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Abstract

Continuous exponential families are applied to linking test forms via an internal anchor. This

application combines work on continuous exponential families for single-group designs and work

on continuous exponential families for equivalent-group designs. Results are compared to those for

kernel and equipercentile equating in the case of chained equating. The conversions produced by

all methods are quite similar.
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Application of continuous exponential families to linking has been considered for equivalent-

groups designs (Haberman, 2008a) and single-group designs (Haberman, 2008b). The procedure

for a single-group design is readily applied to the chained approach to the equating design for

nonequivalent groups with anchor tests (NEAT). In this report, the required methodology is

described, and application is made to the equating of several forms from several components of

a test in which kernel equating is currently used on an operational basis. Results of equating

by continuous exponential families are compared to those for kernel equating and to those for

equipercentile equating with log-linear smoothing. On the whole, all equating procedures yield

quite similar results; however, continuous exponential families have some advantage. As in kernel

equating, readily-computed asymptotic standard deviations are available. In addition, unlike

in kernel equating, a bandwidth need not be specified or estimated. In addition, continuous

exponential families can be applied to continuous score distributions and to score distributions

with very large numbers of possible values. This feature may gain increasing significance in the

future if scoring begins to include such components as essentially continuous electronically derived

features of essays.

Section 1 describes use of continuous exponential families in the NEAT design. In this

section, all distributions of random variables and random vectors are assumed known. Section 2

considers the more realistic case in which sample data must be used to determine the appropriate

conversions. Section 3 summarizes results of the application to the test data. Section 4 provides

some conclusions. Discussion assumes familiarity with kernel and equipercentile equating methods

(von Davier, Holland, & Thayer, 2004).

1 Equating for the NEAT Design With Continuous Exponential Families

To equate two test forms with a common anchor test by continuous exponential families is

relatively straightforward if the chained approach is employed. Consider two test forms, Form 1

and Form 2, and consider an anchor test A. For 1 ≤ j ≤ 2, let nj be a positive integer, and let

Examinee i, 1 ≤ i ≤ nj , receive a score Xij on Form j and a score Aij on the anchor test. Assume

that the pairs (Xij , Aij), 1 ≤ i ≤ nj , 1 ≤ j ≤ 2, are mutually independent. For 1 ≤ j ≤ 2, let the

joint distribution of (Xij , Aij) be the same for 1 ≤ i ≤ nj . The examinees who receive Form 1 are

not assumed to be from the same population as the examinees who receive Form 2, so that Ai1

and Ai′2 do not have the same distributions for Examinee i who received Form 1 and Examinee i′
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who received Form 2. For Form j, where j is 1 or 2, possible scores Xij are in the closed interval

with finite lower bound cXj and finite upper bound dXj > cXj . In addition, the anchor test scores

Aij are all in a closed interval with lower bound cA and upper bound dA > cA. No requirement is

imposed that the scores be integers or rational numbers. Nonetheless, in typical applications, the

common distribution function FXj of Xij , 1 ≤ i ≤ nj , and the common distribution function FAj

of Aij , 1 ≤ i ≤ nj , are not continuous, so that an equipercentile approach to equating of Form 1

and Form 2 based on observed scores normally involves some approximation of the distribution

functions FXj and FAj by continuous distribution functions GXj and GAj , respectively. The

distribution function GXj is strictly increasing on some open interval BXj that contains both cXj

and dXj , and the distribution function GAj is strictly increasing on some open interval BA that

contains cA and dA. For each positive real p < 1, there are unique continuous and increasing

quantile functions RXj and RAj such that GXj(RXj(p)) = p and GAj(RAj) = p. With the chained

approach, the linking function eX1X2 for conversion of a score on Form 1 to a score on Form 2

is then eX1X2(x) = RX2(GA2(RA1(GX1(x)))) for x in BX1, while the linking function eX2X1 for

conversion of a score on Form 2 to a score on Form 1 is eX2X1(x) = RX1(GA1(RA2(GX2(x))))

for x in BX2. Both eX1X2 and eX2X1 are strictly increasing and continuous on their respective

ranges, and eX1X2 and eX2X1 are inverses, so that eX1X2(eX2X1(x)) = x for x in BX2 and

eX2X1(eX1X2(x)) = x for x in BX1 (Haberman, 2008a). If GX1 has a continuous derivative gX1

at x in BX1, GA1 has a positive and continuous derivative gA1 at eX1A(x) = RA1(GX1(x)), GA2

has a continuous derivative gA2 at eX1A(x), and GX2 has continuous and positive derivative gX2

at eX1X2(x), then application of standard results from calculus shows that eX1X2 has continuous

derivative

e′X1X2(x) =
gX1(x)gA2(eX1A(x))

gA1(eX1A(x))gX2(eX1X2(x))

at x. Similarly, if GX2 has a continuous derivative gX2 at x in BX2, GA2 has a positive and

continuous derivative gA2 at eX2A(x) = RA2(GX2(x)), GA1 has a continuous derivative gA1 at

eX2A2(x), and GX1 has continuous and positive derivative gX2 at eX2X1(x), then eX2X1 has

continuous derivative

e′X2X1(x) =
gX2(x)gA1(eX2A(x))

gA2(eX2A(x))gX1(eX2X1(x))

at x.

One method to obtain distribution functions GX1, GA1, GX2, and GA2 is to approximate
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the joint distribution of (Xij , Aij) by use of a bivariate continuous exponential family for both

j = 1 and j = 2 (Haberman, 2008b). For simplicity, let BXj , 1 ≤ j ≤ 2, and BA be bounded.

