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PREFACE

The nature of the things is perfectly indifferent, of all things it is true 
that two and two make four.

-Alfred North Whitehead

“Five plus three is really zero ,” explained mischievous Sarai to her 
second-grade teacher, “ . . . because,” she argued, “ . . . numbers are nothing!” 
Somewhat bewildered and concerned, her teacher related this incident to me in 
a parent-teacher conference. I smiled to myself realizing that my little Sarai had 
discovered that numbers are abstract ideas, not physical things.

The charming way she articulated this most fundamental and necessary 
understanding inspired the title of this work.
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I

WHAT’S IN A NUMBER?

I-1. THE IDEA

‘One,’ ‘two,’ ‘three,’ ‘ten,’ ‘hundred,’ and ‘thousand’ are number words  
with which we count, measure, and calculate. Each of these words communicates 
a discrete idea of size, as do any of the number words between or beyond them. 
This size idea is envisioned as, and defined by a fixed sum of units or, if you wish, 
‘ones.’ It is because ‘five’ comprises more ‘ones’ than ‘three’ and fewer ‘ones’ 
than ‘six’ that ‘five’ is larger than ‘three’ and smaller than ‘six.’ What makes ‘five’ 
‘five’ is the exact sum of its constituent units. Add one unit and it is no longer 
‘five’ but ‘six’—take one away and it becomes ‘four.’

There are, of course, an infinite number of possible discrete sizes of this kind, 
many more than there are things to be counted or measured. After all, one may 
always add units to, multiply, or raise to another power any assembly of units one 
may wish to consider. In the words of Edward Kasner  and James R. Newman , 
“Mathematics is man’s own handiwork, subject only to the limitation imposed by 
the laws of thought.”1

I-2. DESCRIBING ‘THREE’

Like all other numbers, “three” describes a numerical attribute: three. Insofar 
as the numerical attribute of ‘three’ itself is ‘three,’ ‘three’ is a self-descriptive 
or self-referential concept. Because numbers are self-referential all attempts to 
define or describe them result in a tautology. Take for example the mathematician 
philosopher Bertrand Russell ’s definition of a number as “the class of all classes 
that are similar to the given class,”2 which can be roughly translated into: “three is 
three.” His explanation that “every collection of similar classes has some common 

1 Kasner  and Newman , 1989, p.359
2 Russell , 1952, p. 208;  1996, p. 115 
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predicate applicable to no entities except the class in question,”3 does not help to 
undo the circularity.

But it is because of this self-descriptive, self-referential property that each 
number constitutes a wholly coherent and complete meaning or mental presentation 
on its own. A sentence such as: “five plus three equals eight,” is entirely intelligible 
and meaningful, even when ‘three,’ ‘five,’ and ‘eight’ reference nothing but 
themselves. This conceptually self-referential property of numbers stands in 
contrast to adjectives, such as ‘beautiful’ or ‘large,’ which are also descriptive 
concepts. ‘Beautiful’ or ‘large,’ in and of themselves, do not form definite mental 
images; they are intelligible only in relation to the objects they describe; hence, 
their properties are changed and modified according to these objects. For example, 
a ‘beautiful butterfly’ and a ‘beautiful poem’ convey different qualities of the idea 
of beauty. Similarly, a ‘large beetle’ and a ‘large elephant’ define substantially 
different dimensions of largeness. The notion ‘three’ on the other hand always 
conveys exactly the same idea, whether it describes that number of butterflies, 
poems, beetles or elephants.

Number-concepts’ self-sufficiency makes numbers indefinable and at the 
same time absolute, and definite ideas of size.

I-3. WHY NUMBERS? THREE APPROACHES TO SIZE ASSESSMENT

Numbers are so ingrained in the fabric of our daily life that it is difficult 
to imagine life without them. Yet empirical evidence shows that early man, and 
some tribal cultures continuing well into the twentieth century, managed quite 
well without numbers. Indeed, numbers are not the only size concepts available 
to the human mind, and are not the only means by which one can objectively and 
accurately examine quantities.

One path to determining size is through ordinary direct perception. After all, 
the ability to determine the approximate size of objects—like determining their 
color, shape, location in space, speed, etc.—is one of the perceptual faculties 
necessary to the survival of any moving, foraging, preying or preyed upon creature. 
Sizes conceived in this manner are, of course, a property of perceptible objects. 
Consequently, size ideas that are established by ordinary perceptual processes are 
inevitably tied to a distinct phenomenon, namely, the object of that perception. 
It is through their association with specific objects that size concepts generated 
through perception become viable, definite, and meaningful. The dimensions of an 
object, as it is, are stored in memory and can be recalled and imagined whenever 

3 Russell , 1996, p. 116 
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the object itself is brought to mind. An elephant brings to mind a specific and 
definite idea of size, while a beetle brings to mind a different size idea.

The perceptual process judges the size of a phenomenon by its total impression, 
that is, the amount of space it occupies. Thus, phenomena that become objects of 
perception are viewed as continuous wholes, and the focus of attention falls on 
their outline or contour even when the objects to be evaluated are an aggregate 
such as a flock of birds or a pile of apples.

The cognition that three apples is a larger quantity than two similarly sized 
apples, or that four apples are more than three, requires no knowledge of numbers. 
Such distinctions are easily, effectively, and correctly established by means of 
perceptual criteria without recourse to enumeration. Three apples simply occupy 
a greater area than two apples and a smaller area than four. However, the global 
nature of this direct perceptual path to discriminating and evaluating size or 
quantity does not allow an analytical and objective examination insofar as an 
analytic determination of size requires division into units and methodical attention 
to detail. Hence, the direct perceptual approach to size evaluation can only yield a 
size idea that is subjective, impressionistic, and tentative.

For exactitude and objectivity in examining inventory or ensuring fair 
trade, pre-number-concept humans used a technique known as one-to-one 
correspondence  or ‘exchange.’ This procedure is based on the understanding that 
when objects in one collection form a one-to-one relationship with the objects in 
another collection, each group of objects comprises the same numerical size. The 
primitive one-to-one correspondence is carried out through physically handling 
objects, which are perceived and treated as constituent units of collections. In 
contrast to perceptual assessments that view collective phenomena as continuous 
entities (e.g., a flock of geese, a school of fish, a pile of berries), the one-to-one 
method breaks down a collectivity into its component parts and considers each 
separately. Through this division into constituent units and their analysis, the 
one-to-one examination of a quantity achieves its objectivity and accuracy.

Karl Menninger  describes the one-to-one procedure  as it is carried out by the 
Wedda tribe of Ceylon as follows: When a Wedda wants to examine the coconuts 
in his possession he collects a bunch of sticks, assigns one stick to each coconut, 
and says, “This is one.” These sticks serve as auxiliary  or supplementary quantities 
he can later use to examine his coconut inventory as follows: He takes one stick 
from the ‘supplementary quantity’ and pairs it with one coconut in his collection. 
He continues to pair sticks with coconuts, one pair at a time, until all the coconuts 
are exhausted.4 If one stick is left over, the Wedda ascertains accurately and 
objectively that one coconut is missing.

4 Menninger , 1992, p.33
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The one-to-one technique enables the Wedda to verify losses and gains with an 
adequate degree of accuracy and assuredness; however, it cannot help him to form 
a meaningful idea of the total amount of coconuts in his collection. In laboring 
to pair sticks with coconuts, he directs his attention to a sequential recognition 
of units, one unit at a time, and is unable to consider his coconut inventory as 
a totality. The concrete one-to-one correspondence , then, forgoes a global and 
meaningful conception of size in favor of exactness.

The absence of a comprehensive notion of explicit numerical values in cultures 
that use the one-to-one procedure  is illustrated in Sir Francis Galton ’s story about 
a barter made between a shepherd of the Damara tribe and a tobacco trader.5 The 
Damara are nomads who move with their herds in small groups. Their number 
vocabulary contains only three number words . The shepherd, according to Galton , 
agreed to trade sheep for tobacco at a rate of one sheep per two twists of tobacco, 
but when the tobacco trader offered him four tobacco twists in exchange for two 
sheep, the shepherd became confused and declined the offer under that term. 
Instead, he insisted on breaking the exchange into two separate transactions. Even 
though he could accurately and effectively extract ‘four’ via one-to-one exchange, 
the Damara shepherd was unable to conceive or verify the numerical value of four 
twists of tobacco—a number for which he had no name or concept.

Without reference to a numerical concept and its symbolic definition, the 
shepherd could ensure fair trade only by exchanging two twists of tobacco at a 
time, just as the Wedda tribesman, described by Menninger , could only point to his 
bunch of sticks in order to indicate how many coconuts were in his possession.

The one-to-one procedure  and the direct perceptual impression of size, as 
described above, seem to be contradictory and irreconcilable approaches to size 
evaluation, for each establishes its own merit by foregoing the virtue of the other: 
The perceptual approach produces meaningful ideas of size that are devoid of 
accuracy and objectivity, and the one-to-one approach produces accuracy and 
objectivity devoid of a meaningful notion of size.

Yet the two methods share an essential trait: both are inextricably bound to, and 
helplessly constrained by the concrete objects of their attention: The one-to-one 
method proceeds through physical manipulation of objects and evaluates the 
size of a group with respect to another concrete group. The size concepts that 
are derived from perceptual impressions not only rely on inputs generated by the 
physical world, but also obtain meaning from, and are defined by the objects of 
that world. It is this confinement to the concrete and the physical that prevents the 
analytical and global views from becoming complementary aspects of a single 
approach to size evaluation and definition.

5 Galton ’s 1889 “Narrative of an Explorer in Tropical South Africa,” (Cited in 
Menninger, 1992, p. 34, and Claudia Zaslavsky , 1999, p. 32) 
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A number, in contrast, is a discrete and abstract model of size. Each number 
is conceived and imagined as a specific amount of ‘units.’ Conceptualization of a 
number requires both the identification of a sum as a whole and the identification 
of the discrete units that constitute it. Since units must be recognized before being 
assembled together into a sum, the conceptual identity or mental representation of 
a sum is built upon prior analysis of units. Thus, a number is an idea of size that is 
holistic and perceptual at the same time that it is analytical and exact.

It is the abstract nature of that mental construct—the number—that permits 
the integration of the holistic with the analytical into a singular and distinct new 
mode of size evaluation and definition.
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II

NUMBER APPLICATION

II-1. NUMERICAL EVALUATION OF CONCRETE MAGNITUDES

Numbers are pure abstractions and as such they are neither bound by nor 
inherent in any physical phenomena; this is the very reason numbers can be used 
to quantify any magnitude one may wish to consider, be it concrete or abstract. 
There are two major categories of numerical evaluation of concrete magnitudes: 
counting  and measuring . The aim of measuring is to answer the question, what 
is the physical size of a given entity, for example, how big?, how heavy?, and so 
on. The aim of counting is to answer the question, how many units. These are two 
different questions, each demands a different interpretation of the numbers that 
constitute their answers.

Numbers in and of themselves, however, answer only the question, how many? 
Counting is a direct application of numbers since it uniformly pertains only to the 
sum of the units in a collection (which, in the instance of a concrete collection, are 
phenomenally discrete objects) and not to a collection’s actual physical size or to 
the properties of the objects it contains. In fact, counting  is a reciprocal process 
in which the units of the quantifying number—the number words —are counted in 
tandem with the objects of the collections under consideration. In a procedure not 
unrelated to the Wedda-tribesman’s pairing sticks with his coconuts, number words 
are paired with objects comprising a collection, one pair at a time—“one apple,” 
“two apples,” “three apples,” etc. There is, however, an important difference 
between the primitive ‘auxiliary  quantities’ used in the one-to-one procedure , and 
the number words used in counting. Unlike the Wedda’s sticks, each of the number 
words represents a unique and discretely recognized numerical idea. Without the 
reference to the abstract numerical concepts that these number words convey, 
counting can yield no meaningful notion of an exact numerical value of a quantity. 
For the number-educated counter, every number word defines simultaneously the 
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ordinal value1  of the object it counts, as well as the cardinal value 2 of the entire 
group of objects counted thus far (as in the ‘one apple,’ ‘two apples,’ etc.). The 
process of counting concludes when all the objects in the examined group have 
been exhausted such that the last number word used in the counting procedure 
fully defines the answer to the question how many?

The question how big?, on the other hand, concerns the magnitude of a 
particular physical attribute of a phenomenon, for example, the volume or weight 
of a watermelon, or group thereof, or the length or width of a piece of lumber. 
Continuous magnitudes, such as length or weight, must be structured or divided into 
constituent units because unless a magnitude is viewed and treated as aggregates, 
it cannot be defined by a numerical value. These units must be of the same nature 
or description as the attribute they measure; thus, length is measured with length 
units (centimeters, inches, etc.) and weight with weight units (grams, ounces, 
etc.). Yet, artificially concocted, the measuring  units are arbitrary—different units 
may be devised to measure the same attribute. For instance, while length cannot 
be measured with sq. inches, or grams and ounces, it may be measured with 
centimeters as well as with inches.

Since the actual extent of a concrete size is expressed as the product of a 
number and a constituent unit (e.g., the length of my calculator is 5 inches, and its 
weight is 3 ounces), the size of a measurement is in fact determined by two sizes: 
the size of the measuring  unit and the size of the quantifying number. Hence, 
the same number may express different dimensions depending on the size of the 
measuring units it counts. For instance, because an inch is a larger unit than a 
centimeter is, a 4-inch-long pencil is longer than a 4-centimeter-long pencil (see 
Figure II-1). At the same time, and for the same reason, a numerical definition of 
the same pencil’s length is roughly 10 (10.16 to be exact) when the measuring unit 
is a centimeter, but 4 when the measuring unit is an inch (see Figure II-2).

As Figure II-1 demonstrates, the same number (4 in our example) defines 
different pencils’ lengths, while different numbers (4 and 10 in our example) 
define the same pencil’s length (Figure II-2). Yet all these numbers express exact 
and objective measurements of the pencils’ lengths. Of course, exact and objective 
measurement is the whole purpose for the numerical definition of physical 
magnitudes. After all, a reasonably functional notion of a pencil’s length can be 
obtained merely by looking at it. Our visual perception will tell us that the pencil 
will fit in a handbag but not in a coin purse.

1 Davis , 1961, p. 6, Philip Davis  explains that ‘ordinal number’ answers the question 
‘How far a long in a line’? The ordinal value  of two numbers determines which of 
them precedes or follows the other. 

2 Ibid. , Cardinal numbers, according to Davis , express quantity, the cardinal value  of a 
number answers the question: ‘How many’? Or ‘How much’? 
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But when we take the trouble to measure an object, the numerical element 
of that quantification must be understood as an expression of the ratio between 
the measured magnitude and the constituent unit with which it is measured—the 
larger the unit of measurement, the smaller the quantifying number, and vice versa. 
Thus, unlike in counting , in which the resulting number fully and directly defines 
the answer to the question how many?, in measuring,  the resulting numbers render 
a relative value: As such, the numerical element of measurements is only a partial 
and indirect answer to the question, “how long?” or “how heavy?” etc. Indeed 
when asked, “How long was your walk?” you would never answer, “Twenty;” such 
an answer would automatically elicit the question, “Twenty what?—Minutes?—
Hours?—Miles?—Kilometers?—Yards?” Whereas, when asked, “How many 
people came to the party?” the answer, “Twenty,” will be adequate.

These differences notwithstanding, in both kinds of applications numbers 
remain abstract entities. In counting they serve as preconceived abstract models 
of exact and discretely recognized sizes against which the concrete quantities are 
evaluated; in measuring, they serve as the ratio between the size of the measured 
magnitudes and the size of a particular constituent unit.

 Pencil length ≈ 4 inches

 Pencil length ≈ 4 centimeters

Figure II-1: Comparative measurements
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 Pencil length ≈ 4 inches

 Pencil length ≈  10 centimeters

Figure II-2: Comparative measurements

II-2. CALCULATION

“There are some, King Gelon, who think that the number of sand grains is 
infinite in multitude.” So opens the famous treatise, The Sand Reckoner , written 
by the third century BC Sicilian genius, Archimedes . Archimedes took it upon 
himself to prove that it is possible to find out the number of sand grains, and he 
meant, “not only the sand which exists in Syracuse and the rest of Sicily, [ . . . 
] but that which is found in every region whether inhabited or uninhabited,” in 
effect, “that of a mass equal in size to the universe.” He thought to obtain that 
number not by counting , of course, but through calculation . In Archimedes’ time, 
the Greeks believed that the universe was contained within a crystal sphere to 
which the stars were attached.3 Assuming that grains of sand, like the universe, 
were spheres, Archimedes calculated the number of sand grains needed to fill the 
universe by figuring out the ratio of the universe’s volume to the volume of a 
grain of sand. A task he had accomplished by means of geometrical proofs and 
arithmetic operations, amounting to “a series of calculations that would give a 
high school boy nightmares,” according to Gamow . (Ibid.)

Because the largest number the Greeks could name at that time was “myriad” 
(104), Archimedes  had to invent a new number system in order to express the 
number he pursued. The numerical system he devised was, in essence, a base 

3 Gamow , 1960, p.17-19
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system, in which, much like in our modern ten-base system, ten units of any given 
‘order’ or ‘rank’ make up one unit of the next higher rank. Archimedes’ base was 
myriad myriads (108 in our base-ten system). He called this base an octade or 
“a unit of the second class.” (Ibid.) With this new number system, Archimedes 
could define the number of grains of sand in the universe as “not greater than one 
thousand myriads of units of the eighth class,” (Ibid.) which would be ten to the 
power of sixty-three (1063) in our ten base system.

Archimedes ’ brilliant treatise is a breathtaking example of how knowledge 
that is unattainable by direct method of counting  or measuring  becomes attainable 
through calculation .

Calculation involves relating numerical or spatial entities to one another in 
the abstract, the results of which are later applied to the subject of its examination. 
In Archimedes ’ “sand-reckoning” example, the subject of examination was a 
numerical value: the number of sand grains contained within a given magnitude (the 
universe). This value was obtained by calculating the ratio between a magnitude 
(the universe) and a unit of measurement (a grain of sand), both of which had to 
be calculated also beforehand. But calculation  can be and is often used for much 
simpler and mundane purposes.  For example, it can be used as an expedient way 
of counting , say finding the number of almond trees in Ms. Smith’s garden by 
multiplying the number of trees in each row by the number of rows, or as a means 
of figuring out the measurement of magnitudes that cannot be measured in direct 
ways, say, figuring out the area of a rectangle by multiplying the measurement of 
its length by the measurement of its width.

Unlike counting  and measuring , which are applied directly to the objects 
in question, calculation  procedures, which are carried out in the abstract, are 
independent of the objects of their examination and, as it were, need not relate 
to real world objects in the first place. For instance, the expression, ‘7x6=42’ 
may represent the area of a rectangular room, the number of almond trees in Ms. 
Smith’s garden, or merely a mathematical truth and nothing else. The difference 
between the proposition, ‘7x6=42,’ and the propositions, ‘7 trees x 6 = 42 trees,’ 
or ‘7 feet x 6 feet = 42 sq. feet’ is that the latter two are concrete applications of 
the purely theoretical former.

Mathematicians call the field of studies that uses mathematical calculations as 
an instrument for exploration and examination of real world phenomenon applied 
mathematics , and that which uses calculations as a means to explore mathematical 
ideas for their own sake, pure mathematics . The latter can be considered “humanistic 
mathematics ” because it is driven by humans’ intellectual and aesthetic needs.4 
Calculation, then, introduces a new way for number concept application, that is, 
their application in the exploration and development of new mathematical ideas.

4 Wilder , 1968, p. 6
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*

Legend has it that Archimedes  also invented a new written-numeral system, 
akin to that of our modern Hindu numeral system .5 But there is no archeological 
evidence to support that myth. What is clear, though, is that Archimedes’ was a 
“humanistic” mathematical effort par-excellence. Neither the knowledge of how 
many grains of sand are needed to fill up the entire universe, nor the numerical 
system that could afford expression of numbers of such magnitude as “one thousand 
myriads of units of the eighth class (1063)” was of any practical use in the Greek 
civilization of Archimedes’ time. Indeed, Archimedes’ true intention was not to 
find the number of grains that could fill up the universe, but rather to demonstrate 
to king Gelon that there exists no multitude, regardless of its magnitude, that 
cannot be defined by a number, provided one can establish a method to name 
numbers as they progress along their infinite sequence.

5 Ball , 1960, p. 72, According to Ball , some believe that “Archimedes  and Apollonius 
had some symbolism based on the decimal system for their own investigations . . . ”
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III

NUMBER PERCEPTION

III-1. THE PERCEPTIBLE NUMBER

We tend to take for granted our ability to capture in a glance the exact 
number of objects in a small group, say three or five, but this seemingly simple 
and matter-of-fact perception deserves our wonder and consideration. After all, 
numbers in and of themselves are merely mental constructs, abstract ideas—not 
physical entities. Lacking texture, color, shape, or smell, they are devoid of 
perceptible qualities by which they can be discerned, recognized, and distinguished 
from one another through our sensory system.

That we can perceive the number of a small collection of objects, even though 
numbers themselves are devoid of physical properties, is because there is much 
more to human perception than simply responding to environmental stimuli. As is 
pointed out by psychologist, Ulrich Neisser , “Stimuli themselves cannot possibly 
have meaning because they are merely patterns of light, sound, or pressure.”1 The 
function of the perceptual processes is not only to capture environmental stimuli, 
but also to transform this array of unorganized inputs into coherent and discretely 
recognized entities.

In his groundbreaking biological theory of consciousness detailed in his 1989 
book, The Remembered Present, the neuroscientist Gerald Edelman  furnishes 
an important insight into this issue. Edelman  distinguishes between two states 
of human perception: perceptual categorization and perceptual experience. The 
more primary process is ‘perceptual categorization,’ by which sense data are 
grouped and organized. Perceptual categorization enables humans to discriminate 
objects and events from their background.2 It is carried out by increasingly 
complicated neural connections and organizations, through which sensory inputs 
are continuously re-categorized and generalized, and occur without the organism’s 
conscious awareness. In contrast to ‘perceptual categorization,’ Edelman  describes 

1 Neisser , 1976, p. 71
2 Edelman , 1989, p. 49
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‘perceptual experience’ as “consciousness of objects and events.”3 Edelman  ties 
the formation of consciousness to the emergence of concepts and language, and 
speculates that ‘perceptual experience’ is attained via a process of contrasting and 
comparing the conceptual memory with on-going ‘perceptual categorization;’ 
“previous memories and current activities of the brain interact to yield primary 
consciousness as a form of ‘remembered present.’”4

The infusion of conceptual references into the human perceptual process, 
suggested by Edelman , implies that our perceptions of the physical world are as 
much the outcome of our own conceptual network as they are of the sensory stimuli 
we pick up from that external world. Thus, our perceptions of the external world 
may be modified and change over time as a result of experience and education. For 
instance, what may be perceived as a blotch of color for a newborn is perceived 
by a toddler as a poor illustration of a lady’s boot, and by a first or second grader 
as the map of Italy. Since humans are capable of forming abstract concepts, these 
concepts too are destined to be incorporated into our perception of the external 
world once they have been acquired. As an educated person, I cannot help thinking 
‘three’ when I come across a group of three apples, and do so for the same reason I 
cannot help thinking ‘Italy’ when I come across the map of Italy. “Perception,” as 
Ulrich Neisser  pointed out, “is where cognition and reality meet.”5

Because the perception of apples relies upon a phenomenally based concept, 
it can be triggered by the sensory inputs generated by the physical properties of 
the apples: their taste, texture, shape, or smell. But the perception of their number, 
which relies on the abstract and mentally constructed numerical concept, ‘three,’ 
can be triggered only by the preconceived idea of that concept. A numerically 
illiterate person will be blind to the number of apples in a given group even when 
that number is as small as three. With no conceptual reference to numbers, he is 
able to respond only to the physical stimuli generated by the apples and, thus, 
can recognize only the apples, but does not perceive the number their group 
constitutes.

That the availability of numerical concepts affects the ways we view small 
aggregates is consistent with anthropological observations made in the early 
twentieth century. These studies observed that some tribal cultures that did not 
develop numerical systems beyond two or three displayed an inability to perceive 
specific numbers in groups that contain more than two or three objects (recall the 
Damara shepherd in I-3). These findings support the theory that the Indo-European 
words for ‘three—’ three, trois, dre, tres, tri, etc.—stem from the same Latin 
root—’trans—,’which means ‘beyond,’ suggesting that early humans could not 

3 Ibid., p.155
4 Ibid. , p. 105 (emphasis mine)
5 Neisser , 1976, p. 9
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perceive the specific number of objects in groups that contained more than two 
objects.6

With regard to very young children, “number blindness” was demonstrated in 
a dramatic way in one of Descoeudres ’ 1921 experiments.7 Descoeudres  displayed 
a small number of objects in front of children of various age groups. She then 
asked the children to put down the same number of objects as in her display. When 
only two or three objects were on display, the two and four-year-old children 
performed this task without error, but when larger quantities were on display they 
made many errors. These young subjects, who were conversant only with numbers 
within the three-range, could not replicate numbers beyond that range, even when 
the concrete examples of those numbers were in plain sight before their eyes. 
Descoeudres’  experiment demonstrates that children cannot recognize (or ‘see’) 
specific numbers, and cannot reproduce groups of specific numbers of objects for 
which they yet have no available conceptual reference.

It should be pointed out that when we think about number education, we have 
to take into consideration not only Descoeudres ’ finding, but also that the notion 
of a ‘unit’ is an abstract concept in and of itself. In order to relate to an object as 
‘unit,’ one must disregard this object for what it is (an apple, in our example) and 
extract its abstract significance as a member in a collection. Both the units and 
the number they constitute transcend the particularity of the physical reality that 
makes numbers visible to a numerically literate person.

Hence, there is a pedagogical paradox  in the attempt to exemplify numbers 
to the numerically naive by presentation of concrete aggregates. In showing a 
child three apples with an intention to teach  her the concept ‘three,’ we actually 
expect her to ignore the objects’ tangible aspects, the elements that she can pick 
up spontaneously by her sensory system, and to relate, instead, to abstract ideas of 
‘units’ and ‘numbers,’ which we assume have not yet formed in her mind. Indeed, 
as Descoeudres’  experiment has shown, the concrete examples of aggregates, no 
matter how small or how carefully displayed, do not enlighten children.

III-2. NUMBER ILLUSIONS

We often fall victim to the illusion that the structures we discern in the real 
world with the mediation of our thoughts and concepts are imposed on us from 
outside by our physical surroundings. Number perception is a poignant example 
of that predicament. Once we have established numerical concepts, not only do 
we spontaneously perceive the number of a small group of objects in a glance, 

6 Menninger , 1992, Dantzig , 1954, Wilder , 1968
7 Descoeudres , A. 1921 (Cited in Bryant , 1974, p.119)
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but we also look at their number as if it were a physical reality in and of itself. 
Since our own notion of numbers affects the way we teach  them to our children, 
this topic deserves a closer scrutiny. Let us, then, examine the perception of three 
apples again.

‘Three apples’ is a percept that involves two distinct and unrelated conceptual 
references (‘apples’ and ‘three’) of which only the apples can generate sensory 
information. While the proximity of a pile of three apples makes the abstract 
concept ‘three’ visible to the numerically literate observer, “There is nothing in the 
world that makes a collection of objects a set other than our choice to so consider 
them.”8 Because numbers are not physical phenomena, the sensory information 
generated by a pile of apples is relevant only for the recognition of the apples 
as ‘apples,’ not their number. The only relevant reference for the recognition of 
their number (three) is our pre-existing concept ‘three.’ Therefore, the recognition 
that the number of apples we see is three (and not two, four, or five) is extracted 
from our own inner and preexisting conceptual reservoir, not from the sensory 
information that is generated by the pile of apples.

Owing to the inherently integrative nature of our perceptual system, 
considerable rational effort is needed to shake off the notion that numbers are 
independent of our mind. In the case of number perception we tend to blend 
together the abstract concepts of number with the phenomenally based concepts 
of objects that make these numbers visible. Because of this perceptual synthesis, 
a group of objects representing units and the number their collection comprises 
(‘apples’ and ‘three,’ in our example) are perceived as a single integrated entity 
(‘three apples’). As we lose the distinction between an abstract numerical idea 
and those physical objects that represent its constituent units, the number and the 
objects the number counts seem to us inseparable from one another. Fooled by 
this perceptual illusion , we tend to reify or objectify the numerical concept and 
perceive it as if it was an external phenomenon that is independent of our mind. 
Mathematicians themselves are not immune to this deception. In the epilogue 
for their 1940 classic, Mathematics and the Imagination, E. Kasner  and J. R. 
Newman  write,

We have overcome the notion that mathematical truths have an 
existence independent and apart from our own minds. It is even strange 
to us that such a notion could even have existed. Yet this is what 
Pythagoras would have thought—and Descartes, along with hundreds 
of other great mathematicians before the nineteenth century.9

8 Yaseen , 1999, p.7
9 Kasner  and Newman , 1989, p. 359



26 H.S. YASEEN

R. Wilder  expresses a similar opinion:

Mathematicians themselves seem prone to ignore or to forget the 
cultural nature of their work and to become imbued with the feeling 
that the concepts with which they deal possess a ‘reality’ outside the 
cultural milieu.10

He quotes a noted twenty-century mathematician, thus:

I believe that mathematical reality lies outside us, and that our 
function is to discover or observe it, and that the theorems which we 
prove, and which we describe grandiloquently as our ‘creations’ are 
simply our note of our observations.11

In a similar vein, the mathematician, Leopold Kronecker , famously asserted 
that “The integers  were made by God, but everything else is the work of man,” and 
a statement in a book for high school teachers  explains,

The numbers 1,2,3,4,5 . . . . are called natural numbers because it 
is generally felt that they have a natural existence independent of man. 
The most complicated of the number systems, by way of contrast, are 
regarded as intellectual constructions of man.12

Ironically, it seems that mathematicians may succumb to number illusion 
without ill effect on their work. “The question, ‘what is a number?’ is one that 
a mathematician needs not ask provided he knows enough of the properties of 
numbers to enable him to deduce his theorems,” argued B. Russell .13 But educators 
have to be especially cognizant of the transformation and synthesis of what are 
actually two distinct concepts into a single integrated perceptual entity, such as 
the example of ‘three apples’ discussed above. Yielding to the impression that 
numbers are real world phenomena has led to the common belief that numbers 
can be deduced intuitively through sensory processes such as manipulating and 
looking at objects. Unfortunately, and to the detriment of effective teaching, some 
popular educational theories and didactical methods of teaching basic arithmetic 
are based on that psychological/epistemological self-deception.

10 Wilder , 1968, intro. p. 8
11 Ibid. , p. 2
12 Ibid., p. 150
13 Russell , 1914, p.191
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III-3. SUBITATION

The ability to instantly identify a group of apples specifically as ‘four apples’ 
presupposes the possession of the number-concept four. However, the process by 
which the matching of a number concept with a particular grouping (say, ‘four 
apples’ to the exclusion of other groups—‘five’ or ‘six apples’) as well as why it is 
possible to instantly and accurately identify four apples, but not one hundred and 
thirty-two apples is not explained simply by the possession of appropriate number 
concepts. The cognitive processes active in the perception of a specific numerical 
value of a quantity entail more than a simple reference to the appropriate numerical 
concept.

