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Abstract
Continuous exponential families are applied to linking test forms via an internal anchor. This
application combines work on continuous exponential families for single-group designs and work
on continuous exponential families for equivalent-group designs. Results are compared to those for
kernel and equipercentile equating in the case of chained equating. The conversions produced by

all methods are quite similar.
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Application of continuous exponential families to linking has been considered for equivalent-
groups designs (Haberman, 2008a) and single-group designs (Haberman, 2008b). The procedure
for a single-group design is readily applied to the chained approach to the equating design for
nonequivalent groups with anchor tests (NEAT). In this report, the required methodology is
described, and application is made to the equating of several forms from several components of
a test in which kernel equating is currently used on an operational basis. Results of equating
by continuous exponential families are compared to those for kernel equating and to those for
equipercentile equating with log-linear smoothing. On the whole, all equating procedures yield
quite similar results; however, continuous exponential families have some advantage. As in kernel
equating, readily-computed asymptotic standard deviations are available. In addition, unlike
in kernel equating, a bandwidth need not be specified or estimated. In addition, continuous
exponential families can be applied to continuous score distributions and to score distributions
with very large numbers of possible values. This feature may gain increasing significance in the
future if scoring begins to include such components as essentially continuous electronically derived
features of essays.

Section 1 describes use of continuous exponential families in the NEAT design. In this
section, all distributions of random variables and random vectors are assumed known. Section 2
considers the more realistic case in which sample data must be used to determine the appropriate
conversions. Section 3 summarizes results of the application to the test data. Section 4 provides
some conclusions. Discussion assumes familiarity with kernel and equipercentile equating methods

(von Davier, Holland, & Thayer, 2004).

1 Equating for the NEAT Design With Continuous Exponential Families

To equate two test forms with a common anchor test by continuous exponential families is
relatively straightforward if the chained approach is employed. Consider two test forms, Form 1
and Form 2, and consider an anchor test A. For 1 < j < 2, let n; be a positive integer, and let
Examinee i, 1 <4 < nj, receive a score X;; on Form j and a score A;; on the anchor test. Assume
that the pairs (X5, Aij), 1 <i < mnj, 1 <j <2, are mutually independent. For 1 < j < 2, let the
joint distribution of (X;;, A;;) be the same for 1 <4 < n;. The examinees who receive Form 1 are
not assumed to be from the same population as the examinees who receive Form 2, so that A;;

and A;» do not have the same distributions for Examinee ¢ who received Form 1 and Examinee ¢’



who received Form 2. For Form j, where j is 1 or 2, possible scores X;; are in the closed interval
with finite lower bound cx; and finite upper bound dx; > cx;. In addition, the anchor test scores
A;; are all in a closed interval with lower bound c4 and upper bound dg > c4. No requirement is
imposed that the scores be integers or rational numbers. Nonetheless, in typical applications, the
common distribution function Fx; of X;;, 1 < ¢ < n;, and the common distribution function Fy;
of A;j, 1 <i < nj, are not continuous, so that an equipercentile approach to equating of Form 1
and Form 2 based on observed scores normally involves some approximation of the distribution
functions Fx; and Fa; by continuous distribution functions G'x; and G 4;, respectively. The
distribution function G'x; is strictly increasing on some open interval By, that contains both cx;
and dyxj, and the distribution function G ,; is strictly increasing on some open interval B4 that
contains c4 and d4. For each positive real p < 1, there are unique continuous and increasing
quantile functions Ry; and R4; such that Gx;(Rx;(p)) = p and G4j(Ra;) = p. With the chained
approach, the linking function exixo for conversion of a score on Form 1 to a score on Form 2
is then ex1x2(x) = Rx2(Ga2(Ra1(Gx1(x)))) for  in Bx1, while the linking function exsx for
conversion of a score on Form 2 to a score on Form 1 is exax1(x) = Rx1(Ga1(Ra2(Gx2(z))))
for z in Bxo. Both ex1x2 and exsx1 are strictly increasing and continuous on their respective
ranges, and exix2 and exox] are inverses, so that exixa(exoxi(x)) = x for z in Bxy and
exaoxi(exixa(z)) = x for z in Bx; (Haberman, 2008a). If Gx1 has a continuous derivative gx
at z in Bx1, G41 has a positive and continuous derivative g41 at ex14(z) = Ra1(Gx1(x)), Gao
has a continuous derivative g42 at exi4(z), and G xo has continuous and positive derivative gx2
at ex1x2(x), then application of standard results from calculus shows that ex;x2 has continuous

derivative
_ gx1(z)gaz(exia(z))
gai(exia(z))gxa(exixa(x))

€/X1X2(55)

at x. Similarly, if Gx9s has a continuous derivative gxo at x in Bxo, GG 42 has a positive and
continuous derivative g4o at exo4(x) = Ra2(Gx2(x)), G41 has a continuous derivative g4; at
ex242(x), and Gx1 has continuous and positive derivative gx2 at exoxi(x), then exoxi has

continuous derivative

s (1) = gx2(x)gai(exaa(x))
X2x1 gaz(ex24())gx1(exax1(x))

at x.

