection probability and can be written for the two-stage design as  

|1 1
ˆ /ik m

is i s ii s
T y π π

= =
=  , 

where k is the number of schools in the sample, im  is the number of students sampled from each 

selected school, isy  is the score of the sth student in the ith school, (school  in sample)i P iπ = , 

and | (student  in sample | school  in sample)s i P s iπ = . The first-order weights, defined as 

iiw π/1=  and isisw || /1 π= , are needed to prevent bias if the design is informative; that is, if the 

model that holds for the sample is different from the model for the population (Pfeffermann & 

Smith, 1985). See Binder, Kovacevic, and Roberts (2005) and Binder and Roberts (2001) for 

more detailed discussion on the informativeness of the sampling design.  

For assessments such as NAEP, which collect a rich amount of background information, 

educational researchers may also be interested in fitting models designed to examine 



3 

relationships between a student’s performance and his or her personal or school characteristics. 

Because of the multistage sampling design, models accommodating the hierarchical structure are 

more appropriate for analysis. A simple hierarchical model (Raudenbush & Bryk, 2002) having 

two levels can be written as  

Level 1: isiisiis xy εββ ++= 10    , (1) 

Level 2: iii az 001000 ++= γγβ   ,  

iii az 111101 ++= γγβ   ,  

for i = 1,…,k  and s = 1, …, mi, where isx  are covariates corresponding to the student, iz  are 

covariates corresponding to the school, [ ]T
ii 10 , βββ =  is a vector of unknown regression 

parameters, and [ ]T
iii aaa 10 ,=  and isε  are random effects, which are mutually independent and 

normally distributed with zero means and constant variances, ( ) Ω=iaVar  and ( ) 2
eisVar σε = .  

This paper considered a simple special case of this model, the one-way random effects 

model, in which β0i = μ  was the grand mean and β1i  = 0. Thus our model is     

isiis ay εμ ++= ,  (2) 

for i = 1,…,k and s = 1,…,mi , where ( )2~ 0,i aa N σ  and ( )2~ 0,is eNε σ , and ia  and isε  are all 

mutually independent. Besides estimating the mean, or the variance components themselves, 

researchers may also be interested in estimating the intraclass correlation coefficient (ICC),  

22

2

ea

aICC
σσ

σ
+

= ,  (3) 

which is the proportion of total variability in scores due to the school-to-school differences.  

Korn and Graubard (2003) showed in a simulation study that the estimators of variance 

components that used only first-order weights were biased, even when the design was 

noninformative at both school and student levels. Their proposed estimators, which used the 

second-order weights, were nearly unbiased.  

Second-order weights are needed for an approximately unbiased estimation of variance 

components because the full-population functions of the data being estimated are nonlinear, 

specifically involving squares of sums of the individual scores. However, the estimation method 
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incorporating second-order weights is difficult to employ in practice, both because no 

commercial software is yet available and because second-order weights are not routinely 

included on data files. 

The next section develops analytical expressions for the bias of Graubard and Korn’s 

first-order weighted estimators of the variance components (Graubard & Korn, 1996) for the 

one-way random effects model. This process allows examination of the estimation bias for a 

larger range of sampling designs and population scenarios than simulation does. Most of the 

available commercial multilevel software packages use maximum likelihood based estimation 

methods (Chantala & Suchindran, 2006). However, any theoretical evaluation of the weighted 

estimators becomes rapidly intractable when the computation involves iterative methods and 

complex sampling structures. The focus of this paper is the analysis of variance (ANOVA) 

estimators (Searle, Casella, & McCulloch, 1992, p. 59), also known as method of moments 

estimators (Korn & Graubard, 2003) because they are easier to examine analytically. 

3. Bias of First-Order Weighted Analysis of Variance  

(ANOVA) Estimators 

3.1 First-Order Weighted ANOVA Estimators 

In a super-population view (Binder & Roberts, 2001), it is assumed that the data in a 

population have arisen from Equation 2 and we are interested in estimating its parameters μ , 

2
eσ , and 2

aσ . If all students from all schools in the population are observed, the parameters μ , 

2
eσ , and 2

aσ  in Equation 2 can be estimated by (Searle et al., 1992):  


 

=

= ==
K

i i

K

i

M

s is

M

Y
Y

i

1

1 1 ,  (4) 

( )
( ) 

 = =

=

−
−

= K

i

M

s iisK

i i

e
i YY

M
S

1 1

2

.