Human cognition is ‘human’ as much for its limitations as for its potentialities. 
By examining the limits of our capacity to accurately perceive the numerical value 
of quantities at a glance—that is, without resort to mediating mechanisms such 
as actual counting , grouping or calculating—we may arrive at a deeper insight 
into the cognitive processes that are active in numerical perception. Moreover, 
according to Neisser , mental images arise from the same integrative processes that 
are involved in actual perception.14 This suggests a relationship between the limits 
of our ability to perceive a specific number of objects at a glance and our ability to 
form mental images of specific numbers. If number imagery is fundamental to the 
formation of numerical concepts, understanding the processes that are involved in 
the perception of the numerical value of concrete quantities should contribute to 
our understanding of how number-concepts are created. Fortunately, a number of 
studies have been conducted that shed significant light on the process of numerical 
perception.

S. Jevons ’ 1871 experiment, The Power of Numerical Discrimination, is 
perhaps one of the earliest among the few studies that have examined human 
perception of the numerical value of groups without counting . To study this subject, 
Jevons  threw a random amount of beans into a box and at the very moment when 
the beans came to rest he estimated their number “without the least hesitation,” 
and then recorded it together with the number that he obtained by counting. Jevons  
found that when the amount of beans was less than five, his estimation was error 
free.15 Thereafter the number of his errors grew in proportion to the number of 
beans he threw in the box.

Seventy years later E. H Taves  conducted a series of experiments aimed 
to determine how judgment of the numerical value of a quantity is affected by 
various factors such as the density of items’ distribution, the items’ configuration, 
as well as the group’s size. Whereas most of the experiments in this series dealt 

14 Neisser , 1973, p. 209; 1976, p.128, 146-7; 1967, p. 153
15 Jevons , 1871, p. 281- 282
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with comparative judgments, his fifth experiment, Numerousness and the Direct 
Estimate of Number, examined, as did Jevons ’ before, the absolute judgment of 
numerical value of quantities. In this study Taves  used various fields of dots, ranging 
from two dots to a hundred and eighty dots. He projected each of these fields on 
a screen for one fifth of a second and instructed his subjects to report: (1) the 
number of dots they believed they had seen, and (2) their degree of confidence in 
the accuracy of their reports. Taves ’ results showed that between six and eight dots 
there was a sharp decline in the accuracy of his subjects’ estimations, coinciding 
with an equally abrupt decline in their confidence. Reviewing the results of his 
other experiments in that series, as well as the results of others studies (including 
Jevons ’), Taves  suggested that these sudden changes indicate that the cognitive 
mechanism involved in visually estimating fields containing six or fewer dots 
is different in kind from the cognitive mechanism involved in estimating fields 
containing more than six dots.

Eight years later, in their 1949 study, The Discrimination of Visual Number, 
E. L. Kaufman , M. W. Lord , T. W. Reese , and J. Volkmann  coined the term 
subitize from the Latin “subitus” meaning “sudden,” to characterize the process of 
capturing in a glance an exact number of units in groups containing six or fewer 
units. They used the term estimate to depict the inexact and less assured process of 
visual enumeration of groups containing more than six items.16

As did Jevons , Taves  reckoned that the results of his experiment showed that 
there is a cognitive limit on the number of objects humans can accurately subitize  
(perceive in a glance). How real this limit is was demonstrated in Saltzman and 
Garner’s 1948 experiment that showed that repetitions did little or nothing to 
change this limit.17

The subitation  threshold is by no means the only cognitive threshold known 
to psychologists. In his 1956 essay, The Magical Number Seven Plus or Minus 
Two: Some Limits on Our Capacity for Processing Information, George Miller  
examined the results of several studies that investigated the limits of information 
processing, or people’s capacity “to transmit information.”18 Like subitation span, 
these capacities were measured by comparing the amount of information that was 
presented to subjects with the amount of information that they could accurately 
report. The juncture at which subjects were no longer capable of accurately 
matching their responses with the stimuli presented to them signifies the ‘span’ of, 
or ‘limit’ on information processing.

Some of the experiments, which Miller  reviewed, were studies of the span of 
immediate memory (sometimes called verbal memory)—the memory for items that 

16 Kaufman  et al., 1949, p. 520
17 Saltzman and Garner, 24, 1948, p. 227- 241 
18 Miller , 1956, p. 81-97
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one has perceived only a second or two ago, typically tested by how many discrete 
words, letters, or digits one can remember and repeat after a brief presentation. 
He also discussed studies concerning the span of apprehension (sometimes called 
attention span)—the number of objects a person can encompass or apprehend in a 
single glance. Miller  pointed out that both the span of verbal/immediate memory, 
and the span of apprehension fall within the proximity of seven, as borne out by 
other studies on the limits on information processing. He pondered the possibility 
that the fact that all those limitations occur within the same numerical range (give 
or take two) means that they share common cognitive components. However, he 
personally doubted that there is something “deep and profound behind all these 
sevens.” (Ibid.)

But George Sperling , four years later, suspected otherwise, for regardless of 
whether stimuli are presented successively (as in experiments of verbal/immediate 
memory) or as clusters (as in experiments of apprehension), and of whether they 
are auditory, tactile, or visual, they must be remembered if they are to be reported 
by the subjects.19

Sperling  also hypothesized that in apprehension experiments, the information 
that is available to subjects during and very shortly after exposure to stimuli is 
greater than the information that they can remember and report. Thus, the span of 
apprehension is, in fact, determined by the span of verbal/immediate memory (that 
is, the number of identified objects a subject could recall after exposure). In his 
1960 study, The Information Available in Brief Visual Presentation, which aimed 
to test this thesis, Sperling  projected on a screen various fields of letters and then 
asked his subjects to report as many letters as they could remember. In order to 
obtain valid results, he had to circumvent the limitation imposed by immediate 
memory, whereupon he devised a special procedure he called a partial report. By 
using the partial-report technique, Sperling  was able to show that “at the time of 
the exposure, and for a few tenths of a second thereafter, observers have two or 
three times as much information available as they can later report.”20

Sperling  suggested that the high accuracy of the partial report owes to the 
ability of an observer to read the image that persists in the retinal receptors after a 
stimulus is removed and before it fades.21 This residual image, which, according 
to most experiments in visual memory, may linger up to about one sixth of a 
second, is called iconic22 or eidetic23 imagery. Since the eidetic image declines so 

19 Sperling , 1960, p. 20
20 Ibid. , p. 26
21 Ibid.,  p. 27
22 Neisser , 1967, p. 46-48
23 Sperling , 1960, p. 22
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rapidly, Sperling  proposed, “Within one second after the exposure the available 
information no longer exceeds the memory span.”24

If, as Neisser  claims, “To identify generally means to name, and hence to 
synthesize not only a visual object but a linguistic—auditory one,”25 then Sperling ’s 
finding implies that the span of apprehension reflects the limit on what can be 
synthesized and then verbally stored while the eidetic image lasts. Citing Sperling ’s 
study, Neisser  speculated that the subitation  span signifies the number of items 
that can be counted before their image fades from iconic memory. Introspection 
rarely reveals a clear experience of counting , but this does not prove that none 
has taken place, just as “Introspection does not reveal the separate and successive 
impacts of my fingers on the typewriter key board either,” he argued.26 In other 
words, apprehension (or attention) span, which on an intuitive level appears to be 
purely visual, may contain verbal elements as well. Now, if only one object can 
be acknowledged at a time, subitation may be understood as a sequential process, 
notwithstanding that the stimuli are presented as a cluster. If true, it should take 
longer to subitize two dots than to subitize one, and longer still to subitize  three.

As it were, this very logical assumption was corroborated by the Kaufman ’s 
group study of the discrimination of visual number mentioned before. Kaufman  et 
al.’s study was in principle similar to Taves ’ 1941 fifth experiment. However, their 
five subjects’ responses were measured not only for the accuracy of their numerical 
estimations and their self reported confidence, but also for their ‘reaction time,’ 
i.e., the elapsed time between presentation of the stimuli and their responses. This 
measurement documented a steady and consistent increase in reaction time as the 
fields of dots were increased from one to eight.

As in Taves ’ study, the subjects in the Kaufman  study were asked to determine 
the number of dots in fields that were flashed randomly for only 1/5 of a second. 
Altogether there were thirty-five fields of dots depicting numbers from 1 to 210. 
The experiment was divided into two parts, one in which subjects were asked to 
put emphasis on accuracy and one in which the emphasis was on speed. In the 
part of the experiment that emphasized speed, the results indicated that median 
reaction times increased by 1/10 of a second between 1 and 2 dots, by 1/5 of a 
second between 2 and 3 dots, by 1/8 of a second between 3 and 4 dots, by 1/5 of a 
second between 4 and 5 dots, and by 1/3 of a second between 5 and 6 dots. There 
was a total increase of 4/5 of a second in reaction time between the subitation  of 
1 dot and 6 dots—an average of 1/7 of a second increase in median response time 
with each additional dot.

24 Ibid., p. 26
25 Neisser , 1967, p. 103
26 Ibid., p. 42-3
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Studies of children’s subitation  show even greater increases in response time. 
The difference between one and two dots is twice that of adults, and between two 
and three dots, thrice that of adults.27 Indeed, Donald G. MacKay  observed that 
children speak at slower rates than adults.28 MacKay ’s observation in conjunction 
with the results of children’s subitation studies supports the suggestion of verbal 
involvement in subitation.

Taken together, the various studies cited above suggest that while subitation  
is seemingly instantaneous, in actuality it is a temporal process involving latent 
counting  and the immediate memory. Memory is crucial to the perception of a 
number. The identification of a specific number requires both the recognition of a 
discrete sum as well as the recognition of discrete units. During counting, units are 
visually and verbally acknowledged and effectively committed to memory, thereby 
enabling the observer to reconstruct a vision of their sum. Not less important is the 
understanding that there is a limit on our ability to grasp an exact numerical value 
of a quantity as a whole in a glance. And this limit is approximately six.

It is worth noting that the proposition that subitation  is a voluntary temporal 
process involving latent verbal counting  and the immediate memory, as described 
therein, is incongruent with the theory that humans possess a number sense . 
Scholars who believe in the latter imagine an innate number  processor or 
module that enables humans and animals alike to discern the numerical value of 
phenomenal aggregates instinctively, instantaneously, and without resorting to 
rational symbolic cognitive functions. The notion of instantaneous and instinctive 
number recognition clashes with the notion of a sequential process that entails 
deliberate and conceptual efforts.

A case in point is Stanislas Dehaene —one of the better-known advocates of 
the number-sense theory—, and his colleague, Laurent Cohen ’s 1994 study of 
the subitizing mechanism. Guided by the assumption that the central differences 
concerning subitation  lie in the question of whether subitation is a serial process 
similar to counting  or a “spatially parallel process,” Dehaene  and Cohen  attempted 
to show that quantification of small sets is based not on a serial process akin to 
counting, but rather on a spatially parallel process. For this purpose they tested 
brain-lesion patients who had lost their ability to explore visual inputs serially. The 
results of their research were inconclusive, for they revealed that four out of these 
five patients had considerable problems subitizing groups of 3 items and that some 
had problems with even smaller groups of 2 or 1. Dehaene and Cohen  nonetheless 
continued to uphold their theory that subitation is a spatially parallel rather than 
sequential process. Yet, they admitted that “subitizing may not necessarily be 
based on a single procedure,” and it is possible that “the fast quantification of sets 

27 Chi  and Klahr , 1975 (Cited in Gelman  and Gallistel , 1978, p. 223)
28 MacKay , 1968 (Cited in Menyuk , 1971, p. 99)
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of 3 items might be based on procedures different from those used with sets of 1 or 
2 items.” Thus, they conclude that the “nature of subitation remains unknown.”29

Of course, in addition to Dehaene  and Cohen ’s study, there have been 
numerous other studies on the subject of subitation ’s accuracy-and-response time 
with various results that do not always concur with the Kaufman  et al.’s study.

But even if the limit on subitation  and its process are still being researched 
and debated in this century and has yet to be fully understood, there is a universal 
agreement with Jevons ’ 1871 discovery that there is a limit on our ability to grasp 
the exact numerical value of a group as a whole in a glance (or to subitize ), and 
this limit is the small numbers within the range of five (plus or minus one).

The assumption that the limit on our ability to accurately perceive a specific 
number in the concrete reflects the limit on our ability to construct clear and exact 
mental presentations of specific numbers suggests that only small numbers within 
the six range may be mentally configured with optimal clarity and authenticity. 
This conclusion invites two questions: First, what is the mechanism that enables 
us to enumerate aggregates that exceed the subitation  limit? The answer to this 
question is the subject of the next chapter, which concludes our discussion of 
number perception. Second, how can we construct accurate numerical concepts 
for multitudes we can no longer perceive or imagine in an explicit way? This 
question belongs to the separate issue of number cognition and symbolization, 
which is the topic of section IV.

III-4. ESTIMATION

You recall that Taves  (1941) distinguished between two kinds of cognitive 
mechanisms involving number perception: one that operates in a rapid and exact 
estimation of small groups of objects, and the other that operates in a typically 
imprecise and slower estimation of larger groups. The Kaufman  group, which was 
able to measure the response times for the estimation of the various size fields of 
dots, documented a consistent increase in response time for each additional dot 
within the range of six after which response times remain within a fixed limit.30 
The absence of increase in response time when subjects estimated larger and larger 
groups not only indicates a shift in estimation strategy, but also provides a clue as 
to the nature of the new strategy. The temporal/sequential process of unit analysis, 

29 Dehaene  and Cohen , 1994, p. 958-975 
30 Though, randomly fluctuated, it remained more or less around 1.50 seconds. For 

instance, the response time for estimating 210 dots at 1.54 seconds, was virtually the 
same as for estimating 13 dots—also 1.54 seconds (in the part of the experiment that 
emphasized speed).
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or latent counting , characterizes the subitation  of small groups, but estimation 
of the larger groups relies upon a simultaneous, and generally inaccurate, global 
impression.

In the Kaufman ’s experiment, the shift to an impressionistic strategy was 
indicated not only by a substantial increase in errors, but also by the subjects’ 
tendency to define the estimated quantities of dots with a “round number,” which 
indicated that their efforts were aimed from the outset at obtaining general ideas, 
or categories of numerical sizes, rather than exact numerical values. A striking 
example of this trend was documented by the Kaufman  group in the estimation of 
the fields of 134, 152, and 170 dots, which were all estimated as—100 (making the 
highest estimation error close to 60%).31 The field containing the number closest 
to 100 (that with 103 dots) was perceived as 75.

As crude as the approximations of larger groups were, the impressionistic 
methods of numerical estimation are by no means arbitrary. The subjects in these 
experiments, as suggested above, were guided by a reference to specific numerical 
concepts, albeit ‘round’. Since they were no longer able to accurately analyze and 
count the units of these larger collections, the subjects had to resort to ‘educated 
guesses,’ which matched their non-analytical perceptual impressions with a specific 
analytical number concept. When their perceptual impressions were subjected to 
misleading criteria such as the size of the area occupied by objects and the objects’ 
spatial arrangement,32 the subjects’ mistakes were compounded.

The adult subjects in Kaufman  et al.’s experiment were higher education 
students and must have had a solid grasp of numbers such as 135, 152, 170, and 103; 
nonetheless, they were unable to correctly identify these same numbers presented 
in the concrete, and committed gross errors in estimation, as was mentioned above. 
The discrepancy between comprehension and cognitive clarity of large numbers in 
the abstract, and educated adults’ inability to recognize these numbers clearly and 
accurately in the concrete, suggests that abstract and symbolic representation  of 
larger numbers is captured in a more meaningful and real way than their concrete 
representation . This conclusion is consistent with the sharp decline in subjects’ 

31 The exact percentage is 58.7%
32 Krueger , L. E. 1972 has shown that adult subjects, just as the children in Binet ’s and 

Piaget ’s experiments, perceived the same number of dots as more numerous when 
the dots were spread over a larger area (see chapters, VII-1, VII-2, and VII-3). And 
Norman Ginsburg  1976 and Christopher D. Frith  and Uta Frith  1972 demonstrated 
that a given quantity of dots distributed evenly over a fixed area is perceived as more 
numerous than the same quantity of dots randomly distributed over that same area.
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confidence when reporting estimations of fields containing a large number of dots, 
as was documented in Taves ’ and Kaufman ’s studies.33

How the conceptual/symbolic representation  of numbers helps us to conceive 
with certainty and accuracy numbers we can no longer actually perceive or imagine 
in an explicit and accurate way is the subject of the following section.

33 To be specific, in Kaufman ’s experiment, in a scale of 5 to 1 the degree of certainty 
was very close to the absolute 5 for numbers within the subitation  span, but there was 
considerable erosion in certainty, starting already in number 10—where it went all the 
way down to ‘not certain’ (2.85 median points) when subjects were instructed to put 
emphasis on speed. At the fields of 103 dots the degree of certainty was practically at 
the ‘absolutely uncertain’ level (1.40 mean points in speed). At 210 dots confidence 
was virtually at the lowest level possible (1.08 median points speed).
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IV

NUMBER COGNITION AND SYMBOLIZATION

IV-1. THE DICHOTOMY OF NUMBER CONCEPTS

In the context of mathematical thinking, the term, number implies an exact 
and absolute concept of size, conceived and defined by the specific amount of units 
of which it is comprised. Thus, the number five consists of one + one + one + one 
+ one. The units element is an essential component of the concept, number, for it 
is only by its division into units that a magnitude can be analyzed rationally and be 
defined in an absolute and exact way. The term number concept, which speaks about 
human cognition of numbers, implies a mental representation or image of a specific 
sum that can be recalled and reconstructed at will. The emphasis here is on the word 
‘specific;’ the mere recognition that something is comprised of an unspecified sum 
of units, a generic notion of plurality or “manyness,” is not a concept of number 
in its mathematical/cognitive sense because each number constitutes a discrete 
and unique idea of size. Thus, to satisfy the term, ‘number concept,’ a specific 
group of units, or sum, must be conceived and identified as a singular conceptual 
entity distinguishable from all other groups or sums: ‘five’ can never be confused 
with ‘four’ or ‘six.’ The formation of numerical concepts, then, involves both the 
identification and recognition of discrete units and the identification and recognition 
of discrete sums—two discordant and conflicting cognitive processes.

The recognition of units calls for the deconstruction of a sum into its separate 
constituent units, while the recognition of a sum calls for consideration of these 
same units as a singular and integrated totality. These two contradictory tasks 
require conflicting cognitive processes. The analysis of units is essentially a 
rational/sequential process, for it involves deliberate and methodical attention to 
one unit at a time. In contrast, the cognition of sums, which demands dealing with 
units contemporaneously so as to form a holistic or global view of their totality, is 
essentially a visual, instantaneous and integrative process.

Both approaches to information processing are equally important for the 
construction of numerical concepts. The function of rational analysis, through 
which units are identified, is to produce the information that guides and determines 
the content of imagery or visualization; the function of visual synthesis or imagery, 
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on the other hand, is to establish the unique conceptual identity of a specific sum. 
Without the former the visualization of numbers has nothing on which to build, and 
without the latter the identified units are merely indistinguishable aggregates.

Since units must be sorted out or identified prior to being assembled into 
an explicit image of a sum, number conceptualization is essentially a process 
of transforming rational/temporal information about units into spatial/visual 
information about their sum. Conceptualizing numbers, then, is a creative 
activity, which builds on rational thinking, as do so many other mathematical 
thought-processes.

Ulrich Neisser  hypothesized that the same integrative process that makes 
ordinary perception possible produces visual images.1 Indeed, regardless of their 
information sources, both seeing and imagining require the synthesis of multiple 
inputs. Our ability to harness the spontaneous perceptual/visual processes to the 
formulation of the analytical and rational concepts of number owes to the cognitive 
elements that make imagery distinct from ordinary perception.

Though both perceiving and imagining involve visual synthesis and are based 
upon the same integrative cognitive mechanism, there is an important difference 
between them. Seeing is triggered by ongoing and immediate stimuli generated 
by the phenomenal world. Since the physical inputs that arouse perceptions are 
independent of the observer’s cognitive system, they circumscribe and subject 
the visual processes to external phenomena over which one has no control. One 
does not see an orange when one looks at an apple (assuming one knows the 
difference). In contrast, images that originate in one’s own cognitive system are 
guided by information that can be selected and manipulated voluntarily, making 
the visualization a self-directed process. Moreover, because the construction of 
imaginary “objects” can be generated by non-visual stimuli 2 (the words ‘one,’ 
‘two’ and ‘three,’ for example), there is nothing to prevent such processes from 
creating rationally structured images such as numbers.

Of course, as the sizes of numbers increase, the numbers very quickly become 
too large to visualize in an explicit way. Yet in order for such numbers to continue 
to be conceptually and numerically meaningful, it is required that one is able to 
keep both an accurate account of the units they encompass and also comprehend 
their sums as holistic entities. Thus, the tension between the dual recognition of 
‘units’ vs. ‘sums’ continues to influence the way we structure numerical concepts 
throughout their infinite sequence.

The following pages examine how we structure numbers too large to be 
recognized or imagined in an explicit way, but nonetheless make them both 
mathematically and cognitively valid.

1 Neisser , 1967, p. 153; 1968, p. 128; 1976, 146-7, 209
2 Neisser , 1967, p. 97



37TWO AND TWO MAKE ZERO

IV-2. GENERAL PRINCIPLE OF CONCEPTUAL/SYMBOLIC 
NUMBER—SEQUENCE

Keeping account of all the units comprising a sum without losing sight of the 
sum as a uniquely recognized entity, and vice versa, is a demanding undertaking, 
which pulls the mind in two opposite directions; and the larger the number, the 
more difficult the task. Numerous cognitive studies demonstrate that the mind’s 
capacity to capture the exact number of objects in a group instantaneously (i.e., 
holistically or globally) is confined to sums within the range of six items—a 
limitation, which psychologists have called, ‘subitation  span’ (see chapter III-3). 
Since the ‘subitation span’ reflects a limit on the ability to form explicit images or 
mental representations of specific sums, it is reasonable to assume that concepts of 
numbers larger than six or so do not consist of explicit images of sums. Structuring 
a numerical image by dividing a sum into smaller groups may be useful, but it can 
help only up to a point. Hence, for the conceptualization of larger numbers, the 
engagement of other mental strategies, mainly logical and symbolic thinking, as 
well as more advanced levels of abstraction, become inevitable.

To appreciate the role of symbolic thinking in the configuration of larger 
numbers, it is important to understand that the symbolic function is much more 
than an encoding mechanism; it is an entirely different way of remembering and 
forming concepts.3 Symbolization tremendously enhances the mind’s ability to 
retain and retrieve concepts, and thus it significantly expands our capacity to relate 
concepts to one another, to re-categorize and to re-code them. Most importantly, 
it enables us to carry out all these mental activities without reference to real world 
stimuli or perceptions. Symbolization frees our thought processes from dependence 
on and confinement to perceptual inputs. This ability allows humans to create new 
and more abstract concepts, concepts that can be created only through abstract 
symbolic and rational thinking because they have no physical attributes. Such are 
the mental representations of specific numbers, particularly large numbers, that 
can be no longer imagined or recognized in the real world.

Still, in the evolution of the human brain, old functions are not discarded to 
make way for new and more advanced functions. Rather, primitive processes (such 
as ‘perceptual categorization’) continue to operate as part of an integrated system 
along with functions that evolved later. Thus, even purely abstract concepts that 
have been acquired through logical, symbolic thinking must somehow connect 
with perceptual content in order to gain meaning.4 Nothing illustrates this premise 
more eloquently than the principles that guide the structuring of numbers, as is 
reflected in their fully developed symbolization.

3 Edelman , 1998, p. 92-3
4 Edelman, 1998, p. 146-8, Deacon , 1997, p. 265



38 H.S. YASEEN

Throughout the ages and across cultures, the mature symbolization of numbers, 
whether verbal or notational, has been consistently structured in such a way that 
regardless of the numbers’ magnitude, numbers can still be comprehended within 
the conceptual framework of smaller tangible numbers. Invariably, this effect has 
been achieved by basing symbolization on two separate and distinct conceptual 
components; one may be called sum value, and the other may be called unit value. 
The sums values are quantified by the base numbers , ‘one’ through ‘nine’ in the 
base-ten system, and the units values, in the same base, are quantified by the 
numbers ‘one,’ ‘ten,’ ‘hundred,’ ‘thousand,’ etc.5 In the instance of the number 
‘seven hundred,’ the numerical value of the sum is seven, and the numerical value 
of the unit is hundred. The numbers one, ten, hundred, thousand, etc., are units 
because they can be counted as units can. The unit hundred, for instance, can be 
quantified by various sum values as in ‘two hundred,’ ‘three hundred,’ and ‘seven 
hundred.’ The numbers one through nine or ‘base numbers’ are ‘sums’ because 
they represent the range of possible sum values of various units. For instance, the 
sum three counts a variety of unit values as in ‘three hundred,’ ‘three thousand,’ 
and ‘three million.’ The number ‘three thousand’ is conceived as the product 
of two kinds of numerical concepts, the sum three, and the unit thousand; the 
number ‘seven hundred’ is conceived as the product of the sum seven, and the unit 
hundred.

The ‘units’ and the ‘sums’ form the ‘base system,’ which structures numbers 
into an inexhaustible gradation system. The term base refers to a fixed counting 
group that indicates when counting should start anew.6

Owing to the base-counting scheme, when the amount of any category of 
units adds up to the designated counting group—the base—, these units form a 
“new unit [of a higher order],” whereupon the counting of the newly formed unit 
begins and continues until the accumulation of these “new units” also amounts to 
the designated base and forms a “new new-unit;” and the counting of these higher 
order units commences, and so on and so forth.7 In the base-ten system when 
all the one units add up to the designated base, they form the new unit—ten, and 
when all the ten units add up to this base, they form the new new-unit—hundred, 
etc. In his 1872 grammar-school textbook New Rudiments of Arithmetic, James S. 
B. Thomson  sums up the base system’s infinite gradation process as it plays out 

5 Interestingly, while the ‘sum’ concepts are readily recognized as ‘base numbers, ’ the 
‘unit’ concepts have no agreed-upon term; they have alternately been called ‘level,’ 
‘step,’ ‘degree,’ ‘rank,’ ‘denomination,’ ‘order,’ ‘class,’ ‘unit,’ and, in the particular 
case of the base ten system, ‘decimal unit.’

6 Ore , 1948, p. 2
7 Menninger , 1992, p. 14-5, & 28
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in the decimal system thus: “Universally, ten of any lower order make one of the 
next higher [order].”8

Historically, ten has been by far the most prevalent base, probably because of 
the immediate accessibility of the fingers of the human hands.9 And so, although 
ten exceeds the size of numbers that can be visualized explicitly, which are six or 
smaller, it is still tangible and comprehensible because of its origin—the human 
hands. Because all the units that are created via base counting are powers of the 
base ten (e.g., 1=100, 10 =101, 100 =102, and 1,000 =103), ten serves as a constant 
reference for the extrapolation of the successively larger units. All the decimal 
units, then, are related to, or are abstractions of the concept ‘ten.’ Indeed, scholars 
have noted that the word for ‘hundred’ in some languages means ‘fate’ or ‘strong 
ten,’ and ‘thousand’ means a ‘great hundred.’10 Through the association with ten, 
any concept of decimal unit, be it a thousand or a million, is connected, however 
indirectly, to a perceptually tangible content, which makes them meaningful.

In all base-counting systems, the largest sum that can be obtained by any 
given category of unit (e.g., hundred) must always be one unit smaller than the 
base. Thus, in a base-ten system, the largest sum of any unit’s category can never 
exceed nine, for the next sum—ten—becomes a unit of a higher power. Ten tens, 
for example, form the unit hundred, and ten hundreds form the unit thousand. 
Because numbers that quantify sum (as the six in six hundred, and the eight in 
eight hundred) are limited to numbers that are smaller than ten, they too can be 
conceptualized in a tangible fashion. Consequently, regardless of a given number’s 
magnitude, the sum elements of numbers always remain comprehensible.

And so, the base-counting technique allows us to define numbers of 
magnitudes we cannot explicitly imagine and do so without losing count of a 
single unit. These numbers remain conceptually coherent because the two 
distinctive numerical concepts, which have been created by the mechanism of 
the base-counting system—the sums and the units—link any number, regardless 
of its size, to numerical concepts that are still within the domain of perceptual 
comprehension and thus meaningful.

The ramification of this conceptual division of labor is the subject of the next 
chapter.

8 Thomson , 1872, p. 11
9 Dantzig , 1954, p. 16
10 Gullberg , 1997, p. 27, Ore , 1948, p. 3, Menninger , 1992, p. 47, 132, Hundred derives 

from the old English ‘hund.’ Thousand is akin to the Old Norse, thushund, that is, 
great hundred. The prefix, ‘thus’ denoting great is of the same origin as in ‘thumb,’ 
literally the strong finger  .
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IV-3. ‘SUMS’ VERSUS ‘UNITS’

In the preceding chapter, I argued that the conceptualization of large numbers 
builds on two distinct numerical concepts: ‘units’ and ‘sums.’ This chapter examines 
these two concepts in greater detail in order to gain a better understanding of both 
the concepts of ‘units’ and the concepts of ‘sums’ and the processes involved in the 
conceptualization of large numbers.

The concepts of ‘units’ and ‘sums’ are distinguished from each other in two 
respects: (1) the functions that each fulfills in a number’s definition, and (2) the 
cognitive mechanisms and processes that are required for their comprehension.

The function of units is to define a number’s category of magnitude (as the 
alternate terms, ‘rank,’ ‘denomination,’ ‘class,’ ‘order,’ and ‘level’ suggest), and 
the function of sums is to tally  the exact number of units within a given rank. In 
any composition of ‘units’ and ‘sums’ that expresses a number, the largest unit 
defines the order of magnitude of that number while the other numerical values 
just add the detail. For instance in the number 3,456, the ‘thousand’ unit defines 
the general size category of that number as a whole, even though the sums of the 
‘hundreds,’ the ‘tens,’ and the ‘ones’ are larger than the sum of the ‘thousands.’ 
When we are only concerned with gross ideas of size we ‘round’ numbers ‘up’ or 
‘down’ to the nearest largest and dominant ‘unit’ (e.g., we round the number 7,654 
to 8,000 and the number 7,123 to 7,000). In some situations, all other elements, 
including the sum of the largest unit, are dropped entirely, and only the dominant 
‘unit’ is indicated, as in the Biblical saying: “They have ascribed unto David ten 
thousands, and to me they have ascribed but thousands: and all he lacketh is the 
kingdom!”11

Because ‘sums’ are contained within the ‘base numbers ,’ they can define only 
the numerical relationship within a given unit-size category. For example, the sum 
‘five’ expresses a larger number than the sum ‘three’ only in so far as the five and 
the three count equivalent units; 500 is larger than 300, but 300 is larger than 50. 
The function of base numbers becomes important when the emphasis is on exact 
quantification, and when the objective is to examine numerical relationships and 
properties, rather than numerical sizes per se. Take for example the numbers 23 
and 24: For most practical purposes, the difference in their sizes is insignificant. 
But from the perspective of their mathematical properties, these two numbers 
cannot be more different. The number 23 is an odd number and a ‘prime’ at that; 
it has no other factors other than one and itself. The number 24, in contrast, is an 
even number with no less than six factors (2, 3, 4, 6, 8, and 12) in addition to one 
and itself.

