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Abstract
Estimation of parameters of random effects models from samples collected via complex
multistage designsis considered. One way to reduce estimation bias due to unequal probabilities
of selection isto incorporate sampling weights. Many researchers have been proposed various
weighting methods (Korn, & Graubard, 2003; Pfeffermann, Skinner, Holmes, Goldstein, &
Rasbash, 1998) in estimating the parameters of hierarchical models, including random effects
models as a special case. In this paper, the bias of the weighted analysis of variance (ANOVA)
estimators of the variance components for atwo-level, one-way random effects model is
evaluated. For these estimators, analytic bias expressions are first devel oped, the expressions are
then used to examine the impact of sample size, intraclass correlation coefficient (ICC), and the
sampling design on the bias of the estimators. In addition, two-stage sampling designs are
considered, with a general probability design at the first stage (Level 2) and simple random
sampling without replacement (SRS) at the second stage (Level 1). The study shows that first-
order weighted variance component estimators perform well when for moderate cluster sizes and
|CC values. However, noticeable estimation bias can be found with this weighting method for
small cluster sizes (less than 20), particularly when ICC issmall (lessthan 0.2). In such
scenarios, scaled first-order weighted estimators can be an alternative. This paper isdiscussed in
the context of National Assessment of Educational Progress (NAEP) 2003 4th Grade Reading
National and State Assessment data, with Level 1 being the student level and Level 2 being the

school level.

Key words: random effects model, variance components, estimation bias, ANOVA estimators,

complex sampling designs, selection probability, sampling weights, ICC, NAEP



Acknowledgments
This research for the first author was partialy supported by a grant from the American
Educational Research Association, which receives funds for its AERA Grants Program from the
National Science Foundation and the National Center for Education and the National Center for
Education Statistics of the Institute of Education Sciences (U.S. Department of Education) under
NSF Grant #REC-0310268. Opinions reflect those of the author and do not necessarily reflect
those of the granting agencies.

The authors would like to thank Sandip Sinharay, Jiahe Qian, Daniel Eignor and two
external reviewers for their invaluable comments on a draft of this manuscript. We also
gratefully acknowledge Kim Fryer for her editorial assistance. In addition, the first author would
like to thank American Educational Research Association for supporting the early development

of this research.



Table of Contents

Page
I gL 0o (1 1 o o RSP PR PRSP 1
2. Hierarchical Models and Sampling WeIghLS .........cceiieiiciecieseceseese et 2
3. Bias of First-Order Weighted Analysis of Variance (ANOVA) EStimators..........ccccoeeeeereennee 4
3.1 First-Order Weighted ANOV A ESHIMELONS .......cccveiieiiiririeriesiesieeeeeee e 4
3.2 Bias Expressions for the First-Order Weighted ANOV A EStimators..........ccceveeeveereeennene. 6
4. Examination of Bias of the First-Order Variance and Weighted Analysis of Variance
(NN (O N I = 111 7= o = SRR 8
4.1 Effect of Sample Size Under Balanced Noninformative DeSIgNS.........c.ccooevereeieereneneneens 9
4.2 Effect of Varying Population and Sample Sizes Under Unbalanced
NONINFOrMELIVE DESIGN ..ottt te e e st e e r e s e s reeaeeneesreenes 10
4.3 Joint Effect of School Sample Sizes and Interclass Correlation Coefficient
(OO T = Y = S 13
N 1 0072 TSP RR PR 14
5. Application—National Assessment of Educational Progress (NAEP)
2003 Fourth-Grade Reading ASSESSIMENT ........cooiiiiieeieeiesee e nee s 16
6. WEIGNE SCAIIMNG ... ittt bbbttt b bbb se e s e 18
7. SUMMEANY QN0 DISCUSSION. .....cuitiiiieiieieie ettt b et ae e s e bt sre b se e nn e 20
REFEIEINCES......ceeeece bbbttt b e bttt e ettt ae bt b ne s 23
N 0= 010 [ TS 25



Table 1.

Table 2.

Table 3.

Table 4.

List of Tables

Page
Comparison of Simulated and Approximate Relative Bias (RB) of First-Order
Weighted Estimators From a One-Way Random Effects Model With
INFOrMEatiVE DESIGNS.....c..eiiieieeie ettt et e ne e b e 9

Relative Bias (RB) of the First-Order Weighted Estimators of Within-School and
Between-School Variance Components for Variable School Population Size and
SChOOI SAMPIE SIZE.......ceeeeee e s nne s 13

First- and Second-Order Weighted Estimators of Variance Components and
Intraclass Correlations Coefficients (ICC) for 2003 National Assessment of
Educational Progress (NAEP) Fourth-Grade Reading Assessment Data................... 18

Comparison of Simulated and Approximate Relative Bias (RB) of the Scaled
First-Order Weighted Estimators From a One-Way Random Effects Model with
Informative DeSIgNS al LEVE] 2.........ooiiiieeeeese e 21



Figure 1.

Figure 2.

Figure 3.

Figure 4.