1

2

1

1
,  (5) 

( )
2

22
. ..1

0 0

1
,

( 1)

K e
a i ii

S
S M Y Y

K M M=
= − −

−    (6) 

where K  is the total number of schools in the population, iM  is the total number of students 

within each school, .iY  is the ith school average, Y  is the overall average, and       
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












−

−
= 


 =

=

=

K

i iK

i i

K

i i M
M

M
K

M
1

2

1

10

1

1

1
. (7) 

Equations 4 to 6 are model consistent for the parameter values. Of course, access to data from all 

students in the population is usually not available. Instead, the parameters in Equation 2 must be 

estimated from a sample. If a sample from a two-stage probability sampling design of students 

chosen within schools is available, and if the sample units have equal selection probabilities at 

each of the two stages, then estimators of these expressions can be obtained by replacing the 

sums over all population units with the analogous sums over all sample units in Equations 4 to 7. 

But this estimation method can lead to biased results even asymptotically if either the students or 

the schools are unequally weighted (see Jia, 2007, for detailed discussion).  

Graubard and Korn (1996) suggested the first-order weighted ANOVA estimators: 

|1 1
..

|1 1

i

i

k m

i s i isi s
FW k m

i s ii s

w w y
y

w w
= =

= =

=  
 

,  (8) 

( )22
| .1 1

|1 1

1
 ,

( 1)

i

i

k m

eFW i s i is i FWk m i s
i s ii s

s w w y y
w w = =

= =

= −
−
 

 
  (9) 

( ) ( ) ( )
2

22
| . ..1 1

00 1

1
 

1

ik m eFW
aFW i j i i FW FWk i s

FWFW ii

s
s w w y y

mm w
= =

=

= − −
−
 


,  (10) 

where  

( )2

0 | |1 1 1 1
|1 1 1

1 1

1

i i

i

k m k m

FW i s i i s ik k mi s i s
i i s ii i s

m w w w w
w w w= = = =

= = =

 
 = −
 −  
   

  
, 

|1
.

|1

i

i

m

s i iss
i FW m

s is

w y
y

w
=

=

= 


.  

These statistics estimate μ , 2
eσ , and 2

aσ  by replacing all population sums in Equations 4 to 7 

with weighted sample sums. The weighted estimator ..FWy  is (for fixed sample sizes) unbiased 

for μ, but 2
eFWs  and 2

aFWs  require large sample sizes at both levels of the design for approximate 

unbiasedness for 2
eσ  and 2

aσ . The sample size within the school is often not large, so there can 
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be substantial bias in the estimators. In the next subsection, expressions for their approximate 

biases are derived.  

3.2 Bias Expressions for the First-Order Weighted ANOVA Estimators 

Expressions of the approximate estimation bias for fairly general sample designs were 

developed to evaluate the performance of 2
eFWs  and 2

aFWs . The designs considered were two-

stage, with a general probability design at the school level and SRS at the student level, which 

are common in educational surveys, including NAEP. The school level selection probability iπ  

was allowed to be related to both the school level random effect ia  and the school population 

size iM . Then ( ),i i iM aπ π= , so that iπ  was also a random variable in this framework.  

The expectation of the estimators was approximated by taking the expectation of the first 

term of their Taylor expansion, first with respect to the sampling design and then to the model 

(see the appendix). This yielded an approximate relative bias for 2
eFWs  of  

( )2 2
, ,2 1

, , 2

( ) ( / ) 1
( ) ,

1

K

i iI a e eFW e i
I a e eFW

e

M m KE s avg M m
RB s

N K M

σ
σ

=
−− −= ≈ − = −

− −


  (11) 

where  =
= K

i iMN
1

, KNM /= , and i

K

i i mMKmMavg /)/1()/(
1 =

= . Equation 11 shows 

that 2
eFWs  was negatively biased, with larger relative bias for small school sample size (unless Mi 

is also small) and bounded below by -1. A complex design at the school level did not affect its 

approximate relative bias.  

The bias and relative bias of 2
aFWs  were approximated using similar methods (see the 

appendix). The resulting bias expression (A20) was too complicated to be helpful for drawing 

general conclusions, so a simpler balanced case was considered in which MM i =  and mmi =  

for all i. Then  

( ) ( ) ( )

( ) ( ) ( ) ( )

2
, ,

2

11 1 1

1 1 1

,
,

1

i i
I a e aFW

i i i

ij i j i j ij i j

K E w E wICC m
RB s

m ICC K M K

w a sd w
w w a a sd w w

K

ρ
ρ π π

− − − −≈ − − − − − 

− −
−

,  (12) 
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where ( )E  and ( )ρ  were defined as the expectation and the correlation of the random 

variables with respect to the school level random effect ia .  