One method to obtain distribution functions Gx1, Ga1, Gx2, and G 49 is to approximate



the joint distribution of (Xjj, Ai;) by use of a bivariate continuous exponential family for both
j =1 and j = 2 (Haberman, 2008b). For simplicity, let Bx;, 1 < j < 2, and B4 be bounded.
For k > 0, let u,x; be a polynomial of degree k on the interval Bx; for 1 < j < 2, and let uyy
be a polynomial of degree k on By. For 1 < j < 2 and a pair k = (kxj, ka) of nonnegative
integers, let uy; be the polynomial on the plane such that ui;(x;) = uky, (2x;)uk, (4) for real
pairs x; = (vxj,24). Let X5 = (Xjj, Aij). Let py; be the expectation of uy;(Xj), so that pu;
is a linear combination of the bivariate moments E(XZXj A%“) of X;; for nonnegative integers
hx; <kxjand hy <ka.

Consider a nonempty set K of r; pairs of nonnegative integers k = (kx;, ka) such that kx;
or ky is positive. Let pug ; be the Kj-array of uk;, k in Kj, and let ug,; (x) be the Kj-array of
uk;(x), kin K. If Yk,j is a real Kj-array of yxj, k in Kj, and zk;; is a real Kj-array of zy;, k in

K, then let

/
YK;j2K;j = Z Ykj2kj-
kGKj

Assume that, for any real Kj-array yg,j, the variance of y’Kj JUK; §(Xij;) is 0 only if yyx; = 0 for
each k in K. Let Bx;a = Bx; x B4 be the interval in the plane that consists of pairs (bx;,b4)
such that bx; is in Bx; and by is in B4. To treat issues such as internal anchors, let w; be a
bounded and positive real function on Bxj4. For numerical work, it is helpful to assume that w;
is infinitely differentiable. Then a unique continuous bivariate distribution with positive density

on Bxja has the exponential family density

9x5(x) = Vi, (01, 1) w; (%) exp[Oc uc (%)),

x in Bxja, for a unique Kj-array 0;; with elements Ok, ;, k in Kj, and a unique positive real
Vk;;(0K;5) such that
/ Ui (X)grc;5 (%) dX = pik;
Bxja

for k in K; and

/ 9K;j (x)dx =1
Bxja

(Gilula & Haberman, 2000; Haberman, 2008b). A random vector Y ,; = (Yx;k,j, Yak,;) in Bja
then exists with density gk ;. The moment equalities £(ui;(Yr,;)) = E(uk;(Xi;)) hold for k in
Kj, so that Y, ; has a distribution close to that of X;; in the sense that the expected log penalty



function Ik, ; = E(—loggk,;(Xi;)) is the smallest expected log penalty function E(—log g(X;))
for all probability densities g on Bx;a such that

9(x) = Y1, 0k, )wj(x) expl0  jur; (%))

for some real Kj-array 0.y, ;, and E(—log g(X;j)) = I,; only if 0., = O ;.
If K; includes the pairs (1,0), (0,1), (2,0), (0,2) and (1,1) and w; is always 1, then

log gk, j(x) is a quadratic function

Bo + Bxjrx;+ Bara+ 5Xij$§(j +2BxjATxjTA + Baaz?.

If Bxjx; and Ba4 are both negative and if Bg(jA < BxjxjBaa, then gk, ; is the conditional density
of a bivariate normal random vector given that the vector is in the interval Bx;a. The random
vector Y K;j with density 9K then has the same mean and covariance matrix as (Xj;, A;j).

The moment equations expressed in terms of uy; can be interpreted in terms of conventional
moments if the set K satisfies the hierarchy rule that (kx;,ka) is in K; whenever (hx;,ha)
is in Kj, kxj < hxj, ka < ha, kx; and ks are nonnegative integers, and kx; or ka is
positive. The equations E(uy;j(Yg,;)) = F(uk;(X;;)) for k in K; then hold if, and only if,
B(Yy e Vit ;) = B(X;9 A5 for all k in K.

For 1 < j < 2, the distribution function Gxjk;; of Yx;k,; and the distribution function
Gak;j of Yak,; are strictly increasing and continuously differentiable on their respective ranges
Bxj and Ba. If Bxjya, y in Bxj, consists of all pairs (yxj,y4) such that yx; is in Bxj, ya is in
By, and yx; <y, then

Gxjir,(y) —/ 9K;5(x)dx.

BX]'yA

If Bxjay, y in By, consists of all pairs (yx;,ya) such that yx; is in Bxj, ya is in Ba, and y4 < v,

then
Gak,j(y) = / gaK;j(x)dx.

Bxjay

The inverse Ryjk,; defined by GXjij(RXjij(p)) =p for 0 < p < 1 and the inverse Rak,;
defined by Gar;;j(Rak;;(p) = p for 0 < p < 1 are also continuously differentiable and strictly

increasing, so that the conversion functions

ex1x2K, Ky = Rx2r,2(Gar,2(Rak1(Gx1k,1)))



and

ex2x1K, Ky = RBx1r,1(Gar,1(Rak,2(Gx2k,2)))

are also continuously differentiable and strictly increasing. Note that exixox,k, =
eAx2K,(ex14K, ), where exi1ax, = Rax,1(Gx1k,1) provides a conversion from Form 1 to the
anchor test and esxor, = Rx2k,2(GAKk,2) provides a conversion from the anchor test to Form 2,
while exox1K,K, = €ax1k, (ex24K,), where exoar, = Rak,2(Gx2kK,2) provides a conversion from
Form 2 to the anchor test and esxi1x, = Rx1x,1(Gak,1) provides a conversion from the anchor
test to Form 1.