11 First Samuel 18:8, attributed to King Saul lamenting the popularity of his petty officer, 
David.
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The cognitive processes that are required for the apprehension of ‘sums’ and 
those that are required for the apprehension of ‘units’ are different from one another 
as well. The sequence of sum elements (1, 2, 3, 4, etc.), employs a mechanism 
of addition: 1=0 +1, 2=1+1, 3=2+1, 4=3+1, etc. Ordered along a continuum of 
increasing numerical value, the ‘sums’ form arithmetic progression , meaning a 
progression in which the growth rate is constant; starting with ‘1’ the ‘sums’ or 
set of base numbers  continue to add the same ‘one’ unit with each additional step 
along a progression that ends when their accumulation reaches the designated 
base—‘10.’ Understanding such a pattern of growth and the terms that constitute 
it is almost as easy as counting to ten.

The sequence of ‘unit’ elements (1, 10, 100, 1,000, etc.), on the other hand, 
employs a mechanism that raises the base to ever growing powers: 1=100, 10=101, 
100=102, 1,000=103, etc. Thus, appreciating the magnitudes of the decimal 
units demands a continuous increase in the level of abstraction of ten with each 
additional step along their sequence. Ordered along a continuum of increasing 
numerical value, the units form a graduated pattern or a geometrical progression , 
in which not only the ‘units’ grow with each step, but the rate by which they 
grow is growing as well, and in the ten base system, it grows by a factor of ten (1, 
1x10, 1x10x10, 1x10x10x10, etc.). It is an amazingly rapid growth. Though the 
procedural logic that propels this growth is relatively simple (raising the base to the 
next power), matching it with the appropriate numerical concepts becomes more 
and more difficult as the ‘units’ continue to ascend and their link to the original 
perceptual reference ‘10’ is weakened and fades away. As ideas of units become so 
vague and abstract that they can no longer be conceived in a meaningful way, the 
comprehension of the units’ magnitude relies increasingly on the comprehension 
of the extremely rapid growth described by their geometrical progression.

Indeed, the comprehension of the units’ geometrical progression demands 
a level of abstraction that even trained scientists find strenuous. When numbers 
become ‘astronomical,’ scientists circumvent these difficulties by redefining such 
huge and difficult to imagine ‘units’ in a more tangible way. The concept of a light 
year —the distance traveled by light in the course of one year—is an example of 
such a ‘unit.’12 Another example is the use of scientific notation ,13 which expresses 
numbers as the product of a ‘base number’ and a power of ten.

12 A light-year  is a unit of distance used by astronomers. It equals the distance that light 
travels in one year at a speed of 186,000 miles per second, approximately six trillion 
miles. (Source: Robert Jastrow , 1977, Until the Sun Dies)

13 Numbers expressed as a product of a base number and any given power of ten, used for 
writing very large numbers. For instance 9,460,000,000,000,000 meters (the number 
of meters in a light year) is expressed as 9.46X1015. (Source. Baron’s 1987, Dictionary 
of Mathematics Terms) 
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The comfort of visualization, however, does not depend only on the number’s 
magnitude, but also on its complexity. Menninger  claims that early man acquired 
the concept for 1,000 before he could grasp the lower number 543, because the 
former is an extrapolation of 10 and a result of “grouping,” whereas 543 relies 
on counting and on multiple “ascending steps.” “Even today,” he observes, “if 
we contemplate the number sequence in our mind, 1,000 seems clearer, more 
‘available’ to us than 543.”14 Indeed, the number 543 involves the visualization of 
three ‘sums’ (5, 4, and 3) and three ‘units’ (1, 10, and 100). Each of these ‘units’ 
demands a different level of abstraction. The visualization of 1,000, on the other 
hand, involves no sum greater than 1, and only one ‘unit’, which is a single level 
of abstraction.

Although the base system employs multiple cognitive processes and approaches 
for the comprehension of numbers such as 543 or even smaller numbers, which can 
be mentally taxing, the cognitive advantages gained by this scheme make this effort 
worthwhile. For the base system makes the maximal use of these basic numerical 
concepts once they have been established. Each of the elemental concepts that 
have been created by the base system functions as a module. Together they form a 
modular system in which any sum-size may be paired with any unit-size. A great 
quantity of new numbers may be conceived simply by shuffling and recycling a 
few already existing concepts. For instance, all the ninety-nine unique numerical 
concepts from one to ninety-nine are various combinations of only ten elemental 
numerical concepts: the nine base numbers , plus the concept ten, which doubles 
as both a ‘sum’ and as a ‘unit.’ Now, add to this short list the concept ‘hundred’, 
and nine hundred and ninety-nine numerical concepts can be figured out. Indeed, 
all the million discrete numbers from one to one million are constructed with 
only thirteen basic numerical concepts: the nine base numbers and the units: ten, 
hundred, thousand, and million.

The next section, A History of Numerical Notations, deals with, among other 
things, the translation of a number’s conceptual/symbolic structure into symbolic 
language. Both notational and verbal representations of numbers are examined.

14 Menninger , 1992, p. 46, 127 
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V

A HISTORY OF NUMERICAL NOTATIONS

V-1. THE GAP

In contemporary Hebrew the numerical dimensions of Noah’s ark and the 
life span of Methuselah are verbally articulated just as they were written in the 
ancient Hebrew Bible more than two thousand years ago. And no one knows for 
sure for how many centuries prior to its appearance in the Bible the verbal numeral 
system on which these numerical descriptions are based had lived in oral tradition, 
passing from one generation to another. In contrast, the visual representations of 
these ancient verbal numerals have been long lost. The Hindu numeral system  that 
replaced them, and that is used in modern Israel, appeared only around 800 AD. 
It took another 800 years before it was fully incorporated into Western cultures 
(around the 16th century AD).1 The actual implementation of modern numerical 
notation occurred, then, approximately a millennium-and-a-half after the Hebrew 
Bible was compiled. This developmental gap between the maturation of verbal 
and notational systems, according to Menninger , is not exceptional. Historically, 
cultures’ verbal systems achieve their ultimate efficacy and final forms long before 
any notational system is perfected.2

The relatively late development of a mature notational system cannot be 
attributed to a lack of effort. On the contrary, in the course of the 20 or 30 millennia 
that elapsed between man’s earliest attempts at numerals and the emergence of the 
Hindu numeral system , there have been countless attempts to achieve satisfactory 
and effective visual representations of numbers. Many of these trials were made by 
highly advanced and sophisticated civilizations around the globe. Numerals, as it 
were, are probably among the oldest signs used by human kind; as Tobias Dantzig  
quipped, their history is “as old as private property.”3 Early man began recording 
numbers long before they started to record words. According to Childe , there 

1 Ore , 1948, p. 21
2 Menninger , 1992, p. 53 
3 Dantzig , 1954, p. 20
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exist documents that demonstrate that the ancient cultures of Sumer and Egypt 
were utilizing numeral systems prior to their earliest known writing systems.4 
Moreover, the earliest numerals—those twenty to thirty thousand year old signs 
which represented numbers by tally  marks and were carved on rocks, cave walls, 
and bones—long predate the emergence of corresponding verbal expressions.5 If, 
as has been suggested by Wilder , the very conception of numbers as independent 
and universal concepts grew out of visual signs,6 then numerals predate not only 
number words , but also the very concept of number itself. How then can we 
account for the very slow crystallization of visual numeral systems?

The differences between the visual and the auditory mediums in which 
numerical systems are encoded may well have been the reason for the slower 
development of a mature notational representation of numbers. Let us examine these 
two kinds of numeral systems—the auditory and visual—from this perspective.

We begin with Menninger ’s observation that number words  reflect the 
arrangement of groups because they encompass a numerical idea in a single word. 
The idea, |||, for instance, is rendered by the single word, ‘three,’ rather than by 
repeating the word ‘one,’ three times.7 Not only is encoding numbers in verbal 
symbols more economical and effective than encoding them in visual images such 
as tallies, but it also represents numbers in a more abstract way. It is quite possible 
that early number words, especially those representing small numbers, were 
derived from objects with which numbers could be associated (say the word ‘hand’ 
with the idea ‘five,’ or ‘eyes’ with the idea ‘two’). But, according to Menninger , 
number words lose their original meaning early on.8 Both the independence of 
these words from their original meaning and the inherent arbitrary relationship 
between the auditory pattern of words and their meaning, in general, imposed 
an abstract property on number words almost at the outset. In other words, the 
auditory medium of verbal numbers confines the possible numeric expressions to 
a single method: a discrete and recognizable sound pattern, which is, inevitably, 
arbitrary and abstract.

The purely abstract form of the verbal numerals was probably a contributing 
factor to their early maturation. An abstract verbal system that reflects the underlying 
conceptual structure of large numbers (i.e., the principle of ‘base counting ’ or a 
unit’s gradation, which builds on the concepts of ‘sums’ and ‘units’) and employs 
a practical base size (i.e., a base size that allows a single regrouping criterion) can 

4 Childe , 1948 (Cited in Wilder , 1968, p. 37)
5 Menninger , 1992, p. 39 
6 Wilder , 1968, p. 42-3, 65-6
7 Menninger , 1992, p. 45
8 Ibid., p. 89
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in no way be further advanced or improved; nor is advancement necessary. It has 
reached its full and ultimate maturation.

In contrast to verbal systems, which allow only one method of expressing 
numerical values, notational systems allow several methods. One of the most 
salient differences between verbal and visual systems is that in verbal systems 
the sum element in numbers (or ‘base numbers ’) and the unit element (or rank, 
order, etc.) are represented in the same way—abstract symbols (words), whereas 
in most visual systems the ways in which the sums are represented differ from 
the ways the units are represented. For example, in our modern Hindu numeral 
system , sum values (or base numbers) are represented by symbols (or digits) 1, 2, 
3, etc., and the unit values by positional means. Positional representation of ‘units’ 
means that the magnitude of the ‘units’ is expressed by the location of symbols 
that represent their sums. In the Hindu numeral system, the symbol in the far right 
of a sequence of symbols represents the sum of the unit one, the symbol that is 
second to the right represents the sum or the unit ten, etc.9 Thus, the sequence 123 
reads, “one hundred and twenty three.” In the ancient Egyptian system (Figures 
V-1 and V-2), ‘units’ are represented with symbols or ideograms. For instance, 
a vertical staff (‘|’) represents the unit one, a horseshoe (‘∩’) represents the unit 
ten, and a coiled rope (‘9’) the unit hundred, and the base number values by the 
tallies of these symbols, that is, the number of times a particular unit’s symbol is 
repeated.10 For instance, a sequence of three horseshoes, thus: ‘∩∩∩,’ represents 
the number ‘thirty.’11

In the Babylonian and Mayan systems (Figures V-3 and V-4 respectively), 
the ‘units’ are indicated by positional means, much like in the Hindu system, but 
‘sums’ in both systems are indicated by a mixture of tallies and symbols.

That devising a perfect numerical notation system took so long in spite of 
an early start suggests that the multitude of ways that numerical ideas can be 
visually represented impeded the development of mature notational systems. It 
seems that the intuitive impulse to represent numbers pictorially was an obstacle 
to the development of an abstract and effective visual numeral system. Indeed, 
notational representation reached its ultimate form with the introduction of the 

9 For instance, in the sequence of the numerals, ‘345,’ the digit, ‘5,’ indicates the sum 
of the unit ‘one,’ the digit ‘4’ the sum of the unit ‘ten’, and the digit ‘3’ the sum of the 
unit ‘hundred.’

10 For example, ‘one’ is represented by the symbol “ ⎢”, ‘ten’ is represented by the symbol 
“∩”; and ‘hundred’ by the symbol ‘9,’ etc. 

11 For example, the symbol “ ⎢” representing the unit ‘1’ is repeated four times to depict 
the number ‘4’ thus, “ ⎢⎢⎢⎢” and the symbol, “∩” representing the unit, ‘10,’ is repeated 
three times to depict the number, ‘30,’ thus: “∩∩∩”. Hence, the sequence “⎢⎢⎢⎢∩∩∩” 
read (from right to left) ‘thirty four.’ 
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Hindu numeral system  which, like the mature verbal systems, is purely abstract. 
This observation reinforces the conclusion that the abstraction that the auditory 
medium imposes upon the verbal systems was the root of their early maturation.

But there have been other factors at work. Mathematics is a cultural 
creation—cultural needs propel it forward, and cultural habits restrict its 
progress. R. Wilder  has termed the major forces that pushed the development of 
mathematics forward culture stress, and the part “tradition” plays in preventing 
adaptation of obviously more efficient tools or concepts cultural lag and cultural 
resistance.12 The story of the Hindu-numeral-system’s slow acceptance in Western 
civilization—in spite of its obvious superiority over the existing systems—is a 
quintessential example of cultural resistance. The new Hindu numeral system  
was met with open resentment in Europe, rejected by the learned circles, and 
adapted only by the “enlightened masses.”13 Although they entered the history 
of mathematics in 800 AD, the Hindu numerals, complete with zero , had to wait 
800 years more to win a “complete victory” and be adopted by Western scholars. 
A complete exposition of this ingenious numeral system was introduced to the 
Western world at the very beginning of the 13th century with the publication of 
Fibonacci ’s Liber Abaci  (1,202 A.D.). In 1,299 AD, some 100 years after the 
publication of Liber Abaci, the Italian merchants of Florence were forbidden to 
use the Hindu numerals14 and perhaps used them in secret code.15 According to 
Ore , in Nicholas Copernicus’s famous work on the solar system, written in the 16th 
century, “one finds a strange mixture of Roman and Hindu Arabic numerals , and 
even numbers written fully in words.”16

One of the greatest advantages of the Hindu numeral system  over all the 
systems that preceded it, and perhaps the major reason Europeans eventually 
overcame their cultural resistance to it, was its capacity to function as an auxiliary 
device for numerical calculation . To understand why it was so important to obtain 
the ability to represent numbers as well as to carry out arithmetic calculation  with 
mediation of visual numerals, we must first understand the import of notational 
symbols in arithmetic and in mathematical thinking in general.

12 Wilder , 1968, p. 175
13 Cajori , 1985, p. 121
14 Ball , 1960, p. 186, Dantzig , p. 33-4
15 Dantzig , 1954, p. 34
16 Ore , 1948, p. 21
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Figure V-1: Comparison of Verbal, Hindu, Egyptian, Roman, Greek 

Alphabetical, Standard Chinese, and Abacus numerals
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Figure V-2: Egyptian numeral hieroglyphs

Babylonian base numbers

Babylonian base-60-units’ progression

Figure V-3 Babylonian Numeral system
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Mayan base numbers

Figure V-4: Mayan numeral system

V-2. THE IMPORT OF NOTATIONAL SYMBOLS

Contrary to common lore, which attributes the intellectual challenge embedded 
in mathematical ideas to the “difficult” and “mysterious” symbols employed by this 
science, symbols were “invariably” introduced to mathematical thinking “to make 
things easy,” argues the mathematician A. N. Whitehead .17 Consider the verbal 
statement with which he illustrates this truth: “If a second number be added to any 

17 Whitehead , 1958, p. 40-1
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given number the result is the same as if the first given number had been added 
to the second number.” Now compare this verbal rendition of the commutative 
law of addition, with its symbolic version: ‘x + y = y + x,’ and you will no doubt 
see his point. The former is complex and difficult to follow, while the latter can 
be grasped effortlessly in a glance. Obviously, the extent of the difficulties in 
grasping mathematical ideas, of which the commutative law of addition is an 
example, depends not only on the extent of their inherent complexities but also 
on the way in which they are rendered. As Whitehead’s comparison illustrates, a 
sequence of mathematical notations representing an idea is deciphered more easily 
than a sequence of words representing the same idea, even when the words are 
written down.18

Of course, the notational and the verbal symbols share common features. For 
example, the visual pattern of the figure ‘7’ and the sound pattern of the word 
‘seven’ give away no clues pertaining to their numerical meaning; in both cases, 
the connection to the concept they represent must be established through deliberate 
training, and in both, once that association is established, it occurs automatically 
and subconsciously.19 Yet the different mediums in which the visual signs and the 
auditory signs are encoded require different cognitive processes in their decoding. 
To understand the cognitive benefit of notational symbols for mathematical 
thinking let us analyze these processes and how they differ from one another.

In spoken words the speech elements, or phonemes, are produced in particular 
sequences. Since the phonemes and the combinations in which they occur are 
pertinent to the meaning of the utterance, both must be retained in the memory 
long enough to allow the entire phonemic sequence of a single word or a series 
thereof to be considered and synthesized as a whole. Identifying, remembering, 
and synthesizing the elements of the spoken words employs various mental 
processes and considerable cognitive effort; this is true even when words are 
recognized automatically and subconsciously. The transitory and fleeting nature 
of the spoken sequence makes the mnemonic effort all the more essential for 
grasping its meaning. This effort is required not only for the immediate decoding 
of the verbal signals, but also for committing them into longer-term memory for 
future recall and manipulation.

In contrast, visual notations such as ‘7,’ ‘8,’ or ‘3’ convey an entire idea with 
a single symbol, thus their perception requires none of the analytical, mnemonic, 
and synthesis efforts that are needed for decoding a single spoken word. Moreover, 
a group of visual signs may be processed simultaneously because visual processes 
are adapted to deal with multiple spatial stimuli contemporaneously.

18 Decoding the written words involves auditory processes similar to those involved in 
decoding spoken words even though the former are presented visually. 

19 Edelman , 1989, p. 201 
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But the efficiency and directness of symbols’ decoding is not the only advantage 
of the visual signs for mathematical thinking. Carved, crafted, or written, a visual 
sign has a lasting physical presence that is independent of the human mind. Its 
physical presence liberates the mind from the mnemonic effort required to decode 
and store the temporal, vanishing spoken words. Thus, one can fully focus on the 
examination of the subject at hand. The Russian psychologist, L. S. Vygotsky , noted 
that human ability to actively remember with the help of physical signs changes 
the dynamic of the memory process. “Even such comparatively simple operations 
as tying a knot or marking a stick as a reminder change the psychological structure 
of the memory process,” he explained. “They extend the operation of memory 
beyond the biological dimensions of the human nervous system and permit it to 
incorporate artificial, or self-generated stimuli, which we call signs.”20

Because thinking is about forming relationships between remembered ideas, 
the use of visual signs or “external objects” (Ibid.) to aid the mnemonic element of 
thinking is tantamount to the incorporation of signs in the thought process itself. 
No other discipline is in greater need of extending memory and thinking capacity 
beyond the biological limitation of human mind than mathematics. Indeed, among 
other things that make mathematical thinking challenging is that it typically 
involves contemplation of various relationships between multiple numerical and 
spatial concepts simultaneously. Even when dealing with basic arithmetic, we are 
often required to hold in our memory some ‘figures’ while we actively consider 
others. Just try finding the sum of the numbers ‘two-hundred-and-seventy-four’ 
and ‘eight-hundred-and-ninety-six’ without jotting down some figures on a piece 
of paper.

Still, depending on the kinds of principles that underlie their constructions, 
written symbols may be perceived, processed, and utilized in different fashions, 
and not all are equally helpful for mathematical thinking. Friedrich Waismann 
distinguishes between two kinds of written symbols: symbols that represent 
sound, like ‘r’ or ‘o,’ and symbols that represent concepts, like ‘3’ or ‘+.’ 21 He calls 
the former “phonetic symbols” and the latter “ideographs.” Decoding symbols 
that represent sound (i.e. letters) is primarily an auditory/verbal task, although 
the medium in which the stimuli are presented is visual.22 Since verbal symbols 
or words are typically constructed as a sequence of several phonemes, decoding 
written words is akin to decoding speech in a few respects: it occurs over time and 
involves mnemonic effort, as well as auditory analysis and synthesis. Decoding 
ideographs such as ‘3’ or ‘+’, on the other hand, because they do not involve 
auditory/verbal processing, creates an instant, almost automatic connection 

20 Vygotsky , 1978, p. 39, a similar idea expressed in p. 51 
21 Waismann , 1966, p. 51
22 Neisser , 1967, p. 105-137 
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between a visual cue and a whole concept.23 By transforming complex conceptual 
configurations into a visual image, the abstract notational expression allows us to 
grasp a complex set of ideas almost in a glance. And so, whereas a combination of 
the phonetic symbols, say, ‘m,’ ‘e,’ ‘l,’ ‘o,’ ‘d,’ ‘y’ (or for that matter the numeral 
‘| | | | | |’), conveys a single concept, an expression written with a combination of 
abstract ‘ideographs,’ such as ‘5-2=3’ or ‘x+y=y+x,’ conveys not only several 
concepts simultaneously, but their relationship to one another as well.

Analyzing the mathematical progress made by Vieta, Descartes, and Leibniz 
in the 17th century, the mathematician R. Wilder  was struck “by how much it 
actually consisted of the invention of a new, and powerful symbolic apparatus.”24 
But to appreciate the importance of good notation, one need not resort to advanced 
mathematics. As Wilder  observed, “Even the elementary concept of number 
could not have advanced very far until a suitable symbolic apparatus—a numeral 
system—was set up.”25 Moreover, as history showed, the advanced mathematical 
symbols of Vieta, Descartes, and Leibniz could not have evolved before an 
appropriate method of representing numbers was in place.

But devising a perfectly appropriate notation system for the simplest and most 
primitive of all mathematical concepts—the counting numbers—proved to be a 
great challenge to mankind.

The Hindu numerical system was introduced to mathematical thinking 
more than a millennium after the completion of Euclid ’s 300 BC masterpiece, 
The Elements, which laid the foundation for the modern method of scientific 
investigation. Yet, it took another 700 to 800 years “of blind stumbling and chance 
discovery, of groping in the dark and refusing to admit the light,” before the Hindu 
system was finally adopted in daily and scholarly discourse in the west.26 Its 
victory was nonetheless inevitable. The Hindu numeral system  is indisputably the 
ultimate method for writing numbers, a method that leaves nothing to be improved 
upon and an “admirable illustration for the importance of good notation.”27 Indeed, 
it owes directly to the Hindu numeral system that virtually all grammar school 

23 Holender  and Peereman , 1987, p. 77 maintained that letters depict phonological 
units, i.e., the meaning of letters is a property that the right hemisphere is unable to 
process. Word recognition is mediated by letter or syllable recognition. “By contrast, 
Arabic numerals have a meaning in a symbolic system that has nothing to do with 
phonology.” Therefore, they explained, “there is no reason why the right hemisphere 
could not generate a semantic representation of the digit and transfer it to the other 
side, a task it seems able to perform with objects as well.” 

24 Wilder , 1968, p. 171
25 Ibid., p. 4 
26 Dantzig , 1954, p. 20 
27 Whitehead , 1958, p. 39 & 42
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children today routinely perform arithmetic calculations that a few centuries ago 
only a small circle of the most educated people of the time could manage.28

The next chapters examine the greatness of the Hindu numerical system by 
comparing this system with those preceding it, and by studying how it allows 
ordinary people to handle complex calculations .

V-3. THE THREE METHODS OF VISUAL REPRESENTATION

The visual medium affords the representation of numerical ideas by three 
methods:

1. Concrete images, namely tally—the representation of a number by 
repeating a sign as many times as there are units in that number.29 The 
Roman’s numerals I, II, and III representing the numbers one, two, three 
respectively, are an example.

2. Abstract symbolic signs—the representation of a number by a unique 
symbol. The Hindu numerals 1, 2, 3, 4 representing the numbers one, 
two, three, four respectively, are an example.

3. Location, or relative position in space —the representation of number by 
using the position of a symbol in relation to other symbols. For example, 
in the sequence, 333, each of the identical symbols represents a different 
numerical value according to its location in the sequence; reading from 
left to right, these numerical values are: three-hundred, thirty, and 
three.

To understand the great achievement of the Hindu numeral system , we must 
analyze these three options of denoting numerical values from their cognitive 
aspects and consider the ways each of these methods was used by pre-Hindu 
numeral systems.

Concrete images: Because they are the most direct and intuitive method 
of representing numbers, tally  numerals were the earliest and most prevalent 
numerals prior to the introduction of the contemporary Hindu numerals. As 
seen in Figures V-1-through-V-7, except for the Chinese and the Alphabetic 
systems, all pre-Hindu systems combine some form or other of tally numerals. 
Tally, notwithstanding its intuitive qualities, is an inefficient method of number 

28 Dantzig , 1954, p. 193-4 
29 Ibid., p. 7, The term ‘tally ’ comes from the Latin word ’ talea’ meaning ‘cut’—a 

reference to the most prevalent ‘tallying’ method which was carving lines on various 
surfaces, such as bon, wood, cave walls, and clay. 
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representation as much for its decoding as its encoding processes. Compare for 
instance the Egyptian’s tally numeral ‘| | | | | | | ’ with the Hindu’s ‘8;’ both represent 
the same number: Writing ‘| | | | | | | ’ entails stroking a surface eight times, and 
its decoding requires counting eight symbols. Not only is it laborious to write 
‘eight’ this way, but the counting process that its decoding necessitates interferes 
with the formation of an automatic symbol-to-concept link, thereby neutralizing 
the advantage gained by symbolization. In contrast, the Hindu’s ‘8,’ which 
is comprised of only one symbol that is captured in a glance, connects to the 
concept eight in an immediate and direct way, and in addition is encoded with 
a single motion. Furthermore, the concrete quality of the tally is incompatible 
with the arithmetic’s modus operandi, which—like mathematics in general—is 
abstract thinking.

Abstract symbolic signs: The alternative to tallying is cipherization ,30 that is, 
the use of a single symbol to represent a group of units. Cipherization arose out 
of the necessities of evolving cultures to use larger numbers and maintain written 
records.31 Historically, the earliest cipherization was that of numerals denoting 
‘units’ (or ranks) rather than that of numerals denoting ‘sums’ (or base-numbers) 
as in our familiar Hindu system. The ‘base-numbers’ in these older systems 
were represented in tally  fashion. The Egyptian hieroglyphic numerals (Figures 
V-1 and V-2), tracing back to about 3500 BC, are the purest and perhaps most 
ancient model of such a numeral system. The Egyptian’s hieroglyphic was written 
mostly from right to left, with the larger ‘units’ indicated first.32 An example is 
the sequence ‘| | | |∩∩∩99,’ which reads from right to left “two-hundred and thirty 
four.” A coiled rope (‘9’) represents the unit hundred; a horseshoe (‘∩’) represents 
the unit ten, and a vertical staff (‘|’) the unit one.

Most of the pre-Hindu numeration methods  were, by and large, variations on 
the Egyptian prototype meaning that they incorporate tally  elements to depict sum 
(or base-numbers).33 The derivations from the Egyptian method were short cuts 
aimed at economizing with the number of symbols. The difference between the 
Egyptian and the other systems, then, was one of convenience, not principle. For 

30 Dantzig , 1954, p. 32, The English ‘cipher’ is the derivative of ‘zephirum’—a 
“Latinization” of the Arabic’s ‘sifr’—in itself a translation of the Hindu—‘sunya. ’ 
The word ‘sifr’ underwent several changes that ended with its Italian version, “zero.”  
Because the zero serves an important function in the Hindu numeral system , both in 
writing numbers and in arithmetic calculation , the word ‘cipher,’ originally meaning 
‘zero’ in popular use, came to denote Hindu numerals in general. 

31 Wilder , 1968, p. 54
32 Ifrah,  2000, p. 170-1, The New Encyclopaedia Britannica (1986-15th edition). Vol. 29 

p. 1001-2  
33 Dantzig , 1954, p. 22
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instance the Roman system (Figures V-1 and V-5) represents each ‘decimal unit’ 
with a single sign (I=1, X=10, C=100, and M=1,000). Each ‘half unit’ is similarly 
represented (V=5, or 10/2; L=50, or 100/2; and D= 500, or 1,000/2). The Greek 
Acrophonic, or Attic system, from which the Roman system was probably derived, 
worked on the same principle.34 Thus, the Romans represented the number ‘678’ by 9 
signs—‘DCLXXVIII—’ compared to the Egyptians,’ ‘| | | | | | | |∩∩∩∩∩∩∩999999’ 
that employed no less than 21 signs to represent the same number. It is noteworthy 
to mention, however, that numerals that combine symbols and tallies require adding 
and subtracting in addition to subitizing and decoding symbols as seen in the case 
of the Roman’s ‘XLVII,’ which is read, ‘50-10+5+2.’35 These requirements, much 
like the counting  involved in decoding the Egyptian’s ‘| | | | | | | ,’ interfere with the 
formation of instant automatic and subconscious connections to whole concepts 
and undermine the advantage of symbolization.

That cipherization  of the units preceded by cipherization of the sums makes 
perfect sense. Ciphered numerals not only are a more sensible method of expressing 
the large numbers that characterize ‘units,’ but are also consistent with the abstract 
mode of thinking that guides a unit’s conceptualization. ‘Sums,’ in contrast, 
not only are small enough to be tallied with relative ease, but can be visualized 
explicitly, such that the tallied sums, much like the ciphered units, are consistent 
with their conceptual property. The combination of enciphered ‘units’ and tallied 
‘sums,’ therefore, is compatible with the functions and the conceptual properties 
of these two distinctive concepts with which larger numbers are configured; hence, 
the resiliency and durability of these cumbersome numeral systems.

There were other encipherment strategies, such as the use of the alphabet letters, 
as employed by the Phoenicians, Ionian Greeks, Jews, and Arabs around 300 BC. 
For example, the Ionian Greek (Figures V-1 and V-6) represented the nine base 
numbers  with the first nine letters of their alphabet, such that ‘A’ (alpha) represented 
‘1,’ ‘B’ (beta), ‘2,’ ‘Γ’ (gamma), ‘3,’ etc. The next nine letters denoted multiples of 
10 (‘10,’ ‘20,’ ‘30,’ etc.). To have enough letters to represent the series of the nine 
multiples of 100 (‘100,’ ‘200,’ ‘300,’ etc.), the Greeks had to add 3 letters to their 
alphabet, whose active letters numbered only 24. They represented the 1,000s series 
by repeating the first nine letters—preceded by a stroke, as in the examples of ‘A, 
‘B, and ‘Γ for ‘1,000,’ ‘2,000,’ and ‘3,000.’ And represented the 10,000s series by 
the same first nine letters atop the letter M (the first letter of the word ‘myriad’), as 
in the examples of ‘Mα,’ ‘Mβ,’ and ‘Mγ,’ for ‘10,000,’ ‘20,000,’ and ‘30,000.’36 At 

34 Ifrah , 2000, p. 182, Found in Attic inscriptions from 500 BC.
35 L= 50, X=10, V=5, and I=1 
36 Ifrah , 1990, p. 274
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that point they exhausted all the possible numbers that could be represented by their 
system, and herein lies one of the disadvantages of that strategy.37

The Chinese numeral system presents another encipherment strategy. In 
the Chinese numeral system (Figures V-1 and V-7), both, ‘units’ and ‘sums’ are 
symbolized; it is the only visual system that actually recapitulates the verbal 
number sequence.

To their detriment, the alphabetic and Chinese systems, which are purely 
symbolic, do not restrict symbolization to ‘sums’ (base numbers ). As a system 
that is bound to the verbal representation of numbers, the Chinese system offers 
no significant operational advantage over verbal systems. While the alphabetic 
methods neutralize the advantage of the base-counting system by representing 
the same ‘sum’ values by different letters in synchronization with the units they 
represent (Figure V-6). For example, in the Greek system, ‘2’ is represented by the 
letter ‘B’ (beta), ‘20’ by the letter ‘K’ (kappa), and ‘200’ by the letter ‘Σ’ (sigma).38 
In changing the symbols of the ‘sum values’ according to the units they tally , the 
alphabetic methods obscure the modularity principle of the concepts ‘sums’ and 
‘units’ and consequently do not reflect the base-systems conceptual structure. The 
Attic Greek and Roman methods, which are hybrids of an abbreviated Egyptian 
and the Alphabetic methods, shared the deficiencies of both.