For k ≥ 0, let ukXj be a polynomial of degree k on the interval BXj for 1 ≤ j ≤ 2, and let ukA

be a polynomial of degree k on BA. For 1 ≤ j ≤ 2 and a pair k = (kXj , kA) of nonnegative

integers, let ukj be the polynomial on the plane such that ukj(xj) = ukXj
(xXj)ukA(xA) for real

pairs xj = (xXj , xA). Let Xij = (Xij , Aij). Let µkj be the expectation of ukj(Xij), so that µkj

is a linear combination of the bivariate moments E(X
hXj

ij AhA
ij ) of Xij for nonnegative integers

hXj ≤ kXj and hA ≤ kA.

Consider a nonempty set Kj of rj pairs of nonnegative integers k = (kXj , kA) such that kXj

or kA is positive. Let µKjj be the Kj-array of µkj , k in Kj , and let uKjj(x) be the Kj-array of

ukj(x), k in Kj . If yKjj is a real Kj-array of ykj , k in Kj , and zKjj is a real Kj-array of zkj , k in

Kj , then let

y′KjjzKjj =
∑
k∈Kj

ykjzkj .

Assume that, for any real Kj-array yKjj , the variance of y′Kjj
uKjj(Xij) is 0 only if ykj = 0 for

each k in Kj . Let BXjA = BXj × BA be the interval in the plane that consists of pairs (bXj , bA)

such that bXj is in BXj and bA is in BA. To treat issues such as internal anchors, let wj be a

bounded and positive real function on BXjA. For numerical work, it is helpful to assume that wj

is infinitely differentiable. Then a unique continuous bivariate distribution with positive density

on BXjA has the exponential family density

gKjj(x) = γKjj(θKjj)wj(x) exp[θ′KjjuKjj(x)],

x in BXjA, for a unique Kj-array θKjj with elements θkKjj , k in Kj , and a unique positive real

γKjj(θKjj) such that ∫
BXjA

ukj(x)gKjj(x)dx = µkj

for k in Kj and ∫
BXjA

gKjj(x)dx = 1

(Gilula & Haberman, 2000; Haberman, 2008b). A random vector YKjj = (YXjKjj , YAKjj) in BjA

then exists with density gKjj . The moment equalities E(ukj(YKjj)) = E(ukj(Xij)) hold for k in

Kj , so that YKjj has a distribution close to that of Xij in the sense that the expected log penalty
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function IKjj = E(− log gKjj(Xij)) is the smallest expected log penalty function E(− log g(Xij))

for all probability densities g on BXjA such that

g(x) = γKjj(θ∗Kjj)wj(x) exp[θ′∗KjjuKjj(x)]

for some real Kj-array θ∗Kjj , and E(− log g(Xij)) = IKjj only if θ∗Kjj = θKjj .

If Kj includes the pairs (1, 0), (0, 1), (2, 0), (0, 2) and (1, 1) and wj is always 1, then

log gKjj(x) is a quadratic function

β0 + βXjxXj + βAxA + βXjXjx
2
Xj + 2βXjAxXjxA + βAAx

2
A.

If βXjXj and βAA are both negative and if β2XjA < βXjXjβAA, then gKjj is the conditional density

of a bivariate normal random vector given that the vector is in the interval BXjA. The random

vector YKjj with density gKjj then has the same mean and covariance matrix as (Xij , Aij).

The moment equations expressed in terms of ukj can be interpreted in terms of conventional

moments if the set Kj satisfies the hierarchy rule that (kXj , kA) is in Kj whenever (hXj , hA)

is in Kj , kXj ≤ hXj , kA ≤ hA, kXj and kA are nonnegative integers, and kXj or kA is

positive. The equations E(ukj(YKjj)) = E(ukj(Xij)) for k in Kj then hold if, and only if,

E(Y
kXj

XjKjj
Y kA
AKjj

) = E(X
kXj

ij AkA
ij ) for all k in Kj .

For 1 ≤ j ≤ 2, the distribution function GXjKjj of YXjKjj and the distribution function

GAKjj of YAKjj are strictly increasing and continuously differentiable on their respective ranges

BXj and BA. If BXjyA, y in BXj , consists of all pairs (yXj , yA) such that yXj is in BXj , yA is in

BA, and yXj ≤ y, then

GXjKjj(y) =

∫
BXjyA

gKjj(x)dx.

If BXjAy, y in BA, consists of all pairs (yXj , yA) such that yXj is in BXj , yA is in BA, and yA ≤ y,

then

GAKjj(y) =

∫
BXjAy

gAKjj(x)dx.

The inverse RXjKjj defined by GXjKjj(RXjKjj(p)) = p for 0 < p < 1 and the inverse RAKjj

defined by GAKjj(RAKjj(p) = p for 0 < p < 1 are also continuously differentiable and strictly

increasing, so that the conversion functions

eX1X2K1K2 = RX2K22(GAK22(RAK11(GX1K11)))
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and

eX2X1K1K2 = RX1K11(GAK11(RAK22(GX2K22)))

are also continuously differentiable and strictly increasing. Note that eX1X2K1K2 =

eAX2K2(eX1AK1), where eX1AK1 = RAK11(GX1K11) provides a conversion from Form 1 to the

anchor test and eAX2K2 = RX2K22(GAK22) provides a conversion from the anchor test to Form 2,

while eX2X1K2K1 = eAX1K1(eX2AK2), where eX2AK2 = RAK22(GX2K22) provides a conversion from

Form 2 to the anchor test and eAX1K1 = RX1K11(GAK11) provides a conversion from the anchor

test to Form 1.