As in other cases of continuous exponential families (Haberman, 2008a, 2008b), numerical
work is simplified if computations employ the Legendre polynomials Py for & > 0 (Abramowitz &
Stegun, 1965, chapters 8, 22). These polynomials are determined by the equations Py(z) = 1,
Pi(z) =z, and

Ppyi(x) = (k+1)7'(2k + 1)aPy(x) — kP ()],

k > 1. If inf(Bx;) is the infimum of Bx; and sup(Bx;) is the supremum of Bx; for 1 < j < 2,
inf(B4) is the infimum of By, and sup(Bj4) is the supremum of By, then it is relatively efficient
for numerical work to let Sx; = [inf(Bx;) +sup(Bx;)]/2 be the midpoint of Bx; for 1 < j <2, to
let B4 = [inf(Ba) + sup(Ba)]/2 be the midpoint of By, to let nx; = [sup(Bx;) — inf(Bx;)]/2 be
half the range of Bx; for 1 < j <2, to let ng = [sup(Ba) — inf(B4)]/2 be half the range of By, to
let

ukxj(r) = Pip((z = Bx;j)/1x5)
for 1 < j <2, and to let

ua(z) = Pp((x — Ba)/na)-

In applications considered in this report, for integers rx; > 1 and r4; > 0, 1 < j < 2, the set
K consists of the rxj + 745 + 1 elements (kx;,0), 1 < kx; < rxj, (0,ka), 1 < ks <745, and
(1,1), so that the hierarchy principle holds and, for 1 < j <2, Yx;k,; and X;; have the same 7
initial moments, Yak,j and A;; have the same r4; initial moments,, and Yx; K;j and Y4 K;j have
the same correlation as X;; and A;;. Thus Yy; Kjj and X;; have the same mean and variance for
each j, and Yy K;j and A;; have the same mean and variance for each j. If rx; > 2, then Yx; K;j
and X;; have the same skewness coefficient. If rx; > 3, then Yx; K;j and X;; have the same

kurtosis coefficient. Similarly, if r4; > 2, then Yak;; and A;; have the same skewness coefficient.



If rq; > 3, then Yy K;j and A;; have the same kurtosis coefficient. In the case of rx; =74; =2 in
which Legendre polynomials are used, if i is negative for k equal to (2,0) or (0,2) and 6(21’1) is less
than 369(2270)9(2072), then Yk,; corresponds to a bivariate normal random variable Z = (Zx;, Za)
(Haberman, 2008b). The distribution of Y ; is the same as the conditional distribution of Z
conditional on Zx; being in By; and Z4 being to B4 (Haberman, 2008b). One alternative choice
of K; (Wang, 2008) has K; contain all pairs (kx;,ka) of nonnegative integers such that kx; or ka
is positive, kx; < rxj, and kg <ra.

In typical cases, w; is just the constant 1; however, in some cases with internal anchors

Aij < Xyj, inf(Bx;) = inf(Bj4) and sup(Ba) < sup(Bxj). In such a case, it may be reasonable to

let

explzj(zx;j — xa)]
wj(x) = T
1+ explzj(zx; —a)]
for x = (xxj,74) in Bx;a, where z; is a positive real constant. As z; becomes large, w;(x) goes

to 1 for xx; > x4 and to 0 for xx; < 4. In applications in this report, z; = 2. This choice of w;

and z; facilitates use of 20-point Gauss-Legendre integration (Haberman, 2008b).

2 Estimation of Parameters
The parameters 6 Kjjs the information criterion [ Kjj» the distribution functions G'x; Kjj and
G AK;j, and the conversion functions exixok, k, and exaoxik, Kk, are readily estimated (Gilula
& Haberman, 2000; Haberman, 2008a, 2008b). For k in Kj, let my; be the sample mean
nj_l Z:ﬁl ukj(Xi;), and let mp,j be the Kj-array with elements my;, k in K. If the covariance

matrix of mg; is positive definite, then O ; is estimated by the unique Kj-array ] k;j such that

/ quj(x)ngj(x)dx: mp;,
Bxja

/ IK (j);(x)dx = 1,
Bxja

and
916, (%) = 71,01, ) () exp[B jurc, ()]
for x in Bxja.
For 1 < j <2, as the sample size n; approaches oo, 0 K;j converges to Ok, ; with probability
/2(

1/2,7 e . . .
1, and n ; 0 Kjj — 0 K; j) converges in distribution to a multivariate normal random variable with

zero mean and with covariance matrix Vg ; = C;% DK;j CI}; j (Gilula & Haberman, 2000). Here

6



Dg;; is the covariance matrix of ug,;(X;;) and Cg;,; is the covariance matrix of the Kj-array

quj(Yij). Thus

Cooy = [ Ty 0) = pa i) = b,
Bxja

The estimate of C K;j 18

Ck,j = / [ur,(x) = M [ (x) — mg ;]G (x)dx.
Bxja

The estimate of D K;j 18

Thus V Kjj has estimate

Vi = Cr D Cicl .
For any nonzero constant Kj-array z;, the estimated asymptotic standard deviation (EASD) of
z’Kjé K;j i

f1/2(

&(ZII(JéKJJ) = n] )1/2

PN
ZKjVijZKj

)
so that
I ! Y Y
(ZKJOKJ'J' - szngj)/U(szeij)
converges in distribution to a standard normal random variable.