List of Figures

Page
Relative bias of first-order weighted variance estimators as a function of school
population and sample sizes for a noninformative design in which all schools are
sampled and a simple sample of m students are selected within each schoal. ........... 11
Histogram of the estimated school population size for National Assessment of
Educational Progress (NAEP) 2003 fourth-grade national assessment...................... 12
Histogram of the simulated school population SIZe...........ccceeveeeieevecce e 12
Effect of interclass correlation coefficient (ICC), school sample size (m), and
sampling design on the magnitude of the relative bias of the first-order weighted
estimator of the between-school variance Component. ...........cecveeeeveereeceeseeseeeeenes 15



1. Introduction

The National Assessment of Educational Progress (NAEP) is alarge-scale educational
assessment designed to give information on what U.S. students know and can do. Data for the
NAEP are collected from a complex multistage sample of schools and students, therefore
sampling weights are required for proper analysis of these data. Online documentation from the
National Center for Education Statistics (NCES) provides secondary data analysts with
information on how to use weights on the NAEP data file when estimating means, popul ation
totals, and regression coefficients but nothing on how to use weights when fitting hierarchical
models. Because these models are increasingly popular in educational research and several
different weighting methods have been proposed for estimating the model parameters, guidance
for data analysts is needed. The motivation for the research reported here was to offer such
guidance for secondary analysts of NAEP data.

Pfeffermann, Skinner, Holmes, Goldstein, and Rasbash (1998) and Graubard and Korn
(1996) presented two methods for incorporating sampling weights in estimation of hierarchical
models. The former used only first-order weights and the latter used both first- and second-order
weights. First-order weights are (before adjustments for nonsampling errors) reciprocals of the
inclusion probabilities of sampling units, while second-order weights are reciprocal s of the joint
inclusion probabilities of pairs of units. Estimates for parameters of hierarchical models that use
only first-order weights are currently available in commercial software (e.g., HLM 6.0, MLWIN,
LISREL, and Stata GLLAMM), but those using second-order weights are not available. Further,
second-order weights are not typically provided on datafiles, so users have to produce them
from knowledge of the sampling design, which is difficult for all but the most expert users.

Estimators that are linear in the data (such as estimators of totals) are design-unbiased if
they incorporate the appropriate first-order weights. However, weighting might not reduce
design bias for those that are nonlinear in the data (such as estimators of variance components).
In fact, Korn and Graubard (2003) noted that estimators of variance components that used only
first-order weights could be substantially biased, even for designs with simple random sampling
without replacement (SRS) at each stage. The goal of the current study is to determine when
first-order weighted estimators of variance components are adequate and when they are not by

focusing on data and designs related to those found in NAEP.



Section 2 reviews the background of sampling weights and hierarchical models. Section 3
presents analytical expressions for bias of the first-order weighted ANOV A estimators under the
random effects model. Section 4 characterizes the conditions under which the first-order
weighted estimators studied in section 3 have an unacceptably high bias. In section 5, first- and
second-order weighted ANOV A estimators are computed for a random effects model fit to the
NAEP 2003 fourth-grade reading data. First-order weighted estimators adjusted by scaling are
evaluated in section 6. Finally, asummary and recommendations for users of NAEP data follows

in section 7.

2. Hierarchical M odels and Sampling Weights

When the purpose of an educational assessment program is to make valid inferences from
asample to a population of students, the students must be chosen according to a probability
design; that is, the probability of selection of each sampled student must be known. Sampling
designs for educational assessments often have a two-stage structure because it is cost-efficient
to test groups of students from the same school. The selection probabilities for different schools
and different students within a school may be unequal, and if they are, the estimation procedure
must take this into account by weighting in order to assure approximately design unbiased
estimation. One estimator that is design unbiased for the total for any probability design isthe
Horvitz-Thompson (H-T) estimator. It weights each student’s score by the inverse of his or her
selection probability and can be written for the two-stage design as

-]: = ZLZL yiS/ﬂ-iﬂ.SIi !

where k is the number of schoolsin the sample, m isthe number of students sampled from each
selected school, Y, isthe score of the sth student in the ith school, 7z, = P(school i in sample),
and ry; = P(student s in sample | school i in sample) . The first-order weights, defined as

w, =1/7z and w,; =1/7, are needed to prevent biasif the design isinformative; that is, if the

g’
model that holds for the sampleis different from the model for the population (Pfeffermann &
Smith, 1985). See Binder, Kovacevic, and Roberts (2005) and Binder and Roberts (2001) for
more detailed discussion on the informativeness of the sampling design.

For assessments such as NAEP, which collect arich amount of background information,

educational researchers may also be interested in fitting models designed to examine



relationships between a student’ s performance and his or her personal or school characteristics.
Because of the multistage sampling design, models accommodating the hierarchical structure are
more appropriate for analysis. A simple hierarchical model (Raudenbush & Bryk, 2002) having

two levels can be written as
Level 1.y, = B, + X6y + €6 (1)
Level 20 By = Voo + Va2 +8g
By =10+ 1z +ay
fori=1,...k ands=1, ..., m, where X, are covariates corresponding to the student, z are
covariates corresponding to the school, 8 =(f,.,, [ isavector of unknown regression

parameters, and a =[a,,a, |" and ¢, arerandom effects, which are mutually independent and

2
e

normally distributed with zero means and constant variances, Var (a]. ): Q and Var(e,)=0

This paper considered a simple specia case of this model, the one-way random effects

model, in which £ = 4 wasthe grand mean and £ = 0. Thus our model is
Yis =H+& T &, @)

fori=1,..kands=1,...m,where 3 ~N(0,07) and £, ~N(0,07),and a and ¢, areall

mutually independent. Besides estimating the mean, or the variance components themselves,

researchers may also be interested in estimating the intraclass correlation coefficient (ICC),

0_2

5 ©)

ICC =
o’ +o’

which isthe proportion of total variability in scores due to the school-to-school differences.
Korn and Graubard (2003) showed in a simulation study that the estimators of variance
components that used only first-order weights were biased, even when the design was
noninformative at both school and student levels. Their proposed estimators, which used the
second-order weights, were nearly unbiased.
Second-order weights are needed for an approximately unbiased estimation of variance
components because the full-population functions of the data being estimated are nonlinear,

gpecifically involving squares of sums of the individual scores. However, the estimation method



incorporating second-order weightsis difficult to employ in practice, both because no
commercia softwareis yet available and because second-order weights are not routinely
included on datafiles.