As in other cases of continuous exponential families (Haberman, 2008a, 2008b), numerical

work is simplified if computations employ the Legendre polynomials Pk for k ≥ 0 (Abramowitz &

Stegun, 1965, chapters 8, 22). These polynomials are determined by the equations P0(x) = 1,

P1(x) = x, and

Pk+1(x) = (k + 1)−1[(2k + 1)xPk(x)− kPk−1(x)],

k ≥ 1. If inf(BXj) is the infimum of BXj and sup(BXj) is the supremum of BXj for 1 ≤ j ≤ 2,

inf(BA) is the infimum of BA, and sup(BA) is the supremum of BA, then it is relatively efficient

for numerical work to let βXj = [inf(BXj) + sup(BXj)]/2 be the midpoint of BXj for 1 ≤ j ≤ 2, to

let βA = [inf(BA) + sup(BA)]/2 be the midpoint of BA, to let ηXj = [sup(BXj)− inf(BXj)]/2 be

half the range of BXj for 1 ≤ j ≤ 2, to let ηA = [sup(BA)− inf(BA)]/2 be half the range of BA, to

let

ukXj(x) = Pk((x− βXj)/ηXj)

for 1 ≤ j ≤ 2, and to let

ukA(x) = Pk((x− βA)/ηA).

In applications considered in this report, for integers rXj > 1 and rAj > 0, 1 ≤ j ≤ 2, the set

Kj consists of the rXj + rAj + 1 elements (kXj , 0), 1 ≤ kXj ≤ rXj , (0, kA), 1 ≤ kA ≤ rAj , and

(1, 1), so that the hierarchy principle holds and, for 1 ≤ j ≤ 2, YXjKjj and Xij have the same rXj

initial moments, YAKjj and Aij have the same rAj initial moments,, and YXjKjj and YAKjj have

the same correlation as Xij and Aij . Thus YXjKjj and Xij have the same mean and variance for

each j, and YAKjj and Aij have the same mean and variance for each j. If rXj > 2, then YXjKjj

and Xij have the same skewness coefficient. If rXj > 3, then YXjKjj and Xij have the same

kurtosis coefficient. Similarly, if rAj > 2, then YAKjj and Aij have the same skewness coefficient.
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If rAj > 3, then YAKjj and Aij have the same kurtosis coefficient. In the case of rXj = rAj = 2 in

which Legendre polynomials are used, if θk is negative for k equal to (2, 0) or (0, 2) and θ2(1,1) is less

than 36θ2(2,0)θ
2
(0,2), then YKjj corresponds to a bivariate normal random variable Z = (ZXj , ZA)

(Haberman, 2008b). The distribution of YKjj is the same as the conditional distribution of Z

conditional on ZXj being in BXj and ZA being to BA (Haberman, 2008b). One alternative choice

of Kj (Wang, 2008) has Kj contain all pairs (kXj , kA) of nonnegative integers such that kXj or kA

is positive, kXj ≤ rXj , and kA ≤ rA.

In typical cases, wj is just the constant 1; however, in some cases with internal anchors

Aij ≤ Xij , inf(BXj) = inf(BA) and sup(BA) < sup(BXj). In such a case, it may be reasonable to

let

wj(x) =
exp[zj(xXj − xA)]

1 + exp[zj(xXj − xA)]

for x = (xXj , xA) in BXjA, where zj is a positive real constant. As zj becomes large, wj(x) goes

to 1 for xXj > xA and to 0 for xXj < xA. In applications in this report, zj = 2. This choice of wj

and zj facilitates use of 20-point Gauss-Legendre integration (Haberman, 2008b).

2 Estimation of Parameters

The parameters θKjj , the information criterion IKjj , the distribution functions GXjKjj and

GAKjj , and the conversion functions eX1X2K1K2 and eX2X1K1K2 are readily estimated (Gilula

& Haberman, 2000; Haberman, 2008a, 2008b). For k in Kj , let mkj be the sample mean

n−1j

∑nj

i=1 ukj(Xij), and let mKjj be the Kj-array with elements mkj , k in Kj . If the covariance

matrix of mKjj is positive definite, then θKjj is estimated by the unique Kj-array θ̂Kjj such that∫
BXjA

uKjj(x)ĝKjj(x)dx = mKjj ,

∫
BXjA

ĝK(j)j(x)dx = 1,

and

ĝKjj(x) = γKjj(θ̂Kjj)wj(x) exp[θ̂
′
KjjuKjj(x)]

for x in BXjA.

For 1 ≤ j ≤ 2, as the sample size nj approaches ∞, θ̂Kjj converges to θKjj with probability

1, and n
1/2
j (θ̂Kjj − θKjj) converges in distribution to a multivariate normal random variable with

zero mean and with covariance matrix VKjj = C−1Kjj
DKjjC

−1
Kjj

(Gilula & Haberman, 2000). Here
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DKjj is the covariance matrix of uKjj(Xij) and CKjj is the covariance matrix of the Kj-array

uKjj(YKjj). Thus

CKjj =

∫
BXjA)

[uKjj(x)− µKjj ][uKjj(x)− µKjj ]
′gKjj(x)dx.

The estimate of CKjj is

ĈKjj =

∫
BXjA

[uKjj(x)−mKjj ][uKjj(x)−mKjj ]
′ĝKj (x)dx.

The estimate of DKjj is

D̂Kjj = n−1j

nj∑
i=1

[uKjj(Xi)−mKjj ][uKjj(Xi)−mKjj ]
′.

Thus VKjj has estimate

V̂Kjj = Ĉ−1Kjj
D̂KjjĈ

−1
Kjj

.