The minimum expected penalty [k ;; may be estimated by

A - A/
Iie;; = —logk;3(0x5) — Oy, -

/2(

As the sample size n; increases, I K;j converges to I, ; with probability 1 and njl I K5 — IK,j)

converges in distribution to a normal random variable with mean 0 and variance
o?(—log gr;j(Xij)) = 0%,; Vi, 0K,
The EASD of ijj is then

Al -1/2.5" X A
o0x,5) = ny P (O, Vi, 0x,5)'

(Haberman, 2008b).



For 1 < j < 2, the distribution function Gx; K;j has estimate G XjK;j defined by
Gxijr;(y) Z/ gr;5(x)dx
Bxjya

for y in Bxj, and the quantile function Ry Kjj has estimate RXj Kjj defined by
Gx ;i (Bxjr;i(p) = p
for 0 < p < 1. The distribution function G4 K;j has estimate G AK;j defined by
Gar,ji(y) = / grc;(X)dx
Bxjay

for y in B4, and the quantile function R4 K;j has estimate R AK;j defined by
Gar;j(Rak,i(p) = p
for 0 < p < 1. Let

T (y) = / s, (%) — e, g, () dx
Bxjya
and

T = [ k0 = b o, ()

Bxjay

As the sample sizes n; and ns approach oo, G x;jK;j(y) converges to Gx;k,j(y) with probability 1
for y in Bx, so that |GXjij — Gxjk,jl, the supremum of \GXjij(y) — Gxjk;j(y)| for y in By,
converges to 0 with probability 1. Similarly, G4 K, (y) converges to G ak;;(y) with probability 1 for
y in By, so that ]éAij — G AK;j|, the supremum of \GAij(y) — G ak;;(y)| for y in Ba, converges
to 0 with probability 1 (Haberman, 2008b). In addition, [éXjij (y) — GXjij(y)]/U(GXjij (y))

converges in distribution to a normal random variable with mean 0 and variance 1 if
o(Gxjk,i(y)) = ”;1/2{[TXjij(y)]/VijTXjij(y)}l/2,
and [GAij (y) — GAij(y)]/a(GAij (y)) converges in distribution to a normal random variable
with mean 0 and variance 1 if
o (Gar,;(®) = 15 T A, (9] Vi, T, ()12,

Similarly, ]%Xjij(p) converges to Rx;r,;(p) with probability 1, and [RXjij(p) —
Rx;k;i(p)l/ U(ij k;5(p)) converges in distribution to a normal random variable with mean 0 and

variance 1 if

o(Rxjr;;(p) = lgxix,; (Rx;x, ()]~ o(Gxjx;;(Rxix,;(p))

8



and gx;r;;(y) is the marginal density corresponding to G x;k;;. Thus gx;k;;(y) is the integral of
9K,;5((y,74)) over x4 in Ba.

The estimate RAij (p) converges to Rak,;j(p) with probability 1, and [}?AKJ. i(p) —
Rak;;(p)]/ o(R AK,;j(p)) converges in distribution to a normal random variable with mean 0 and
variance 1 if

o(Rax;i(p)) = [9aK,j(Rax,3(p))] " o (Gax,j(Rax,;(p)))
and gar;;(y) is the marginal density corresponding to G ak,;. Thus gak,; (y) is the integral of
9x,i((xx;4,y)) over xx; in Byj.

Estimated asymptotic standard deviations may be derived by use of obvious substitutions of

estimated parameters for actual parameters. Thus

6(Cxire,i () = 5 T xim,5 () Vi, T, () /2,

where

T, i(y) = / i, (%) — mc, g, (%),

Bxjya
6(Rx;jk,;(p)) = l9xix,5(Bx;K,;(p)) ' 6(Gxjx,j(Rxjk,;(p),

and gx;r;;(y) is the marginal density corresponding to G xjK;j- In like manner,
A —1/2 12 - <
5(Gareyi () =5 T areys )] Vi, Tare,i ()12,

where

i) = [ a0 = il (i,

Bxjay
(Rar,3(p) = (9K, (Rar,;(p)] 7 6(Gax,j(Rax,;(p),
and gag;;j(y) is the marginal density corresponding to Ga K;j-