Note that if the schools were censused, all terms but the first in Equation 12 would have 

been equal to zero and the bias would have been positive unless the students were also censused 

(m = M). The relative bias in this case could have been large if the ICC and m were both small. 

The second term,  

( ) 1

1
iE w

K

−
−

−
, 

was negative for a given sample but can be substantial only if a small proportion of schools in the 

population are selected in the sample. The next two terms were related to the informativeness of 

the sample. The third term rarely made an important contribution to the relative bias unless for 

designs where ijπ  is considerably different from i jπ π , for example, if a small school level 

sampling rate was present. Otherwise, jijiij ww/1=≈ πππ . If extreme schools (those with either 

high or low scores) were oversampled, then the last term in Equation 12,  

( ) ( )2,

1
i i iw a sd w

K

ρ
−

−
, 

would have contributed a positive component to the relative bias. 

Since the bias expressions reported in this section are approximations, a simulation study 

was conducted to check how accurate they were in reflecting the true bias of the estimators. In 

the simulation, we assumed a population of K = 1,500 schools, each of size M = 56 students 

(which was the estimated average population size of schools in the NAEP 2003 fourth-grade 

reading sample). A two-stage stratified design was selected with two strata at the school level 

and SRS at the student level. Three experimental factors (denoted as Factors A, B, and C) were 

considered. Factor A varied the nature of the informativeness of the stratification design: Level 

A1 indicated oversampling schools with large values of ia  (extreme schools, symmetric strata), 

and Level A2 indicated oversampling schools with large values of ia  (high-performing schools, 

asymmetric strata). Factor B denoted the sample size assignment at the school level. Defining 

Stratum 1 as the oversampled stratum and Stratum 2 the remainder, Level 1B  denoted selecting 
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all the units from Stratum 1 and half of units from Stratum 2 ( )1 1 2 2; / 2k K k K= =  and Level 2B  

denoted selecting 90 schools from Stratum 1 and nine schools from Stratum 2 ( )1 290; 9k k= = . 

Factor C was the student-level sample size, with C1 denoting a large sample (m = 23, which was 

the average school sample size for the NAEP 2003 fourth-grade reading sample) and C2 denoting 

a small sample (m = 5). 

The population data (K = 1,500, M = 56 for all schools) was simulated using Equation 2, 

with 2 1eσ =  and ICC = 0.23. Then 5,000 samples were simulated from the data for each of the 

2 2 2 8× × =  conditions just described. The first-order weighted estimators 2
eFWs  and 2

aFWs  from 

Equations 9 and 10 were computed for each sample, the bias for each estimator was computed by 

averaging the estimates, and the relative bias was computed. The results are reported in Table 1. 

Note that 2 2
a eICCσ σ= ⋅ , and for a given ICC value, further simulation results suggest that for 

any given 2
eσ  value, the relative biases of 2

eFWs  and 2
aFWs  were almost identical to the ones 

presented in Table 1, and the differences were mostly due to the simulation error. Expressions 

for relative bias were then computed from Equations 11 and 12 for each of the eight designs. The 

table shows that the simulated and analytically derived approximate biases are very similar in all 

cases considered. Based on this result, the analytic expressions were used to investigate the 

conditions under which the bias of the first-order weighted estimators of variance components 

would be problematic. 

4. Examination of Bias of the First-Order Variance and Weighted Analysis of 

Variance (ANOVA) Estimators 

The bias expressions derived in section 3 provided a systematic way to examine 

estimation bias for a variety of models and sampling designs. Equations 11 and 12 show that the 

relative bias of the first-order weighted estimators of the variance components was affected by 

sample sizes, sampling rates, ICC, and the informativeness of the design. This section uses these 

expressions to examine how much these factors affect the bias and to determine how important 

that bias is. The examples of the previous section and its results in Table 1 show that the relative 

bias of the variance components estimators could vary tremendously and that cases could exist at 

both extremes; that is, when the effect on bias was negligible (as in the upper half of Table 1) 

and when it was unacceptably high (as in the lower half of Table 1). 