The next section develops analytical expressions for the bias of Graubard and Korn’s
first-order weighted estimators of the variance components (Graubard & Korn, 1996) for the
one-way random effects model. This process allows examination of the estimation bias for a
larger range of sampling designs and population scenarios than simulation does. Most of the
available commercial multilevel software packages use maximum likelihood based estimation
methods (Chantala & Suchindran, 2006). However, any theoretical evaluation of the weighted
estimators becomes rapidly intractable when the computation involves iterative methods and
complex sampling structures. The focus of this paper isthe analysis of variance (ANOVA)
estimators (Searle, Casella, & McCulloch, 1992, p. 59), also known as method of moments

estimators (Korn & Graubard, 2003) because they are easier to examine analytically.

3. Biasof First-Order Weighted Analysis of Variance
(ANOVA) Estimators
3.1 First-Order Weighted ANOVA Estimators
In a super-population view (Binder & Roberts, 2001), it is assumed that the datain a

population have arisen from Equation 2 and we are interested in estimating its parameters u ,

2

o’,and oZ. If al students from al schools in the population are observed, the parametersy ,

0’2, and o7 in Equation 2 can be estimated by (Searle et al., 1992):

S I

< 1 (4)
i=1Mi
1 K M, —\2
ST O I I\ A i (5)
Zizl(Mi _1)2_ z
2 1 K vaRvacl S:
S = e T () ©

where K isthetotal number of schoolsin the population, M, isthe total number of students

within each school, Y, istheith school average, Y isthe overall average, and



M7 (7)

1
Mo=1"1 M, -

Equations 4 to 6 are model consistent for the parameter values. Of course, access to datafrom all

students in the population is usually not available. Instead, the parameters in Equation 2 must be
estimated from a sample. If a sample from a two-stage probability sampling design of students
chosen within schoolsis available, and if the sample units have equal selection probabilities at
each of the two stages, then estimators of these expressions can be obtained by replacing the
sums over al population units with the analogous sums over al sample unitsin Equations 4 to 7.
But this estimation method can lead to biased results even asymptotically if either the students or
the schools are unequally weighted (see Jia, 2007, for detailed discussion).

Graubard and Korn (1996) suggested the first-order weighted ANOV A estimators:

k
— SIyIS
Ve = Z| =1 Ld 5= 1 | (8)
Z —125—1 I S||
1 k _ 2
S:FW = ZlleVI Sm_l( ’ _1) Zizlvvi Z:‘:lwsli (yIS - yIFW) ! (9)
S§FW - 1k Z'k—lwi( m—l JI') (y, Fw yFW) - SeZFW ’ (10)
Mhew (Zizlwi _1) i ) Mhew

where

Z_l 'Zs_l si zlklw' (2?—1\,\/3")2 ’

2—1 'Zs—l sf

m
b= SIS s|| yIS

z s=1 Sll

These statistics estimate u, o, and o by replacing all population sumsin Equations 4 to 7

Z LW
Yirew =
with weighted sample sums. The weighted estimator ¥y ., is (for fixed sample sizes) unbiased

for 4, but %, and s, requirelarge sample sizes at both levels of the design for approximate

unbiasedness for o2 and o. The sample size within the school is often not large, so there can



be substantial biasin the estimators. In the next subsection, expressions for their approximate
biases are derived.

3.2 Bias Expressions for the First-Order Weighted ANOVA Estimators

Expressions of the approximate estimation bias for fairly general sample designs were
developed to evaluate the performance of s%., and s>, . The designs considered were two-
stage, with a general probability design at the school level and SRS at the student level, which
are common in educational surveys, including NAEP. The school level selection probability
was allowed to be related to both the school level random effect a and the school population
size M,. Then 7, =x(M,,q), so that 7, was aso arandom variable in this framework.

The expectation of the estimators was approximated by taking the expectation of the first
term of their Taylor expansion, first with respect to the sampling design and then to the model
(see the appendix). This yielded an approximate relative bias for s3,, of

E, ..(Skw)— 02 _ ZL(Mi/m )-K_ awgM/m)-1

RB _ (S%,)= = — , 11
I,a,e( eFW) 02 N—K M _1 ( )

e

where N=Y" M, , M =N/K,and avg(M /m) = (1/K)Y." M, /m . Equation 11 shows
that s%.,, Was negatively biased, with larger relative bias for small school sample size (unless M;

isalso small) and bounded below by -1. A complex design at the school level did not affect its
approximate relative bias.

The bias and relative bias of s>, were approximated using similar methods (see the
appendix). The resulting bias expression (A20) was too complicated to be helpful for drawing

general conclusions, so asimpler balanced case was considered in which M, =M and m =m

for ali. Then

RB (2 )~£1—|CC K—E(W,)_m—l _E(V\/I)—l
hae\T W) T 1ce K-1 M-1 K-1

, (12)

)_p(vvi,az)sd(wi)

~p(mww;,aa; ) sd (7, ww, K-1

|




where E( ) and p( ) were defined as the expectation and the correlation of the random

variables with respect to the school level random effect a. .