The estimate €x1x2K, K, of the conversion function exix2x, x, from Form 1 to Form 2

satisfies
EX1X2K 1 K2 = €AX2K, (EX1AK, ),
where
éaxak, = Rx2m2(Gaky2)
and

éx1aK; = Rar1(Gxiki1)-



The corresponding estimate éxax1x, Kk, of exoxiKk, K, satisfies

EXIX1K Ky = EAX1K, (EX24K,),

where

éaxir, = Rx1m1(Garin)
and

ExaaK, = Rarya(Gxory2)-

As the sample sizes n; and n2 become large, éx1x2x,k,(y) converges with probability 1 to
ex1x2K,K,(y) for y in Bx1, and éxax1k, K, (y) converges with probability 1 to exex1x, K, (y) for y

in Bxo. In addition, [éx1x2K,k,(Y) — ex1x2k, K, (V)] /0 (éx1x2K, K, (y)) converges in distribution

to a standard normal random variable if

o?(exix2K, K (1))
= 07 [Txikn(y) — Tarii(exiam W) Vi [Txiri (y) — Tag(exixzr x: (v))]
{l9ara2(exiar, W)/ [9ar (ex1ak, (V) gxars2(exixar, k()]
+ny [T a,2(exiam, () — Txoms2(exixer ks ()] Vi

[T ar,2(y) — Txaruo(exixar, k()] [9x2K2(ex1x25 1 ()]

In like manner, [éxox1k, Kk, (Y) — exax1k,k,(Y)]/0(éxax1Kk,K,(y)) converges in distribution to

a standard normal random variable if

o*(exix2r: K, (¥))
= 1y ' [Txora2(y) — Tarsz(exoar, (9)) Viae[Txam,2(y) — Tarse(exaxirix: (v))]
{l9ar,1(ex2ar, (W))]/[9aKa2(ex245, () gx 1511 (€x2x 1K, Ky ()]}
+n [T a1 (exiars () — Txix,1(exaxim g, ()] Vi

[Tar,1(y) — Txim(exaxir, ik, ()/ [9x 15,1 (exaxirc i ()]

10



The EASD of éx1x2k, Kk, (y) satisfies

&2 (ex1x2k, K, (1))
= 07 Tx1k,1(y) — Tar1(Exiam, W) Vi [Txir,1(y) — Tari1(Exix2(y))]
{[GaK2(ex1aK: W)/ [GaK: 1 (Ex14K: (V) Gx2r2 (Ex1x2K, Ky ()]}
+ny [T ars2(@xiak, (v) — Txarso (Exixem i (1)) Vi

[T ar2(y) — Txomya(exixar ik, (V)] [Gx2r02(Ex1x2K, 12 ()],

and the EASD of éxaxi1k, K, (y) satisfies

6% (exax1k, Ky (Y))
= 3 [Txary2(y) — Tarp2(Exzar, W) Va2 Tx2m2(y) — Tars2(éxaxi(y))]
{[gar1(ex18, (V)] [GaK2(Ex2aK, (1) dx 181 (Ex2x 1K, K ()]}

07 T a1 (éxiam, () — Txix, 1 (Exaxim i, () Vi

[T a1 (y) — Txika (Exoxir k. W))]/[ax 101 (Exaxir, ko (1))
3 Application
Equating was considered for the verbal, quantitative, writing, and English tests for two

administrations. In each case, results are based on 1,414 examinees for the new form and 1,271
examinees for the old form. To avoid identification of the assessment, details concerning the test
are omitted. Kernel equating with log-linear smoothing, equipercentile equating with log-linear
smoothing, and equating by exponential families were compared. To facilitate comparison, current
practices were followed in the following ways. Log-linear models used linear, quadratic, cubic,
and quartic terms for main effects, and a linear-by-linear interaction. In continuous exponential
families, the corresponding model was used, so that each K included the pair (1,1) and the pairs
(k,0) and (0, k) for 1 < k < 4. Ranges of tests used in kernel equating or equipercentile equating
were used to specify ca, da, cx1, dxo, cx2, and dxo. The sets Bx1, Bx2, and B4 were selected
to have inf Bx; = cx; — 0.5 and sup(Bx;) = dx; + 0.5 for 1 < j < 2, inf(B4) = c4 — 0.5, and
sup(By4) = da + 0.5. Anchors were internal. Bandwidth selection in kernel equating was based on
the criterion in von Davier et al. (2004, p. 63) with K = 1. Bandwidths used are found in Table 3.
Results for conversion of the new form to the base form are summarized in Tables 1-5 and in

Figures 1-8. Note that conversions are not provided outside of the observed range of raw scores.
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Table 1

Bandwidths Used in Kernel Equating
Verbal Quantitative Writing English

New form 0.7 1.9 0.6 1.6
New anchor 0.6 2.5 2.1 0.6
Old form 1.8 2.1 0.6 1.6
Old anchor 1.5 0.7 0.6 1.6