9 

Table 1 

Comparison of Simulated and Approximate Relative Bias (RB) of First-Order Weighted 

Estimators From a One-Way Random Effects Model With Informative Designs  

 A1 (symmetric strata) A2 (asymmetric strata) 

)( 2
ewsRB  )( 2

awsRB  )( 2
ewsRB  )( 2

awsRB  

C1 (m = 23) 

B1 Simulated -2.6% 8.7% -2.6% 8.8% 

Analytic -2.6% 8.7% -2.6% 8.8% 

B2 Simulated -2.6% 2.4% -2.6% 8.1% 

Analytic -2.6% 3.2% -2.6% 7.3% 

 C2 (m = 5) 

B1 Simulated -18.5% 62.1% -18.6% 62.2% 

Analytic -18.6% 62.3% -18.6% 62.3% 

B2 Simulated -18.8% 55.2% -18.8% 59.2% 

Analytic -18.6% 55.2% -18.6% 59.2% 

Note. Simulation results are based on 5,000 iterations. Analytic results were calculated from 

Equations 11 and 12. 

The goal in this section is to characterize the situations in which the first-order weighted 

estimators of variance components are adequate and when they are not. This was done by 

systematically varying features of the model parameters and sampling design and using the 

analytic expressions of bias for evaluation.  

4.1 Effect of Sample Size Under Balanced Noninformative Designs 

Section 3 noted that the first-order weighted estimators of the variance components could 

be substantially biased even if the sampling design was noninformative. In the first example, the 

bias in the first-order weighted estimator of the between- and within-school variance components 

was examined. The simple case of a single-stage sample from a population of equal-sized 

schools was assumed; that is, all schools and a simple random sample of m students within each 

school were selected. From Equations 11 and 12,  

2
, , ( )

( 1)I a e eFW

M m
RB s

M m

−= −
−

 (13) 
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2
, ,

1
( )

( 1)I a e aFW

M m ICC
RB s

M m ICC

− −=
−

 (14) 

Figure 1 shows these relative biases for a range of school population sizes (M) and school sample 

sizes (m) when ICC = 0.2. If a relative bias of 10% or greater in magnitude was considered to be 

unacceptably large, then 2
eFWs  had too large of a bias if m < 10 for M ranging from about 40 to 

140. The estimator 2
aFWs  also required larger values of m to have an acceptably small bias. For 

example, m needed to be at least 20 when M = 40 and at least 30 when M = 100.  

4.2 Effect of Varying Population and Sample Sizes Under Unbalanced Noninformative Design  

The second example was designed to examine whether varying school population sizes or 

varying school sample sizes affected the bias of the first-order weighted variance component 

estimators. It was assumed that the school population size iM  followed a specified distribution. 

It was also assumed that all schools and a simple random sample of im  students per school were 

selected. Equation A20 (see the appendix) could then be simplified to 

2

1 1 1
2

, ,

1

1 1

1 1

1
( )

( 1)
( 1)

1
   

( 1)

K K Ki i
ii i i

i i
I a e aFW k

i ji j

K Ki i
ii i

i
k K

i j ii j i

M M
M

m m ICC
RB s

ICCM M

M m
K M

m ICC

ICCM M M

= = =

≠ =

= =

≠ = =

−
−=

 −−   − −
−

  



 

 

. (15) 

Again ICC = 0.2 as in the first example. In order to examine a realistic range of distributions of 

school population size, we first fitted a gamma distribution to the empirical distribution of estimated 

school population sizes from the NAEP 2003 fourth-grade reading assessment by matching the first 

two moments ( ( )56,  S 44weighted weightedM M= = ). The corresponding coefficient of variation (CV) is 

0.78. Figure 2 plots the histogram of the estimated school population size along with the gamma 

density approximation. Then K (= 1,500) units was generated from that gamma distribution. To have 

varying school sample sizes, / 2i im M=  was set. In addition, cases were considered for which the 

school population sizes were generated from three other gamma distributions with approximately the 
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same mean value (= 56) but varying CVs, both smaller and larger than those observed in the NAEP 

data. The corresponding histograms are displayed in Figure 3.  
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Figure 1. Relative bias of first-order weighted variance estimators as a function of school 

population and sample sizes for a noninformative design in which all schools are sampled 

and a simple sample of m students are selected within each school. 

Note. The dashed lines are the bench marks for -10% and 10% relative bias (–relative bias of 

the estimators of the between-school variance; – relative bias of the estimator of the within-

school variance.) M = school population size; m = school sample size. 
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Figure 2. Histogram of the estimated school population size for National Assessment of 

Educational Progress (NAEP) 2003 fourth-grade national assessment. 

Note. M̂  = estimated school population size.  
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Figure 3. Histogram of the simulated school population size.  