Note that if the schools were censused, all terms but the first in Equation 12 would have
been equal to zero and the bias would have been positive unless the students were al so censused
(m= M). Therelative biasin this case could have been large if the ICC and mwere both small.

The second term,

K-1

_E(W)—l

was negative for a given sample but can be substantial only if a small proportion of schools in the
population are selected in the sample. The next two terms were related to the informativeness of
the sample. The third term rarely made an important contribution to the relative bias unless for

designs where 7z; is considerably different from zz;, for example, if a smal school level
sampling rate was present. Otherwise, 7, = 7,7, = 1/ W w; . If extreme schools (those with either
high or low scores) were oversampled, then the last term in Equation 12,

_p(w.a*)sd(w)
K-1 '

would have contributed a positive component to the relative bias.

Since the bias expressions reported in this section are approximations, a simulation study
was conducted to check how accurate they were in reflecting the true bias of the estimators. In
the simulation, we assumed a population of K = 1,500 schools, each of size M = 56 students
(which was the estimated average population size of schoolsin the NAEP 2003 fourth-grade
reading sample). A two-stage stratified design was selected with two strata at the school level
and SRS at the student level. Three experimental factors (denoted as Factors A, B, and C) were

considered. Factor A varied the nature of the informativeness of the stratification design: Level

A; indicated oversampling schools with large values of |a1. | (extreme schools, symmetric strata),

and Level A; indicated oversampling schools with large values of a (high-performing schools,

asymmetric strata). Factor B denoted the sample size assignment at the school level. Defining

Stratum 1 as the oversampled stratum and Stratum 2 the remainder, Level B, denoted selecting



al the units from Stratum 1 and half of units from Stratum 2(k, = K;k, =K, /2) and Level B,

denoted selecting 90 schools from Stratum 1 and nine schools from Stratum 2(k, =90k, =9).

Factor C was the student-level sample size, with C; denoting alarge sample (m = 23, which was
the average school sample size for the NAEP 2003 fourth-grade reading sample) and C, denoting
asmall sample (m=15).

The population data (K = 1,500, M = 56 for all schools) was simulated using Equation 2,
with o2 =1 and ICC = 0.23. Then 5,000 samples were simulated from the data for each of the

2x2x2=8 conditions just described. The first-order weighted estimators s, and s, from

Equations 9 and 10 were computed for each sample, the bias for each estimator was computed by
averaging the estimates, and the relative bias was computed. The results are reported in Table 1.

Notethat o2 = 1CC-o?, and for agiven ICC value, further smulation results suggest that for

any given o value, therelative biases of s, and s, were almost identical to the ones

presented in Table 1, and the differences were mostly due to the ssmulation error. Expressions
for relative bias were then computed from Equations 11 and 12 for each of the eight designs. The
table shows that the simulated and analytically derived approximate biases are very similar in all
cases considered. Based on this result, the analytic expressions were used to investigate the
conditions under which the bias of the first-order weighted estimators of variance components

would be problematic.

4. Examination of Bias of the First-Order Variance and Weighted Analysis of
Variance (ANOVA) Estimators

The bias expressions derived in section 3 provided a systematic way to examine
estimation bias for avariety of models and sampling designs. Equations 11 and 12 show that the
relative bias of the first-order weighted estimators of the variance components was affected by
sample sizes, sampling rates, |CC, and the informativeness of the design. This section uses these
expressions to examine how much these factors affect the bias and to determine how important
that biasis. The examples of the previous section and its resultsin Table 1 show that the relative
bias of the variance components estimators could vary tremendously and that cases could exist at
both extremes; that is, when the effect on bias was negligible (asin the upper half of Table 1)
and when it was unacceptably high (as in the lower half of Table 1).



Tablel
Comparison of Simulated and Approximate Relative Bias (RB) of First-Order Weighted
Estimators From a One-Way Random Effects Model With I nformative Designs

A1l (symmetric strata) A2 (asymmetric strata)
RB(s:,) RB(s,) RB(sZ,) RB(s,)
C1 (m=23)

B1 Simulated -2.6% 8.7% -2.6% 8.8%
Analytic -2.6% 8.7% -2.6% 8.8%

B2 Simulated -2.6% 2.4% -2.6% 8.1%
Analytic -2.6% 3.2% -2.6% 7.3%

Cz2(m=5)

Bl Simulated -18.5% 62.1% -18.6% 62.2%
Analytic -18.6% 62.3% -18.6% 62.3%
B2 Simulated -18.8% 55.2% -18.8% 59.2%
Analytic -18.6% 55.2% -18.6% 59.2%

Note. Simulation results are based on 5,000 iterations. Analytic results were calculated from
Equations 11 and 12.

The goal in this section is to characterize the situations in which the first-order weighted
estimators of variance components are adequate and when they are not. This was done by
systematically varying features of the model parameters and sampling design and using the

analytic expressions of bias for evaluation.

4.1 Effect of Sample Size Under Balanced Noninformative Designs

Section 3 noted that the first-order weighted estimators of the variance components could
be substantially biased even if the sampling design was noninformative. In the first example, the
biasin the first-order weighted estimator of the between- and within-school variance components
was examined. The smple case of a single-stage sample from a population of equal-sized
schools was assumed; that is, all schools and a simple random sample of m students within each
school were selected. From Equations 11 and 12,

M -m

RB, .o(Sw) = “(M—Dm

(13)



M-m 1-1CC
RB, . .(Sa) = 14
ae(Siew) (M-)m ICC (19

Figure 1 shows these relative biases for arange of school population sizes (M) and school sample

sizes (m) when ICC = 0.2. If arelative bias of 10% or greater in magnitude was considered to be
unacceptably large, then s, had too large of abiasif m< 10 for M ranging from about 40 to
140. The estimator s, also required larger values of mto have an acceptably small bias. For
example, m needed to be at |east 20 when M = 40 and at least 30 when M = 100.