Location : Perhaps the most obvious difference between spoken numerals and 
‘enciphered’ written numerals—both of which denote numerical ideas by a single 
abstract symbol—is that, unlike the spoken numerals, which could be recognized 
only by their sound patterns, the written numerals could be recognized by their 
position relative to other symbols as well as by their pattern. This quality allows 
each symbol to convey two distinct numerical values at the same time, as in the 
case of ‘333,’ mentioned previously. The contemporary Hindu numeral system  
is an example of this positional strategy but is by no means the only system that 
employs this strategy.

In all the ‘place-value ’ or ‘positional’ systems of the present and the past, the 
shapes of symbols represent a ‘sum’ value, and their locations represent a ‘unit’ 
value. In these systems each position or ‘place’ in the sequence of symbols represents 
a certain power of the base in question, such that any symbol is understood as a 
product of a ‘sum’ or a ‘base number’ and a certain power of the relevant base. For 
instance, the symbols ‘5,’ ‘4,’ ‘3,’ and ‘2’ represent the ‘sum’ element of numbers in 
the Hindu numeral system . In this base-ten system, which is read from left to right, 
larger units first, the sequence ‘5,432’ means ‘5x103 + 4x102 + 3x101 + 2x100.’

Though the ancient Babylonian and the Mayan systems, like the Hindu 
system, were ‘place-value  systems,’ their huge bases proved to be a disadvantage. 

37 Wilder , 1968, p. 56
38 Ifrah , 1990, p. 272 
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Cognitively, the Mayan base of 20 (Figure V-4) and the Babylonian base of 60 
(Figure V-3) were too large to effectively serve as visual references for the 
conceptualization of ‘units’. The large base sizes had adverse effects for symbolic 
representation , as well; they meant either huge tallies for the representation of 
base numbers , or too many ‘ciphered’ numerals (i.e., discrete symbols)—20 in the 
instance of the Mayans, and 60 in the instance of the Babylonians. Indeed, both 
systems used numerals that combined tally  and cipherization  to represent the sum 
values. The combination of cipherization and tally actually creates a secondary 
grouping criterion that competes with the grouping criteria set by the primary base 
of those systems. The conceptual utility of the base system, which depends on the 
ability to use a single standard group as a reference for further abstraction of ‘units’ 
(as in 100=10x10, and 1,000=10x10x10, etc.), is inadvertently compromised if not 
neutralized altogether by this kind of sub-grouping. Moreover, systems that have used 
mixed methods for representing base numbers as a means of abbreviation merely 
substitute the cumbersome process of counting  by equally cumbersome addition 
and subtraction operations. Take for example the Roman ‘IIX’ and ‘VIII,’ or the 
Mayan ‘˚ ̊  ̊ ,’ which present the number eight: the Roman numeral IIX is suggestive 
of arithmetic operation, ‘10-2,’ while the numeral ‘VIII’ suggests the arithmetic 
operation ‘5+3,’ as does the Mayan ‘˚ ̊  ̊ .’ The Hindu numeral ‘8,’ on the other hand, 
connects to the concept ‘eight’ without tying it to specific operations or structural 
images. The Hindu symbolism, therefore, is more effective both for decoding the 
numeral sequence and for the utilization of its symbols in calculation .

The Hindu method combines the best qualities of all the other alternative 
systems. By clearly distinguishing between the sum’s element and the unit’s element, 
it effectively uses the modular system created by the sum and unit conceptual 
elements. Its uniform base—10—is a conceptually practical size. And it is a 
place-value  system. But as this description of other historic notational methods for 
representing numbers clearly shows, none of these important qualities—base-ten 
system, positional system, use of ‘0,’ and ciphered numerals—, for which the 
Hindu numerical system is known, were unique to the Hindu system.

What then was the distinctive and novel quality that set the Hindu system 
apart and high above all the systems that preceded it? The following chapter deals 
with that question.

M D C L X V I MMMCDLXVIII
⇒        ⇒

1000 500 100 50 10 5 1 3, 4 6 8

Figure V-5:  Roman numeral system
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Alpha 
A =1

Beta
B =2

Gamma
Γ=3

Delta
Δ =4

Epsilon
E =5

Digmma*
[ =6

Zeta
Ζ =7

Eta
Η =8

Theta
Θ =9

Iota
I=10

Kappa
K=20

Lambda
Λ =30

Mu
Μ =40

Nu
Ν =50

Ksi
Ξ =60

Omicron
Ο =70

Pi
Π =80

Koppa*
C =90

Rho
Ρ=100

Zigma
Σ=200

Tau
Τ =300

Upsilon
Υ =400

Phi
Φ =500

Chi
Χ =600

Psi
Ψ =700

Omega
Ω=800

San*
m=900

‘‘Γ Υ Ξ Η    =   3, 4 6 8

Figure V-6: Classical Greek alphabet numerals according to Ifrah, 
2000 (p.220): Asterisked letters––Digmma, Koppa, and San––are 
letters of the ancient Greek alphabet that were already obsolete in the 
classical period.

一 二 三 四 五 六 七 八 九 十 百 千

1 2 3 4 5 6 7 8 9 10 100 1,000

三  千  四  百  六  十  八

3,    4    6    8

Figure V-7: Chinese numeral system

V-4. THE HINDU NUMERALS BREAKTHROUGH

In most textbooks the Hindu numeral system  is described as a base-ten-
place-value  system. But this definition does not reveal the secret innovative element 
that made the Hindu system different from all other systems. Base-ten systems 
have been around from time immemorial, right from the point that humans began 
using their fingers as auxiliary devices in counting . The place-value  principle 
also cannot account for the fundamental changes in the science of numbers that 
followed the introduction of the Hindu system. That same place value principle 
depicting the units’ category was used by the Babylonians as early as 1800 BC and 
by the Mayans by 600 AD. Both systems also used a sign equivalent to the ‘zero ’ 
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to indicate the place of a missing ‘unit’ category for which the Hindu system is so 
famous (Figures V-3 and V-4). What set the Hindu numerical system apart from 
all other methods was that it alone opted to cipher ‘base numbers —‘the ‘sum’ 
element of numbers—and only base-numbers. The Hindu numerals ‘1,’ ‘2,’ ‘3,’ 
‘4,’ ‘5,’ ‘6,’ ‘7,’ ‘8,’ and ‘9’ depict the sum-or- base-number element by a single 
symbol, without resorting to any other method.

As varied as the pre-Hindu numeral methods were, it is easy to recognize a 
salient thread common to all. With the exception of the Chinese and the alphabetic 
systems, all feature some form of tally  in their depiction of base-numbers. The 
element of ‘tallying’ can be recognized not only on the 20 and 30 thousand year 
old inscribed wolf’s bones and on prehistoric cave walls, but also in the numerals 
used by the highly developed cultures of Sumer, Egypt, Greece, and Rome. Even 
the Babylonian and the Mayan place-value  systems, both of which utilize signs 
that are equivalent to the Hindu zero , used a combination of tallied and ciphered 
numerals to denote base-number values.39 For example, the Roman numeral ‘VIII’, 
like the Mayan numeral ‘˚ ˚ ˚’ (both representing 8) uses a ciphered ‘5’ and tallied 
‘3.’

This is not to say that cipherization  was a new idea. The method of cipherization 
(or ‘encipherization’) has been around for a very long time, as far back as 3300 
BC. However, cipherization was mostly used to denote the ‘units’ categories (the 
Egyptian ‘∩’ and the Roman ‘X’ for the unit ten for example). The Alphabetic and 
the Chinese systems ciphered both the units and the sums. Among the systems that 
used cipherization, the Hindu numeral system  alone opted to restrict cipherization 
to sums, which are the smallest and the most concrete component of numerical 
concepts—the numerical values that can be most easily represented by tally . Some 
historians maintain that the cipherization of the base-numbers-or-sums, not the 
invention of the zero , was the greatest achievement of the Hindu system.40 The 
zero, in spite of its poetical reputation, has a prosaic history. It was an inevitable 
byproduct of the invention of the place-value  system. All the positional systems 
known to us (the Babylonian, Mayan, and Hindu) eventually invented a symbol 
akin to zero; it was a necessary device to mark a missing units’ category so as to 
avoid ambiguity.41

39 Menninger , 1992, p. 236, “Tally sticks” have been especially popular and long lasting. 
They were used by Swiss diary-farmers until as late as the 19th century, not to mention 
the ‘Exchequer Tallies ’—the notched sticks that served the British Royal Treasury as 
the official tax payments records. English bureaucrats used them until 1826 A.D. 

40 Wilder , 1968, p. 55, Menninger , p. 398
41 Wilder , 1968, p. 152, Even the Babylonian system, which rarely had to indicate a 

missing denomination, used an equivalent sign for zero , though it took the Babylonians 
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Unlike decoding combinations of tallied and ciphered numerals, decoding 
the Hindu numerals does not involve processes of analysis or counting . Thus the 
Hindu numerals form an immediate and direct connection between a symbol and an 
established concept. And unlike the tally  numerals ‘| | ,’ ‘| | | ,’ or ‘| | | | ,’ the ‘ciphered’ 
Hindu numerals ‘2,’ ‘3,’ or ‘4,’ bear no descriptive reference to the image of the 
number they encode; they are entirely arbitrary. Thus their decoding must rely on 
an automatic connection between a visual sign and its meaning. The automatization 
and directness of decoding the Hindu numerals makes these symbols a part of the 
perceiver’s thought processes and optimizes their effectiveness. A sequence of 
signs, say ‘534,’ which can be grasped in a glance, evokes a vivid representation 
of the compound number, ‘five hundred, and thirty-four,’ notwithstanding its three 
‘sums’ and three ‘units’ categories. This abstract visual directness is one of the 
most important cognitive advantages of the Hindu numerals.

In addition, the combination of ciphered numerals and the positional method 
of depicting ‘units’ allows minimal and effective use of symbols. Leonardo of 
Pisa, better known by the name Fibonacci , introduced the Hindu numerals in his 
seminal computation book, “Liber Abaci ” of 1202 AD, thus: “The nine numerals 
of the Indians are these: 9 8 7 6 5 4 3 2 1. With them and with this sign 0, which in 
Arabic is called ‘cephirum’ [cipher], any desired number can be written.”42 In this 
memorable and dramatic statement Fibonacci  captured the essence of the magic 
power of the Hindu numerals system, that is, the ability to write any number, 
regardless of its size or complexity by mean of only ten signs.

And not least, the symbolized sums, and the localized units make the Hindu 
system both purely visual and yet purely abstract. As such the Hindu system 
is entirely compatible with the cognitive mode of mathematical and arithmetic 
thinking. Moreover, with its symbolized sums that are simple enough to be written 
rapidly, its positional strategy to denote units’ categories, and with a special sign 
to indicate empty positions—the zero —the Hindu system is not only a superior 
method for recording and decoding numbers, but is also an effective tool for 
mediating arithmetic calculation . Indeed, it is its utility in numerical calculation 
that has established the Hindu-numeral-system’s unchallenged universality and 
sovereignty in contemporary civilizations.

almost a millennium to create the symbol. Cajori, 1985,  p. 5, noted that the “number 
with a missing sexagesimal place are rare, fewer than 1.7% of the numbers from 1 to 
216,000 are of this kind, as compared with roughly 40% that require a zero (or several 
zeroes) in the decimal system.” In addition, because of their big base, the disparity 
between numbers of different denomination is so big that they are less likely to be 
confused (see Figure V-3). 

42 Menninger , 1992, p. 425 
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V-5. THE NEW ARITHMETIC

Scholars unanimously view the Hindu numeral system  as the ultimate method 
of number representation, a method that leaves nothing to be improved upon, a 
system that signifies the end of a long, winding search for an appropriate expression 
for numbers. George Ifrah  considers the invention of the Hindu numerals “as 
important as the invention of agriculture, the wheel, writing, or the steam engine.”43 
No doubt, the introduction of the Hindu numeral system to mathematical thinking 
brought with it significant cultural progress: For the first time in history mankind 
could use visual signs as an auxiliary device to aid thinking.

Until the appearance of the Hindu system, written numerals were used 
exclusively to record numbers, while arithmetic calculations were made with the 
aid of an abacus  or counting board (Figure V-8). The origin of the term ‘abacus’ is 
not clear. Some trace it to the Semitic ‘abac’ meaning dust; others believe that its 
origin is the Greek ‘abux’ meaning slab. The early abacus was a board or a table 
with lines representing unit categories, on which pebbles were placed to represent 
base number values in a tally  fashion. The word, calculate derives from the Latin 
calculus  meaning pebble and alludes to this kind of calculation  practice.44 Pebbles 
and lines drawn in dust or clay slabs were later replaced by beads, which were 
strung on wires or strings that were attached to a frame.45

The Hindu positional decimal system is a symbolic version of the abacus  
according to Dantzig . He speculated that the Hindus might have used dust boards 
and erasable marks instead of counters and pebbles for arithmetic calculation . 

(Ibid.) This is consistent with Ifrah ’s hypothesis that Indian scholars, who also 
used counting boards to execute arithmetic operations, began at some point to 
replace the concrete counters (beads, pebbles, etc.) with the first nine signs of 
numeration—the digits 1,2, 3 . . . 9.46 The digit in the first column on the right 
indicated the sum of the unit one, the numeral inscribed in the second column from 
the right the sum of the unit ten, and so on. Later, when the custom of considering 
the values of units in a particular order had become “ingrained,” the columns’ 
marks were eliminated. (Ibid.) Once the marking of columns was no longer used, 
a special sign to indicate an absent unit (which was previously indicated simply 
by leaving the column empty) had to be introduced in order to avoid ambiguity. 
Ifrah  surmised that the zero , which originally was termed sunya meaning void, 

43 Ifrah , 1985, p. 437 
44 Dantzig , 1954, p. 7 
45 Ibid., p. 28-9
46 Ifrah , 1985, p. 457-8 
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was a mere substitute for the empty column of a counting board. Only later on did 
it acquire the “meaning of ‘nothing’ as in ‘10 minus 10’ [equal 0].”  47

It is likely that the transformation of the “sunya ” to a numerical concept occurred 
as a result of using the sign for zero  in an arithmetic operation. Ifrah  noted that in 
his 628 AD, Brahmas Iddhanta, the mathematician and astronomer Brahmagupta  
explained the rules for the six basic arithmetic operations—addition, subtraction, 
multiplication, division, raising to a power, and extraction of roots—on positive 
numbers, negative numbers, and the null number.48 His successor, Bhaskara , 
born 1114 AD, outlined the “rules of cipher” in the first chapter of his astronomy 
book, Lilavati, as follows: a+0=a, a-0=a, 02=0, √0=0, a÷0=∞ (the sign ∞ indicates 
infinity).49 Indeed, according to Wilder , the use of symbols in formal mathematical 
operations often forces the introduction of new concepts, and the zero, like many 
other signs, achieved a “conceptual status” only after many centuries of such use.50 
And so, as the use of the Hindu numerals for calculation  transformed piles of 
pebbles into abstract numerical concepts, it also transformed the sign ‘0,’ which 
marks the place of an empty column, into a new mathematical concept: a number 
that counts nothing.

With the introduction of the Hindu numerical system into mathematical 
thinking, arithmetic operations that for centuries had been executed by the manual 
manipulation of objects could now be executed with the mediation of symbols 
that communicate abstract ideas by abstract means. In doing so, the Hindu 
numeral system  paved the way for the use of symbols as auxiliary devices in 
other mathematical topics and helped to usher in a new language of mathematical 
discourse.

47 Ibid., p. 459, It was also called “hah”—sky, “ambara”—atmosphere, and 
“agana”—space, which convey similar ideas for void or emptiness . 

48 Ibid.,  (emphasis is mine)
49 Ball , 1960, p. 150-1
50 Wilder , 1968, p. 61
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Figure V-8:  Abacus

V-6. NEW ARITHMETIC VERSUS OLD ARITHMETIC

In his book, A Short Account of the History of Mathematics, W. W. Rouse 
Ball  dates the creation of modern mathematics  to the introduction of the “Arab 
text books” into Europe,51 that is, from the time Europeans became familiar with 
the Hindu numerals. Ball ’s opinion that the Hindu numeral system  was of central 
importance to the development of modern mathematics is well justified.

Much of European medieval Arithmetic, prior to the introduction of the 
Hindu numeral system , was based on the books of Boethius (475-528 AD), 
“the last Roman of note who demonstrated interest in Greek literature.”52 
Apparently, Boethius’ arithmetic was not new either. In fact, it was a translation 
of Nicomachus  (100 AD), who, according to Ball , remained the authority on 
the subject for more than a thousand years. Boethius’s arithmetic , like that of 
Nicomachus’s, reiterates the Greek’s distinction between arithmetic—‘the science 
of number —’ and logistica —‘the art of calculation,’ a distinction first made in 600 
BC by the Pythagorus school. The Greek’s arithmetic focused on the theoretical 

51 Ball , 1960, p. 263 
52 Ibid., p. 33
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aspect of numerical relationships and proceeded either by rhetorical means or by 
geometrical demonstrations. Logistica, on the other hand, dealt with everyday 
practical calculation and thus centered on the use of the abacus . The former was 
considered worthy for philosophers, while the latter an art that should be relegated 
to slaves.

The new “logistica ,” which carried out calculation  by means of symbols 
instead of the abacus ’ beads, was known in Western Europe as algorithm , or the 
“art of Al-Karism .”53 Al-Karism was a librarian in the court of caliph Al-Mamun 
in Baghdad. His seminal 830 AD book, Al-gebr we’ L Mukabala,54 in which he 
explained his celebrated method of balancing algebraic equations as a device 
for their simplification, was the first arithmetic text book in which the Hindu 
numerical system was fully expounded.55 It is believed that the Arabs, who had 
extensive commercial contacts with India and by this time expressed numbers both 
as written words and in alphabetic numerals, became acquainted with the Hindu 
numeral system  through Brahamgupta’s (600 AD) astronomy book, Siddhanta, or 
other astronomical texts and tables.

The Hindus and Arabs’ rules of numerical operations were not founded on 
deductive methods for they had no interest in logical arguments and deductive 
“proofs.”56 Being practically oriented, they were interested in arithmetic and algebra  
because both yield quantified results. Perhaps because algebra is in principle an 
abstraction of arithmetic, the Indians and the Arabs made no distinctions between 
them treating arithmetic as part of algebra.57 In any event, many of the symbols 
that are used today in arithmetic were used first in algebra to replace the rhetorical 
methods by which it proceeded earlier. For instance, in his 1557 algebra the 
English mathematician Robert Recorde introduced the sign, ‘=’ (equal to) with 
the following explanation: “ . . . to auoide [avoid] the tediouse repetition of these 
woordes: is equalle to: I will sette as I doe often in woorke vse, a pair of paralleles, 

53 Ibid., p. 156, ‘Al-karism ’ is a corruption of the Arabic ‘Al-Khwarizmi’ meaning, ‘from 
Khwarizmi,’ a province in Persia. His full name was Mohammed Iben Musa Abu 
Djefar Al-Khwarismi. 

54 Dantzig , 1954, p. 79, ‘Mukabala Al-gebr’, which is the origin of the term algebra , 
means ‘restoration,’ ‘Mukabala’ means simplification. ‘Al- gebr we’ L Mukabala’ 
means “on restitute and adjustment”—a reference to a method of simplifying algebraic 
equations by performing the same operations on both sides of the equation. For 
instance, the algebraic expression 3x+8=20 can be simplified with Al-Khwarismi’s 
method by subtracting eight from both sides of the equation and then dividing both by 
three, thus, (3x+8-8)÷3= (20 -8) ÷3, to get the ultimate simplification: x = 4.

55 Ball , p. 1960, 156, Dantzig , 1954, p. 79
56 Kline , 1980, p. 111-113
57 Ball , p. 1960, 158,183
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or gemowe [twin] lines of one lingth, thus: =, bicause noe .2. thynges, can be 
moare equalle.”58

The growing cultural need for more advanced applied mathematics  favored the 
Hindu/Arab mathematics, which is concerned with practical quantitative topics, 
over the Greek’s, which adheres to theoretical purity in mathematical thinking.

With the mediation of the Hindu numerals and the operational signs, arithmetic 
calculation  could be carried out by means of conceptual thinking and was no 
longer restricted to the mechanical operations of the abacus . That development 
created a fusion (or confusion) between what theretofore were two distinct studies, 
one—arithmetic—devoted to theoretical quests, and the other—logistica —devoted 
to practical purposes. Consequently, contemporary arithmetic combines both 
aspects of numerical reckoning, and it is up to our educational approach whether 
we make arithmetic calculation  worthy for philosophers or a slave’s chore.

V-7. INSTRUMENTAL VERSUS CONCEPTUAL USE OF THE HINDU 
NUMERALS

The history of the Hindu numeral system  indicates that the familiar vertical 
algorithm  can be traced to the use of the abacus . Just as on an abacus each column 
represents a particular unit’s category, so too in the Hindu system, numbers are 
written one beneath the other in a way that aligns the same categories of decimal 
units in the same column. For example:

    1   2   3
+ 4   0   5
    5  2   8

The link to the abacus  implies that this kind of algorithm  incorporates an 
instrumental as well as conceptual element.

The early vertical algorithm  that was practiced by the Hindus, the inventors 
of this system, and the Arabs, who were the first to adopt it, operated on the 
largest units first and moved toward the smaller units in a left-to-right motion.59 
The left-to-right direction of the Hindu numerals corresponds to the direction 
of the Sanskrit script, which Indian scholars used at the time they invented their 
numerals. That early use of Hindu numerals in calculation  proceeded from left to 
right attests to their conceptual element, because the conceptual preference is to 
consider the larger units, which render the general size category of a number, first. 

58 The New Encyclopaedia Britannica (1986-15th edition). Vol. 23, p. 612
59 Cajori , 1985, p. 91; Ball , 1960, p. 88
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This conceptual preference manifests itself in the receding order in which numbers 
are typically written and verbally articulated, and in mental calculation, which also 
tends to start with the largest units and proceeds toward the smaller units.

However, the left-to-right direction necessitated making corrections as 
numbers were added. For instance, in adding the numbers 648 and 275 (as 
seen in the example below) the numeral 8, which is the sum of 6 and 2, in the 
hundred-column, had to be erased and change into 9 after the numerals 4 and 7 
in the ten-column had been added producing an additional hundred-unit. And the 
numeral 1 (the right numeral of eleven, which is the sum of 4 an 7), had to be 
erased and change into 2 after the numerals 8 and 5 in the one-column had been 
added producing an additional ten-unit, thus:

648+275 = 6  4  8
                + 2  7  5
              → 8
                   9  1
                   9  2  3

Tables or boards dusted with sand or flour were intended to make erasing and 
rewriting easy. The contemporary approach to vertical addition and subtraction, 
which involves moving from right to left, starting with the smallest unit and 
working up toward the largest unit, was invented in sixteen hundred A.D. by an 
Englishman about whom we know nothing except his name—Garth .60 The date 
places this invention some eight hundred years after the emergence of the Hindu 
system, and four hundred years after its introduction to Europe. It seems that 
Garth’s algorithm , which deals with the smaller units first and works up toward the 
largest units, calls for viewing numbers in a counterintuitive manner. The intuitive 
origin of the left to right direction was probably the reason that the inconvenient 
Hindu/Arab algorithm survived eight hundred years before it gave way to the 
much more convenient right to left direction (which does not require erasing and 
rewriting).

Yet, even with its left-to-right direction, which reflects the conceptual dictate 
of considering larger terms first, the Hindu/Arab method, much like Garth ’s, 
favors instrumental utility of numerals over mental and conceptual efforts in 
computation. Like Garth’s, it positions written numbers vertically—an addend 
underneath an addend in addition, and a subtrahend underneath a minuend in 
subtraction such that the same units categories are aligned in a single column. 
Both methods achieve their utilitarian effect by breaking numbers into disjointed 
decimal-units and dealing with each category of unit separately.

60 Ball , 1960, p. 188



67TWO AND TWO MAKE ZERO

The consequence of the vertical algorithm  is that, regardless of the number of 
columns representing the constituent ranks and sizes of the numbers, arithmetic 
operations invariably involve no more than two columns at a time. Thus, the entire 
procedure of addition or subtraction in vertical algorithms remains in the cognitive 
framework of numbers within the 20s range. Take for example the subtraction of 
1,245 from 2,763. Because 5 is written underneath 3, one must extract a ten from 
the 63 (of the minuend 2,763), and add it to the 3 in the one-column as to allow the 
subtraction of 5 (of the subtrahend, 1,245) thus:

2,763-1,245 =    2,  7  56 (1)3
                        - 1,  2   4    5
                          1,  5   1    8

The operation seen above involves five steps: (a) extract 10 and add it to 3 
in the one-column; (b) subtract 5 from 13; (c) subtract 4 [tens] from 5 [tens]; 
(d) subtract 2 [hundreds] from 7 [hundreds]; and (e) subtract 1 [thousand] from 
2[thousands].

The first and second operations (extracting 10 and adding it to 3 in the 
one-column, and then subtracting 5 from 13) will be the same regardless of what 
the minuends or the subtrahends are as a whole so long that the digits that represent 
the sum of the unit—one in the minuend is 3 and that of the subtrahend is 5. 
Moreover, it makes no difference what the sizes of the units involved are. So long 
as a 5 of any unit-size has to be subtracted from a 3 of an equivalent unit, the same 
operation will be repeated as a higher unit must be extracted from the next number 
on the left as to allow the subtraction of 5, thus:

(N = any number)         N-1N, (1) 3  N  N
                                       - N,       5  N  N
                                         N,       8  N  N

The consequence of this itemization and atomization of numbers is that the 
child’s ability to form concepts of numbers larger than 20, not to speak of numbers 
beyond 100, is compromised. Indeed, even when they can easily subtract one from 
one hundred mentally, some students are perplexed and lost when they have to 
subtract one from one hundred written vertically; they do not know how on earth 
to subtract one from a zero , let alone, from two zeros! The vertical arithmetic 
operation prevents them from recognizing the numerals, 1, 0, and 0 as constituent 
elements of the same number (100).

Whereas vertical algorithm  places the numbers one beneath another and aligns 
same decimal units in a single column so as to allow calculation  in the fashion of 
abacus  operation, horizontal algorithm  places numbers one next to the other, as 
in 50+34=84, such that an abacus-like operation is not possible. The horizontal 
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algorithm, then, forgoes the instrumental value of the Hindu-numerals and instead 
uses them primarily for their conceptual value. In this capacity the numerals are used 
as mnemonic signs for numerical concepts. And as mnemonic signs these numerals 
become an auxiliary for promoting arithmetic thinking, rather than an auxiliary for 
promoting expediency and ease in the execution of arithmetic calculation . Although 
not as efficient as the vertical plan, the horizontal algorithm has its important 
pedagogical advantage over the latter, because by removing the instrumental 
aspect from the Hindu numerals (i.e., the potential for operating in an abacus-like 
fashion), the horizontal presentation helps children to relate to numbers as integrated 
whole. The consideration of numbers as an integrated totality enhances conceptual 
understanding of numbers and their relationships to one another, and promotes 
better understanding of multi-unit numbers. The method of solving arithmetic 
problems horizontally is practically the same method as solving them mentally; 
that is, operating with the largest unit first and then moving on to the smaller units, 
as the conceptual approach intuitively proceeds in mental calculation. It seems 
then, that the horizontal algorithm could mediate and aid mental computation; 
as such, they are invaluable for basic arithmetic education.61 After all, in mental 
calculation the students must keep in their working-memory (the short-memory 
span) the totality of all the numbers that are related to a given arithmetic problem; 
this effort, in turn, enhances their understanding of the properties of the numbers 
and the numerical relationships involved in the task at hand.

In fact, neither the Hindu/Arab vertical algorithm  nor the currently used vertical 
algorithm devised by Garth  were devised for instructing grammar school students 
in their first attempts to grapple with numerical ideas and their arithmetic; instead, 
they were aimed to meet the needs for increasing expediency in calculations of 
seasoned professionals who already had a firm grasp of the counting numbers 
and beyond. Vertical algorithms—which are necessary only when the arithmetic 
involves large and complex numbers, and in long-multiplication and long-division 
operations—can and should be introduced after children have established solid 
understanding of the Hindu numerals’ positional system, and have demonstrated 
proficiency in mental calculation  and horizontal algorithm  in the arithmetic of 
smaller or less complex numbers.

61 English and Halford, 1955, P. 168-71, Katz , 1981, Booklet A, p. 19
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VI

THE ORIGIN OF NUMBER

VI-1. THE SEARCH FOR NUMBER SENSE

Numbers, in one or another form, are indispensable to all known civilizations, 
both ancient and modern. Therefore, it is not surprising that scholars from many 
disciplines are interested in understanding the origin of numerical concepts, not 
the least the question of whether humans are endowed with a biologically based 
number sense . There are various categories of numerical concepts. For example, 
the category mathematicians call the counting numbers includes all positive 
whole numbers from ‘one’ on, exclusively. Because the counting numbers are the 
most primal and elementary of all numerical categories, they are the foundation 
upon which all of the other numerical concepts are constructed; understandably, 
this class of numbers is at the center of the search for ‘number sense.’ It is 
important to bear in mind, that as a pivotal element of scientific and mathematical 
contemplations, numerical concepts—even the most rudimentary, such as the 
counting numbers—must be available to voluntary and rational thinking or they 
will be deemed irrelevant. It is the purpose of this chapter to explore whether there 
is any merit to the proposition that there exists a biologically based apparatus that 
is capable of forming mathematically valid counting-numbers. This question is 
examined from three perspectives: (1) Is there reasonable biological evidence of 
a number-specific apparatus? (2) Is the proposed mechanism of such an apparatus 
consistent with neuroscientific knowledge? (3) Is there historical or anthropological 
evidence that provides support for its existence? Let us begin with a brief review 
of the conceptual properties of the counting numbers:

The ‘counting numbers’ are discrete ideas of specific sizes. Each of these 
numerical sizes is envisioned as, and defined by a fixed sum of nonspecific 
abstract units: Three is larger than two because it has one unit more than two, and 
it is smaller than four because it has one unit less than four. By basing definition of 
size on analysis of generic units, these concepts define sizes in an objective, exact, 
and absolute, albeit purely abstract, way. The significance of number concepts 
is that they institute the cognitive tools for replacing the spontaneous sensory 
quantification—which is subjective, inaccurate, and relative—with a quantification 
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that is objective, exact, and absolute. Numerical evaluation is typically used only 
in situations that call for accurate definition of size. Tasks that can be accomplished 
by ordinary sensory impressions, such as choosing the larger pile of berries or a 
space large enough to park one’s car, require no numerical reference.

It seems, then, that the term “number sense ” harbors conceptual conflict 
on two levels: First, numbers in and of themselves are devoid of any physical 
attribute and, therefore, possess no sensory information that can be perceived 
by our senses. Second, it is precisely because number quantification is based 
on rational, analytical, and voluntary processes rather than on spontaneous 
sensory impressions that it achieves its exact and objective results. Thus, from a 
cognitive standpoint, the term “number sense” is an oxymoron. It is antithetical 
to the cognitive properties and to the cognitive significance of numbers, the ways 
numbers function, and the very rationale for using numbers.

It is worth noting, however, that in everyday language the term number can 
be a synonym for such words as many, few, some, and several. Also, as is pointed 
out by Dehaene ,1 number may indicate written or spoken numerical symbols. In 
addition there is a tendency to confuse the decidedly abstract concept of number 
with quantities of phenomenal units (e.g., groups of toys, candies, counters, etc.). 
The latter confusion stems from the human tendency to objectify the abstract 
counting number, especially the small numbers within the subitation  range, and 
perceive them as if they were physical phenomena imposed on us from without 
(see Chapter III-2).