Note. The distributions from which the finite population of school were generated from top left 

to the bottom right: gamma(0.25,0.004), gamma(1,0.018), gamma(1.70,0.030), and gamma(25, 

0.448). M = school population size.  
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Table 2 shows the relative biases computed from Equations 12 and 15. Note that gamma 

(1.70, 0.030) was chosen to approximate the school population size distribution for the above 

given NAEP assessment. It can be seen that the estimators underestimated the within-school 

variability and overestimated the between-school variability, as in the equal school size case. In 

addition, even though the CV of the school sizes varied from 0.2 to 2.0, the relative biases 

calculated were all similar to the one with the constant school population size of 56 

( 2
, , ( ) 1.8%I a e eFWRB s = −  and 2

, , ( ) 7.3%I a e aFWRB s = ). The result suggested that varying school 

population sizes and varying school sample sizes did not have a substantial effect on the relative 

bias of 2
eFWs  and 2

aFWs . 

Table 2  

Relative Bias (RB) of the First-Order Weighted Estimators of Within-School and Between-

School Variance Components for Variable School Population Size and School Sample Size 

Model ( )C V M  ( )2
, ,I a e eFWRB s  ( )2

, ,I a e aFWRB s  

Gamma(0.25,0.004) 2 -1.9% 7.6% 

Gamma(1.00,0.018) 1 -1.8% 7.1% 

Gamma(1.70,0.030) 0.78 -1.8% 7.2% 

Gamma(25, 0.448) 0.2 -1.8% 7.3% 

Note. The RBs for comparable constant school sample size cases for within-school and between-

school variance components are -1.8% and 7.3%, respectively. CV = coefficient of variation; 

M = school population size. 

4.3 Joint Effect of School Sample Sizes and Interclass Correlation Coefficient (ICC) Level  

The joint effect of the school sample sizes and ICC on the bias of the estimators of the 

between-school variance component was examined next. Kovacevic and Rai (2003) observed 

from a simulation study that the relative bias of their proposed weighted estimators increased as 

the ICC level decreased. Similar results were found in the simulation study conducted by 

Asparouhov (2006). The analytic bias expression and Table 1 show that the effect of ICC on 

2
, , ( )I a e aFWRB s  was mitigated by large school sample size (m). This example looked systematically 
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at the joint effect of these factors for both informative and noninformative designs. The analysis 

was restricted to the equal school and sample size case for simplicity. 

In this example, the number of schools in the population was fixed as 1,500, and the 

population was assumed to follow the model in Equation 2. Four different school level designs 

were considered. The first three were informative and the last was noninformative (SRS at the 

school level). The three informative designs were all stratified, with strata defined by varying 

cut-points on the school random effect. In a real application, the stratification design would 

likely be less informative than these, so in some sense, this example was the worst case. Design 1 

oversampled high-performing schools (that is, a school belonged to Stratum 1 if aia σ≥  and to 

Stratum 2 otherwise); Design 2 oversampled above-average schools (strata defined by 0≥ia  

and 0ia < ); and Design 3 oversampled extreme-performing schools (strata defined by 

0.6745i aa σ≥ ⋅  and 0.6745i aa σ< ⋅ ). Design 4 selected schools by SRS. For the first three 

designs, 90 schools were sampled from the oversampled stratum and nine from the other one; 99 

schools were selected for the fourth design. At the student level, a sample was randomly selected 

without replacement from each selected school. The school population size was 56, and the 

school sample sizes ranged from 5 to 30. We investigated bias for ICC from 0.05 to 0.30. 

The relative biases of 2
aFWs  were calculated using Equation 12, where iw  and ijπ  were all 

functions of normally distributed random variable ia . Figure 4 plots 2
, , ( )I a e aFWRB s  as a function 

of ICC and m under the four given designs. The trends were similar for the four designs, showing 

that the relative bias increased as ICC decreased and as school sample size decreased. A design 

having small school sample sizes could make the relative bias unacceptable. The informative 

designs showed similar magnitudes of bias as the noninformative design, so it appeared that the 

relative bias of the first-order weighted estimators of the between-school variance components 

was mainly due to the school sample size and ICC effect.  