4.2 Effect of Varying Population and Sample Sizes Under Unbalanced Noninformative Design
The second example was designed to examine whether varying school population sizes or

varying school sample sizes affected the bias of the first-order weighted variance component

estimators. It was assumed that the school population size M, followed a specified distribution.

It was also assumed that all schools and asimple random sample of m students per school were

selected. Equation A 20 (see the appendix) could then be simplified to

kK M, ¢« K |\/|i2
Zi:l Zilei_Zi:l m 1-1CC

RBI (SZFW): m
,a,e\>al zk ) MiMj e
i#zj=1 M( 1) (15)
_ k[ M;(m—-1) K g
_(K 1)2_1[ m jZi‘lM'l—mC
Ziij:l'\/'il\/l,-ziil(Mi -1 ICC

Again ICC = 0.2 asin thefirst example. In order to examine arealistic range of distributions of
school population size, we first fitted a gamma distribution to the empirical distribution of estimated
school population sizes from the NAEP 2003 fourth-grade reading assessment by matching the first

two moments ( deghted =56, S,ugues (M) =44). The corresponding coefficient of variation (CV) is

0.78. Figure 2 plots the histogram of the estimated school population size along with the gamma
density approximation. Then K (= 1,500) units was generated from that gamma distribution. To have

varying school sample sizes, m =M, /2 was set. In addition, cases were considered for which the

school population sizes were generated from three other gamma distributions with approximately the

10



same mean value (= 56) but varying CV's, both smaller and larger than those observed in the NAEP

data. The corresponding histograms are displayed in Figure 3.
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Figure 1. Relative bias of first-order weighted variance estimators as a function of school

population and sample sizesfor a noninformative design in which all schools are sampled
and a simple sample of m students ar e selected within each school.

Note. The dashed lines are the bench marks for -10% and 10% relative bias (=—relative bias of

the estimators of the between-school variance; a —relative bias of the estimator of the within-

school variance.) M = school population size; m = school sample size.
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Figure 2. Histogram of the estimated school population size for National Assessment of
Educational Progress (NAEP) 2003 fourth-grade national assessment.

Note. M = estimated school population size.
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to the bottom right: gamma(0.25,0.004), gamma(1,0.018), gamma(1.70,0.030), and gamma(25,

0.448). M = school population size.
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Table 2 shows the relative biases computed from Equations 12 and 15. Note that gamma
(1.70, 0.030) was chosen to approximate the school population size distribution for the above
given NAEP assessment. It can be seen that the estimators underestimated the within-school
variability and overestimated the between-school variability, asin the equal school size case. In
addition, even though the CV of the school sizes varied from 0.2 to 2.0, the relative biases
calculated were al similar to the one with the constant school population size of 56

(RB, ,o(S5w)=-1.8% and RB, , .(Sk.,) = 7.3%). The result suggested that varying school

population sizes and varying school sample sizes did not have a substantial effect on the relative

H 2 2
biasof s, ands,, -

Table2
Relative Bias (RB) of the First-Order Weighted Estimators of Within-School and Between-
School Variance Components for Variable School Population Size and School Sample Size

Model CV (M) RB, .. (Skw) RB, .. (S5w)
Gamma(0.25,0.004) 2 “1.9% 7.6%
Gamma(1.00,0.018) 1 -1.8% 7.1%
Gamma(1.70,0.030) 0.78 -1.8% 7.2%
Gamma(25, 0.448) 0.2 -1.8% 7.3%

Note. The RBs for comparable constant school sample size cases for within-school and between-
school variance components are -1.8% and 7.3%, respectively. CV = coefficient of variation;

M = school population size.

4.3 Joint Effect of School Sample Sizes and I nterclass Correlation Coefficient (1CC) Level
The joint effect of the school sample sizes and |CC on the bias of the estimators of the
between-school variance component was examined next. Kovacevic and Rai (2003) observed
from a simulation study that the relative bias of their proposed weighted estimators increased as
the ICC level decreased. Similar results were found in the simulation study conducted by
Asparouhov (2006). The analytic bias expression and Table 1 show that the effect of ICC on

RB, ,a,e(sgpw) was mitigated by large school sample size (m). This example looked systematically
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at the joint effect of these factors for both informative and noninformative designs. The analysis
was restricted to the equal school and sample size case for simplicity.

In this example, the number of schoolsin the population was fixed as 1,500, and the
population was assumed to follow the model in Equation 2. Four different school level designs
were considered. The first three were informative and the last was noninformative (SRS at the
school level). The three informative designs were all stratified, with strata defined by varying
cut-points on the school random effect. In areal application, the stratification design would
likely be less informative than these, so in some sense, this example was the worst case. Design 1

oversampled high-performing schools (that is, a school belonged to Stratum 1if @, = o, and to
Stratum 2 otherwise); Design 2 oversampled above-average schools (strata defined by a. =0

and a <0); and Design 3 oversampled extreme-performing schools (strata defined by

|a]|20.6745-0, and |a| < 0.6745- 5, ). Design 4 selected schools by SRS. For the first three

designs, 90 schools were sampled from the oversampled stratum and nine from the other one; 99
schools were selected for the fourth design. At the student level, a sample was randomly selected
without replacement from each selected school. The school population size was 56, and the
school sample sizes ranged from 5 to 30. We investigated bias for ICC from 0.05 to 0.30.