Table 2

Equating Results for Verbal Test

Exponential Kernel Equipercentile

Score Conversion EASD Conversion EASD Conversion EASD
24 20.26 2.25 19.53 0.91 21.69 2.18
25 23.41 2.52 21.14 1.12 22.93 2.20
26 25.45 2.42 23.03 1.30 24.10 1.95
27 27.08 2.25 25.06 1.36 25.26 1.86
28 28.50 2.08 27.03 1.31 26.47 1.80
29 29.81 1.91 28.82 1.22 27.64 1.33
30 31.02 1.74 30.42 1.12 28.75 1.24
31 32.18 1.58 31.84 1.02 29.89 1.17
32 33.29 1.44 33.13 0.93 31.05 1.11
33 34.36 1.31 34.30 0.84 32.16 0.98
34 35.40 1.19 35.40 0.77 33.27 0.91
35 36.41 1.08 36.44 0.70 34.39 0.85
36 37.41 0.98 37.44 0.64 35.50 0.77
37 38.38 0.90 38.40 0.59 36.57 0.63
38 39.34 0.82 39.33 0.55 37.64 0.59
39 40.28 0.76 40.25 0.51 38.71 0.56
40 41.20 0.70 41.15 0.48 39.76 0.53
41 42.11 0.66 42.03 0.45 40.81 0.49
42 43.01 0.61 42.90 0.43 41.85 0.50
43 43.90 0.58 43.77 0.41 42.89 0.47
44 44.78 0.55 44.63 0.40 43.91 0.45
45 45.65 0.52 45.47 0.38 44.94 0.44
46 46.50 0.49 46.32 0.37 45.95 0.43
47 47.36 0.47 47.16 0.36 46.96 0.41
48 48.20 0.45 48.00 0.35 47.96 0.39
49 49.03 0.42 48.83 0.33 48.96 0.38
50 49.86 0.40 49.66 0.32 49.95 0.36
51 50.69 0.38 50.48 0.31 50.94 0.35
52 51.51 0.36 51.31 0.30 51.93 0.33
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

53 52.32 0.34 52.13 0.29 52.91 0.32
54 53.13 0.32 52.96 0.28 53.89 0.31
55 53.94 0.31 93.78 0.27 04.87 0.30
56 54.75 0.29 54.60 0.26 55.84 0.29
o7 55.95 0.28 95.42 0.26 56.82 0.29
58 56.35 0.26 56.24 0.25 57.79 0.28
59 57.15 0.25 57.07 0.25 58.76 0.29
60 57.95 0.25 57.89 0.25 59.74 0.28
61 58.75 0.24 58.71 0.25 60.71 0.29
62 59.56 0.24 59.54 0.25 61.69 0.29
63 60.36 0.24 60.37 0.25 62.67 0.29
64 61.17 0.25 61.20 0.25 63.64 0.30
65 61.97 0.25 62.03 0.26 64.61 0.30
66 62.79 0.26 62.87 0.26 65.60 0.30
67 63.60 0.26 63.71 0.26 66.58 0.31
68 64.42 0.27 64.56 0.27 67.57 0.31
69 65.25 0.27 65.41 0.27 68.56 0.31
70 66.08 0.28 66.27 0.27 69.55 0.32
71 66.91 0.28 67.14 0.28 70.54 0.33
72 67.76 0.29 68.01 0.29 71.54 0.35
73 68.61 0.30 68.94 0.30 72.54 0.37
74 69.47 0.32 69.81 0.32 73.54 0.40
75 70.33 0.33 70.74 0.34 74.55 0.44
76 71.21 0.36 71.69 0.36 75.56 0.50
7 72.10 0.39 72.69 0.39 76.58 0.55
78 73.00 0.42 73.73 0.43 77.60 0.61
79 73.92 0.47 74.84 0.46 78.62 0.70
80 74.86 0.52 76.02 0.50 79.66 0.74
81 75.82 0.58 77.30 0.54 80.70 0.80
82 76.83 0.64 78.68 0.56 81.73 0.88
83 7791 0.72 80.14 0.57 82.80 0.86
84 79.11 0.79 81.64 0.54 83.86 0.83
85 80.58 0.87 83.07 0.48 84.93 0.78
86 82.96 0.93 84.36 0.41 85.99 0.70

Note. EASD = estimated asymptotic standard deviation.

13



Table 3
Equating Results for Quantitative Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD
8 8.12 0.28 3.09 0.46 6.55 0.64
9 9.15 0.48 5.45 0.45 7.59 0.61
10 10.10 0.53 7.45 0.42 8.63 0.58
11 11.05 0.53 9.11 0.40 9.68 0.57
12 12.01 0.50 10.56 0.38 10.75 0.51
13 12.99 0.46 11.91 0.37 11.82 0.47
14 13.98 0.41 13.21 0.35 12.90 0.42
15 14.98 0.37 14.48 0.32 13.99 0.38
16 16.00 0.33 15.72 0.30 15.08 0.34
17 17.04 0.30 16.96 0.28 16.18 0.30
18 18.09 0.28 18.18 0.27 17.28 0.28
19 19.15 0.26 19.38 0.25 18.38 0.26
20 20.23 0.26 20.58 0.25 19.49 0.25
21 21.33 0.26 21.76 0.24 20.59 0.23
22 22.44 0.26 22.93 0.24 21.71 0.23
23 23.56 0.27 24.09 0.24 22.81 0.23
24 24.70 0.28 25.23 0.23 23.93 0.24
25 25.85 0.29 26.36 0.23 25.04 0.23
26 27.00 0.29 27.48 0.23 26.16 0.23
27 28.16 0.30 28.58 0.23 27.27 0.23
28 29.33 0.32 29.66 0.23 28.38 0.23
29 30.50 0.33 30.74 0.23 29.49 0.23
30 31.66 0.34 31.80 0.24 30.60 0.24
31 32.82 0.36 32.85 0.24 31.71 0.25
32 33.97 0.38 33.89 0.25 32.81 0.25
33 35.11 0.40 34.93 0.26 33.91 0.26
34 36.24 0.41 35.95 0.27 35.00 0.27
35 37.35 0.43 36.96 0.28 36.08 0.28
36 38.44 0.44 37.97 0.29 37.16 0.29
37 39.50 0.45 38.97 0.30 38.22 0.31
38 40.55 0.46 39.96 0.32 39.29 0.31
39 41.58 0.47 40.95 0.33 40.33 0.32
40 42.58 0.47 41.93 0.34 41.37 0.33
41 43.56 0.48 42.91 0.35 42.40 0.34
42 44.52 0.48 43.89 0.36 43.41 0.35
43 45.46 0.49 44.86 0.37 44.43 0.36
44 46.38 0.50 45.82 0.39 45.42 0.37
45 47.27 0.51 46.77 0.40 46.40 0.39
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