For any nonzero constant Kj-array zKj , the estimated asymptotic standard deviation (EASD) of

z′Kj
θ̂Kjj is

σ̂(z′Kj
θ̂Kjj) = n

−1/2
j (z′Kj

V̂KjjzKj )
1/2,

so that

(z′Kj
θ̂Kjj − z′Kj

θKjj)/σ̂(z′Kj
θ̂Kjj)

converges in distribution to a standard normal random variable.

The minimum expected penalty IKjj may be estimated by

ÎKjj = − log γKjj(θ̂Kjj)− θ̂
′
KjjmKjj .

As the sample size nj increases, ÎKjj converges to IKjj with probability 1 and n
1/2
j (ÎKjj − IKjj)

converges in distribution to a normal random variable with mean 0 and variance

σ2(− log gKjj(Xij)) = θ′KjjV
′
KjjθKjj .

The EASD of ÎKjj is then

σ̂(ÎKjj) = n
−1/2
j (θ̂

′
KjjV̂

′
Kjj θ̂Kjj)

1/2

(Haberman, 2008b).
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For 1 ≤ j ≤ 2, the distribution function GXjKjj has estimate ĜXjKjj defined by

ĜXjKjj(y) =

∫
BXjyA

ĝKjj(x)dx

for y in BXj , and the quantile function RXjKjj has estimate R̂XjKjj defined by

ĜXjKjj(R̂XjKjj(p)) = p

for 0 < p < 1. The distribution function GAKjj has estimate ĜAKjj defined by

ĜAKjj(y) =

∫
BXjAy

ĝKjj(x)dx

for y in BA, and the quantile function RAKjj has estimate R̂AKjj defined by

ĜAKjj(R̂AKjj(p)) = p

for 0 < p < 1. Let

TXjKjj(y) =

∫
BXjyA

[uKjj(x)− µKjj ]gKjj(x)dx

and

TAKjj(y) =

∫
BXjAy

[uKjj(x)− µKjj ]gKjj(x)dx.

As the sample sizes n1 and n2 approach ∞, ĜXjKjj(y) converges to GXjKjj(y) with probability 1

for y in BXj , so that |ĜXjKjj −GXjKjj |, the supremum of |ĜXjKjj(y)−GXjKjj(y)| for y in BXj ,

converges to 0 with probability 1. Similarly, ĜAKjj(y) converges to GAKjj(y) with probability 1 for

y in BA, so that |ĜAKjj −GAKjj |, the supremum of |ĜAKjj(y)−GAKjj(y)| for y in BA, converges

to 0 with probability 1 (Haberman, 2008b). In addition, [ĜXjKjj(y)−GXjKjj(y)]/σ(ĜXjKjj(y))

converges in distribution to a normal random variable with mean 0 and variance 1 if

σ(ĜXjKjj(y)) = n
−1/2
j {[TXjKjj(y)]′VKjjTXjKjj(y)}1/2,

and [ĜAKjj(y) − GAKjj(y)]/σ(ĜAKjj(y)) converges in distribution to a normal random variable

with mean 0 and variance 1 if

σ(ĜAKjj(y)) = n
−1/2
j {[TAKjj(y)]′VKjjTAKjj(y)}1/2,

Similarly, R̂XjKjj(p) converges to RXjKjj(p) with probability 1, and [R̂XjKjj(p) −

RXjKjj(p)]/σ(R̂XjKjj(p)) converges in distribution to a normal random variable with mean 0 and

variance 1 if

σ(R̂XjKjj(p)) = [gXjKjj(RXjKjj(p))]
−1σ(ĜXjKjj(RXjKjj(p)))
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and gXjKjj(y) is the marginal density corresponding to GXjKjj . Thus gXjKjj(y) is the integral of

gKjj((y, xA)) over xA in BA.

The estimate R̂AKjj(p) converges to RAKjj(p) with probability 1, and [R̂AKjj(p) −

RAKjj(p)]/σ(R̂AKjj(p)) converges in distribution to a normal random variable with mean 0 and

variance 1 if

σ(R̂AKjj(p)) = [gAKjj(RAKjj(p))]
−1σ(ĜAKjj(RAKjj(p)))

and gAKjj(y) is the marginal density corresponding to GAKjj . Thus gAKjj(y) is the integral of

gKjj((xXj , y)) over xXj in BXj .

Estimated asymptotic standard deviations may be derived by use of obvious substitutions of

estimated parameters for actual parameters. Thus

σ̂(ĜXjKjj(y)) = n
−1/2
j {[T̂XjKjj(y)]′V̂KjjT̂XjKjj(y)}1/2,

where

T̂XjKjj(y) =

∫
BXjyA

[uKjj(x)−mKjj ]ĝKjj(x)dx,

σ̂(R̂XjKjj(p)) = [ĝXjKjj(R̂XjKjj(p))]
−1σ̂(ĜXjKjj(R̂XjKjj(p)),

and ĝXjKjj(y) is the marginal density corresponding to ĜXjKjj . In like manner,

σ̂(ĜAKjj(y)) = n
−1/2
j {[T̂AKjj(y)]′V̂KjjT̂AKjj(y)}1/2,

where

T̂AKjj(y) =

∫
BXjAy

[uKjj(x)−mKjj ]ĝKjj(x)dx,

σ̂(R̂AKjj(p)) = [ĝAKjj(R̂AKjj(p))]
−1σ̂(ĜAKjj(R̂AKjj(p)),

and ĝAKjj(y) is the marginal density corresponding to ĜAKjj .