Therelative biases of s, were calculated using Equation 12, where w and 7; wereall

functions of normally distributed random variable g, . Figure 4 plots RB, , .(Sk,,) asafunction

of ICC and munder the four given designs. The trends were similar for the four designs, showing
that the relative bias increased as | CC decreased and as school sample size decreased. A design
having small school sample sizes could make the relative bias unacceptable. The informative
designs showed similar magnitudes of bias as the noninformative design, so it appeared that the
relative bias of the first-order weighted estimators of the between-school variance components

was mainly due to the school sample size and ICC effect.

4.4, Summary

The purpose of this section was to examine whether the first-order weighted estimators had
an acceptably small bias for estimation of variance components in the random effects model. Our
examples showed that the first-order weighted variance components estimators were biased under
both informative and noninformative designs. However, the degree of informativeness of the

14



school sampling design was not the main factor contributing to the bias. The first-order weights
appeared to remove most of the bias due to this source. Rather, the relative bias was large when the
| CC and school sample size were both small. In any particular case, when a data analyst has an
idea about the size of ICC, m, and M, he can investigate the magnitude of the relative bias by using
the simplified expressions in Equations 13 and 14 when K isrelatively large.
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Figure 4. Effect of interclass correlation coefficient (1CC), school sample size (m), and
sampling design on the magnitude of therelative bias of the first-order weighted estimator

of the between-school variance component.
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5. Application—National Assessment of Educational Progress (NAEP)
2003 Fourth-Grade Reading Assessment

In the previous section, we examined the size of the bias of the first-order weighted
estimators of variance components in the random effects model for a variety of parameter
settings and design features. In this section, we calculate first-order and second-order weighted
estimates (Korn & Graubard, 2003) of the variance components from a random effects model
fitted to the NAEP 2003 fourth-grade reading assessment data for the nation as a whole and for
two jurisdictions. Although the true values of the variance components weren’t known, it was
known that the second-order weighted estimators were approximately unbiased (Korn &
Graubard, 2003). Hence, the appropriateness of the first-order weighted estimators was eval uated
and compared to results based on second-order weights.

More than 187,000 students from 54 jurisdictions were assessed in the NAEP 2003
fourth-grade reading assessment. Jurisdictions included states, the District of Columbia, U.S.
territories, and Department of Defense schools. The sampling design is described briefly as
follows: Schools were stratified with one stratum per state for public schools and several region-
based strata for private schools. Within each stratum, schools were selected using a stratified
systematic probability proportional to size design so as to oversample minority, nonpublic, and
relatively large schools. This step was followed by a simple random sample of students drawn
from each school. The average school sample size for the national sample was 23; the estimated
average school population size was 56. First-order weights for both stages of the sample design
were available from the restricted use datafile.

We fitted a one-way random effects model to the NAEP national data, using one of the
plausible values (Mislevy, 1991) for the assessment score as the response variable. Estimation of
the model was conducted twice: once computing first-order weighted estimators as givenin
Equations 8 through 10 and once computing second-order weighted estimators as specified in
Korn and Graubard (2003). Because second-order weights were not provided on the NAEP file,
they had to be inferred from the first-order weights and from knowledge about the sample
design. Asall the details about the school level design were not known, the simplifying

assumption was made that the selection of schools was independent; that is, z; = 7,7 . At the

student level, we cal culated second-order selection probabilities for students from school i as

Trgy =m(m —-1)/M;(M, -1), asit would be for SRS within school. Based on this analysis, the
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| CC was estimated by the second-order weighted estimators to be around 0.24. Both Figure 4
and Equation 11 suggested that bias of the first-order weighted estimators of variance
components would not likely be a problem for this combination of ICC and sample size.

In addition, the one-way random effects models were fitted using both first-order and
second-order weighted estimation methods to data from two jurisdictions. The jurisdictions were
chosen to exemplify different kinds of weight structures. All the schools for Jurisdiction 1 were
selected so the design was noninformative. The sample consisted of 24 schools with an average
school sample size of 30. The estimated average school population size was 64, and the ICC
value was estimated at around 0.08 from the second-order weighted estimators. Jurisdiction 2
had a design for which several extreme-performing schools (those with high and low
performance) had large weights. The sample consisted of about 120 schools. The average school
sample size was 16; the estimated average school population size was 32. The |CC for reading
assessment score was estimated to be 0.34 based on the second-order weighted estimators.
Equation 11 suggested that bias of estimators of the within-school variance component was not
likely to be a problem for either jurisdiction. Figure 4 suggested that the first-order weighted
estimator of the between-school variance for Jurisdiction 2 was also likely to have acceptable
bias, but that we should be cautious when using it for Jurisdiction 1 due to the small value of
ICC, even for the design’ s relatively large school sample size.