46 48.14 0.53 47.71 0.42 47.37 0.41
47 48.99 0.55 48.63 0.44 48.33 0.44
48 49.82 0.58 49.54 0.46 49.28 0.47
49 50.63 0.62 50.44 0.48 50.21 0.51
50 51.42 0.66 51.31 0.51 51.13 0.56
51 52.19 0.70 52.17 0.53 52.05 0.63
52 52.94 0.73 53.01 0.56 52.94 0.67
53 53.67 0.77 53.83 0.59 53.80 0.75
54 54.37 0.80 54.65 0.62 54.66 0.85
55 55.05 0.82 55.47 0.66 55.54 0.98
56 55.71 0.82 56.31 0.70 56.18 0.77
o7 56.33 0.81 57.18 0.76 97.18 0.85
58 56.91 0.78 58.12 0.83 57.98 0.96
99 97.45 0.72 59.16 0.91 58.78 1.08
60 57.95 0.63 60.35 1.01 59.58 1.21
61 58.40 0.52 61.73 1.10 60.43 0.82
62 58.79 0.38 63.31 1.16 61.36 0.80
63 59.12 0.23 65.11 1.18 62.36 0.66
64 59.39 0.08 67.12 1.17 63.47 0.35

Note. EASD = estimated asymptotic standard deviation.

Table 4
Equating Results for Writing Test
Exponential Kernel Equipercentile

Score Conversion EASD Conversion EASD Conversion EASD
0 1.02 0.93 -0.65 1.28 2.67 0.79
1 2.20 1.10 0.80 1.38 4.40 1.93
2 3.25 1.22 2.11 1.46 5.80 1.11
3 4.26 1.28 3.33 1.46 7.21 1.67
4 5.23 1.29 4.46 1.40 8.46 1.18
5 6.19 1.25 5.53 1.31 8.94 0.90
6 7.12 1.18 6.56 1.20 9.73 0.84
7 8.04 1.09 7.57 1.09 10.47 0.90
8 8.96 0.99 8.57 0.98 11.03 0.71
9 9.89 0.88 9.57 0.87 11.80 0.63
10 10.81 0.79 10.57 0.76 12.50 0.44
11 11.75 0.69 11.57 0.67 13.17 0.53
12 12.70 0.61 12.58 0.58 13.95 0.42
13 13.67 0.53 13.59 0.50 14.70 0.35
14 14.64 0.46 14.61 0.44 15.52 0.31
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

15 15.63 0.41 15.64 0.39 16.33 0.34
16 16.64 0.37 16.67 0.35 17.17 0.30
17 17.65 0.34 17.71 0.32 18.03 0.27
18 18.68 0.32 18.75 0.30 18.95 0.26
19 19.72 0.30 19.80 0.29 19.87 0.25
20 20.77 0.29 20.86 0.28 20.82 0.25
21 21.83 0.28 21.91 0.27 21.80 0.24
22 22.90 0.28 22.97 0.26 22.77 0.23
23 23.97 0.27 24.03 0.24 23.79 0.23
24 25.04 9.26 25.08 0.23 24.80 0.22
25 26.11 0.25 26.14 0.22 25.81 0.22
26 27.18 0.24 27.18 0.22 26.85 0.21
27 28.24 0.24 28.22 0.21 27.87 0.20
28 29.29 0.24 29.26 0.21 28.89 0.20
29 30.32 0.24 30.28 0.21 29.90 0.20
30 31.34 0.24 31.28 0.22 30.89 0.21
31 32.35 0.24 32.28 0.22 31.87 0.21
32 33.33 0.24 33.26 0.22 32.83 0.21
33 34.30 0.24 34.23 0.23 33.77 0.22
34 35.25 0.24 35.18 0.23 34.69 0.22
35 36.18 0.24 36.12 0.23 35.58 0.22
36 37.09 0.23 37.04 0.24 36.45 0.21
37 37.99 0.23 37.95 0.24 37.31 0.21
38 38.87 0.24 38.84 0.25 38.15 0.22
39 39.73 0.25 39.74 0.27 38.95 0.24
40 40.58 0.26 40.62 0.29 39.75 0.27
41 41.41 0.29 41.50 0.32 40.52 0.31
42 42.24 0.32 42.38 0.34 41.29 0.29
43 43.06 0.36 43.29 0.37 42.05 0.36
44 43.88 0.39 44.24 0.39 42.85 0.41
45 44.72 0.43 45.25 0.40 43.59 0.48
46 45.58 0.45 46.38 0.39 44.32 0.38
47 46.53 0.44 47.65 0.36 45.29 0.44
48 47.68 0.29 49.12 0.31 46.33 0.38