The term sense itself has a few interpretations as well. In its literal 
understanding, sense means a faculty with which we perceive attributes of the 
physical world such as sound, temperature, light, smell, etc.; but in its figurative 
interpretation, it could also mean skill, knowledge, understanding, and the like, or 
it can mean instinct, intuition, or feeling. The conjunction of the terms sense and 
number has two major interpretations depending whether the term sense connotes 
instinct, or whether it connotes knowledge and skill. In pedagogical literature 
the term number-sense often means number competency  that is acquired in 
schools, specifically, the understanding and mastering of numerical relationships, 
numerical operations and their algorithms, and the ability to apply this knowledge 
in solving problems. Although the term sense in the conjunction ‘number sense ’ 
is not interpreted literally in an educational context, it is still puzzling; why are 
all other scholastic subjects taught for achieving skill, proficiency, or knowledge, 
while arithmetic alone is taught for acquisition of sense? But the “number 
sense” that must be taught in school cannot be considered the origin of number 
in human cultures. In contrast, in the natural-sciences literature where the term 
sense connotes instinct, the conjunction ‘number sense’ speaks about an innate 

1 Dehaene , 1997, p. 35
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or intuitive number receptor that is biologically founded. This interpretation of 
number-sense has a direct implication for the discussion of the origin of numbers 
in human cultures.

The principle scientific basis for a biologically based number sense  is a 
hypothetical inborn brain-module programmed specifically for processing 
numbers. Proponents of various innate-number  theories recognize this apparatus 
by the term, accumulator . The concept, accumulator, was introduced by Meck  
and Church  in their 1983 research paper: A Mode Control Model of Counting and 
Timing Processes, in which they described their study of rats’ response to time and 
number. Because the aforementioned study and the concept of ‘accumulator’ to 
which it gave rise have a prominent place in theories of the origin and acquisition 
of number concepts, we ought to examine this research to learn what the 
accumulator is all about. Let us begin with the description of Meck  and Church ’s 
1983 experiment and their proposed counting and timing processor:

In the initial phase of their experiment, Meck  and Church  trained rats to press 
the far-most-left or far-most-right lever in a 10-lever box in response to white-noise 
signals. The noise signals were constructed by various series of cycles. Each cycle 
was made up of a period of noise and an equal period of no noise: | Noise |No Noise. 
The rats are rewarded when they press the left lever in response to a 2-second 
signal consisting of 2 noise cycles and when they press the right lever in response 
to an 8-second signal consisting of 8 noise cycles. The duration of a single cycle of 
both the 2-second and 8-second signals was 1 second. As seen in Figure-VI-1, in 
this training phase both of the signals’ attributes—namely, (a) the total duration, 
assumed by Meck  and Church  to test the rats for time perception; and (b) the 
number of noise-cycles, assumed to test the rats for number perception—were 
synchronous, or in their words “confounded.”

In the actual test Meck  and Church  introduced two additional sets of signals, 
each set consisting of six new signals. In one of these sets the total duration of 
signals was held constant at 4 seconds, while the number of cycles varied between 
2, 3, 4, 5, 6, or 8 cycles. In the other set the number of cycles was held constant 
at 4 cycles, while the total duration of the signals varied between 2, 3, 4, 5, 6, 
or 8 seconds. Their rational for holding one of the signals’ attributes (example, 
duration of signal) constant at the intermediate value (4 seconds in this example) 
while varying the other attribute (number of cycles in this example) was to obtain 
a controlled measurement of the latter (response to the number of cycles in this 
example).

As seen in Figure-VI-2, the results showed that both 4 cycles with a total 
duration of 2 seconds (each cycle lasting ½ a second) and 2 cycles with a total 
duration of 4 seconds (each cycle lasting 2 seconds) elicited left-choice responses. 
The former was deemed, by Meck  and Church , to convey time discrimination, 
while the latter was deemed to convey number discrimination. On the other hand, 
both the four 2-second cycles totaling 8 seconds and the eight ½ a second cycles 
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totaling 4 seconds elicited right-choices responses. Meck  and Church  deemed the 
former an indicator of time discrimination and the latter an indicator of number 
discrimination.

This experiment and Meck  and Church ’s interpretation of its data gave rise 
to the idea that time discrimination and number discrimination use the same 
mechanism. Meck  and Church  proposed an internal mechanism that measures time 
duration and numerical value of quantities simultaneously. They further speculated 
that this mechanism emits pulses that can be controlled in three “modes:”2 (1) the 
run mode, in which the signal generates a continuous process that ends when the 
signal ends; (2) the stop mode, in which the signal and process are synchronized 
throughout the administration of the signal; and (3) the event mode, in which 
“each onset of the stimulus produces a relatively fixed duration of the process 
regardless of stimulus duration,” seen in Figure VI-3. (Ibid.) Put simply, in the 
run mode the number and the duration of discrete noise-cycles are ignored, and 
only the total duration of signals is registered, while in the event mode the total 
duration of signals and the durations of discrete noise-cycles are ignored, and only 
the number of noise-cycles are registered. Only in the stop mode is the stimulus 
registered as is.

The mechanism for timing and counting  comprises three functions, as 
illustrated in Figure-VI-4: The first function is a pacemaker-switch-accumulator , 
which consists of three components: (a) a pacemaker, which emits pulses with 
fixed intervals between pulses; (b) a switch, which controls these pulses in three 
modes: run, stop, and event, as explained above; and (c) an accumulator, which 
accumulates the resulting information as time or as number. The pacemaker-
switch-accumulator is used as a “clock” (for estimating time-duration) when the 
“switch” operates in run or stop mode, and as a “counter” (for estimating the 
number of events in a cycle) when the “switch” operates in event mode; thus, it 
“may be called either a clock or counter.”3 The accumulator values (of both time- 
and number-outputs) are passed on to the second function, that is, the memory: 
first to working memory and from there to reference memory. The accumulator’s 
current status is passed through both kinds of memory to the third function of this 
mechanism, that is, the comparator from which the left-or-right-choices ensue, 
and in which current values are compared with the rewarded values that were 
stored in the reference memory.

This model of a counting and timing mechanism is at the center of the 
accumulator  concept and of the major innate-number  theories.

2 Meck  and Church , 1983, p. 323, In Meck  and Church ’s actual words: “Perhaps there 
is an internal mechanism that puts out pulses that can be controlled in several modes 
[…].”

3 Ibid., p. 323-4
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One way to verify the scientific validity of Meck  and Church ’s hypothesis is 
to examine whether or not it predicts animal behaviors in other experiments. In 
this respect, some biologists beg to differ with Meck  and Church , in particular 
with Gibbon’s scalar-expectancy theory  (SET) on which their pacemaker-switch-
accumulator  model is based. Gibbon proposed a mechanism that delivers pulses 
at a more or less even pace and measures time in a direct way. But Machado 4 and 
Joana Arantes 5 argue that the SET model, which implies evenly measured and 
unchangeable timing, failed to predict the behavior of the pigeons they studied. 
Their experiments suggest that the context in which stimuli were presented 
affected the pigeons’ choices. Machado  and Pata proposed an alternative model 
they called the learning-to-time (LeT) model. In fact more and more experiments 
substantiate that the same period of time may be perceived as having different 
durations. Several factors that affect perception of time emerged in these studies; 
one of them is the rapidity or speed at which the stimuli are administrated. For 
example, Khoshnoodi  et al. used tactile vibrations with different frequencies on 
their human subjects. Their experiment indicates a direct correlation between the 
increase in the frequency of the vibrations and the subjects’ overestimation of 
duration of time.6 Other studies suggest that heightened agitation, excitement, 
or fear results in overestimation of time. Perhaps the most dramatic example of 
these studies is David Eagleman ’s highly publicized experiments involving free 
falls from a height of 150 feet into a net. The students who volunteered for these 
experiments estimated that their fall took much longer than it actually did—36% 
longer than their compatriots on the ground estimated these same falls to be.7

However the most pertinent question for the issue of number sense  is whether 
or not the Meck  and Church’s  experiment succeeded in demonstrating that rats 
can perceive numbers. As it were, the focus of Meck  and Church ’s research was to 
establish a connection between rats’ counting  and timing processes, not to study 
rats’ counting or numerical abilities per se. In the initial phase of their experiment, 
Meck  and Church  trained rats to discriminate between two periods of noise, 
one lasting for 2 seconds and encompassing 2 cycles, and the other lasting for 8 
seconds and encompassing 8 cycles. Consequently, the time-variables (the total 
duration of signals) and the number-variables (the number of cycles in signals) 
were completely synchronized such that the rats could use either one of the signals’ 
attributes in making their choices. Under the conditions of the training phase, then, 
one cannot ascertain whether the rats were using a number cue, or a time cue. 
Hence, no valid evidence for either a counting—or a number—discrimination 

4 Machado  et al., 2005, p. 111-122
5 Arantes , 2007, p. 269-278
6 Khoshnoodi , 2008, p. 623-633  
7 Eagleman , 2008, on line
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process was demonstrated at this stage. On the other hand, the results of the actual 
experiment give an impression that rats can discriminate number and time for 
they pressed the right lever in response to the longest-duration as well as to the 
most-numerous-cycles signals, and the left lever in response to the shortest-duration 
as well as the fewest-cycles signals. Alas, by holding one of the variables constant 
(in order to observe the changes in the other variable) in their actual test, Meck  and 
Church  inadvertently introduced a third variable—the duration of single cycles. 
For example, in the “test for time,” in which the number of cycles was held at 4, 
the 2-second signal could accommodate 4 cycles of only ½ a second each while 
the eight-second signal could accommodate 4 cycles lasting as long as 2 seconds 
each. In the “test for number,” in which the duration of signals was held at 4 
seconds, the 8 cycles could last only ½ a second each, while the 2 cycles could last 
as long as 2 seconds each. But Meck  et al., who theorized that in the event mode 
all noise cycles are registered as having equal duration regardless of their actual 
duration or the total duration of the signal, did not include this additional variable 
in their calculations and analysis of the experiment’s results, notwithstanding that 
the ratio of ½ a second to 2 seconds is 1:4—the same as the ratio that they believed 
was necessary to allow the rats in their experiment to distinguish between many 
vs. few, and long vs. short.

Even if justified by their hypothetical ‘event mode,’ Meck  and Church ’s 
disregard for the differences between the durations of a discrete events (or 
noise-cycles) is puzzling: Why cannot an animal, able to distinguish differences in 
total durations of a string of noise-cycles when these differences are of 1:4 ratio, 
distinguish differences in durations of events (single noise cycles) when these 
differences are of the same 1:4 ratio? After all according to their model, “in the 
‘stop’ mode the process occurs whenever the stimulus occurs,”8 suggesting that 
the rats can recognize these two kinds of duration: the total duration of a signal 
and the duration of each segment in the stimulus (otherwise this mode could not 
be possible). Moreover, Meck  and Church ’s earlier study demonstrated “that a rat 
can time two signals simultaneously and independently,” (Ibid.) suggesting that 
rats can attend to two different aspects of the same auditory signal simultaneously. 
And not less important, why can an animal discriminate between different 
numbers of noise-events better than between the rapidity (or speed) with which 
these noise-events are delivered? After all, noise and the noise pattern, which 
are vibrations of air, are decisively physical phenomena that can be recognized 
through the senses, while numbers per se are devoid of physical manifestation 
such that they cannot be recognized through the senses. That is to say that the fact 
that a signal of 4-sec. duration with faster administration of noise cycles elicited 
the same response as a signal of 8-sec. duration with slower administration of 

8 Meck  and Church , 1983, p. 323
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noise cycles could be attributed to the rats’ ability to use two distinct properties 
of the noise signals, namely, the total duration signal and the rapidity at which the 
noise-cycles of the signal proceed. This suggests in turn that the rats did not have 
to rely on number cues in making their choices.

Recognizing scientists’ penchant for attributing human qualities to animal 
behaviors, the zoologist and psychologist C. Lloyd Morgan  postulated,

In no case may we interpret an action as the outcome of the exercise 
of a higher psychical faculty, if it can be interpreted as the outcome of 
the exercise of one which stands lower in the psychological scale.9

According to the above principle, known as Morgan’s Canon, it is more 
plausible that the rats in Meck  and Church ’s experiment responded to the total 
duration of noise, and the speed or rapidity with which increments of noise 
were administered; those are the two variables in the signals that, unlike number 
discrimination, could be described in terms of an animal’s auditory function that 
need not resort to higher psychological processes such as labeling and counting . In 
fact, Meck  and Church  themselves acknowledged that the term counting, which is 
associated with labeling, may not be appropriate for describing the rats’ behavior 
in their research and that, “Whether or not animals can apply symbolic labels 
to the numerical attributes of stimuli remains uncertain.”10 It seems, then, that 
the scientific foundations of the accumulator  are not sound enough to provide an 
unequivocal support for theories of number-sense.

Nonetheless, the accumulator  concept became a fertile ground for various 
number-related innateness theories. By 1997 when Dehaene  published his book, 
The Number Sense, accumulator became commonly used jargon.

Animals possess a mental module, traditionally called the 
‘accumulator ,’ that can hold a reregister of various quantities. [This 
mechanism] opens up a new dimension of sensory perception through 
which the cardinal [value] of a set of objects can be perceived as easily as 
their color, shape, or position. [ . . . ] This number sense  provides animals 
and humans alike with direct intuition of what number means.11

In their theory of extracting the integers  from the set of real numbers , Gallistel  
and Gelman  propose that number representation in the accumulator  encompasses 

9 Morgan, 1894, p. 53
10 Meck  and Church , 1983, p. 333
11 Dehaene , 1997, p. 4-5
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the entire range of real numbers in a nonverbal form.12 Children extract the whole 
numbers from the ‘real’ by mapping the accumulator’s “preverbal numerical 
magnitudes to the verbal and written numerical symbols and the inverse mappings 
from these symbols to the preverbal magnitudes.”13

Gallistel  and Gelman ’s explanation is at odds, however, with most proponents 
of innate-number  faculty. Stephen Laurence  and Eric Margolis , claim that the 
“standard” version of number representation in the accumulator  is that it represents 
numerical value of quantities approximately. “Instead of picking out 17 (and just 
17), an Accumulator-based representation indeterminately represents a range of 
numbers in the general vicinity of 17.”14 And Laurence  and Margolis  explain:

Accumulator represents numerosity via a system of mental 
magnitudes. [ . . . ] Instead of using discrete symbols, the Accumulator 
employs representation couched in terms of a continuous variable. 
[ . . . ] Imagine water being poured into a beaker one cupful at a time 
and one cupful per item to be enumerated. The resulting water level 
(continuous variable) would provide a representation of the numerosity 
of the set: the higher the water level, the more numerous the set.15

Karen Wynn  agrees that the way the accumulator  represents numbers 
is different from the way verbal counting  does. “It is the entire fullness of the 
accumulator, not the final increment alone” that represents the numerical value of 
a quantity of items, she explains.16

The proposition that numbers are represented by the “entire fullness of the 
accumulator ” (or continuous estimate) suggests that the accumulator represents 
numbers that have no units. The question is then, what qualifies these presentations 
to be considered numbers? After all numerical sizes are distinguished from one 
another by the specific sum of their units. Without the separation into units, numbers 

12 The set of real numbers  consists of, in addition to whole-positive-and-negative 
numbers, the set of rational numbers , which are all the numbers that can be defined 
as a ratio between two whole numbers (e.g., 5/1, 1/2, or 23/47), and the set of 
irrational numbers , which are the numbers that cannot be defined by relationships 
between whole numbers. For example the ratio between a circle’s circumference and 
its diameter—known as pi—, and the ratio between a diagonal of a square and its 
two sides—the square root of two—represent real geometrical relationships that have 
numerical values, yet they cannot be defined as a ratio between two whole numbers.

13 Gallistel  and Gelman , 1992, p. 43-74
14 Laurence  and Margolis , 2005, p. 221
15 Ibid., p. 218-9
16 Wynn , 1992, p. 228
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cannot answer the question, “How many?” It is possible that for the proponents 
of number-sense, the theory that the accumulator assembles its information in 
successive increments (that is, the separate inputs of the pacemaker) grants sufficient 
evidence for the presence of numbers. If true, the accumulator must be a mechanism 
through which physical aggregates are transformed into a mental continuum.

Undeniably, as Siegler  and Laski ’s and Booth  and Siegler ’s 2006 experiments 
demonstrated, numerical magnitudes can be visualized as continuous physical sizes 
such as length of lines. In the aforementioned experiments Siegler  at el. represented 
the escalating sequences of the counting  numbers as linear continuums in which 
only the endpoints of the line indicated a numeral. For example, if the sequence 
of numbers was 0 through 100, the numeral ‘0’ was indicated on the left end of 
the line and the numeral ‘100’ on the right end; the same line could represent the 
sequence 0 through 1,000 by substituting the 100 with the latter. Both child and adult 
subjects had to find the location of various numbers on this line. For instance, on a 
line representing the numbers 0 through 100, the location of 50 would be exactly in 
the middle of the line; but on a line representing the numbers 0 through 1,000, the 
location of 50 would be exactly at the end of the first twentieth portion of this line. 
The Siegler  et al. studies showed a positive correlation between subjects’ arithmetic 
aptitude tests and overall mathematical knowledge and experience, and their success 
in correctly locating numbers on the lines. These results indicate that the ability 
to conceive number as continuous size relies on pre-existing numerical concepts, 
which means that numerical definitions of continuum are a product rather than the 
source of numerical concepts. In other words, concepts of numerical sizes could be 
converted into concepts of continuum sizes, but continuums could not be converted 
into numerical concepts spontaneously and without an existing grasp of numbers.

In addition to being a continuum, the accumulator ’s size estimation is also an 
approximation that is tied to concrete phenomena. The merging of these properties 
raises the question of what distinguishes number sense  from the ordinary perceptual 
estimation of phenomena’s sizes. The proponents of number-sense do not dwell 
on this question; on the other hand they do try to provide solutions to a related 
problem that is raised by the accumulator’s properties: Given that the accumulator 
presents a numerical value of quantity as a continuous and approximate entity, 
what is the process through which this continuous approximation is transformed 
into a numerical concept that is an exact and discrete sum of units?

Gallistel  and Gelman  offer that the only thing that children have to do in order 
to transform the accumulator ’s information into specific numbers is to find the 
appropriate matching “cells” of the preverbal magnitudes (i.e., the ‘real numbers ’), 
which are represented in the accumulator “in tabular arrangements” of “answers.”17 
For Gallistel  and Gelman  (and as Carruthers , Laurence , and Stich  pointed out) 

17 Gallistel  and Gelman , 1992, p. 43-74
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integers  occur “only against the background of representational resources that most 
others take to be a far greater psychological achievement.”18 By suggesting that the 
real are more basic than integers, they turn on its head the conventional wisdom 
that considers the set of the counting numbers the basic system out of which other 
numerical systems have developed. But this is not the only problem with their 
solution: Gallistel  and Gelman ’s image of “tabular arrangements” of “answers” to 
which the child may attach matching symbols suggests a simple labeling process 
that limits the applications of these symbols—as will be detailed later. Moreover, 
their postulation, which speaks of the “retrieval” of “number facts” by means of 
matching verbal and written numerals with the “preverbal magnitudes,” which 
in turn are used for finding “appropriate cells in tabular arrangements of the 
answers,” (Ibid.) conflicts with neuroscientific research into human memory. The 
growing consensus among scientists is that humans’ memories are malleable and 
unstable, and not orderly indexed in secured and reliable tables, as proposed by 
Gallistel  et al.

Dehaene  offers a different solution: The transformation of the accumulator ’s 
registered continuum into a specific number is achieved by human symbolic 
capacity. He argues, “Language allows [humans] to label infinitely many different 
numbers;” these labels “symbolize and discretize any continuous quantity.”19 A 
child acquires number ideas by learning to label quantities; he accomplishes this 
task by correlating numerical symbols with his accumulator’s response to their 
corresponding quantity. When the child realizes that the word ‘three’ is very often 
mentioned when his mental accumulator is in a particular state (in a response to the 
presence of three items), he eventually will understand the meaning of the word 
‘three.’20 But like Gallistel  et al.’s theory of attaching numerals to the “appropriate 
cells in tabular arrangements,” Dehaene’s labeling theory also amounts to a simple 
matching or mapping of symbols, albeit, his is the matching of linguistic symbols 
with the accumulator’s fullness, instead of matching linguistic symbols with brain 
“cells” and vice versa. Both theories are inconsistent with the way neuroscientists 
view human symbolic function.

For neuroscientists, humans’ symbolic function is much more than a labeling 
mechanism. It is a multileveled system that is constructed upon a rich and 
intricate web of conceptual and symbolic connections. According to Edelman , 
the symbolic function is an entirely different way of remembering and forming 
concepts.21 Immensely efficient in retaining and retrieving concepts, symbolization 
significantly expands humans’ capacity to relate concepts to one another, to 

18 Laurence  and Margolis , 2005, p. 221
19 Dehaene , 1997, p. 5
20 Ibid., p. 106-7
21 Edelman , 1998, p. 92-3
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re-categorize and to re-code them. Deacon  describes the effect of our symbolic 
function thus:

We are not just a species that uses symbols. The symbolic universe 
has ensnared us in an inescapable web. Like a ‘mind virus,’ the symbolic 
adaptation had infected us, and now by virtue of the irresistible urge it 
has instilled in us to turn everything we encounter and everyone we 
meet into symbols,[…].22

Labeling reduces the complex-multileveled relationships that characterize 
human symbolic function into “a simple mapping relationship.”23 It does not 
recognize the difference “between the rote understanding of words that my dog 
possesses and the semantic understanding of them that a normal human speaker 
exhibits.” It is precisely because, in humans, symbols rely on a rich “web of 
associative relationships,” which can create references “to impossible things,” 
that the direct correspondence between words and objects is “secondary” and 
“subordinate” to the wider, more abstract conceptual applications of words. 
(Ibid.)

Deacon  distinguishes between two kinds of symbolic processes: the symbolic 
reference, which is the complex system described hitherto, and the indexical 
association.24 The “indexical association” is formed when one learns to connect a 
pattern of sound with “something else in the world.” This kind of association can 
be acquired through operant conditioning.25 Although, words can serve indexical 
functions, he warns, their “symbolic content” in this function is “minimal.” 
(Ibid.) That is to say that the meaning of the words, used in the indexical 
function, is immaterial to animal response to those words. This observation 
implies that forming an indexical association between the verbal pattern of the 
word ‘three,’ and a group of 3 cherries does not necessarily initiate or indicate 
grasping the meaning of the word ‘three.’ Moreover, in human interactions the 
probability that the occurrence of a word and its corresponding referent is frequent 
enough for forming an indexical association is extremely low, for it is acquired 
through operant conditioning, which requires frequent and incredibly numerous 
repetitions.26 Charles Ferster  and Clifford Hammer ’s early-1960s experiments, in 
which they trained two chimpanzees to count, drive this point home. Trained by 

22 Deacon , 1997, p. 436
23 Ibid., p. 69-70
24 Ibid., p. 79, 412
25 Ibid., p. 80, Operant conditioning modifies the spontaneous responses to stimuli 

through reinforcing or inhibiting behavior depending upon their desirability. 
26 Ibid., p. 70
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the operant-conditioning technique, the chimpanzees could successfully match the 
binary numerals 1 through 7 (1, 10, 11, 100, 101, 110, 111) with the corresponding 
aggregates. In their comprehensive review of a wide range of experiments in 
animal counting , Hank Davis  and John Memmott  pointed out that although the 
chimpanzees in Ferster  et al.’s experiment “became highly proficient at identifying 
each of the seven different binary numbers,” they needed approximately 500,000 
trials in 200 sessions (that is, 2,500 trials per each of the 200 sessions) to develop 
this skill.27 Durkin , Shire , Riem , Crowther,  and Rutter’s study of the spontaneous 
use of number words  of mothers and children aged 9 to 36 months further weakens 
the validity of Dehaene ’s theory, as it revealed “considerable scope for possible 
confusion/contradiction” in parental inputs related to number words.28 For 
example, the word one in English can be used as a “deictic pronoun,” as in the 
case of one mother talking to her 9-month-old baby, “Put two in, that’s one, that’s 
one.”29 There are also homophones for some number words, such as to and too vs. 
two, or for vs. four as is the case of the utterance: “One for Mummy [ . . . ] that 
one too, one to me.” (Ibid.) Add to this the use of number words both in and out 
of the number-string context as in “there are five buttons” vs. counting to five,30 
or a lexical-“mismatch” string such as “one, two, three, tickley vs. One, two three 
four,”31 and so on and so forth.

These findings imply that the likelihood that humans learn to associate number 
words  with the matching concrete aggregates, not to mention acquiring the words’ 
meanings by operant conditioning, is slim if not nil. In contrast, the efficiency of the 
humans’ rich conceptual and symbolic network enables them to form associations 
between words and any objects without the need of thousands of repetitions. Better 
yet, the same network is capable of forming concepts that are independent of external 
input, and to employ these concepts in abstract thinking. Indeed, Durkin  et al., 
Beatrice, Riem , Crowther , and Rutter  speculate that it is the conflicting information 
wrought by social interactions that promotes development. They explain,

If the input data are problematic, then the child must acquire 
competence either independently of the input or because of the progress 
due to resolving conflicts and contradictions in the strategies he or she 
develops to cope with the input.32

27 Davis  and Memmott , 1982, p. 553
28 Durkin  et al. 1986, p. 269
29 Ibid., p. 283
30 Ibid., p. 271
31 Ibid, p. 279
32 Ibid., p. 284
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In addition, the question of how children accomplish this can be partially 
answered by considering “what children do with numbers, especially as they become 
more active contributors to number-oriented dialogues.” (Ibid.) Kevin Durkin  
et al.’s conclusion implies that children acquire numerical concepts through the 
employment of their conceptual/symbolic system in an active process of thinking.

One of the obstacles in searching for instinctive number is that studies and 
experiments relevant to this subject must exclusively involve animal and preverbal 
human infants as to avoid reliance on meaningful numerical symbols; otherwise 
what will be revealed in them would not be an instinct or instinctive process. 
The methods of these studies, therefore, are inevitably restricted to comparisons 
between two concrete aggregates in which one magnitude serves as the reference 
(in lieu of meaningful numerical symbols) for the quantification and definition 
of the other magnitude. But this method raises a dilemma, because one of the 
properties that distinguishes number from other approaches to size estimations 
is that numbers define sizes in absolute terms such as three or four, whereas the 
measurement of one group’s size by another group yields relative terms such as 
larger, and more (than the other). Moreover, the recognition that one group of 
objects is larger than another group of objects of the same size can be effectively 
achieved on the basis of ordinary perceptual processes by relying on the overall 
area occupied by these two groups. Consequently the results of these studies cannot 
serve as evidence for the presence of numerical concepts, or as an indication of an 
enumeration process.

Of course, with regard to animals, there is also the question of the evolutionary 
import of number capability. In their aforementioned survey of animal-enumeration  
studies, Davis  and Memmott  commented, “There may be relatively few items that 
need to be counted in infrahuman realm. [ . . . ] There may always be a simpler, 
more effective way of coping with salient stimuli.” Davis  et al. speculated that 
maternal care for offspring might be the only natural situation in which animals 
might benefit from counting . Albeit, they found out that studies of rats’ maternal 
behavior “show no evidence that number per se plays a role. Rather, the successful 
retrieval of pups seems to depend on a host of non-number-related factors, most 
notably ultrasound.” They pointed out that animal counting behavior is exclusively 
related to laboratory experiments, which they described as “restricted to relatively 
unnatural and extreme conditions.”33 A case in a point are the 15 days and 45 
hours required to train rats to recognize differences between quantities at 1:4 ratios 
in Meck  and Church ’s study, and the 500,000 number of trials that were needed to 
train chimpanzees to recognize seven numbers in the Ferster  et al. experiment.

But even if one accepts the assumption of biological number-processor or 
number-sense one must come to grips with a difficult issue: How an instinctive 

33 Davis  and Memmott , 1982, p. 567
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quantification, which is an involuntary response to sensory input generated by 
the physical world, becomes a rational, analytical concept that is independent 
of external stimuli and is available for a voluntary conscious examination as all 
mathematically valid number concepts must be? After all, pre-wired instincts 
and abilities are restricted to the particular task to which they are dedicated, and 
therefore, in addition to being inherently involuntary, they cannot be applied in tasks 
other than the one for which they were designated: Bees, for instance, are known as 
masterful builders of hexagons. This skill, of course, is guided by their pre-wired 
instincts over which they have no control. Therefore, they cannot employ this skill 
in tasks other than building honeycombs. It is precisely because humans, unlike 
bees, cannot rely on pre-wired instincts and must rely instead on their capacity for 
thinking, planning, and using measuring tools when constructing hexagons, that 
their architectural skills extend far beyond honeycomb constructions.

Moreover, the instinctive responses are tightly bound to the sensory inputs 
of the physical world, which of course do not include numbers, for numbers in 
and of themselves are devoid of physical attributes. Indeed, even the most ardent 
supporter of instinctive numbers would admit that instinctive numbers are quite 
different from the numbers we recognize as the numbers with which we count and 
do arithmetic. Recognizing this truth, Dehaene  explained in his book about number 
sense  that although the accumulator  is capable of registering only continuous 
estimates,34 this “primitive” processor “prefigures, without quite matching it, the 
arithmetic that is taught in our schools [italics mine].”35 No wonder that only 
when imprecise descriptions of counting  and numbers are used is it possible to 
attribute to animals and preverbal humans number-related capacities.

Take for example Davis  and Memmott’s conclusion of their aforementioned 
critical survey of experiments that deal with animal-number abilities: “Some 
definitions of counting behavior preclude the possibility that animals can count,”36 
they write. They then proceed to redefine counting in “a way that is not only 
consistent with its occurrence in humans but also allows for its demonstration in 
other species.”37 They accomplish it by substituting the use of meaningful numerals 
in counting with an unspecified “cardinal chain,” and the “application of that 
chain in one-to-one correspondence  to the external world.”38 But in exchanging 
meaningful numerical symbols with a generic chain of tags in counting, Davis  and 
Memmott  inadvertently omitted a pivotal requirement for a meaningful counting, 
that is, the conceptual references, which are embedded in these symbols. The term 

34 Dehaene , 1997, p. 5
35 Ibid., p. 4
36 Davis  and Memmott , 1982, p. 547
37 Ibid., p. 565
38 Ibid., p. 549
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number, as mentioned before, has various interpretations, and few, if any, are 
clearly defined.

The failure to satisfactorily explain the link between ‘number sense ’ and 
mathematically valid numerical concepts is of no surprise. It is inconceivable that 
an abstract number concept may be created without a conscious coordinated effort 
merely on the basis of sensory experience of the physical world or the association 
of such experience with a mental module, no matter how relevant the innate 
and the external inputs seem to be in the mind of the observer. Ultimately, the 
conception of mathematically valid numerical concepts must involve deliberate 
effort, as is required for all higher-order thinking processes. If either the spoken 
word ‘three’ or the visual sign ‘3’ is to be employed in conscious thought processes, 
it must become available to human attention through the mind’s own conscious 
and voluntary activities. This prerequisite calls for the association of the signal 
‘three’ with a concept, an image or a mental representation of the idea ‘three’ that 
is independent of external cues. The development of numerical concepts, then, 
involves changes in one’s conceptual network, which cannot materialize without 
conscious and voluntary processes.