Table 3 shows the estimates of variance components aswell as |CC calculated using first-
and second-order weights for the national data and the two jurisdictions. In parentheses below
each first-order weighted estimator is the estimated relative bias, calculated as the difference
between the first- and second-order weighted estimators divided by the value of the second-order
weighted estimators. This assessment of the actual bias of the first-order weighted estimator is
reasonable if our approximated second-order weights are accurate. The results show, as
expected, that the estimated relative bias was negative for all estimates of within-school variance
and positive for estimates of between-school variances. The estimated relative biases were less
than 10% for all variance component estimators except the between-school component for
Jurisdiction 1. Thisresult was predicted due to the small ICC value in that jurisdiction. However,
in cases like Jurisdiction 1, where less than 10% of total variance contributes to the differences

among schools before introducing any regression models, multilevel modeling might not be
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necessary. This study shows that the analytic expressions can accurately predict which estimators

will perform better based on our knowledge of the design and population characteristics.

Table3

First- and Second-Order Weighted Estimators of Variance Components and | ntraclass
Correlations Coefficients (I CC) for 2003 National Assessment of Educational Progress
(NAEP) Fourth-Grade Reading Assessment Data

Estimates of Estimates of Estimates of
Estimators using... o, o. IcC
NAEP national data
First-order weights 1026.5 355.9 0.26
(-2.3%) (7.2%) (8.3%)
Second-order weights 1050.6 3319 0.24
NAEP Jurisdiction 1 data
First-order weights 1616.3 175.1 0.10
(-1.7%) (19.6%) (25%)
Second-order weights 1644.8 146.4 0.08
NAEP Jurisdiction 2 data
First-order weights 1111.8 573.9 0.34
(-2.8%) (4.7%) (3.0%)
Second-order weights 11444 571.2 0.33

Note: The estimated relative bias, calculated as the difference between the first- and second-
order weighted estimators divided by the second-order weighted estimators, is in parentheses.

6. Weight Scaling
It was noted that the first-order weighted estimators of the variance components were
biased regardless of whether the sampling design was informative. One approach to reduce the
bias of the first-order weighted variance component estimators was to scale the weights. Recent
statistical literature provided severa scaling methods (Asparouhov, 2006; Korn & Graubard,
2003; Preffermann et a., 1998; Rabe-Hesketh & Skrondal, 2006; and Stapleton, 2002).
Pfeffermann et al. proposed two scaling procedures that only scaled the student within-school
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conditional weight (w, ). To be more specific, the scaled student conditional weight under their

sli

Scaling Method 1 was

m
W,

V\éll) s|| Zs:l sl
Zs:l £l

and the sum of W& over swas equal to the effective sample size

sli

(16)

(Zilwsu )2
z:]:l"‘éi |

Under Pfeffermann’s Scaling Method 2, the scaled student conditional weight was

2 _
W =w

L 17
D 4

For this method, the sum of w2 over swas equal to the sample size for school i .

sli
For designs that were SRS at the student level, Pfeffermann’s Scaling Method 2 was
appropriate to produce an approximately unbiased estimator of the within-school variance. For
such designs, the scaled student conditional weight in Equation 17 was equal to
m
VV(Z) Z s=1 W5|I m =1

sli
m Z s=1 S|I

and the scaled first-order weighted (SFW) estimator ( S%,, ) reduced to the unweighted one (with

weight of 1), which was approximately unbiased, so that
RB, .e (S:srw ) =0. (18)

However, the SFW estimator ( asFW) of the between-school variance was still biased. For

the same sampling design assumed before with constant M,'s and m's, when scaled weights

were used,
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_p(miaiai'azi)Sd(miWin)

- L E

(K—Dm ) 1cC
i (19)
1-E(w) £(w,a")sd(w)
+ - ,
K -1 (K-1)

where p( ),E( ),and sd( ) wereall taken with respect to a. Note that Equation 19 was

approximately zero for large K while the first two moments of w werefiniteor if alarge

fraction of schools was selected.

To examine the accuracy of the bias expressions for the SFW estimators, the simulation
study in section 3.2 was revisited. The scaled weighted estimators were calculated for each
simulated sample, averaged over 5,000 replications to obtain the relative biases, and compared
with values computed from Equations 18 and 19. Table 4 shows that the simulated and
calculated relative biases were similar for all parametersin al four scenarios. Thus the SFW

estimators of within-school variance were approximately unbiased and those of between-school

variance were negatively biased. The relative bias of s2,, wastrivia for k = 750 (Condition B,)
and increased a bit for k = 99 (Condition B, ). Compared to the first-order weighted estimators

whose relative biases are shown in Table 3 for the same sample designs, those of the SFW
estimators were much smaller.

In summary, scaling of the first-order weighted estimator using Scaling Method 2
(Pfeffermann et al., 1998) eliminated most of the bias from estimators of the variance
components for designs that were SRS at the student level, along with alarge number of schools

in the population or alarge fraction of schools being selected.

7. Summary and Discussion
The analytic bias expressions derived in this paper are based on one-way random effects
models and ANOV A estimators. Such models commonly serve as the preliminary step in the
hierarchical model fitting in providing information about the outcome variability at each of level
of the model (Raudenbush & Bryk, 2002).
The research results suggest that incorporating first-order weights can help to reduce bias
due to the informativeness of sampling designs. However, large relative bias still exists when

both school sample size and ICC values are small, regardless of the design informativeness. The
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Table4

Comparison of Simulated and Approximate Relative Bias (RB) of the Scaled First-Order
Weighted Estimators From a One-Way Random Effects Model With | nformative Designs
at Level 2