4.4. Summary 

The purpose of this section was to examine whether the first-order weighted estimators had 

an acceptably small bias for estimation of variance components in the random effects model. Our 

examples showed that the first-order weighted variance components estimators were biased under 

both informative and noninformative designs. However, the degree of informativeness of the 
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school sampling design was not the main factor contributing to the bias. The first-order weights 

appeared to remove most of the bias due to this source. Rather, the relative bias was large when the 

ICC and school sample size were both small. In any particular case, when a data analyst has an 

idea about the size of ICC, m, and M, he can investigate the magnitude of the relative bias by using 

the simplified expressions in Equations 13 and 14 when K is relatively large. 
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Figure 4. Effect of interclass correlation coefficient (ICC), school sample size (m), and 

sampling design on the magnitude of the relative bias of the first-order weighted estimator 

of the between-school variance component.  
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5. Application—National Assessment of Educational Progress (NAEP)  

2003 Fourth-Grade Reading Assessment  

In the previous section, we examined the size of the bias of the first-order weighted 

estimators of variance components in the random effects model for a variety of parameter 

settings and design features. In this section, we calculate first-order and second-order weighted 

estimates (Korn & Graubard, 2003) of the variance components from a random effects model 

fitted to the NAEP 2003 fourth-grade reading assessment data for the nation as a whole and for 

two jurisdictions. Although the true values of the variance components weren’t known, it was 

known that the second-order weighted estimators were approximately unbiased (Korn & 

Graubard, 2003). Hence, the appropriateness of the first-order weighted estimators was evaluated 

and compared to results based on second-order weights.  

More than 187,000 students from 54 jurisdictions were assessed in the NAEP 2003 

fourth-grade reading assessment. Jurisdictions included states, the District of Columbia, U.S. 

territories, and Department of Defense schools. The sampling design is described briefly as 

follows: Schools were stratified with one stratum per state for public schools and several region-

based strata for private schools. Within each stratum, schools were selected using a stratified 

systematic probability proportional to size design so as to oversample minority, nonpublic, and 

relatively large schools. This step was followed by a simple random sample of students drawn 

from each school. The average school sample size for the national sample was 23; the estimated 

average school population size was 56. First-order weights for both stages of the sample design 

were available from the restricted use data file. 

We fitted a one-way random effects model to the NAEP national data, using one of the 

plausible values (Mislevy, 1991) for the assessment score as the response variable. Estimation of 

the model was conducted twice: once computing first-order weighted estimators as given in 

Equations 8 through 10 and once computing second-order weighted estimators as specified in 

Korn and Graubard (2003). Because second-order weights were not provided on the NAEP file, 

they had to be inferred from the first-order weights and from knowledge about the sample 

design. As all the details about the school level design were not known, the simplifying 

assumption was made that the selection of schools was independent; that is, jiij πππ = . At the 

student level, we calculated second-order selection probabilities for students from school i as 

| ( 1) ( 1)st i i i i im m M Mπ = − − , as it would be for SRS within school. Based on this analysis, the 
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ICC was estimated by the second-order weighted estimators to be around 0.24. Both Figure 4 

and Equation 11 suggested that bias of the first-order weighted estimators of variance 

components would not likely be a problem for this combination of ICC and sample size. 

In addition, the one-way random effects models were fitted using both first-order and 

second-order weighted estimation methods to data from two jurisdictions. The jurisdictions were 

chosen to exemplify different kinds of weight structures. All the schools for Jurisdiction 1 were 

selected so the design was noninformative. The sample consisted of 24 schools with an average 

school sample size of 30. The estimated average school population size was 64, and the ICC 

value was estimated at around 0.08 from the second-order weighted estimators. Jurisdiction 2 

had a design for which several extreme-performing schools (those with high and low 

performance) had large weights. The sample consisted of about 120 schools. The average school 

sample size was 16; the estimated average school population size was 32. The ICC for reading 

assessment score was estimated to be 0.34 based on the second-order weighted estimators. 

Equation 11 suggested that bias of estimators of the within-school variance component was not 

likely to be a problem for either jurisdiction. Figure 4 suggested that the first-order weighted 

estimator of the between-school variance for Jurisdiction 2 was also likely to have acceptable 

bias, but that we should be cautious when using it for Jurisdiction 1 due to the small value of 

ICC, even for the design’s relatively large school sample size. 

Table 3 shows the estimates of variance components as well as ICC calculated using first- 

and second-order weights for the national data and the two jurisdictions. In parentheses below 

each first-order weighted estimator is the estimated relative bias, calculated as the difference 

between the first- and second-order weighted estimators divided by the value of the second-order 

weighted estimators. This assessment of the actual bias of the first-order weighted estimator is 

reasonable if our approximated second-order weights are accurate. The results show, as 

expected, that the estimated relative bias was negative for all estimates of within-school variance 

and positive for estimates of between-school variances. The estimated relative biases were less 

than 10% for all variance component estimators except the between-school component for 

Jurisdiction 1. This result was predicted due to the small ICC value in that jurisdiction. However, 

in cases like Jurisdiction 1, where less than 10% of total variance contributes to the differences 

among schools before introducing any regression models, multilevel modeling might not be 
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necessary. This study shows that the analytic expressions can accurately predict which estimators 

will perform better based on our knowledge of the design and population characteristics.  