The theory of instinctive number seems to rest on the assumption that 
subconscious intuitive knowledge could be automatically transformed into 
conscious rational knowledge. This assumption is inconsistent with neuroscientists’ 
view on this issue. For example, Edelman  maintains that conscious attention plays 
a key role in the initial learning tasks of various motor or cognitive routines such 
as speaking, writing, riding a bicycle, playing a musical instrument, or carrying 
out calculations. “Successful learning leads to automatization” of these routines. 
That is, after a skill has been learned, “conscious attention is often not required for 
performance and is only called up if novelty appears or if a goal is not reached.”39 
The traffic of knowledge and skills such as enumeration and calculation , then, seems 
to flow from the conscience to the sub-conscience in the opposite direction of that 
suggested by innate-number  theory. Neuroscientist and evolutionary anthropologist 
Terrence Deacon  echoed Edelman ’s view by asserting that the tendency of human 
cognitive processes is to relegate the task of information processing to unconscious 
and automatic operations, for these operations are a lot more efficient than conscious 
processes. To put it in Deacon ’s words, “consciousness is messy,” and thus, the 
cognitive processes aim to become automated, unconscious, and mechanical, a 
simple “input-output matching.”40 It seems, then, that the experience of intuitive and 
spontaneous recognition of a number in response to a specific physical aggregate is 
actually a ‘learned instinct;’ that is to say, it is an automated enumeration that is the 
product of a consciously acquired numerical concept.

39 Edelman , 1989, p. 201
40 Deacon , 1997, p. 456
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If there were any merit to the notion that enumeration is a natural disposition of 
humankind, one would expect that the history of human culture would reflect this 
propensity for number. But to the contrary, history indicates that humans’ facility 
with the universal concepts of exact and specific sums is actually a relatively 
recent phenomenon. The word for ‘three’ in many Indo-European languages can 
be traced to a time when three was beyond the human ability to count. Some tribal 
cultures did not develop number words  beyond two or three up to the beginning 
of the 20th century. It seems that numerical concepts are an imposition on the 
human mind rather than an innate faculty. Indeed, time and again, the history 
of the development of numerical concepts has shown that mankind employed 
alternatives to numerical evaluations and to analyses of quantities whenever 
they could satisfactorily accomplish these tasks without reference to numerical 
concepts. That humans have problems in dealing with numerical ideas is also 
suggested by the countless devices that were invented over generations and across 
cultures to aid them in numerical calculations.

Historians and mathematicians alike have long considered number a cultural 
phenomenon rather than a biological one and have pointed out that historically 
the extent of a numerical system’s development reflects cultural needs. This view 
is substantiated by the fact that cultures in which social structure, economics, 
and technologies remain so simple as to render numerical systems unnecessary 
managed quite well for thousands of years without developing numbers beyond 
the most elementary level.

If numbers are indeed a cultural phenomenon, the quest for the origin of 
numbers is more likely to be answered by studying human cultures rather than 
human biology. The next two chapters examine the cultural habits of quantification 
and how they advanced or, as the case may be, delayed the evolution of universal 
and abstract notions of rational numbers.

Number of 
Cycles

Duration 
of Total 
Signal

Reinforced 
Response

↓ ↓ ↓

2 cycles 2 sec. |__|--|__|-- Right

↓ ↓ ↓

8 cycles 8 sec. |__|--|__|--|__|--|__|--|__|--|__|--|__|--|__|-- Left

Figure VI-1: The training-phase stimuli adapted from Meck and Church’s 
data in Table-1, depicting “Design of Experiment 1: testing” (p. 322) and 
Figure-4: “Diagram of signal types for Experiment 2” (p. 327)



85TWO AND TWO MAKE ZERO

Signal duration: 2 seconds, Number of Cycles:
 at ½ - sec. per cycle 4 Cycles
 |_|--|_|--|_|--|_|--
Un-reinforced-responses when number of cycles in held at 4: Considered rats’
time perception. Left

Number of cycles: 2, at 2-sec. Signal Duration:
 per cycle 4 Seconds
 |________|-------|________|-------
Un-reinforced-responses when signal duration is held at 4 seconds: Considered
rats’ number perception. Left

Signal duration: 8 Seconds, Number of Cycles:
 at 2-sec. per cycle 4 Cycles
 |_______|--------|_______|--------|_______|--------|_______|--------
Un-reinforced-responses when number of cycles is held at 4: Considered rats’
time perception. Right

Number of cycles: 8, at ½-seconds Signal Duration:
 per cycle 4 Seconds
 |_|--|_|--|_|--|_|--|_|--|_|--|_|--|_|--
Un-reinforced-responses when signal duration is held at 4 seconds: Considered
rats’ number perception. Right

Figure VI-2: The Meck and Church’s experiment results adapted from 
data cited by Meck and Church’s Table-1: “Design of Experiment 1: 
testing” (p. 322) and Figure 1 (p.323) and Figure 4: “Diagram of 
signal types for Experiment 2” (p. 327)

Stimulus:  --|___|------|________|-----------
1.  The Run mode: --|________________________
2.  The Stop mode: --|___|------|________|------------
3.  The Event mode: --|_|----------|_|----------------------

Figure VI-3: The three modes of operations adapted from Meck and 
Church’s Figure 2: “Diagram of three modes of operation of the 
accumulation process” (p. 323)
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PACEMAKER-SWITCH-ACCUMULATOR MECHANISM

1. CLOCK or COUNTER
[for run/stop mode] [for event mode]

↓
 ↓
 ↓

↓
 ↓
 ↓

Pacemaker: puts 
out pulses in fixed 

intervals

→ Mode Switch: 
switches into run 
and stop modes 

or into event 
mode

→ Accumulator:
accumulates time 
or number out-

puts

↓
 ↓

2.
↓
 ↓

MEMORY

Working Memory
Reference 
Memory

↓
 ↓

↓
 ↓

↓
 ↓

3. COMPARATOR
↓

DECISION
↓
 ↓

Left  ←→  Right

Figure VI-4: The model of the counting-and-timing information 
processor adapted from Meck and Church’s Figure 3: “Functional units 
of an information-processing model of counting and timing” (p. 324) 
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VI-2. NUMBER AS A PROCESS

Many historical accounts of the development of numbers begin with a 
description of a procedure known as one-to-one exchange , a process that 
supposedly enabled early man and some tribal societies into the 20th century to 
accurately analyze numerical value of quantities without resorting to numbers. 
But historical facts do not support this assumption. This chapter examines the 
failure of the ‘one-to-one’ to generate universal concepts of number.

The principle of ‘one-to-one,’ when used in trading situations, involved 
exchanging goods by swapping one object, or a group thereof, with objects of the 
exchange group; a transaction that repeated itself as many times as was needed 
to obtain the desired amount of goods. In situations that called for checking 
inventory, the one-to-one scheme utilized supplementary or auxiliary  quantities 
(i.e., groups of a fixed number of objects such as sticks or pebbles that served as 
a quantification instrument). It proceeded by matching the objects of the auxiliary  
groups with the objects of the examined quantities, one to one (see detailed 
description in I-3).

There is an obvious procedural similarity between actual counting  and the 
primitive one-to-one practice. During the process of counting, number words  are 
paired with objects comprising a collection, one to one, in the same manner with 
which early man used exchanged or auxiliary  objects in their one-to-one procedure . 
Moreover, both methods are based on the understanding that sets or collections are 
numerically equal when the members of one set form a one-to-one correspondence  
with the members of the other set. The use of auxiliary  quantities as an evaluation 
tool brings the process of the one-to-one procedure even closer to counting, for in 
both procedures magnitudes are measured with respect to predetermined models of 
quantities, notwithstanding that in the primitive one-to-one procedure this model 
is a collection of sticks or shells, whereas in counting this model is a collection 
of verbally articulated concepts. But perhaps the most important justification for 
viewing the primitive one-to-one procedure as a harbinger of number concepts 
is that this procedure—with or without the use of ‘auxiliary  quantities’—signals 
a cognitive shift from a perceptual mode of magnitude evaluation, which is 
spontaneous and impressionistic, to a rational analytical mode of magnitude 
evaluation akin to the process that is employed in counting. In both counting and 
the early-man one-to-one procedure, magnitudes are perceived and treated as sums 
and their evaluation proceeds through the analysis of their constituent units.

The rational analytical mindset and the principles on which the one-to-one 
method is based seem to be but a small cognitive step away from a true conception 
of numbers. It is natural to assume that concepts of number grew out of that 
practice. But as surprising as it may be, numerous cultural groups in the distant 
and not so distant past have been practicing the one-to-one procedure  for hundreds 
if not thousands of years, both in trading situations and in inventory evaluations, 
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without ever attaining a well-developed numerical system. The Fiji Islanders, for 
example, were able to amass the exact quantity of a thousand coconuts, which they 
called saloro, but according to Menninger , they had “no number sequence, at least 
not an extensive one.”41

In a closer examination of the primitive one-to-one procedure , the reasons 
for its failure to produce true numerical concepts in their operators’ minds 
become apparent. Although they are similar in their rational analytical approach 
to quantification and the method by which they proceed to obtain their analysis, 
counting  and the concrete one-to-one exchange  are dissimilar in their purpose as 
well as in their conceptual referents: The objective of counting is to answer the 
question, ‘how many units are there in a single group?’ whereas the objective of 
the concrete one-to-one correspondence , which involves pairing objects of two 
quantities one pair at a time, is to answer the question, ‘which of the two groups 
under examination is larger, or has more units?’ Hence, counting establishes 
the absolute-size value of the single quantity it counts up, while the primitive 
one to one establishes the relative-size values of the two quantities it compares. 
Moreover, as mentioned above, these two methods of quantification are also 
dissimilar in their conceptual referents. Counting uses verbal symbols in its 
one-to-one matching—the number words . Each of these words represents a distinct 
numerical value. The last word used in counting—that that is assigned to the last 
object counted—identifies the numerical value of the entire group. Without a prior 
knowledge of the conceptual content that each of these number words indicates, 
counting is a meaningless operation. In contrast, the primitive one-to-one practice 
proceeds and achieves its full meaning by using in its matching operation objects 
that have no numerical implication. This procedure satisfies its quantification 
goal without resorting to numerical concepts because its measuring  tool is not 
conceptual; it is another concrete aggregate.

The explicit conceptual referents of counting allow it to define a quantity in an 
absolute term, whereas the concrete referents of early man’s one-to-one practice 
allow it to define quantities only in a relative term such as “more” or “larger.” 
In fact, the method of matching the units of two sets—one pair at a time—is 
used in George Cantor ’s 19th-century “arithmetic of infinity ”42 to avoid a definite 
articulation of numbers.43 It seems that the absence of exact and absolute concepts 
of numbers is at the root of Cantor’s ideas about the method of comparing infinities 

41 Menninger , 1992, p. 12
42 Gamow , 1960, p. 25-34
43 Kasner  and Newman , 1989, p. 43-4 noted that according to Cantor , “An infinite class 

has the unique property that the whole is not greater than some of its parts.” This 
statement is incompatible with “finite arithmetic,” in which “the whole is always 
greater than any of its parts.” 
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as much as it is the root of the primitive one-to-one exchange  of earlier times. The 
‘counting-numbers’ are, of course, absolute ideas of size; it is inconceivable that 
they could be originated by a process that aims to establish a relative size value.

Not less important, the procedure of matching objects one-to-one ties one’s 
cognitive process exclusively to the actual perception and manipulation of physical 
entities. Without the ability to detach quantification activities from concrete 
entities, early man could not form abstract concepts of number. On the contrary, in 
many instances, the focus on the immediate and the perceptible married the idea 
of number to particular objects. Indeed, even though the Fiji’s saloro (thousand) 
defines a specific numerical value of a quantity, this word cannot be considered an 
indication for the concept ‘thousand.’ Groups of specific size can be technically 
obtained and even named without reference to specific numerical concepts. The 
meaning of the Fijian saloro could not be envisioned as independent of the notion 
of coconuts.44 Bound to particular objects, the word saloro did not convey a clear 
and true universal notion of the number ‘thousand,’ that is, a number that counts 
anything. Even the idea ‘ten’ figured vaguely in their vocabulary; ten boats were 
bola, but ten coconuts, koro. The object-specific bola and koro indicate that the 
idea ‘ten’ was indistinguishable from the objects it counted.

And so, in spite of its important similarity to counting , the one-to-one practice 
failed to generate true numerical concepts. It seems that the creation of numerical 
concepts could not have originated by the process of units’ analysis alone.

VI-3. FROM ADJECTIVE TO NOUN

In order to be mathematically valid, numbers must be perceived as universal, 
absolute, and independent conceptual entities. But cross cultural etymologies of 
words that express ideas of numbers or pluralities attest to a time when humans 
had difficulty disassociating the notion of numbers and pluralities from objects 
and as a result perceived numbers as the objects’ attributes. The Fiji’s bola (ten 
boats), koro (ten coconuts), and saloro (one-thousand coconuts), mentioned in 
the preceding chapter, indicate that some cultures completely meshed together 
number and objects into a single concept, according to Menninger . The Fijian’s 
number words  are by no means the only example of this trend. The English 
language assigns the word ‘school’ to denote a group of fish, but not a group of 
wolves or deer; the word ‘pack’ denotes a group of wolves, but not a group of 
fish or sticks; the words ‘yoke,’ ‘pair,’ ‘duet,’ and ‘twin’ convey the idea ‘two,’ 
but their use is confined to a specific category of objects: It is a ‘yoke of oxen’, 

44 Menninger ,1992, p. 11
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and a ‘pair of shoes,’ but not a ‘yoke of children’ or ‘duet of shoes.’45 Menninger  
maintained that some pairs are so strongly felt like a single whole that one item 
of the pair is indicated as half. He gives as example the Irish ‘di-suil,’ which 
denotes two eyes, and ‘leth-suil’ denoting half eye, that is, one eye.46 Wilder  called 
these object-specific number words adjectival numerals ,47 Menninger  called them 
number as attribute.48 Perhaps the most astonishing example of adjectival number 
words is that of the Tsimshian tribe. In the Tsimshian’s number system, each of 
the numbers between one and ten has five, and sometimes even seven, different 
names. Each name is determined by the number’s function or the category of the 
objects it counts. The number ten, to give an example, has six different names. It 
is called ‘gyap’ for flat objects, ‘kpeel’ for round objects, ‘kpeentvam’ for long 
objects, ‘kpal’ for men, and ‘gyapsk’ for canoes; it is ‘gyap’ again when used in 
counting , but ‘kpeont’ when used in measuring .49

Dantzig  observed that the object-specific words ‘flock,’ ‘herd,’ ‘set,’ ‘lot,’ and 
‘bunch’ are native to the English language while the generic words ‘aggregate’ 
and ‘collection,’ which express the same idea in an abstract way, are of foreign 
import.50 This observation implies that the adjectival ‘many’ are remnants of older 
and more primitive times. Indeed, Wilder  considers the formation of the generic 
‘many’ as a step forward in the evolution of mathematically valid number concepts 
and regards the explicit ‘duet,’ ‘twin,’ ‘koro,’ or ‘gyap’ a “dead end” and hindrance 
to that development.51

From whichever perspective Dantzig , Menninger , and Wilder  examine the 
aforementioned etymologies; none considers the adjectival numbers  true number 
concepts. As Menninger  put it: “Number as adjective is number not.”52 The “object 
imprint on number,” to use his expression,53 was a mental obstacle that mankind 
had to overcome in order to develop a number concept that is congruent with 
mathematical thinking. A true number concept must be an abstract and universal 
idea, a number that is independent of the things it counts, and thus, may count 
anything.

45 Ibid., p. 30
46 Ibid., p. 12
47 Wilder , 1968, p. 40
48 Menninger , 1992, p. 11
49 Wilder , 1968, p. 41
50 Dantzig , 1954, p.6
51 Wilder , 1968, p. 40
52 Menninger , 1992, p. 11
53 Ibid., p. 30
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Insofar as numbers are understood as a cultural phenomenon, the question is, 
“what was the cultural development that brought about or aided the separation of 
numerical ideas from the counted objects?”

Wilder  has speculated that numbers have never been viewed as entities in and 
of themselves, or in his words, “as a noun,” until some kind of ideographs such as 
‘2,’ or more likely ‘||,’ had been used for some time.54 It is highly plausible that 
the universal notion of numbers derived from written symbols rather than from 
the perception of objects’ aggregates or from the one-to-one practice. Numerical 
symbols convey the numerical ideas without committing them to anything in 
particular. Signs, such as ‘2’ or ‘||’, for example, may represent two cows as much 
as they represent two coconuts, two trees, or two anything. Better yet, at the same 
time that ‘2’ and ‘||’ liberate the idea ‘two’ from the domination of particular objects, 
they are themselves objects in the sense that they have a physical presence that 
can actually be perceived and pointed at. As things that have a physical existence 
of their own, yet, are free of any particular reference other than the numerical 
concepts that they represent, written numerical symbols mediated and facilitated 
the process of disassociating the ideas of numbers from the things they counted 
and establishing them on an abstract foundation. Wilder ’s hypothesis suggests 
that number’s visual symbols were instrumental in the evolution of numbers as 
independent entities, and consequently, to the development of genuine numerical 
concepts. And of course the use of symbolic representation , much like the use of 
enumeration, grew out of cultural necessities.

The understanding of numbers as a cultural phenomenon and their evolution as 
a primarily cultural process, as well as the important function number symbolization 
has played in that evolution, merit a re-examination of our assumptions regarding 
children’s acquisition of numerical concepts.

The next section reviews leading studies and theories of children’s acquisition 
of numbers.

54 Wilder , 1968, p. 42, 66
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VII

THEORIES OF CHILDREN’S ACQUISITION 
OF NUMBER CONCEPTS

VII-1. ALFRED BINET’S PIONEERING STUDIES

“That which is called intelligence, consists of two principal things: first, 
perceiving the exterior world, and second, reconsidering these perceptions as 
memories, altering them and pondering them,” asserted Alfred Binet .1 Known 
chiefly for the 1905 ‘Binet -Simon Scale,’ which laid down the principles for 
standardized psychometric tests, Binet  was a man of diverse interests. He wrote 
about microorganisms and insects, co-authored several plays with Arde de Lore, 
and not least, he was interested in the nature of intelligence.2 In the concise and 
memorable statement quoted above, Binet  articulated effectively the age-old 
premise that underlies many, if not all, theories of children’s cognitive development, 
namely, that our thoughts and knowledge derive from, and are founded on our 
perceptions of the physical world. According to this view, intelligence has two 
components. Binet  identified one as “perception” and the other, which builds on 
the former, as “ideation .” In ideation he included reasoning, judgment, memory, 
and power of abstraction.3

Binet ’s original and innovative 1890 experiments in children’s perceptions, 
specifically his studies of their perceptions of length, number, and color (published 
together in the 1890 volume of Revue Philosophique), are seminal in that variations 
of their basic methodological principles were repeatedly utilized in many of the 
studies that followed his own.

In his studies of number perception, Binet  sought to answer the question, “how 
the perception of numbers occurs in children who do not know how to count.” (Ibid.) 
The formulation of this question alludes to an assumption that number perception is 
an instinctive ability rather than a deliberate and rational one as is counting .

1 Binet  in Pollack  and Brenner , 1969, p. 93
2 Ibid., P. ix
3 Ibid., P. 85-6
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Conceiving children’s perception of numbers as an intuitive process, 
Binet  believed it required neither conceptual prerequisites nor learned skills. 
“Fortunately” (so he thought) his little four-year-old daughter, whom he studied, 
did not know how to read or count. That is, she could count only up to three, and 
“beyond the number three,” he wrote, “she said the numbers entirely by chance 
and the spoken enumeration was no longer of any help to her.” (Ibid.)

Believing that his daughter could not count and did not possess rational 
numbers, Binet  opted to circumvent the requirements for counting  and the use of 
number words , or number symbols, by presenting two groups of objects side by 
side and instructing the child to indicate the larger or the smaller of the two. It was 
the same method he had used in his studies of child’s perception of lengths and 
angles. By means of this method both the process of numerical size evaluation 
as well as the definition of this size could proceed without reference to number 
concepts and symbols, for each of the two magnitudes (just as in the comparison 
of two continuums) served as a perceptual reference for the quantification of the 
other magnitude. Thus, counting and a reference to concepts of number were 
unnecessary. As for the definition of the quantities in question, words such as 
‘more,’ ‘less,’ ‘smaller,’ and so forth sufficed.

Binet  found out very quickly that there was a great difference in his daughter’s 
ability to make accurate evaluations of continuum sizes and her ability to do the same 
with regard to numerical sizes. He made the discovery of children’s “deficiency” 
in the perception of number in an experiment that involved a comparison of two 
rows of counters (counting  pieces, typically in the form of beads or other round 
objects). One row contained 16 counters, each 4 cm in diameter, and the other row 
contained 18 counters of 2.5 cm diameter. The fewer but larger counters formed 
a longer line than did the more numerous but smaller counters; and his daughter 
judged the larger (but fewer) counters as more numerous. Binet  continued this 
experiment by removing some of the larger counters one by one. His daughter 
continued to judge the fewer but larger counters as more numerous until only 9 
of them were left to be compared with the 18 smaller counters. He concluded that 
the child perceived the group of objects as a continuum and judged the number of 
objects by the place their group occupied on the paper, rather than by how many 
of them were in the group. In other words, the child answered the question ‘how 
large,’ instead of the question ‘how many.’ Hers is not a genuine enumeration, he 
concluded.

In another study, however, his daughter consistently made the correct choice 
when the differences between the number of the larger beads and the number of 
the smaller beads were as follows: 1 large counter versus 2 small; 2 large versus 3 
small; 3 large versus 4 small; and 4 large versus 5 small. But when presented with 
5 large beads versus 6 small ones, she judged the fewer, but larger beads as more 
numerous, again. These results implied that within the range of 4 or 5 items, the 
child was able to ignore the global impression of groups and to recognize correctly 
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that some groups that are smaller globally nonetheless contain more counters. 
This indicated that her evaluation utilized numerical criterion. She shifted her 
estimation strategy back to perceptual impression only when she had to compare 
larger groups of objects.

Given the close relationship between the range of numbers she could count 
effectively (which was a definite 3) and the range of numbers for which she was 
able to arrive at correct enumeration (which was 4 and perhaps 5), it seemed that 
the child’s difficulties lie not in recognizing the larger aggregates for what they 
were, but rather in her inability to enumerate without the possession of the specific 
conceptual referents that matched the quantities on display.

Indeed, even though “she substituted the perception of the whole for that of its 
discrete elements” when she quantified larger amounts of beads, as Binet  alleged, 
“she continued to indicate that she was trying to perceive numbers.” “‘There,’ she 
said, pointing toward one of the groups, ‘there are more of them here.’”4

Binet , who was “astonished” to have discovered the great discrepancy between 
children’s ability to perceive phenomenological sizes such as length and their ability 
to perceive the number of items in groups, asked himself “whether there was a real 
difference between these two modes of perception.” (Ibid.) The term “two modes” 
alludes to a qualitative distinction between these two processes. The results of his 
experiments should have led him to answer this question in the affirmative, that is, 
that the perception of length and the perception of number are two different modes 
of perception. Yet, Binet  confined himself to the conclusion that “[children’s] 
perception of the whole occurs more easily and more correctly than the perception 
of number.” (Ibid.) By defining this difference with the quantitative term more, 
rather than the qualitative term what (as in, ‘what are the properties of’), Binet  
apparently thought that the perception of numbers and the perception of length 
share the same cognitive properties, and the difference between them lies only 
in the relative difficulty of their application. Thus, he remained convinced that 
the child perceives numbers without employing what he called, “ideation ,” that 
is, conceptual symbolic thinking. “However limited her instinctive enumeration,” 
he writes, “it goes much beyond learned verbal enumeration which, in the child 
examined, did not exceed the number three.” He identified the number six as the 
limit of that accurate “instinctive” perception. (Ibid.) Having identified his child’s 
enumeration experiments as studies of ordinary perceptions, and concluding that 
children are able to correctly estimate numbers in the small range of 1-6 without 
reference to verbal enumeration, Binet  remained convinced that numbers within 
that small range are perceived intuitively.

4 Ibid., p. 88-9
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Binet ’s comparative numerical evaluation technique, which was based on his 
view that “perception” gives rise to “ideation ”5 and that enumeration is essentially 
an intuitive perceptual task, became the signature method for studies of children’s 
acquisition of number concepts until late into the 20th century. Some of these later 
studies even proceeded with experimentation of children’s perceptions of length.

VII-2. PIAGET AND THE ORIGIN OF NUMBER IN CHILDREN

Among the psychologists who studied children’s number conceptions, 
Piaget  is the most well known. His theory of The Origin of Number in Children, 
formulated in 1941, continues even today to influence the subject of children’s 
acquisition of number concepts.6 The theory is best understood in the context of 
his general views concerning children’s cognitive development and particularly 
his concept of developmental stages. We begin, then, with a brief summary of this 
aspect of his theory.

Piaget  imagined the development of intelligence as a process in which 
children progress along a fixed hierarchy of cognitive modes or ‘stages.’ Each 
stage is characterized by a more advanced level of cognitive operations than 
its predecessor. Overall, the development of cognitive operations leads “from 
intuitive and egocentric pre-logic to rational co-ordination that is both deductive 
and inductive.”7

The first two stages of children’s intelligence development are the 
sensory-motor stage—from birth to age two, and the intuitive stage—from age 
two to age seven. In these stages the child’s cognitive processes are governed by 
perceptual impressions. This perceptual domination binds the child’s cognitive 
system to a fixed perceptual ‘schema’ that in turn prevents him from considering 
diverse perceptual information simultaneously. The child, therefore, is not capable 
of relating different pieces of perceptual information to one another and of 
incorporating them into a “dynamic whole or system of relationships.”8 The failure 
to examine information logically from various points of view impairs the child’s 
ability to form coherent, logical, or rationally coordinated thought. According to 

5 Pollack  et al. 1969, p, 85, Binet  believed that “intellectual development begins with 
those lower functions which attain a very high degree and almost end their evolution 
at a moment when the higher functions are in a rudimentary state.” 

6 Piaget ’s 1941 book “La Gense do Nombre Chez L’enfant” (The Origin of Number 
in Children) was transliterated to English in 1952, under the title, “The Child’s 
Conception of Number.”

7 Piaget , 1952, p. vii
8 Ibid., p. 87
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this view, the child’s thoughts at these first-two stages are immobile, irreversible, 
or not “operational.” Thus, Piaget  considered these stages in children’s cognitive 
development the pre-operational stage. Only when the child reaches the age of 
7 is he capable of entertaining diverse perceptual data simultaneously, thereby 
engaging in an operational mode of thinking. Piaget  divided the operational 
stage into two stages, the concrete operational stage of the 7 to 11 year olds, in 
which the child’s mode of thinking is more flexible but still concrete, and the 
adolescent’s formal-operational stage, in which the child’s thinking begins to 
resemble that of adults.9 Piaget ’s experiments in the subject of number-concept 
development involved children between the ages of 4 and 7, that is, children in 
the ‘pre-operational’ (more specifically, ‘intuitive’) stage and the beginning of 
‘concrete-operational’ stages.

Piaget ’s understanding of children’s number-concept acquisition and of the 
cognitive process he deemed necessary for number comprehension was also 
affected by his own conception of number. Let us, then, briefly summarize Piaget ’s 
notion of number as well.

According to Piaget , number arises from the fusion of the logic of class, 
which is the thinking that underlies classification, and the logic of asymmetrical 
relations, which is the thinking that underlies the activity of ordering elements and 
forming sequences. Hence he also called the latter seriation. The ‘logic of class’ 
concerns the ‘qualitative equivalent’ of the elements counted—the classification 
(or categorization) of entities as equivalent units, so as to allow their inclusion into 
a single system. For instance, “Red and blue counters are counters irrespective of 
their color” and, therefore, can be included in the same class, the “counters class” 
(as in 2 blue counters + 3 red counters = 5 counters). The ‘logic of asymmetrical 
relations,’ on the other hand, is about recognition of the differences between 
units, which are “differences only of order.” For instance, “when counter B is 
on the right of counter A, and a certain distance away, A and B are conceived as 
different.”10 Since the difference between ‘classification’ and ‘seriation’ concerns 
only the way in which the same units are considered (that is, they are classified 
and assembled in the former, and distinguished and ordered in the latter) every 
unit is both equivalent and asymmetrical at the same time.

But so long as a set is classified by the concrete properties (or “identities”) of 
the elements it encompasses, the logic of class and logic of asymmetrical relations 
stand apart. It is only when the same units can be subjected both to classification 
and seriation, without regard for their properties, that the synthesis of “inclusion 
and seriation of the elements into a single operational totality take place.” 
Piaget  identified this “operational totality” as the sequence of whole numbers 

9 Ginsburg  and Opper , 1969, P.133
10 Piaget, 1952, p. 94-5



97TWO AND TWO MAKE ZERO

that—consistent with their formation process—are “indissociably cardinal and 
ordinal.”11 This is to say that each concept of number is produced by the synthesis 
of its cardinal value  (the amount of units it encompasses) with its ordinal value  
(its position on the sequence of the counting  numbers), such that the number’s 
cardinal value and its ordinal value become indistinguishable. This view suggests 
that for Piaget , numbers mean not only the discrete numbers such as ‘three’ or 
‘four,’ but also the counting sequence in which they are ordered—a rather complex 
description of an otherwise irreducibly plain concept. Indeed, according to Ginsburg  
and Opper , number, as Piaget  envisioned it, does not pertain only to the numbers 
that can be used in arithmetic or computation—tasks, that in his opinion, require 
no understanding and can be carried out simply by rote memorization. Instead, it 
pertains also to the fundamental concepts that underlie numerical ideas, for instance, 
one-to-one correspondence  and ‘conservation ,’ which is the understanding of the 
invariance of numbers.12 Likewise, the development of numerical concepts entails 
not only acquisition of numbers as such or the arithmetic relationships between 
numbers, but also obtaining the generic ideas on which numbers are founded.

Believing that a conception of ‘number’ requires the coordination of two 
different kinds of logic, Piaget  proposed that the “construction of number goes 
hand-in-hand with the development of logic and that the pre-numerical period 
corresponds to the pre-logical level.” (Ibid.) This understanding, together with 
his ideas concerning children’s cognitive development, led him to the conviction 
that children start making progress toward true understanding of number only 
when they reach the age of 6 or 7. At this age children are in their ‘operational 
stage’ and are finally able to unite ‘class’ and ‘asymmetrical relations’ into a single 
operational system.

Another pivotal element in Piaget ’s theory of children’s acquisition of number 
concepts is the assumption that children’s own activities in relation to their physical 
environment have a greater role in their cognitive development and the formation 
of their thoughts than social input including language.13 Thus, the promotion from 
one stage to another is propelled by the child’s own activities in the physical world. 
Guided by this belief, he studied cognitive issues by orchestrating experiments in 
which children act and reason in relation to an immediate and deliberately staged 
physical surrounding. Piaget ’s conclusions and some of his unique terminology 
are closely tied to the methodologies of these experiments.

Of the many terms he coined, the term conservation  is particularly important 
in Piaget ’s influential theory of children’s acquisition of number concepts, and 
it became a widely used jargon. The notion of ‘conservation’ grew out of his 

11 Ibid., p. VIII
12 Ginsburg and Opper, 1969, p. 142
13 Ibid., p. 171 Ginsburg  and Opper , 1969
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experiments concerning quantification tasks in which he discovered that 4, 5, 
and 6 year olds tended to offer different estimations for the same quantity after 
it was subjected to changes in its spatial appearance. For example, he found that 
children judged the volume of liquid as greater, or ‘more,’ once it was poured 
from a shallow and wide vessel to a taller but narrower one, or considered as more 
numerous the same number of counters once they were spread out over a larger 
area or over a longer line. The most astonishing aspect of these results was that 
children evaluated the same quantities differently even though they were observing 
the changes that were being made.