The estimate êX1X2K1K2 of the conversion function eX1X2K1K2 from Form 1 to Form 2

satisfies

êX1X2K1K2 = êAX2K2(êX1AK1),

where

êAX2K2 = R̂X2K22(ĜAK22)

and

êX1AK1 = R̂AK11(ĜX1K11).
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The corresponding estimate êX2X1K1K2 of eX2X1K1K2 satisfies

êX2X1K1K2 = êAX1K1(êX2AK2),

where

êAX1K1 = R̂X1K11(ĜAK11)

and

êX2AK2 = R̂AK22(ĜX2K22).

As the sample sizes n1 and n2 become large, êX1X2K1K2(y) converges with probability 1 to

eX1X2K1K2(y) for y in BX1, and êX2X1K1K2(y) converges with probability 1 to eX2X1K1K2(y) for y

in BX2. In addition, [êX1X2K1K2(y) − eX1X2K1K2(y)]/σ(êX1X2K1K2(y)) converges in distribution

to a standard normal random variable if

σ2(êX1X2K1K2(y))

= n−11 [TX1K11(y)−TAK11(eX1AK1(y))]′VK11[TX1K11(y)−TAK11(eX1X2K1K2(y))]

{[gAK22(eX1AK1(y))]/[gAK11(eX1AK1(y))gX2K22(eX1X2K1K2(y))]}2

+n−12 [TAK22(eX1AK1(y))−TX2K22(eX1X2K1K2(y))]′VK22

[TAK22(y)−TX2K22(eX1X2K1K2(y))]/[gX2K22(eX1X2K1K2(y))]2.

In like manner, [êX2X1K1K2(y)− eX2X1K1K2(y)]/σ(êX2X1K1K2(y)) converges in distribution to

a standard normal random variable if

σ2(êX1X2K1K2(y))

= n−12 [TX2K22(y)−TAK22(eX2AK2(y))]′VK22[TX2K22(y)−TAK22(eX2X1K1K2(y))]

{[gAK11(eX2AK2(y))]/[gAK22(eX2AK2(y))gX1K11(eX2X1K1K1(y))]}2

+n−11 [TAK11(eX1AK2(y))−TX1K11(eX2X1K1K2(y))]′VK11

[TAK11(y)−TX1K11(eX2X1K1K2(y))]/[gX1K11(eX2X1K1K2(y))]2.
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The EASD of êX1X2K1K2(y) satisfies

σ̂2(êX1X2K1K2(y))

= n−11 [T̂X1K11(y)− T̂AK11(êX1AK1(y))]′V̂K11[T̂X1K11(y)− T̂AK11(êX1X2(y))]

{[ĝAK22(êX1AK1(y))]/[ĝAK11(êX1AK1(y))ĝX2K22(êX1X2K1K2(y))]}2

+n−12 [T̂AK22(êX1AK1(y))− T̂X2K22(êX1X2K1K2(y))]′V̂K22

[T̂AK22(y)− T̂X2K22(êX1X2K1K2(y))]/[ĝX2K22(êX1X2K1K2(y))]2,

and the EASD of êX2X1K1K2(y) satisfies

σ̂2(êX2X1K1K2(y))

= n−12 [T̂X2K22(y)− T̂AK22(êX2AK2(y))]′V̂K22[T̂X2K22(y)− T̂AK22(êX2X1(y))]

{[ĝAK11(êX1AK2(y))]/[ĝAK22(êX2AK2(y))ĝX1K11(êX2X1K1K2(y))]}2

+n−11 [T̂AK11(êX1AK1(y))− T̂X1K11(êX2X1K1K2(y))]′V̂K11

[T̂AK11(y)− T̂X1K11(êX2X1K1K2(y))]/[ĝX1K11(êX2X1K1K2(y))]2.

3 Application

Equating was considered for the verbal, quantitative, writing, and English tests for two

administrations. In each case, results are based on 1,414 examinees for the new form and 1,271

examinees for the old form. To avoid identification of the assessment, details concerning the test

are omitted. Kernel equating with log-linear smoothing, equipercentile equating with log-linear

smoothing, and equating by exponential families were compared. To facilitate comparison, current

practices were followed in the following ways. Log-linear models used linear, quadratic, cubic,

and quartic terms for main effects, and a linear-by-linear interaction. In continuous exponential

families, the corresponding model was used, so that each Kj included the pair (1, 1) and the pairs

(k, 0) and (0, k) for 1 ≤ k ≤ 4. Ranges of tests used in kernel equating or equipercentile equating

were used to specify cA, dA, cX1, dX2, cX2, and dX2. The sets BX1, BX2, and BA were selected

to have inf BXj = cXj − 0.5 and sup(BXj) = dXj + 0.5 for 1 ≤ j ≤ 2, inf(BA) = cA − 0.5, and

sup(BA) = dA + 0.5. Anchors were internal. Bandwidth selection in kernel equating was based on

the criterion in von Davier et al. (2004, p. 63) with K = 1. Bandwidths used are found in Table 3.