Table 3  

First- and Second-Order Weighted Estimators of Variance Components and Intraclass 

Correlations Coefficients (ICC) for 2003 National Assessment of Educational Progress 

(NAEP) Fourth-Grade Reading Assessment Data  

Estimators using… 

Estimates of 
2
eσ  

Estimates of  
2
aσ  

Estimates of  
ICC  

NAEP national data 

First-order weights 1026.5 
(-2.3%) 

355.9 
(7.2%) 

0.26 
(8.3%) 

Second-order weights 1050.6 331.9 0.24 

 NAEP Jurisdiction 1 data 

First-order weights 1616.3 
(-1.7%) 

175.1 
(19.6%) 

0.10 
(25%) 

Second-order weights 1644.8 146.4 0.08 

 NAEP Jurisdiction 2 data 

First-order weights 1111.8 
(-2.8%) 

573.9 
(4.7%) 

0.34 
(3.0%) 

Second-order weights 1144.4 571.2 0.33 

Note: The estimated relative bias, calculated as the difference between the first- and second-

order weighted estimators divided by the second-order weighted estimators, is in parentheses.  

6. Weight Scaling 

It was noted that the first-order weighted estimators of the variance components were 

biased regardless of whether the sampling design was informative. One approach to reduce the 

bias of the first-order weighted variance component estimators was to scale the weights. Recent 

statistical literature provided several scaling methods (Asparouhov, 2006; Korn & Graubard, 

2003; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006; and Stapleton, 2002). 

Pfeffermann et al. proposed two scaling procedures that only scaled the student within-school 
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conditional weight ( |s iw ). To be more specific, the scaled student conditional weight under their 

Scaling Method 1 was  

|(1) 1
| | 2

|1

i

i

m

s is
s i s i m

s is

w
w w

w
=

=

= 


  (16) 

and the sum of (1)
|s iw  over s was equal to the effective sample size  

( )2

|1

2
|1

i

i

m

s is

m

s is

w

w

=

=




. 

Under Pfeffermann’s Scaling Method 2, the scaled student conditional weight was 

(2)
| |

|1

i

i
s i s i m

s is

m
w w

w
=

=
 . (17) 

For this method, the sum of (2)
|s iw  over s was equal to the sample size for school i . 

For designs that were SRS at the student level, Pfeffermann’s Scaling Method 2 was 

appropriate to produce an approximately unbiased estimator of the within-school variance. For 

such designs, the scaled student conditional weight in Equation 17 was equal to 

|(2) 1
|

|1

1
i

i

m

s is i
s i m

i s is

w m
w

m w
=

=

= =


, 

and the scaled first-order weighted (SFW) estimator ( 2
eSFWs ) reduced to the unweighted one (with 

weight of 1), which was approximately unbiased, so that 

( )2
, , 0I a e eSFWRB s ≈ . (18) 

However, the SFW estimator ( )2
aSFWs  of the between-school variance was still biased. For 

the same sampling design assumed before with constant sM i '  and smi ' , when scaled weights 

were used, 
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  (19) 

where ( )ρ , ( )E , and ( )sd  were all taken with respect to a . Note that Equation 19 was 

approximately zero for large K while the first two moments of iw  were finite or if a large 

fraction of schools was selected. 

To examine the accuracy of the bias expressions for the SFW estimators, the simulation 

study in section 3.2 was revisited. The scaled weighted estimators were calculated for each 

simulated sample, averaged over 5,000 replications to obtain the relative biases, and compared 

with values computed from Equations 18 and 19. Table 4 shows that the simulated and 

calculated relative biases were similar for all parameters in all four scenarios. Thus the SFW 

estimators of within-school variance were approximately unbiased and those of between-school 

variance were negatively biased. The relative bias of 2
aSFWs  was trivial for 750k ≈ (Condition 1B ) 

and increased a bit for k = 99 (Condition 2B ). Compared to the first-order weighted estimators 

whose relative biases are shown in Table 3 for the same sample designs, those of the SFW 

estimators were much smaller. 

In summary, scaling of the first-order weighted estimator using Scaling Method 2 

(Pfeffermann et al., 1998) eliminated most of the bias from estimators of the variance 

components for designs that were SRS at the student level, along with a large number of schools 

in the population or a large fraction of schools being selected. 