The concept of conservation  with regard to quantification, whether it refers 
to continuous or to discontinuous quantities, implies the understanding that unless 
something is added to or subtracted from a magnitude, the magnitude remains 
the same regardless of the changes that may occur in its appearance. ‘Number 
conserved’ is described by Piaget  as a number that “remains identical with itself, 
whatever the distribution of the units of which it is comprised.”14

Piaget  believed that children’s cognitive development is independent of 
language. Consequently, many of his experiments in the topic of children’s 
acquisition of number concepts concerned comparisons of two aggregates by way 
of one-to-one correspondence , which does not require the use of number words . 
The following experiment is an example:

Fu (age, 5:9) poured the content of 6 bottles into 6 glasses and put 
the glasses in front of the empty bottles. ‘Is there the same number of 
bottles and glasses?—Yes.—(the bottles were grouped closer together 
in front of glasses—Are they the same?—No.—Where are there 
more?—There are more glasses.—(The reverse process then took 
place.)—And now?—There are more bottles.—What must we do to 
have the same number?—We must spread out the glasses like, this, no, 
we’ll need some more glasses.’15

Even counting  will not persuade the child that the number of bottles and 
glasses remain the same when one of the set forms a longer line or is spread over 
a larger area as in the following example: When Mul (age 5:3) responded in a 
way similar to Fu (as described above), Piaget  asked him to count. After the child 
correctly counted 6 bottles that were still spread apart and 6 glasses that were 
close together, Piaget  asked again if there are as many glasses as there are bottles. 
“There are more where it’s bigger,” Mul insisted. (Ibid.)

14 Piaget , 1952, p. 3
15 Ibid., p. 45
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In light of his experiments in one-to-one correspondence , Piaget  thought that 
conservation  occurs when the child forgoes his reliance on global impressions of the 
groups and instead relies exclusively on one-one-correspondence, or as he worded 
it: when “correspondence triumphs over perceptions.”16 This, in turn, enables the 
child to decompose entireties and coordinate the relationships of their parts, an 
achievement that permits him to construct a “reversible system” and still retain the 
set as a constant whole.17 Viewing the concept of conservation through the prism 
of his experiments with one-to-one-correspondence, Piaget  associated conservation 
with “lasting equivalence,”18 meaning, a dependable ability to recognize that two 
quantities remain equivalent even if a different distribution of items in one of them 
has changed the size of the area it occupies. Lasting equivalence and conservation are 
achieved when the child is able to consider length and density simultaneously, and to 
relate these two perceptual inputs to one another so as to understand that the decrease 
in length is exactly compensated by an increase in density.19 This understanding 
enables him to realize that the numerical value of an aggregate does not change even 
if the objects of which it is comprised are spread over a larger area. It follows that 
the concepts of equivalency and conservation depend on the ability to concurrently 
entertain different perceptions and ideas, to which the ‘pre-operational’ child, whose 
cognitive system is confined to fixed perceptual schemes, is incapable. The child can 
‘conserve’ only when he reaches the ‘operational stage,’ at around the age of 7.

Piaget  admitted that when the “sets” are small, say up to 4 or 5 objects, the 
‘pre-operational’ child is already capable of “simultaneous perception of the 
whole and of the elements.” But he deemed those numbers intuitive, that is, that 
they are based on perceptual rather than operational processes.20 At this stage, 
the classification process is not yet detached from actual objects; consequently, it 
cannot merge with ‘seriation’ into a coherent and dynamic whole, and therefore 
there is no true union of class and asymmetrical relations, or the “intermingling of 
cardinal and ordinal processes that constitutes number.”21

Piaget  expanded the discussion about children’s number cognition beyond the 
strictly perceptual and the intuitive of his predecessors. The many new terms he 
coined, and the new ideas, methods of experimentation, and thinking he originated 
still occupy an important place in the study of children’s number cognition. The 
thoughts and experimentations of other scholars in relation to Piaget ’s theory are 
examined in the following chapter.

16 Ibid., p. 37,55
17 Ibid., p. 89-90
18 Ibid., p. 85
19 Ibid., p. 94
20 Ibid., p. 199-200
21 Ibid., p. 154
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VII-3. PIAGET’S THEORY REVIEWED

Piaget  introduced into the discussion of children’s number cognition an array 
of new ideas and concepts and wove them together into a logically coherent vision 
of children’s number-concept development. Yet, the strength of his theory must 
stand not only on its internal logical consistency. Equally important is the question 
of whether the basic assumptions that underlie his theory, his experimental 
methodology, and his conclusions are supported by other studies relevant to that 
topic. This chapter examines Piaget ’s theory in light of the thoughts, the studies, 
and the findings of other scholars. It focuses mainly (1) on Piaget ’s proposition 
that children in their pre-operational/pre-logical phases of cognitive development 
are not capable of forming genuine numerical concepts and (2) on his concepts of 
equivalency, one-to-one correspondence , and conservation  and the part they play 
in children’s number-concepts acquisition.

Let us begin with Piaget ’s presumption that children, approximately 7 and 
under, lack the cognitive capacity for genuine deductive reasoning.22 This pivotal 
tenet in Piaget ’s theories was strongly called into question by the results of Bryant  
and Trabosso ’s series of experiments in “deductive transitive inferences” with 4-, 
5-, and 6-year-olds, which employed rods distinguished by two criteria: length and 
color.23 Their experiments demonstrated that children as young as four years old 
are capable of applying diverse perceptual information logically, provided they 
can remember this information. In a 1973 experiment, Bryant  specifically targeted 
the relationship between memory and inference by using only verbal stimuli, 
for example, Joe is taller than Susan, Susan is taller than Tom, etc. Once again 
the results indicated a tight correlation between memory and inference ability. 
Bryant  concluded that when errors in inference occur they are most probably the 
result of memory failure rather than a failure to reason logically. Bryant  et al.’s 
demonstration of transitive-reasoning ability in children as young as four years 
old (Piaget ’s ‘pre-operational’ period) undermines one of the essential premises on 
which Piaget ’s theory of children’s acquisition of numerical concepts is founded 
along with his explanation of children’s conservation  errors, which he attributed 
to their ‘pre-logical’ or ‘pre-operational’ stage.

His conclusion, notwithstanding, Bryant  did not attribute children’s conservation  
errors to mnemonic factors.24 Instead, he argued that because of the comparative 

22 Ginsburg  and Opper , 1969, p. 83
23 Bryant , 1974, p. 43-50, (Y.) ‘Transitive inference’ is a logical rule pertaining to the 

relations between members of a given sequence, for example: if a>b, and b>c, then 
a>c. According to Ginsburg  and Opper , 1969, p.112, Piaget  called this logic, ’ordinal 
relationship.’

24 Ibid., p. 130-1
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context of Piaget ’s conservation experiment the children tended to judge the 
size of the group that was spatially changed by the criteria they normally use in 
comparative tasks and were using in their first comparison. A more suitable test of 
the child’s understanding of invariance of quantities would have been to look at her 
response to a change in only one quantity.25 To substantiate this argument, Bryant  
had recourse to Elkind  and Schoenfeld ’s 1972 experiment in which the length of 
only a single row of objects was changed. Their experiment demonstrated that 
children, as young as four-years-old, did not view the change in the length of a 
single row of objects as if it was a change in the number of these objects, and 
they made almost no conservation errors. As it were, Elkind  and Schoenfeld ’s 
intention in this experiment was to confirm their supposition that Piaget ’s classic 
conservation experiments do not test for the understanding of the invariance 
of a quantity as such, which would be a “conservation of identity,” but for the 
understanding of the invariance of equivalence, which would be a “conservation 
of equivalence.”26 Eysenck  pointed out that in Elkind  and Schoenfeld ’s experiment 
the ‘conservation’ task required only recognition that the single quantity in question 
remains the same in spite of the changes to its spatial distribution, whereas in 
Piaget ’s experiments the ‘conservation’ task required three steps: first, to establish 
that the two compared quantities are equal; second, to recognize that the quantity 
that was spatially changed remained the same quantitatively; and third, to recognize 
that the spatially changed quantity maintained its quantitative equivalence with 
the quantity with which it was previously compared. The difference between 
these two kinds of conservations, then, is that the ‘conservation of identity,’ which 
involves a single quantity, is a direct or “pure” indication of understanding of the 
invariance of quantities, whereas ‘conservation of equivalence,’ which involves a 
comparison of two quantities, requires, in addition, transitive inference.27

That said, one should keep in mind that Piaget ’s association of ‘conservation ’ 
with ‘equivalence’ did not derive only from his assumption that ‘pre-operational’ 
children are incapable of logical thinking such as transitive inference, but also from 
his belief that children’s logical thinking draws primarily from actions that do not 
engage language; which means that children do not rely on verbal or symbolic inputs 
for their logical thinking. Just as Binet  used perceptual comparisons of two concrete 
aggregates in order to circumvent reference to verbal symbols and counting  in his 
number-discrimination experiments, so Piaget  used one-to-one correspondence  
for the same end. The association of ‘conservation’ with ‘equivalence,’ then, grew 
out of Piaget ’s experiments with one-to-one-correspondence. These experiments 
led him to believe that ‘conservation’ occurs when “correspondence triumphs 

25 Ibid., p. 175-6
26 Elkind  at al., 1972, (Cited in Bryant, 1974, p. 130-2, 148-50, emphasis mine)
27 Eysenck , 2004, p. 528-9
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over perceptions.”28 He assumed that such a “triumph” occurs when the child can 
co-ordinate diverse perceptual inputs into a dynamic whole.

Piaget ’s dismissal of the contribution of children’s symbolic function to 
their cognitive development is perhaps one of the weakest elements of his theory. 
After all, the conceptual/symbolic function does not depend on physical stimuli; 
therefore, it enables children to retrieve remembered perceptions and concepts 
and relate them to one another without input from the external world. Such ability 
is imperative for the creation of new concepts, in particular, abstract concepts 
that have no physical referent. Numbers in-and-of-themselves are devoid of 
any recognizable physical attributes—they are pure abstractions—and as such, 
can have no existence except as concepts and symbols. It is inconceivable, 
then, that numerical concepts can be constructed without conceptual/symbolic 
thinking.

Piaget ’s conviction that children’s thoughts are guided by actions rather than 
by language is equally incredible. To examine that proposition let us turn to L. S. 
Vygotsky , whose views about manipulation of objects are particularly instructive. 
Ever mindful of the influence of the social/cultural environment and language 
upon children’s learning and cognitive development, Vygotsky  analyzed the effect 
of symbolic thinking on their interactions with their physical surroundings, or 
as he saw it, the effect of speech on human behavior and tool use. According 
to Vygotsky , speech enables the child to include stimuli that are not part of his 
visual field; this inclusion enables him “to ignore the direct line between actor 
and goal.”29 It is then, through the mediation of the child’s inner “stimuli,” that 
is to say, his conceptual/symbolic network, that he is capable of creating “a time 
field,” which in turn enables him to “view changes in his immediate situation 
from the point of view of the past activities” and to “act in the present from the 
viewpoint of the future.”30 That ability to separate actions from perceptions and to 
postpone responses, frees the child from the constraint of the immediate-sensory 
stimuli and the dictates of the concrete world, enabling him instead to direct his 
actions by means of his own thinking and intentions. Though formulated at the 
beginning of the 20th century, Vygotsky ’s view is consistent with contemporary 
thinking of neuroscientists. Gerald Edelman , for example, raises the possibility 
that conscious attention to a given task depends upon what he called, “negative 
influences,” such as the suppression of sensory and perceptual inputs by means 
of stimulation of concepts and imagery.31 Terrence Deacon  concurs, and adds that 

28 Piaget , 1952, p. 37, 55
29 Vygotsky , 1978, p. 26
30 Ibid., p. 36
31 Edleman, 1989, p. 200-1, In Edelman own words: “other than that related to the 

carrying out of a given motor plan.”
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instinctive responses to immediate and concrete stimuli conflict with symbolically 
mediated actions.32 These views imply that children’s interactions with their 
physical surrounding are guided by their conceptual/symbolic function, and not 
the other way around, as Piaget  believed.

A similar emphasis on the actual perceptual processes rather than on 
conceptual/symbolic processes is implicated by Piaget ’s understanding of 
conservation . Piaget  maintains that a permanent conservation, and ultimately a 
true conception of number, depends on operational thinking as demonstrated by 
a child’s recognition that the density of a row of objects exactly compensates for 
the row’s length.33 Built on the perception of two concrete entities (length and 
density), Piaget ’s explanation places the process of conservation within a strictly 
perceptual framework. In the same vein, Norman Ginsburg  defines ‘conservation’ 
as “the capacity of the organism to maintain an invariant response to an invariant 
property of the world in spite of changes in irrelevant but distracting properties.”34 
‘Conservation,’ as recognition of an “invariant property of the world,” pertains 
to an aspect of a physical thing. It seems, then, that the kind of logical reasoning 
involved in ‘conservation,’ as Piaget  and Ginsburg  imagine it, relates to physical 
phenomena. If so, perhaps the most pertinent question regarding the concept 
of ‘conservation’ is whether or not the invariance of physical quantities is at 
all relevant to the acquisition of numbers, which themselves lack any physical 
qualities. The invariance of concrete quantities can be established by considering 
their various spatial/perceptual variables. For example, the density and length in 
the instance of a group of bottles that are positioned closer together or farther 
apart, and the height and width in the instance of water that is poured from a tall, 
thin vessel into a short, wide one. But the invariance of the numerical value of 
a collection, which is devoid of any perceptual elements of its own, cannot be 
established by consideration of spatial/perceptual data. On the contrary, spatial/
perceptual information must be ignored to allow attention to the group’s numerical 
value. The presence of a specific numerical concept helps the child to ignore 
irrelevant perceptual information and focus her attention only upon a group’s 
numerical value. It is no surprise, then, that that the smallest numbers are the first 
numbers to be “conserved.”

Extensive evidence suggests that ‘conserving’ the numerical value of a 
group depends upon a referent to a specific numerical concept, not on logical 
consideration of perceptual stimuli. Starting with the early experiments of Binet  
with rows of beads, studies consistently show that once a child acquires a specific 
numerical concept, she will not be confused by changes to an arrangement of 

32 Deacon , 1997, p. 435
33 Piaget , 1952, p. 94
34 Ginsburg , 1976, p. 667
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objects within that number. Indeed Piaget ’s own experiments show that when the 
groups in question are small, children of ‘pre-operational’ ages can ‘conserve.’

It is reasonable to assume that younger children who do not yet possess the 
concepts of larger numbers opt for a perceptual instead of enumerative strategy 
when they compare the size of larger groups. When numbers exceed subitation  
range, an absence of reference to specific numerical concepts may also be attributed 
to lack of an opportunity to count. In this case, determining the numerical value of 
a group by a global impression of the area occupied by that group is a legitimate 
alternative to true enumeration, albeit prone to mistakes. In fact, impressionistic 
estimation is susceptible to erroneous judgment not only in children but also in 
adult subjects, as has been documented in a few studies. For example, Krouger’s 
1972 experiments demonstrated that adults perceived the same number of objects 
as more numerous when they were spread over a larger area. In 1976, Norman 
Ginsburg  conducted three experiments concerning the question of how random as 
opposed to regular arrangements of dots effect estimation. The 53 college students 
who participated perceived regular patterns as “significantly more numerous” 
than random arrays. Mindful of Piaget ’s theory, Ginsburg  called this phenomenon 
a “breakdown of conservation  of number”35 and claimed that his adult subjects 
“regressed to a stage of non-conservation.”36 In their 1972 study involving adults 
and 8-year-old children, Christopher and Uta Frithe explored the “solitaire 
illusion —” the illusion that a single large cluster of dots appears to contain more 
elements than several small clusters—and found no significant difference between 
adults’ and children’s performance.37 All these studies demonstrate that adults err 
similarly to children when they use perceptual strategies in number-estimation 
tasks.

Piaget ’s emphasis of the important contribution of ‘one-to-one-correspondence’ 
activity to the formation of numerical concepts was also questioned. For example, 
Gelman  and Gallistel  observed that Piaget ’s one-to-one-correspondence method 
of experimentation detracts from the children’s ability to ‘conserve.’ They explain 
that the pairing of objects directs the child’s attention to the structure and pattern 
of the groups under consideration instead of to their numerical values. When 
the child’s attention is directed to a specific group she is more successful in 
conservation  tasks, as Gelman ’s experiments have demonstrated.38 It seems that 
when dealing with a single group children are better able to tie their numerical 
evaluation to a specific number.

35 Ibid., p. 663
36 Ibid., p. 667
37 Frith  and Frith , 1972, p. 410
38 Gelman  and Gallistel, 1978, p. 230, 233
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Beside interfering with the process of number recognition, the ‘one-to-one’ 
process also hinders the very formation of numerical ideas. Not that units’ 
recognition, which characterizes one-to-one correspondence , is not a necessary 
prerequisite for the formation of numerical concepts, but when the one-to-one 
process focuses on comparing two concrete aggregates it inevitably leads to a 
relative, not an absolute evaluation of the considered quantities. Bound exclusively 
to the examination of relative values, the one-to-one process cannot yield numerical 
concepts, which are inherently definite. The history of human cultures attests to 
this conclusion: Thousands of years of one-to-one-comparison practiced in a 
variety of social and commercial contexts failed to advance the development of 
mature numerical systems in those societies in which it was practiced.

But then, it is possible that Piaget  perceived numbers as relative concepts in 
the first place as is implied by his belief that each number must be understood 
in the context of its ordinal placement in the sequence of the counting-numbers, 
and therefore numbers are “disassociably cardinal and ordinal.” Let us note that 
insofar as its cardinal value  defines a number in an absolute term, and the ordinal 
value  defines a number in a relative term, there is a certain self-contradiction in 
this postulation. Yet some researchers agree that children understand numbers 
by connecting their cardinal with their ordinal values. Take for example Wynn ’s 
assertion, “[linguistic] symbols obtain their numerical meaning by virtue of their 
positional relationships with each other.”39 This idea is at odds with the fact that 
the conceptual identity of a number is established solely by its cardinal value, that 
is, its sum size. Of course, the sum size that is denoted by a given number word 
does not change, no matter where this word is located in a sequence or how it is 
used. Not that there is no association between the cardinal and ordinal meaning 
of number words , but it is always the cardinal meaning of a number word that 
determines where this number word is placed in relation to a sequence of other 
number words. For example, three is the third number in the counting-number 
sequence, but in the prime-numbers sequence, three is the second number, and in 
the multiples-of-three-sequence it is the first number. The meaning of the word 
three determines its ordinal location in those different sequences, and in spite 
of three’s different ordinal locations in these sequences, its meaning does not 
change.

The emphasis on the association between the ordinal and the cardinal 
meanings of number words  is unfortunate for it confuses the application of 
number words in counting , in which their ordinal value  is important, with their 
wider application, namely, the representation or numerical concepts, where the 
cardinal value  these words convey is important. Wagner  and Walters  observed that 
the difference between the semantic and the procedural aspects of number words 

39 Wynn , 1992, p. 228
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is one of the causes for toddlers’ errors and confusions in various enumeration 
tasks. They lamented, “it is a linguistic misfortune that we do not count by ordinal 
lexemes (“first, second, third”) so as to distinguish between the cardinal value of 
a collection and an ordinal positioning [in] a sequence.”40

Finally, Piaget  thought that children’s ability to correctly identify small 
numbers, combined with their inability to ‘conserve’ larger numbers, indicated 
an “intuitive” perception of small numbers. He proposed that the perception 
of numbers within the range of 5 by the ‘pre-operational’ children is merely a 
result of reproduction of a fixed perceptual “schema” rather than the result of 
logical operation. Although there are some contemporary scholars who claim 
that infants can discriminate between small numbers intuitively, the range of 
the numbers they consider ‘innate’ is within the range of 3, not within the range 
of 5 as Piaget  thought. But even at this more limited range, the idea of innate 
number  is typically accompanied by a disclaimer. Karen Wynn  maintains that the 
innate ‘cardinal tags,’ that is, the naturally-occurring-nonverbal numbers, “[are] 
not available to conscious inspection and so cannot inform linguistic, culturally 
supported counting  activity.”41 Wynn ’s description excludes these nonverbal 
“numbers” from the realm of numbers that are applicable in thinking in general, 
and in arithmetic thinking in particular. Similarly, Dehaene  describes the ‘innate 
number’ as a process that “prefigures, without quite matching” the numbers 
used in school arithmetic.42 Yet, this notion of ‘intuitive number’ was altogether 
discredited by studies of other psychologists even prior to Piaget ’s own foray into 
this subject. The most often cited research concerning this topic is H. Beckmann ’s 
1924 study of two-and-a-half and three-year-old children’s perception of number. 
Beckmann  observed that his subjects could recognize the number of objects in 
small groups only after they had learned to count up to that number, no matter 
how small this number was. Moreover, the younger they were the more they were 
inclined to count aloud when asked about the number of objects in a group.43 
Beckmann ’s finding, according to Bryant , precludes the possibility that numbers 
can be “subitized” purely on the basis of perception.44 Beckmann /Bryant ’s view 
gained a lot of muscle from Gelman ’s 1978 studies and many others who were 
inspired by her research concerning counting. In her research, Gelman  noticed 
that whenever children were asked to judge the equivalency of two sets of objects, 
they spontaneously resorted to counting. Even two-and-a-half-year-olds preferred 

40 Wagner , and Walters , 1982, p. 149-50
41 Wynn , 1992, p. 223
42 Dehaene , 1994, p. 4 (emphasis mine)
43 Gelman  and Gallistel, 1978, p.69
44 Bryant , 1974, p. 120



107TWO AND TWO MAKE ZERO

to base their estimation on counting rather than on direct perception.45 In fact, the 
younger the children were, the more emphatic and deliberate was their counting. 
For example, the younger subjects tended more than the older to point to the 
object counted and count it aloud, while estimation without overt counting was 
more typical to the older children.46 Evidence that younger children rely on actual 
counting more than older children in number perception tasks implies that they 
depend more than their seniors on deliberate analytical processes for numerical 
evaluations; this conclusion contradicts the idea that children’s perception of 
number in their ‘pre-operational’ age is a mere reproduction of a fixed ‘schema.’ 
As it is, the only evidence Piaget  offers in support of his assertion about intuitive 
numbers is his own theory.

Although, as shown above, many dispute this or that aspect of Piaget ’s theory 
and methods of experimentation, no one ignores his work. His studies and thoughts 
touch many subject matters and reveal the richness and complexity of children’s 
number cognition. Perhaps, one of the most enduring contributions of Piaget  to the 
understanding of the origin of number in children is the great interest in children’s 
acquisition of number that his thought-provoking work imbued in other scholars.

The following two chapters deal with Rochel Gelman  and C.R Gallistel ’s 
counting  theory and related issues of their influential work, “The Child’s 
Understanding of Number”.

VII-4. GELMAN AND GALLISTEL: THE CHILD’S 
UNDERSTANDING OF NUMBER

Gelman  and Gallistel ’s 1978 The Child’s Understanding of Number was 
influential mainly due to its analysis of children’s counting  behavior, its elucidation 
of the principles necessary for a successful counting, and the volume of new data 
pertaining to children’s counting and number reasoning that the study generated.

Gelman  and Gallistel  speculated that children’s perception and abstraction 
of numbers involves a rapid sub-vocal counting and that counting has a role in 
number-concept acquisition. 47 They based their proposition on the studies of 
Beckmann  (1924) and Descoeudres  (1921) which demonstrate that a number must 
first be counted before it can be perceived, even if it is as small as 2 or 3, and that 
the younger the child the greater the tendency to count. Gelman ’s observation 
of children’s spontaneous counting in her own research further strengthened 

45 Gelman  and Gallistle,1978, p. 163, 228
46 Ibid., p.78
47 Ibid., p.70
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this hypothesis.48 Abandoning the notion of intuitive perception of numbers, and 
observing children’s inclination to count, Gelman  and Gallistel  viewed children’s 
counting as intuitive behavior.

Much of their theory and analysis of preschoolers’ conceptions of numbers 
grew out of research by Gelman  and her students into the cognitive abilities 
of preschool children,49 in particular “The Magic Experiments”50 and “The 
Videotape Counting Study.”51 Let us briefly review these two studies:

Though originally designed to study children’s reasoning about numbers, 
the ‘magic experiments’ proved useful for examining and analyzing children’s 
counting , since in this experiment the children’s counting was spontaneous and 
self-motivated. Children’s inclination to count in the ‘magic experiments’ was 
particularly remarkable because in order to avoid any reference to number they 
were instructed to identify the “winner group” instead of the more numerous 
group. The experiments, which involved 2-, 3-, and 4-years-olds, were designed 
as a game with two phases: The first phase, which was primarily an identification 
game, was intended to create an expectation for a specific number. It proceeded 
by displaying two plates, each containing a different number of small toys (for 
example, one plate with two mice and the other with three). The experimenter 
pointed to the “winner” plate, and then covered the toys in both plates. Next, the 
plates were shuffled around until the children lost track of the “winner” (or the 
“loser”) plate. The children then had to guess which of the two covered plates is 
the “winner” plate. Once the children made their guess they were asked to lift off 
the cover and check whether or not they had guessed correctly. The second phase 
involved making secret changes to the “winner” plates by replacing, removing, or 
adding objects, or by changing the objects’ distribution (hence the term “magic” 
in the experiments’ title). This secret move was followed by a series of questions, 
such as, “Has anything happened? If so, what? How many objects are now on the 
plates? How many objects used to be on the plates?” and so on. 52 The children’s 
responses to the secret changes made to the “winner” array and their answers to 
the experimenter’s questions were recorded.

The approach of the videotaped-counting  study was more direct than that of 
the ‘magic experiments’ in the sense that there was no attempt to conceal that its 
subject matter is ‘number’. The 2-, 3-, 4-, and 5-years-olds that were involved in 
this experiment were presented with arrays of objects and with the direct question, 

48 Ibid., p. 69-70, 222-3
49 Ibid., p. vii
50 Ibid. , p. 83-104,161, 249. (Citing: Gelman , 1972a, 1972b, 1977, and Gelman  and 

Tucker , 1975)
51 Ibid., p. 83-104,161, 249 (Citing, Gelman , 1977)
52 Ibid., p. 85
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“How many?” or with the instruction to “count them.” In addition, the objects in 
the videotaped-counting study were presented nonlinearly as well as linearly, while 
in the ‘magic experiments’ objects were presented only linearly. The children’s 
task was to choose one set for themselves and one set for a puppet. The sets’ sizes 
were, 2, 3, 4, 5, 7, 9, 11, and 19, and in order to keep the children engaged, the sets 
were presented in pairs, say, 2 and 3, 7 and 9, etc.

The hypothesis that guided Gelman ’s experiments was that children have 
“more capacity than meets the eye.”53 Because she set out to find what children 
can do instead of what they cannot do, Gelman  was sensitive to children’s states of 
mind and gave their “proclivities” precedence over the design of the experiment.54 
She also made a special effort to ensure that the children were familiar with the 
experimenter at least one week prior to the experiment and that the experiments 
were short and playful. The game-like quality of Gelman  et al.’s experiments 
captured the children’s interest and helped in eliciting their spontaneous behavior, 
yielding rich data and, sometimes, unexpected results. Moreover, this strategy 
proved to be effective in drawing out children’s cognitive skills including 
‘conservation ,’ thereby revealing the depth of their understanding of numbers 
even before they reach school age. Gelman  regarded the children’s spontaneous 
behavior as important data. She used this data in designing subsequent research 
and in formulating her and Gallistel ’s theory. Gelman  noticed that counting  was “a 
salient behavior whenever the experiment permitted.” “Indeed,” she commented, 
“it was the prevalence of spontaneous counting behavior that alerted her [Gelman ] 
to the role counting might play in the way children think about number.”55

She and Gallistel  identified five counting  principles. They called the first three 
rules that guide the actual counting procedure, “how to count principles.” The first 
rule in this category is the one-to-one correspondence , the understanding that one 
and only one word should be assigned to each item counted. It includes the ability 
to distinguish between objects that have already been counted and objects that are 
not yet counted. Second is the stable order principal, the requirement that there 
must be a fixed word order in counting (as in ‘one’, ‘two’, ‘three’, etc.). Third is 
the cardinal principle, the understanding that the last word used in the counting 
process indicates the cardinal value  of the set. The acquisition of the cardinal 
principle may be expressed either by emphasizing the last word in the series or 
in repeating it. The remaining two rules concern the abstract nature of counting. 
They called the fourth rule, which deals with the decision “what to count,” the 
abstract principle. Observance of this principle indicates the understanding that 
the particularities of units (color, size, shape, function, etc.) do not change the 

53 Ibid., p. 242
54 Ibid., p. 105
55 Ibid., P.68
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result of counting. The child’s mastery of the abstract principle is manifested by 
his willingness to include a diversity of objects in the group he counts. The fifth 
rule, the order irrelevance principle, is the understanding that the order in which 
units are counted does not affect the result of counting. The child’s mastery of the 
order irrelevance principle is indicated by his willingness to start counting the 
same group from a different place or from a different object.56

Gelman ’s studies show that with the exception of the cardinal principle children 
as young as two-and-a-half years old demonstrated a surprising mastery of the 
counting principles , provided that the sets involved were within numerical sizes 
with which they were already conversant, that is, smaller than 4 or 5.57 Children of 
all ages were highly aware of and paid close attention to the one-to-one principle, 
as they were careful to point to and even touch each of the objects counted. In 
fact, errors in ‘one-to-one’ correspondence seldom occurred, even in the case of 
the two-and-a-half-year-old; and when they did occur, errors were likely to be 
technical, namely, due to lack of coordination rather than cognitive lapses (for 
instance, not counting the last object or continuing to recite a number-word after 
the last object was counted).

Evidence that children of an even younger age, the two-year-olds, followed 
the stable order rule was, in Gelman ’s words, “striking.”58 Indeed, when children 
were able to adhere to only one of the ‘how to count’ rules, it was usually the stable 
order principle. Even within the limited range of number-words that they could 
master, their ability to follow the stable order rule surpassed, by far, their ability to 
accurately judge number, as in the following example: The experimenter presents 
2 items. “How many on the plate?” D.S. age two-and-a-half: “um-m, one, two.” 
Experimenter displays 3 items. “How many on this plate?” D.S.: “one, two, six.” 
Experimenter, “do you want to do this again?” D.S.: “ya, one, two, six.”59

Children typically used conventional number-words in their ordinal sequence. 
The tendency to use idiosyncratic words appeared only in the youngest, the 
two-year-olds. But even the few children who used idiosyncratic words were using 
them in a fixed order and together with number-words. Usually, the first two or 
three counting words that were used by the children were the conventional ‘one’, 
‘two’, ‘three.’ By age three, their list consisted exclusively of number-words in 
their ordinal counting sequence.