Note. EASD = estimated asymptotic standard deviation.
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Table 5
Equating Results for English Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD
1 1.15 0.33 1.75 0.36 0.62 0.35
2 2.13 0.46 2.48 0.38 1.66 0.46
3 3.02 0.49 3.22 0.39 2.74 0.54
4 3.86 0.49 3.99 0.39 3.83 0.59
5 4.67 0.47 4.78 0.38 4.94 0.62
6 5.47 0.44 5.58 0.36 6.06 0.65
7 6.27 0.41 6.40 0.33 6.87 0.39
8 7.08 0.36 7.25 0.30 7.77 0.33
9 7.91 0.32 8.11 0.28 8.67 0.26
10 8.77 0.29 8.99 0.25 9.54 0.22
11 9.65 0.26 9.89 0.22 10.40 0.26
12 10.57 0.23 10.81 0.20 11.26 0.21
13 11.52 0.22 11.75 0.19 12.12 0.18
14 12.50 0.21 12.72 0.18 13.02 0.17
15 13.53 0.21 13.71 0.17 13.91 0.17
16 14.59 0.21 14.73 0.17 14.81 0.17
17 15.68 0.21 15.78 0.17 15.72 0.16
18 16.82 0.21 16.86 0.17 16.63 0.17
19 17.99 0.21 17.97 0.18 17.56 0.17
20 19.19 0.21 19.11 0.18 18.49 0.16
21 20.42 0.21 20.27 0.19 19.43 0.17
22 21.68 0.21 21.47 0.19 20.39 0.17
23 22.95 0.21 22.70 0.20 21.35 0.18
24 24.22 0.22 23.95 0.21 22.35 0.18
25 25.50 0.24 25.21 0.23 23.33 0.19
26 26.76 0.25 26.49 0.25 24.37 0.20
27 27.99 0.27 27.77 0.26 25.41 0.21
28 29.20 0.28 29.03 0.28 26.49 0.22
29 30.38 0.29 30.28 0.29 27.60 0.26
30 31.51 0.29 31.50 0.31 28.76 0.27
31 32.59 0.29 32.68 0.31 29.94 0.30
32 33.63 0.29 33.82 0.32 31.18 0.31
33 34.62 0.29 34.92 0.33 32.42 0.33
34 35.57 0.29 35.97 0.34 33.74 0.40
35 36.48 0.30 36.98 0.36 35.09 0.42
36 37.35 0.32 37.95 0.38 36.44 0.45
37 38.19 0.34 38.88 0.41 37.82 0.56
38 38.99 0.38 39.78 0.45 39.23 0.61
39 39.78 0.42 40.66 0.49 40.58 0.74
40 40.55 0.47 41.51 0.53 41.80 0.80
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

41 41.31 0.53 42.33 0.57 43.07 0.89
42 42.07 0.59 43.14 0.60 44.28 0.68
43 42.85 0.66 43.94 0.63 44.93 0.73
44 43.64 0.73 44.73 0.65 45.50 0.57
45 44.47 0.79 45.50 0.64 46.12 0.61
46 45.35 0.83 46.26 0.61 46.67 0.72
47 46.32 0.82 46.99 0.55 47.29 0.39
48 47.55 0.59 47.68 0.45 48.06 0.33

4 Conclusions

On the whole, results for all methods are quite similar. Differences are most noticeable for the
highest and lowest scores. The results do illustrate an occasional difficulty with kernel equating
based on the normal density. The equated score can be somewhat beyond the range of possible
scores. This issue does not arise with continuous exponential families or equipercentile equating.
It can also be avoided by use of alternate density functions (Lee & von Davier, 2008). The
asymptotic standard deviations for the kernel method do not consider the effects of selection of
bandwidth on the basis of data. In the equipercentile case, the discontinuities in the fitted density
function are not considered. These issues do not arise with continuous exponential families.

The data do not provide a compelling case in favor of or against any of the alternative
equating methods. Current implementations of kernel equating with log-linear smoothing and
equipercentile equating with log-linear smoothing assume that the scores to be equated are
integers, as is the case with the operational test examined. Continuous exponential families can
be applied to scores that are arbitrary real numbers; however, this feature does not have direct
impact in this example. Although both approaches require selection of a polynomial, equating by
continuous exponential families does have the advantage over kernel equating because a bandwidth
need not be selected.

The exact method of adjustment in continuous exponential families for internal rather than
external anchors had negligible impact for the data examined. Virtually the same results are
obtained if the weight function is simply set to 1.

Results here are for chained equating rather than for post-stratified equating. The authors

plan to consider the latter approach in a separate report.
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In general, it appears that continuous exponential families can be applied to nonequivalent
groups with anchor tests. This approach is competitive with kernel approaches and approaches
with equipercentile equating. The principal potential gain from use of continuous exponential

families is achieved when the number of possible combinations of scores is very large.
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