Results for conversion of the new form to the base form are summarized in Tables 1–5 and in

Figures 1–8. Note that conversions are not provided outside of the observed range of raw scores.
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Table 1
Bandwidths Used in Kernel Equating

Verbal Quantitative Writing English

New form 0.7 1.9 0.6 1.6
New anchor 0.6 2.5 2.1 0.6
Old form 1.8 2.1 0.6 1.6
Old anchor 1.5 0.7 0.6 1.6

Table 2
Equating Results for Verbal Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

24 20.26 2.25 19.53 0.91 21.69 2.18
25 23.41 2.52 21.14 1.12 22.93 2.20
26 25.45 2.42 23.03 1.30 24.10 1.95
27 27.08 2.25 25.06 1.36 25.26 1.86
28 28.50 2.08 27.03 1.31 26.47 1.80
29 29.81 1.91 28.82 1.22 27.64 1.33
30 31.02 1.74 30.42 1.12 28.75 1.24
31 32.18 1.58 31.84 1.02 29.89 1.17
32 33.29 1.44 33.13 0.93 31.05 1.11
33 34.36 1.31 34.30 0.84 32.16 0.98
34 35.40 1.19 35.40 0.77 33.27 0.91
35 36.41 1.08 36.44 0.70 34.39 0.85
36 37.41 0.98 37.44 0.64 35.50 0.77
37 38.38 0.90 38.40 0.59 36.57 0.63
38 39.34 0.82 39.33 0.55 37.64 0.59
39 40.28 0.76 40.25 0.51 38.71 0.56
40 41.20 0.70 41.15 0.48 39.76 0.53
41 42.11 0.66 42.03 0.45 40.81 0.49
42 43.01 0.61 42.90 0.43 41.85 0.50
43 43.90 0.58 43.77 0.41 42.89 0.47
44 44.78 0.55 44.63 0.40 43.91 0.45
45 45.65 0.52 45.47 0.38 44.94 0.44
46 46.50 0.49 46.32 0.37 45.95 0.43
47 47.36 0.47 47.16 0.36 46.96 0.41
48 48.20 0.45 48.00 0.35 47.96 0.39
49 49.03 0.42 48.83 0.33 48.96 0.38
50 49.86 0.40 49.66 0.32 49.95 0.36
51 50.69 0.38 50.48 0.31 50.94 0.35
52 51.51 0.36 51.31 0.30 51.93 0.33
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

53 52.32 0.34 52.13 0.29 52.91 0.32
54 53.13 0.32 52.96 0.28 53.89 0.31
55 53.94 0.31 53.78 0.27 54.87 0.30
56 54.75 0.29 54.60 0.26 55.84 0.29
57 55.55 0.28 55.42 0.26 56.82 0.29
58 56.35 0.26 56.24 0.25 57.79 0.28
59 57.15 0.25 57.07 0.25 58.76 0.29
60 57.95 0.25 57.89 0.25 59.74 0.28
61 58.75 0.24 58.71 0.25 60.71 0.29
62 59.56 0.24 59.54 0.25 61.69 0.29
63 60.36 0.24 60.37 0.25 62.67 0.29
64 61.17 0.25 61.20 0.25 63.64 0.30
65 61.97 0.25 62.03 0.26 64.61 0.30
66 62.79 0.26 62.87 0.26 65.60 0.30
67 63.60 0.26 63.71 0.26 66.58 0.31
68 64.42 0.27 64.56 0.27 67.57 0.31
69 65.25 0.27 65.41 0.27 68.56 0.31
70 66.08 0.28 66.27 0.27 69.55 0.32
71 66.91 0.28 67.14 0.28 70.54 0.33
72 67.76 0.29 68.01 0.29 71.54 0.35
73 68.61 0.30 68.94 0.30 72.54 0.37
74 69.47 0.32 69.81 0.32 73.54 0.40
75 70.33 0.33 70.74 0.34 74.55 0.44
76 71.21 0.36 71.69 0.36 75.56 0.50
77 72.10 0.39 72.69 0.39 76.58 0.55
78 73.00 0.42 73.73 0.43 77.60 0.61
79 73.92 0.47 74.84 0.46 78.62 0.70
80 74.86 0.52 76.02 0.50 79.66 0.74
81 75.82 0.58 77.30 0.54 80.70 0.80
82 76.83 0.64 78.68 0.56 81.73 0.88
83 77.91 0.72 80.14 0.57 82.80 0.86
84 79.11 0.79 81.64 0.54 83.86 0.83
85 80.58 0.87 83.07 0.48 84.93 0.78
86 82.96 0.93 84.36 0.41 85.99 0.70

Note. EASD = estimated asymptotic standard deviation.
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Table 3
Equating Results for Quantitative Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

8 8.12 0.28 3.09 0.46 6.55 0.64
9 9.15 0.48 5.45 0.45 7.59 0.61
10 10.10 0.53 7.45 0.42 8.63 0.58
11 11.05 0.53 9.11 0.40 9.68 0.57
12 12.01 0.50 10.56 0.38 10.75 0.51
13 12.99 0.46 11.91 0.37 11.82 0.47
14 13.98 0.41 13.21 0.35 12.90 0.42
15 14.98 0.37 14.48 0.32 13.99 0.38
16 16.00 0.33 15.72 0.30 15.08 0.34
17 17.04 0.30 16.96 0.28 16.18 0.30
18 18.09 0.28 18.18 0.27 17.28 0.28
19 19.15 0.26 19.38 0.25 18.38 0.26
20 20.23 0.26 20.58 0.25 19.49 0.25
21 21.33 0.26 21.76 0.24 20.59 0.23
22 22.44 0.26 22.93 0.24 21.71 0.23
23 23.56 0.27 24.09 0.24 22.81 0.23
24 24.70 0.28 25.23 0.23 23.93 0.24
25 25.85 0.29 26.36 0.23 25.04 0.23
26 27.00 0.29 27.48 0.23 26.16 0.23
27 28.16 0.30 28.58 0.23 27.27 0.23
28 29.33 0.32 29.66 0.23 28.38 0.23
29 30.50 0.33 30.74 0.23 29.49 0.23
30 31.66 0.34 31.80 0.24 30.60 0.24
31 32.82 0.36 32.85 0.24 31.71 0.25
32 33.97 0.38 33.89 0.25 32.81 0.25
33 35.11 0.40 34.93 0.26 33.91 0.26
34 36.24 0.41 35.95 0.27 35.00 0.27
35 37.35 0.43 36.96 0.28 36.08 0.28
36 38.44 0.44 37.97 0.29 37.16 0.29
37 39.50 0.45 38.97 0.30 38.22 0.31
38 40.55 0.46 39.96 0.32 39.29 0.31
39 41.58 0.47 40.95 0.33 40.33 0.32
40 42.58 0.47 41.93 0.34 41.37 0.33
41 43.56 0.48 42.91 0.35 42.40 0.34
42 44.52 0.48 43.89 0.36 43.41 0.35
43 45.46 0.49 44.86 0.37 44.43 0.36
44 46.38 0.50 45.82 0.39 45.42 0.37
45 47.27 0.51 46.77 0.40 46.40 0.39
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