A1l (asymmetric strata) A2 (symmetric strata)
RB(SeZSFW ) RB(S:SFW ) RB(S:SFW ) RB(S;SFW )
C1 (m=23)
Bl Simulated 0.02% -0.03% 0.00% 0.01%
Analytic 0.00% -0.07% 0.00% 0.02%
B2 Simulated -0.03% -6.35% 0.01% -0.67%
Analytic 0.00% -5.57% 0.00% -1.52%
C2(m=5)
Bl Simulated 0.00% -0.23% 0.00% 0.09%
Analytic 0.00% -0.08% 0.00% -0.03%
B2 Simulated -0.26% -6.92% -0.31% -2.90%
Analytic 0.00% -7.15% 0.00% -3.10%

Note. Simulation results are based on 5,000 iterations. Analytic results were calculated from
Equations 18 and 19.

study also found that with small sample sizes (less than 20) and small ICC values (less than 0.2),
if the weights are relatively constant at both student and school levels, then the unweighted
estimators of variance components will be less biased than the first-order weighted estimator. On
the other hand, if the weights vary at either level, then the second-order weighted estimators are
needed for estimating variance components. This difference presents a dilemma for data users as
second-order weights typically do not exist in the database, and constructing those weights
accurately requires alevel of knowledge about the design that is not likely to be available either,
not to mention the unavailability of commercial software to compute these second-order
weighted estimators. In that case, scaled first-order weighted estimators that were discussed in
section 6 provide an aternative to the difficult-to-use second-order weighted estimators for
designsin which SRSis used at the student level, given alarge number of schoolsin the

population or alarge fraction of schools being selected. But until some method of making the
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second-order weights available to usersisimplemented in publicly available software programs,
an adequate and unique solution does not appear to be available.

Asalimitation of the analytic approach, the obtained bias expressions only apply to the
sampling designs described in this study. The bias expressions will become much more difficult
to tackle if the SRS assumption at the student level isviolated. Simulation studies might be a
practical approach for future study of various sampling schemes at lower levels of hierarchical
models.
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Appendix
Bias Expression of First-Order Weighted Estimators

Bias Expression of the First-Order Weighted Estimator of the Within-School Variance
The first-order weighted ANOV A estimator of the within-school variance is given as

&, = (A1)

- Z—l i (23_1 S||

with

SSGF z|1l ZHIsh IyIS Z|1| zs_l sli s||y|FW ' (AZ)

where |, and | areindicator functions with

_ |1 ifunitiisinthe sample
~ |0 if uniti isnot in the sample

_J1 ifunit swithini isin the sample, given that unit i isin the sample
710 Otherwise

and

MI
Zs:l I sli Ws|i yis
M;
Dol

The expectations of I; and |; with respect to the sampling design are

View =

E,(1,)=7 =1/w and E,(l4)=7g =1/w,.

We first take the expectation of each quantity on the right side of Equation A1 with respect to the

design, then to the model

B, (0)=E:E, (0) =Eq By By B (6) (A3)
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Given SRS at Level 1, the student selection probability isindependent of the student level

random effect &

is?

and with the property of

Ep('sli):Ep(@i):”su:% : (A4)

Given the designs, Expression A3 can be further simplified as

Efl E.E E (9) = Erfl E. E Epn (9) :

£11 =i pingn £l =pl |l
Therefore,
E§P (Zitlliwi Z'::illshwsh y.i) = E§| E;n Ep||§| Ep“ (Z:ilhwi Z':I:illﬂiWSIi yli)
= E§| E:n [Zitlzil(ﬂ"’ a +gis)2:| (A5)
=E, | X, (W +at + ot +2ua )M, |
and

Esp (ZitlliWZi'squn Vi.ZFw) =B B B B (ZitlliWZiil 4V 37i.2Fvv)

S W
=E4 Z.Klﬂ'W[ﬂle +a'M, +$O—: +2ﬂaMﬂ (A6)

=E; Zil[ﬂ2+a2+%6§+2ﬂajlvh} :

Asaresult,

E.y(se.,) =E, {Zi&ﬂ“f“’f +2ua M —ZL[# o2 Q]Mi
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Meanwhile,

E§p [z,K_lll\Nl (Z 1|s||Ws|| 1):| E Epl €1 E5II EpII |:Z 71|i\Ni (ZMillsthll 1)} ' (A8)
Theright side of Expression A7 can be written as
Ea o Ba Ba [ZiK_l'aWi (zs—1|SIIWSII 1”: EaBa (Z. LI (M, ‘1))

=B, (X mw (M, -1)) (A9)
ZZi:l(Mi_l) '

Equations A6 and A8 together yield

.y (L) = Z.K(Mm_l) ol (A10)
and
(g
RB., (Skw ) = iK (Mm D (A11)

Bias Expression of the First-Order Weighted Estimator of the Between-School Variance

The first-order weighted ANOV A estimator of the between-school varianceis given as

2

2., = SSAgy _ Sew (A12)
(Z W — 1) Myrw Mhew

with

$aFW :Z—l i 23_1 sli s||y|FW yFWZI =11 231 sli s|| (Alg)
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On the other hand, the expectation of Equation A15is
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Combining Equations A10, A17, and A18, the delta method gives

29



(Zi1Mi) ZKleizEafl (Wa\z) ZZJ MiMJErfl (miwwiaai)

BRI VIV VIV ST
Dot e o | I
" th MiMJ Z: MiMjZK:l(Mi _1)

and

(2 (Zm) T ME (we) T MME (mwwaa)

F’ ZI; MiMi 07:’2: MiMJ G:Z: MiMi
K A K K -2 K K ] i A20

1-1CC Z=1I:Ar;2=1Mi _Z=1I\r/lr; E§I (W) (K_l)z_lMiZ_l(M (2 1)J ( )
e > MM, > MM Y (M)

30