7. Summary and Discussion 

The analytic bias expressions derived in this paper are based on one-way random effects 

models and ANOVA estimators. Such models commonly serve as the preliminary step in the 

hierarchical model fitting in providing information about the outcome variability at each of level 

of the model (Raudenbush & Bryk, 2002).  

The research results suggest that incorporating first-order weights can help to reduce bias 

due to the informativeness of sampling designs. However, large relative bias still exists when 

both school sample size and ICC values are small, regardless of the design informativeness. The  
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Table 4 

Comparison of Simulated and Approximate Relative Bias (RB) of the Scaled First-Order 

Weighted Estimators From a One-Way Random Effects Model With Informative Designs 

at Level 2  

 A1 (asymmetric strata) A2 (symmetric strata) 
2( )eSFWRB s  2( )aSFWRB s  2( )eSFWRB s  2( )aSFWRB s  

C1 (m = 23) 

B1 Simulated 0.02% -0.03% 0.00% 0.01% 

Analytic 0.00% -0.07% 0.00% 0.02% 

B2 Simulated -0.03% -6.35% 0.01% -0.67% 

Analytic 0.00% -5.57% 0.00% -1.52% 

 C2 (m = 5) 

B1 Simulated 0.00% -0.23% 0.00% 0.09% 

Analytic 0.00% -0.08% 0.00% -0.03% 

B2 Simulated -0.26% -6.92% -0.31% -2.90% 

Analytic 0.00% -7.15% 0.00% -3.10% 

Note. Simulation results are based on 5,000 iterations. Analytic results were calculated from 

Equations 18 and 19. 

study also found that with small sample sizes (less than 20) and small ICC values (less than 0.2), 

if the weights are relatively constant at both student and school levels, then  the unweighted 

estimators of variance components will be less biased than the first-order weighted estimator. On 

the other hand, if the weights vary at either level, then the second-order weighted estimators are 

needed for estimating variance components. This difference presents a dilemma for data users as 

second-order weights typically do not exist in the database, and constructing those weights 

accurately requires a level of knowledge about the design that is not likely to be available either, 

not to mention the unavailability of commercial software to compute these second-order 

weighted estimators. In that case, scaled first-order weighted estimators that were discussed in 

section 6 provide an alternative to the difficult-to-use second-order weighted estimators for 

designs in which SRS is used at the student level, given a large number of schools in the 

population or a large fraction of schools being selected. But until some method of making the 



22 

second-order weights available to users is implemented in publicly available software programs, 

an adequate and unique solution does not appear to be available.  

As a limitation of the analytic approach, the obtained bias expressions only apply to the 

sampling designs described in this study. The bias expressions will become much more difficult 

to tackle if the SRS assumption at the student level is violated. Simulation studies might be a 

practical approach for future study of various sampling schemes at lower levels of hierarchical 

models.  
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Appendix  

Bias Expression of First-Order Weighted Estimators 

Bias Expression of the First-Order Weighted Estimator of the Within-School Variance 

The first-order weighted ANOVA estimator of the within-school variance is given as 

2

| |1 1
( 1)i
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eFW K M

i i s i s ii s

sse
s

I w I w
= =

=
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where iI and |s iI  are indicator functions with  
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    ,
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                . 

The expectations of iI  and |s iI  with respect to the sampling design are   

( ) 1/p i i iE I wπ= =             and              ( ) isisisp wIE ||| /1== π . 

We first take the expectation of each quantity on the right side of Equation A1 with respect to the 

design, then to the model  

                                    ( ) ( ) ( )| | |p p I II pI I pII IIE E E E E E Eξ ξ ξ ξ ξ ξ ξθ θ θ= =                                         (A3) 
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Given SRS at Level 1, the student selection probability is independent of the student level 

random effect isε , and with the property of 

                                                         ( ) ( )2
| | |

i
p s i p s i s i

i

m
E I E I

M
π= = =    .                                     (A4) 

Given the designs, Expression A3 can be further simplified as 

( ) ( )| | |I II pI I pII II I II pI I pIIE E E E E E E Eξ ξ ξ ξ ξ ξ ξθ θ= .     
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and 
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As a result,   
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Meanwhile, 
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The right side of Expression A7 can be written as 
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Equations A6 and A8 together yield 
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Bias Expression of the First-Order Weighted Estimator of the Between-School Variance 

The first-order weighted ANOVA estimator of the between-school variance is given as 
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Note that 
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On the other hand, the expectation of Equation A15 is  
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Combining Equations A10, A17, and A18, the delta method gives 
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and 
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