46 48.14 0.53 47.71 0.42 47.37 0.41
47 48.99 0.55 48.63 0.44 48.33 0.44
48 49.82 0.58 49.54 0.46 49.28 0.47
49 50.63 0.62 50.44 0.48 50.21 0.51
50 51.42 0.66 51.31 0.51 51.13 0.56
51 52.19 0.70 52.17 0.53 52.05 0.63
52 52.94 0.73 53.01 0.56 52.94 0.67
53 53.67 0.77 53.83 0.59 53.80 0.75
54 54.37 0.80 54.65 0.62 54.66 0.85
55 55.05 0.82 55.47 0.66 55.54 0.98
56 55.71 0.82 56.31 0.70 56.18 0.77
57 56.33 0.81 57.18 0.76 57.18 0.85
58 56.91 0.78 58.12 0.83 57.98 0.96
59 57.45 0.72 59.16 0.91 58.78 1.08
60 57.95 0.63 60.35 1.01 59.58 1.21
61 58.40 0.52 61.73 1.10 60.43 0.82
62 58.79 0.38 63.31 1.16 61.36 0.80
63 59.12 0.23 65.11 1.18 62.36 0.66
64 59.39 0.08 67.12 1.17 63.47 0.35

Note. EASD = estimated asymptotic standard deviation.

Table 4
Equating Results for Writing Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

0 1.02 0.93 -0.65 1.28 2.67 0.79
1 2.20 1.10 0.80 1.38 4.40 1.93
2 3.25 1.22 2.11 1.46 5.80 1.11
3 4.26 1.28 3.33 1.46 7.21 1.67
4 5.23 1.29 4.46 1.40 8.46 1.18
5 6.19 1.25 5.53 1.31 8.94 0.90
6 7.12 1.18 6.56 1.20 9.73 0.84
7 8.04 1.09 7.57 1.09 10.47 0.90
8 8.96 0.99 8.57 0.98 11.03 0.71
9 9.89 0.88 9.57 0.87 11.80 0.63
10 10.81 0.79 10.57 0.76 12.50 0.44
11 11.75 0.69 11.57 0.67 13.17 0.53
12 12.70 0.61 12.58 0.58 13.95 0.42
13 13.67 0.53 13.59 0.50 14.70 0.35
14 14.64 0.46 14.61 0.44 15.52 0.31
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

15 15.63 0.41 15.64 0.39 16.33 0.34
16 16.64 0.37 16.67 0.35 17.17 0.30
17 17.65 0.34 17.71 0.32 18.03 0.27
18 18.68 0.32 18.75 0.30 18.95 0.26
19 19.72 0.30 19.80 0.29 19.87 0.25
20 20.77 0.29 20.86 0.28 20.82 0.25
21 21.83 0.28 21.91 0.27 21.80 0.24
22 22.90 0.28 22.97 0.26 22.77 0.23
23 23.97 0.27 24.03 0.24 23.79 0.23
24 25.04 9.26 25.08 0.23 24.80 0.22
25 26.11 0.25 26.14 0.22 25.81 0.22
26 27.18 0.24 27.18 0.22 26.85 0.21
27 28.24 0.24 28.22 0.21 27.87 0.20
28 29.29 0.24 29.26 0.21 28.89 0.20
29 30.32 0.24 30.28 0.21 29.90 0.20
30 31.34 0.24 31.28 0.22 30.89 0.21
31 32.35 0.24 32.28 0.22 31.87 0.21
32 33.33 0.24 33.26 0.22 32.83 0.21
33 34.30 0.24 34.23 0.23 33.77 0.22
34 35.25 0.24 35.18 0.23 34.69 0.22
35 36.18 0.24 36.12 0.23 35.58 0.22
36 37.09 0.23 37.04 0.24 36.45 0.21
37 37.99 0.23 37.95 0.24 37.31 0.21
38 38.87 0.24 38.84 0.25 38.15 0.22
39 39.73 0.25 39.74 0.27 38.95 0.24
40 40.58 0.26 40.62 0.29 39.75 0.27
41 41.41 0.29 41.50 0.32 40.52 0.31
42 42.24 0.32 42.38 0.34 41.29 0.29
43 43.06 0.36 43.29 0.37 42.05 0.36
44 43.88 0.39 44.24 0.39 42.85 0.41
45 44.72 0.43 45.25 0.40 43.59 0.48
46 45.58 0.45 46.38 0.39 44.32 0.38
47 46.53 0.44 47.65 0.36 45.29 0.44
48 47.68 0.29 49.12 0.31 46.33 0.38

Note. EASD = estimated asymptotic standard deviation.
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Table 5
Equating Results for English Test

Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

1 1.15 0.33 1.75 0.36 0.62 0.35
2 2.13 0.46 2.48 0.38 1.66 0.46
3 3.02 0.49 3.22 0.39 2.74 0.54
4 3.86 0.49 3.99 0.39 3.83 0.59
5 4.67 0.47 4.78 0.38 4.94 0.62
6 5.47 0.44 5.58 0.36 6.06 0.65
7 6.27 0.41 6.40 0.33 6.87 0.39
8 7.08 0.36 7.25 0.30 7.77 0.33
9 7.91 0.32 8.11 0.28 8.67 0.26
10 8.77 0.29 8.99 0.25 9.54 0.22
11 9.65 0.26 9.89 0.22 10.40 0.26
12 10.57 0.23 10.81 0.20 11.26 0.21
13 11.52 0.22 11.75 0.19 12.12 0.18
14 12.50 0.21 12.72 0.18 13.02 0.17
15 13.53 0.21 13.71 0.17 13.91 0.17
16 14.59 0.21 14.73 0.17 14.81 0.17
17 15.68 0.21 15.78 0.17 15.72 0.16
18 16.82 0.21 16.86 0.17 16.63 0.17
19 17.99 0.21 17.97 0.18 17.56 0.17
20 19.19 0.21 19.11 0.18 18.49 0.16
21 20.42 0.21 20.27 0.19 19.43 0.17
22 21.68 0.21 21.47 0.19 20.39 0.17
23 22.95 0.21 22.70 0.20 21.35 0.18
24 24.22 0.22 23.95 0.21 22.35 0.18
25 25.50 0.24 25.21 0.23 23.33 0.19
26 26.76 0.25 26.49 0.25 24.37 0.20
27 27.99 0.27 27.77 0.26 25.41 0.21
28 29.20 0.28 29.03 0.28 26.49 0.22
29 30.38 0.29 30.28 0.29 27.60 0.26
30 31.51 0.29 31.50 0.31 28.76 0.27
31 32.59 0.29 32.68 0.31 29.94 0.30
32 33.63 0.29 33.82 0.32 31.18 0.31
33 34.62 0.29 34.92 0.33 32.42 0.33
34 35.57 0.29 35.97 0.34 33.74 0.40
35 36.48 0.30 36.98 0.36 35.09 0.42
36 37.35 0.32 37.95 0.38 36.44 0.45
37 38.19 0.34 38.88 0.41 37.82 0.56
38 38.99 0.38 39.78 0.45 39.23 0.61
39 39.78 0.42 40.66 0.49 40.58 0.74
40 40.55 0.47 41.51 0.53 41.80 0.80
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Exponential Kernel Equipercentile
Score Conversion EASD Conversion EASD Conversion EASD

41 41.31 0.53 42.33 0.57 43.07 0.89
42 42.07 0.59 43.14 0.60 44.28 0.68
43 42.85 0.66 43.94 0.63 44.93 0.73
44 43.64 0.73 44.73 0.65 45.50 0.57
45 44.47 0.79 45.50 0.64 46.12 0.61
46 45.35 0.83 46.26 0.61 46.67 0.72
47 46.32 0.82 46.99 0.55 47.29 0.39
48 47.55 0.59 47.68 0.45 48.06 0.33

4 Conclusions

On the whole, results for all methods are quite similar. Differences are most noticeable for the

highest and lowest scores. The results do illustrate an occasional difficulty with kernel equating

based on the normal density. The equated score can be somewhat beyond the range of possible

scores. This issue does not arise with continuous exponential families or equipercentile equating.

It can also be avoided by use of alternate density functions (Lee & von Davier, 2008). The

asymptotic standard deviations for the kernel method do not consider the effects of selection of

bandwidth on the basis of data. In the equipercentile case, the discontinuities in the fitted density

function are not considered. These issues do not arise with continuous exponential families.

The data do not provide a compelling case in favor of or against any of the alternative

equating methods. Current implementations of kernel equating with log-linear smoothing and

equipercentile equating with log-linear smoothing assume that the scores to be equated are

integers, as is the case with the operational test examined. Continuous exponential families can

be applied to scores that are arbitrary real numbers; however, this feature does not have direct

impact in this example. Although both approaches require selection of a polynomial, equating by

continuous exponential families does have the advantage over kernel equating because a bandwidth

need not be selected.

The exact method of adjustment in continuous exponential families for internal rather than

external anchors had negligible impact for the data examined. Virtually the same results are

obtained if the weight function is simply set to 1.

Results here are for chained equating rather than for post-stratified equating. The authors

plan to consider the latter approach in a separate report.
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Figure 1 Verbal Results: Continuous Exponential Case
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In general, it appears that continuous exponential families can be applied to nonequivalent

groups with anchor tests. This approach is competitive with kernel approaches and approaches

with equipercentile equating. The principal potential gain from use of continuous exponential

families is achieved when the number of possible combinations of scores is very large.

27



References

Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York, NY:

Dover.

Gilula, Z., & Haberman, S. J. (2000). Density approximation by summary statistics: An

information-theoretic approach. Scandinavian Journal of Statistics, 27, 521–534.

Haberman, S. J. (2008a). Continuous exponential families: An equating tool (ETS Research

Report No. RR-08-05). Princeton, NJ: ETS.

Haberman, S. J. (2008b). Linking with continuous exponential families: Single-group designs

(ETS Research Report No. RR-08-61). Princeton, NJ: ETS.

Lee, Y.-H., & von Davier, A. (2008). Comparing alternative kernels for the kernel method of test

equating: Gaussian, logistic, and uniform kernels (ETS Research Report No. RR-08-12).

Princeton, NJ: ETS.

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test equating.

New York, NY: Springer.

Wang, T. (2008). The continuized log-linear method: An alternative to the kernel method of

continuization in test equation. Applied Psychological Measurement, 32, 527–542.

28