Whereas the principle of ‘stable order’ was the first to be acquired, the 
cardinal principle—the understanding that the last number word used in counting  
expresses the numerical value of the group—was the hardest for children to follow 

56 Ibid., p. 77-82
57 Ibid., p. 101
58 Ibid., p. 131
59 Ibid., p. 91
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and the last to be acquired.60 In contrast, the principle of order irrelevance, as far 
as Gelman  could tell, was a non-issue to begin with; children were practically 
“oblivious” to the order in which they “tagged” objects, she commented.61 
Likewise, the abstraction principle posed no problems to children. To Gelman ’s 
surprise, the heterogeneity of items in the group had no detectible effect on the 
children’s proficiency in numerical estimation. Even the youngest children did 
not hesitate to include in a counted group a diversity of objects, and in the rare 
instances in which the youngest children used idiosyncratic words, they never 
“tagged” objects in a way that bore reference to their physical properties such as 
‘blue’ or ‘mouse.’62 All of these observations indicate that children understand that 
the physical properties of the objects being counted are immaterial to the results 
of the counting.

Their insight into the complexity of the counting  task and their hunch that 
counting plays a role in children’s acquisition of number notwithstanding, Gelman  
and Gallistel  claimed that the process of counting is merely a “serial tagging” of 
objects belonging to a set. The children need not use conventional number words  
in their counting. Indeed, the “tags need not even be verbal” so long as (1) they 
are used in marking or in ticking off objects, (2) they are used in a fixed order, 
and (3) they are arbitrary in the sense that they bear no descriptive reference to 
the objects that are being counted.63 Moreover, the children remember a list of 
their own making better than the conventional list of number words. They shift 
to conventional number words only in order to make others recognize their 
knowledge.64 Gelman  and Gallistel  expanded the ideas of innate ‘tags’ even further 
in their work, “Non-Verbal Numerical Cognition: From the Reals to the Integers,” 
where they hypothesized that the entire range of real numbers  are stored in a 
nonverbal form by means of an innate apparatus known as the accumulator  (See 
VI-1). Gelman and Gallistel  coined the term numerons to depict all the possible 
tags, and called the commonly used counting words, which they deemed a subset 
of numerons, numerlogs.65 The proposition that children (perhaps animals as well) 
use numerons as tags for “ticking off” objects implies that the meaning of the 
words used in the counting is immaterial to this process. The principle of stable 
order, for instance, “is neutral with respect to the type of tag; it simply requires 
that the tags used be drawn from a stably ordered list.”66

60 Ibid., p. 126
61 Ibid., p. 217
62 Ibid., p. 116-7
63 Ibid., p. 76
64 Ibid., p. 207
65 Ibid., p. 77
66 Ibid., p. 206
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The aforementioned requirement, however, is not trivial; “a significant part 
of the development of numerical abilities centers around the need to solve the 
practical difficulties posed by the stable-order principle.”67 This is so, Gelman  and 
Gallistel  explained, because the counting  procedure requires the memorization of a 
very long “stably recallable list of distinct numerlogs—” a list that is too extensive 
for the limited capacity of the human memory.68 To explain how children deal 
with this requirement, Gelman  et al. proposed that rules must be established for 
generating words to fill the higher position in the number-word sequence.69 Once 
these rules are understood, the list of words required to be learned by rote consists 
of only the first 12 or 13 number-words,70 for “all other count words can be derived 
from the application of the generative rules embodied in the already mastered 
count words.”71 In other words, the principles for generating higher-order count 
words are inherent in the 12 or 13 previously acquired counting words.

Devoid of numerical meaning, the number words  that children typically use 
in counting  provide them no guidance in this procedure. Instead, the children’s 
counting behavior is propelled and guided by an innate structure—the counting 
scheme. Children count for the sake of realizing this scheme’s rules and principles. 
The counting scheme, then, is the means to its own end. But the counting 
principles or counting scheme not only motivates the child to practice counting, 
it also constitutes a “reference against which the child can evaluate and refine his 
counting.”72 And so, “their scheme plays the role of a personal tutor who both 
goads and guides.” (Ibid.) Guided by the counting principles , the meaning of 
number-words or numerlogs is not pertinent for the process of counting. As it 
were, Gelman  and Gallistel  argued that counting in and of itself does not promote 
number development; it is merely the mechanism that provides the “representations 
of reality upon which the reasoning principle operates.”73 They explained that 
young children treat counting “as an algorithm  that creates the representation of 
numerosity employed in reasoning.”74

67 Ibid., p. 79
68 Ibid., p. 237
69 Ibid., p. 211, 237
70 Ibid., p. 211-2, In other part of their book Gelman  and Gallistel  identify these number 

words  in the English speaking cultures thus: the base numbers to ten, eleven to sixteen, 
the first few instances of multiples of 10 (twenty, thirty etc.), and the 2nd, 3rd, 6th and 
so on power of ten.

71 Ibid., p. 212
72 Ibid., p. 208-9
73 Ibid., p. 161
74 Ibid., p. viii
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To complete Gelman  and Gallistel ’s theory of children’s number concept 
development, let us examine the reasoning principle, which they consider an 
important indication of children’s understanding of number.

Gelman  and Gallistel  identified three main components of the reasoning 
principle: (1) Relation—the cognition that the numerical equivalence, or the lack 
thereof, between quantities is based exclusively on the number of units in these 
groups. All other characteristics (units’ properties, place occupied, etc.) do not affect 
the numerical values or the numerical ‘identities’ of groups. (2) Operation—the 
understanding that the only thing that can change the numerical value of a group is 
the addition or subtraction of units. (3) Solvability or reversibility—the recognition 
that addition can undo or cancel subtraction and vice versa. That is, addition and 
subtraction are reverse operations, such that any number can be obtained, or 
“fixed,” by adding or subtracting units from another number.

Except for the limitations that children manifested in the solvability principle, 
Gelman ’s studies have shown that within the numbers 4 or 5, with which they 
were already familiar, the children demonstrated remarkable mastery of number 
reasoning principles. As for the solvability principle, Gelman ’s studies revealed 
that pre-school children had difficulties in mentally solving how many units to 
add or subtract when the difference between the target number and the number 
presented was more than one. But they were able to indicate what direction to take, 
that is, whether to add units or subtract units.

Similar to Piaget , who suggested that true understanding of the counting  
numbers must rely on a fusion of the ‘logic of class’ and the ‘logic of seriation,’ 
they too tied number comprehension to a more advanced form of thinking. Theirs, 
though, was advanced mathematical thinking such as algebra . The child is able to 
deal “with that ethereal abstraction called number,” only when she reaches the stage 
in which “arithmetic reasoning is no longer limited to dealing with representations 
of numerosities,” that is, the stage she can reason algebraically. 75

Gelman  and Gallistel ’s theory raises many questions, which will be discussed 
in the next chapter. Still, their focus on children’s counting  behavior places the 
process of number-concept acquisition in the suitable psychological framework, 
that is, one that is rational/analytical even if for them counting is only a preparatory 
step for true number-concept acquisition.

VII-5. GELMAN AND GALLISTEL’S THEORY REVIEWED

Reviewing many scholastic responses to Gelman  and Gallistel’s work, “The 
Child’s Understanding of Number,” one cannot escape noticing that to the extent 

75 Ibid., p. 236-7
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that scholars disagree with them, these disagreements are not with their methodology 
and experimental findings, but with several of their theoretical proposals. Although 
Gelman  and Gallistel’s “counting principles ” have been well received and are 
widely used as a tool for analyzing and evaluating children’s enumeration activities, 
their view that these principles represent an inborn scheme is far less accepted, as 
is their closely related proposal that children make their own counting words and 
shift to conventional words only in order to make others recognize their knowledge. 
Some also question the usefulness or the validity of giving primacy to principles 
over concepts and skills. This chapter examines Gelman  and Gallistel’s theory with 
respect to the thoughts and studies of other scholars. Its main focus is on Gelman  and 
Gallistel’s propositions that children’s counting is generated and guided by an innate 
scheme rather than by conceptual or social/cultural inputs, and that the words children 
prefer to use in counting are both self-generated and immaterial to this process.

Let us begin with Gelman  and Gallistel ’s supposition that children’s counting  
behavior is originated and guided by an innate scheme of counting principles: One 
of the scholars who questioned the aforementioned idea is Catherine Sophian .76 
She maintains that because the three how-to-count principles (the stable order, the 
one-to-one, and the cardinal) are logically interdependent they must be applied 
simultaneously in order to fulfill their function. But there is evidence that children 
often violate one or two of these principles in order to comply with another. For 
instance, in order to finish counting a group without violating the one-to-one 
principle, children repeat or “recycle” number words  (e.g., “1, 2, 1, 2, 1, 2, 3) thereby 
disregarding the stable-order principle. On the other hand, when children are more 
interested in using up all the counting words at their disposal they readily abandon 
the one-to-one principle. Wagner  and Walters  noticed that 2- and 3-year-olds tend to 
either count small sets again, or to count more than once some objects until they run 
out of all the number words they know. They call these tendencies the “list exhaustion 
scheme.”77 Children were also observed to break the cardinality principle in order 
to meet the researcher’s expectations. For example in her 1992 study of children’s 
acquisition of the number words and counting, Karen Wynn  asked children to give 
her five objects. One girl gave her three, and upon Wynn ’s request to count these 
objects, the child counted: “one, two, five.”78 Sophian  questions,

[ . . . ] what the conceptual significance of the counting  principles 
could be for children who violate one principle to satisfy another. What, 
for instance, could children who make recycling errors understand 
about why it is important to tag each and every object? 79

76 Sophian , 1998, p. 34-5
77 Wagner  and Walters , 1982, p. 143-4
78 Wynn , 1992, p. 225
79 Sophian , 1998, p. 36
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It is more plausible, she argues, that children’s incomplete use of the counting  
principles reflects their not entirely successful attempts to reproduce the mechanics 
of counting that they observed others perform, rather than “a priori knowledge” 
of counting principles. (Ibid.) Sophian , who studied children’s counting from 
a developmental perspective, found that children’s understanding of the utility 
of counting develops over time. For example, her experiment, which involved 
3- and 4-year-old children, demonstrated that while all children counted when 
questioned “how many,” one quarter—mostly 3-year-olds—did not count when 
they were requested to “put ‘n’ [objects]” somewhere or “make [two groups] 
equal;” 4-year-olds, on the other hand, did count in all of these instances.80 
Karen C. Fuson ’s observation that children’s counting ability involves gradual 
improvement, rather than “sudden insights” followed by flawless counting,81 is 
consistent with Sophian ’s view that counting is an acquired skill, not an innate 
ability. Likewise, Nunes and Bryant , who generally consider Gelman  and 
Gallistel ’s counting principles very “useful,” nonetheless comment that Gelman  
et al.’s model of “principle before skills” implies that children already know the 
‘how-to-count’ rules and need not learn them. But there is no evidence to support 
that assumption.82

Not less problematic is Gelman  and Gallistel ’s claim that children generate 
their own ‘tags’ for counting . These self-generated tags are an important 
component in their innate-counting-scheme theory, and for Gelman  et al., 
they constitute evidence for a tagging impulse. Empirically, however, this 
proposition has been decisively refuted. For example, Wagner  and Walters  
write, “In 5 years of transcripts and hundreds of counting instances, we found 
no evidence whatsoever for the strong form of the stable-order principle 
assuming a nonstandard string.”83 Similarly, in her extensive 1988 work, which 
details voluminous research data including her own, Fuson  commented, “In 
all the counting done by the several hundred children aged 2 ½ to 6 reported 
in [Fuson ’s] book, we almost never had children use anything except number 
words  to count.”84

Another postulation of Gelman  and Gallistel  that does not stand up to scrutiny 
is that counting  is merely “ticking off objects” for which any “tags” will do as 
long as they are arbitrary and their application follows a fixed order—a premise 
that suggests that the meaning of the counting words is immaterial to the counting 
process. While it is true that during the actual procedure of counting the number 

80 Ibid., p. 39
81 Fuson , 1988, p. 193
82 Nunes and Bryant , 1996, p. 23-5
83 Wagner  and Walters , 1982, p.151
84 Fuson , 1988, p. 389



116 H.S. YASEEN

words  may be used mechanically just as sticks in the primitive one-to-one 
procedure , potentially each of these words may define the numerical value of 
the entire group counted. For this reason an informed counting requires that the 
counting words have numerical meanings. By claiming that the meanings of the 
number words are immaterial to the counting process, Gelman  and Gallistel  omit 
from their analysis the conceptual aspect of counting. Stripped of its conceptual 
component, the complex process of counting is reduced into a meaningless modus 
operandi. Furthermore, there is no empirical evidence for the proposal that counting 
words convey no meanings. Although there is no intrinsic connection between a 
number word and the concept it represents (as it is of course true of all words), 
there is considerable evidence that children use counting words selectively, not 
arbitrarily. Fuson , for example, observed that children differentiate number words 
from non-number words very early, and use only number words when reciting 
the counting-words sequence. Even when they make recitation mistakes, children 
persist in using only number words.85 According to Wynn  2-½ year olds almost 
always respond with a counting word to the question, “how many?”86 This indicates 
that they understand that counting words constitute an answer to that question. 
As it were, Gelman ’s own experiments generated strong evidence that children’s 
choices of counting words are in fact discriminatory. These studies showed that 
children, as young as two years old, preferred to use number words in their 
counting and rarely used idiosyncratic words; by age three they use exclusively 
conventional number words in their commonly used sequence.87 Moreover, even 
when the three-year-old children’s accuracy in identifying the number of items 
faltered when group sizes were greater than three or five items, their estimations 
were not “undifferentiated beaucoup [many].”88 In their 1975 experiment, Gelman  
and Tucker  demonstrated that children as young as three years old tended to 
represent larger sets of objects with number words that come later in the number 
word sequence. Only a quarter of the participants displayed Descardeu’s pattern 
(“one, two, three, beaucoup”),89 suggesting that even when the groups’ sizes 
exceeded the size of numbers with which children were familiar, they nonetheless 
understood that words that come later in the number words’ sequence signify 
larger groups. In other words, children were aware that the escalating order of the 

85 Ibid., p. 58
86 Wynn, 1992, p. 249
87 Gelman  and Gallistel , 1978, p. 90, 131
88 A reference for Descoeudre’s “un, deux, trois, beaucoup ” (French for ‘one, two, 

three, many’), coined by Descoeudre to depict the discrepancy between two-and 
four-year-olds’ abilities to grasp small numbers and their ability to grasp large numbers 
(Descoeudre, 1921, cited in Bryant , 1974, p.119).

89 Gelman  and Gallistel , 1978, p. 58-9
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counting words corresponds to the escalating cardinal value  of the sums to which 
these words were applied.90 This finding indicates that far from being arbitrary 
tags, each number word, including those children do not fully understand yet, 
conveys a discriminative idea of size. It seems, then, that the meanings of the 
words children use in counting is important to this process even when their exact 
connotations have not yet been acquired.

However, the characterization of counting  as a process devoid of numerical 
meaning complements Gelman  and Gallistel’s belief that the sole purpose of 
counting is to assemble “representations of reality” upon which a second set 
of rules, ‘the numerical reasoning principles,’ operate.91 These ‘reasoning 
principles,’ they hypothesized, provide the basis for generating genuine numerical 
concepts.

Perhaps by describing number words  as tags, which have no relevance to 
the principles of counting  or numerical concepts, and proposing an additional set 
of principles—number reasoning—, Gelman  and Gallistel  intended to distinguish 
between the process of counting and the idea of numbers. True, numbers are 
complete and self-contained conceptual entities; they are independent of the 
ways in which they are applied, whether it is perception, calculation , or counting. 
This truth, however, does not mean that the rules of counting are independent of 
the concepts of number. On the contrary, insofar as the purpose of counting is 
to determine the numerical value of aggregates, numbers and counting share the 
same conceptual plan (or, if you will, scheme), namely, to answer the question 
“how many” and nothing else; hence, the logic of the counting rules and the 
ideas of number are inseparable. And because all numbers, regardless of their 
size, answer the question “how many” and nothing else, every discrete concept of 
number encompasses both the properties of a generalized theoretical number as 
well as the counting and reasoning principles that Gelman  and Gallistel  consider 
necessary for genuine number.

Indeed, scrutiny of Gelman  and Gallistel ’s counting  principles makes it 
apparent that they are derivative of the very concepts of numbers. Consider the 
following: If each number is a discrete concept of an exact amount of units, 
then verbal counting requires that one and only one word be assigned to each 
object counted so that the number of words will exactly match the number of 
objects in the counted set, thus fulfilling the one-to-one principle. Since the 
purpose of the counting process is to establish how many units are in a set, the 
tacit presumption that drives the whole process is that the word that concludes 
that process will answer that question; it will convey the number of the things 
counted, thus fulfilling the cardinal principle. But, if the last word is to indicate 

90 Ibid., p. 62
91 Ibid., p. 161
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the total sum reliably, counting words have to be applied in such a way that each 
word will convey an idea of number that is larger by one and only one unit than 
the number conveyed by its preceding word, forcing a fixed or stable order of 
number words , starting with the word ‘one.’ Since counting, like number concepts, 
answers the question ‘how many’ and nothing else, anything that is not related to 
this question is immaterial to the results of counting. It follows that things such 
as the particularities of the objects counted, the area they cover, or the order in 
which they are counted may be ignored, hence the abstraction principle and the 
order irrelevance principle. Here you have it, all the five counting principles. An 
analysis of the ‘reasoning principles’ would result in a similar conclusion. Indeed, 
Fuson  commented that Gelman  and Gallistel ’s reasoning principles (relations, 
operations, and reversibility) are in fact cognitive elements of numerical concepts, 
and questions the use of the term principles for depicting what is essentially a 
range of concepts and their interrelationships.92

Since the range of numbers with which Gelman ’s subjects dealt were mostly 
within the lower end of the subitation  range, they were also within the children’s 
capacity to imagine and to conceptualize. It is unlikely that these toddlers were 
using the complex, highly generalized and abstract counting  and reasoning 
principles, as Gelman  and Gallistel  proposed, when the application of already 
existing numerical concepts sufficed.

It is far more reasonable to assume that the numerical expertise that the children 
exhibited in Gelman ’s studies indicates that they possessed a modest collection 
of specific abstract number concepts, which they applied in the counting  tasks. 
That conclusion is consistent with Fuson ’s opinion that conceptual, procedural, 
and “utilizational” abilities are more helpful terms than principles.93 Children’s 
reliable adherence to counting and reasoning principles whenever they enumerate 
quantities within the 3 or 4 range demonstrates, then, that they grasp the essence 
of what numbers are truly about. That children’s application of these principles is 
deficient when they attempt to enumerate larger quantities, for which they do not 
yet possess matching concepts, does not invalidate their existing achievements; 
instead, it confirms that children’s ability to adhere to the various sets of principles 
depends upon established numerical concepts.

Finally, Gelman  and Gallistel ’s theory does not consider the contribution of the 
cultural milieu in which children are growing as a factor in their number-concept 
acquisition. In their view children’s counting  behavior and use of conventional 
number-words in their fixed (conventional) order has nothing to do with social/
cultural inputs. On the contrary, they maintain that children’s counting behavior is 
triggered by an innate scheme, which is practiced for its own sake. They further 

92 Fuson , 1988, p. 398
93 Ibid., p. 402
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separate children’s counting from their cultural milieu by asserting that children 
generate their own list of counting words. However, Gelman  and Gallistel ’s theory 
of children’s development of number concepts is not an exception in this regard. 
Many psychologists habitually omit from their discussion about preschooler’s 
acquisition of number the contributing factors of the children’s social, cultural, 
and linguistic environment. Contemplating this trend, Durkin  et al. comment 
that in the studies of children’s number cognition the emphasis on a child’s own 
activities promotes “a metaphor of the child as a detached mini-scientist, to the 
neglect of the child as a social participant, in contexts where numbers are used and 
counting is developed in interactions with others.” Durkin  et al. further note that 
while many studies focused on preschoolers’ production of the number-words’ 
sequence, “These investigations leave unexamined the very early use of number 
words  and they have not been concerned with the interpersonal context in which 
numbers are first encountered and used.”94

The next section revisits the topic of children’s acquisition of number concepts 
in an attempt to examine it from all the necessary angles. In addition to children’s 
cognitive development and their enumeration activities in various laboratory 
experiments, it investigates number acquisition in light of numbers’ conceptual 
properties, the functions of number symbolic representation , and the children’s 
social milieu.

94 Durkin  et al., 1986, p. 270
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VIII

CHILDREN’S NUMBER-CONCEPT 
ACQUISITION REVISITED

VIII-1. SYMBOLS FIRST

The narrative of children’s number-concept acquisition overwhelmingly 
centers on children’s relations to concrete aggregates by means of subitizing, 
counting , and comparison activities. And although the list of number words  
children know and the way in which children use this list has been thoroughly 
studied, little thought has been given to how number words in-and-of themselves 
contribute to the acquisition of numerical concepts. Instead, number-words 
are typically viewed as a tool for tagging objects in counting, and as labels for 
subitized aggregates or locations in the counting sequence. This chapter explores 
the possibility that the numerical symbols in and of themselves—be they verbal, 
notational, or signed—furnish the launching pad for the development of number 
concepts and the base upon which they are constructed.

Let us begin with the fact that numerical ideas are purely abstract and as such 
are devoid of recognizable physical attributes, whereas the spoken numerical 
symbols and their written or signed counterparts do have recognizable physical 
attributes; hence, they can be perceived by sensory means. Of course numerical 
ideas can be represented by objects, which, like the spoken, written, and signed 
symbols can be accessed by sensory means. Two oranges, two apples, or two 
giraffes, for instance, may represent the concept ‘two.’ This fact gives rise to 
the assumption that children are introduced to number ideas through displays of 
specific amounts of objects. But the idea of any specific number, such as the idea 
‘two’ in our example, is independent of the objects that may represent it; what is 
physical and accessible to sensory perceptions in the arrays of two apples, two 
oranges, and two giraffes (i.e., their shape, color, smell, etc.) are not germane 
to the concept ‘two.’ These objects may represent a number only insofar as the 
observer already possesses a corresponding numerical concept (See chapters III-1, 
and III-2). Although number symbols, a.k.a., numerals, are also arbitrary and not 
intrinsic to the numerical concepts that they represent, each symbol is uniquely 
assigned to a specific number and, hence, identifies its associated number as a 
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unique entity. For instance, the word ‘three’ sounds different from the word ‘two’ 
and each is exclusively associated with a specific number. Similarly the signs ‘2’ 
and ‘3,’ which represent two discrete numbers, are discretely recognized on the 
basis of their unique visual patterns. In comparison, apples and giraffes are not 
exclusively associated with any particular number. It seems, then, that only the 
spoken, written, or signed numerical symbols can create the signifying physical 
attributes by which a specific number may be identified and discriminated from 
other numbers on the basis of sensory information alone. This conclusion implies 
that infants become aware of the numerical symbols prior to the acquisition of the 
numerical concepts that these symbols represent.

The prospect that the development of number concepts is triggered by symbols 
does not rest solely on the logical argument presented above; it is also supported by 
the simple fact that humans are predisposed to symbolic thinking, and particularly 
by humans’ propensity for perceiving and producing speech. Studies reveal that the 
spoken words are phenomena in which human infants are intensely interested and 
to which they pay special attention. From birth, infants display a clear preference 
for human sounds over all other sounds. A four-week-old baby stops crying when 
his mother talks to him and remains quiet and alert as long as she continues 
talking.1 By four weeks, he can already produce his own non-crying sounds, such 
as grunts, cries, gasps, and so on.2 At four months, the baby actively searches for 
the speech source and, when spoken to, reacts by kicking in excitement or freezing 
in attention. In addition, he shows his caregiver that he enjoys her verbal outputs by 
smiling and answering with his own mixture of conversational sounds. At four and 
five months, a baby’s babble already consists of syllables that resemble words.3

At this early stage of language acquisition, babies are able to identify any 
phoneme used in any language, not only those that are specific to their linguistic 
environment.4 But gradually they display increasing preference for the phonemes 
used in their linguistic milieu and start to lose their ability to discriminate foreign 
phonemes. This “loss” is beneficial, however, as it allows the babies to develop 
their ability to discriminate the phonemes specific to their native language with 
an astonishing accuracy and to do so in a short time. Ten-month-old babies who 
grow up in an English-speaking culture are able to distinguish between the sounds 
L and R, and even improve that ability while their Japanese counterparts, growing 
up in a culture in which these sounds (L and R) are indistinguishable, no longer 
can.5 Perhaps the most enchanting aspect of babies’ language development is that 

1 Leach , 1983, p. 190
2 Menyuk , 1971, p. 3
3 Leach , 1983, p. 61-2
4 Gopnik , Meltzoff , and Kuhl , 2001, p. 105-6
5 Ibid., p. 107
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this great craving for speech patterns in its perception and its production occurs 
at a time when they have no practical use for speech, for at this period in their 
development babies cannot communicate their needs through speech, relying 
instead on crying and gesturing.

That babies are interested in and are able to perceive and emulate the phonemes 
of their mother tongue before they can apply them in meaningful speech implies 
that the acquisition of the words’ sound patterns and the acquisition of the words’ 
conceptual contents are two distinct cognitive processes, and one is not necessarily 
dependent on the other. It follows that association between a word’s sound pattern 
and its conceptual content could be a process that occurs either by attaching a 
newly acquired conventional verbal pattern to an already established concept or by 
figuring out the conceptual content or meaning of an already acquired conventional 
verbal pattern or a sequence thereof (‘one, two, three’ for instance). Indeed, 
empirical evidence shows that at least in its early stages, language acquisition 
progresses in two directions, that is, from verbal pattern to concept formation, 
and vice versa. It has been observed that one-year-old babies are able to associate 
some conventional words with the particular objects or events they encode and to 
communicate with these words in an appropriate way.6 At the same time, some 
of the words babies produce seem to be entirely original in that they are not even 
approximations of familiar words, yet babies use them consistently in the presence 
of particular objects.7 Since numbers do not have physical manifestations other 
than the symbols that represent them and since it is improbable that infants form 
numerical concepts spontaneously without any perceptual input, the development 
of number concepts must begin with the acquisition of symbols followed by the 
configuration of their conceptual contents. In other words, symbolic recognition 
is the fulcrum for the development of number concepts and the starting point from 
which it commences.

Reflecting upon the many studies described in the previous chapters, it becomes 
quite obvious that the numbers children accurately identify via perception, count 
correctly, and ‘conserve’ are fewer than the number words  they can recall or recite. 
Moreover, there are indications that children value their ability to recite number 
words even when they do not fully understand their meaning. For example, 
Wagner  and Walters  noticed that children tend to repeat the counting  of small 
sets or tag objects multiple times until they run out of all the number words they 
know. They coined the term, “list exhaustion scheme,” to depict both tendencies.8 
Fuson ’s observation that children’s counting errors are sometimes caused by their 
temptation to count objects more than once in order to complete number-words 

6 Leach , 1983, p. 274
7 Menyuk , 1971, p. 168
8 Wagner  and Walters , 1982, p. 143-4
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recitation to ten, point to the same phenomenon.9 The observable fact of “list 
exhaustion ” indicates unequivocally that the inventory of conventional number 
words children can recite is larger than that of the numbers of which they are 
cognizant, and that children are interested in the number words and their sequence 
for their own sake. Both are compelling evidence that the pattern of the spoken 
number words is acquired prior to the numerical concepts they embody. The 
same is true with regard to number-words’ place in their conventional counting 
sequence.

Learning the symbolic representation  of numbers alone does not constitute 
knowledge of numbers, as the child must still figure out their numerical meaning. 
Yet, the introductory and fundamental role numerical symbols have in the 
development of number concepts permanently ties these concepts to their formal 
symbolic representation, making the symbols of numbers an integral element of 
numerical concepts. Numerical symbols are, then, inseparable from the concepts 
they represent from the outset, and are not a later acquisition as commonly 
believed.

Finally, considering that children are born into a numerate culture that is 
saturated with numerical symbols, it is quite probable that their great interest in 
number words  and the counting activity associated with them stems from social/
cultural-adaptation motives. The development of number concepts, then, should 
be understood as the child’s attempts to explore and comprehend her cultural 
environment through playful emulation of verbal utterances and their related 
behaviors. As such, number-concepts acquisition should be viewed as a process 
of social/cultural adaptation rather than exploration of the physical environment. 
Indeed, from the children’s perspective, the need to understand the meaning of 
symbols, which seem to be of great importance for the adults in their lives, is 
unquestionably much more pressing than the need to quantify magnitudes in an 
exact and objective way. Only the necessity to adapt to social environment can 
explain why children as young as two and three years old seem to be so interested 
in a topic that has no utilitarian value for them.

VIII-2. PARENTAL INPUTS INTO CHILDREN’S-NUMBER 
DEVELOPMENT

The path of number development that was delineated in the previous chapter 
suggests that number education begins almost at birth. However, most experimental 
studies of children’s number acquisition involve children between 2 ½ and 6 years 
old—the ages at which they are mature enough to understand instructions and 

9 Fuson , 1988, p. 170



124 H.S. YASEEN

be cooperative participants in such research. Moreover, this research tends to 
concentrate on children’s relations to concrete aggregates. Consequently, it misses 
both the earliest period in which children cannot yet verbally express and act upon 
their knowledge, as well as the social and linguistic context that characterizes the 
introductory phase of children’s number experiences.

Fortunately a group of five scholars, Kevin Durkin , Beatrice Shire , 
Roland Riem , Robert S. Crowther  and D. R. Rutter , who were interested in the 
interpersonal and linguistic circumstances in which children first experience 
numbers, studied the use of number words  and counting  by 9- to 36-month-old 
children and their mothers. Durkin  et al.’s was a longitudinal study consisting of 
15-minute observational sessions involving 10 infants (3 females and 7 males) and 
their mothers. Since the mothers were told that the objective of the experiment 
was to study the development of verbal communication in children, all references 
to number during this study were spontaneous. Before the children’s second 
birthday the intervals between sessions were one-month long, and thereafter three 
months long. The small studio room in which the study took place was minimally 
equipped. Besides four cameras, recording equipment, light fixtures, and curtains, 
it contained a plant, a coffee table placed on a rug, and a wastebasket.

The results of the study indicate that besides reciting the number-word 
sequence and quantification activities, number words  were used in a variety of 
ways. For instance, throughout the experiment there was considerable spontaneous, 
or “incidental” use of number words such as “Two sugar please.” They listed 
also the playful sequences such as: ‘one, two, three, go,’ ‘ready, one, two,’ or 
‘one step, two step and a tickly under there,’” which they called, “sequential 
complements,” and to a lesser degree, nursery rhymes, stories, and songs. The 
latter two kinds of inputs declined noticeably during the children’s third year.10 
Not surprisingly, children’s use of number words increased with time, whereas 
the mothers’ use remained about the same.11 The most often used number words 
were the first four numbers.12 In fact, words for larger numbers were rare even 
after the child’s second birthday.13 As could be expected, there was no evidence of 
children’s independent recitation of the number-words sequence before 21 months, 
but once they started to recite the number words on their own, the frequency of 
independent recitation increased steadily. One of the most significant findings in 
Durkin  et al.’s study was the mothers’ unmistakable instructional nature in their 
use of number words and counting . Starting when the children were about 15 
months old, mothers seemed to be engaged in an active pedagogical endeavor; up 

10 Durkin  et al., 1986, p. 277
11 Ibid., p. 272, 280
12 Ibid., p. 279
13 Ibid., p. 275
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to sixty per cent of the total number references used by mothers in this period can 
be characterized as instructional or pedagogical discourse, because they require 
the child’s attention, participation, or imitation.14 Three different pedagogical 
discourses were observed:

(1) The recitation of number words in their counting order. Recitations of 
this kind were often prompted by the mother with a specific reference to 
counting and involved actions such as pointing to, or touching objects, for 
example:

 “M: Count them. Look, one, two, three, four.”

(2) The repetition and clarification of cardinality, for example:

 “M: Look. Four. ‘One, two, three, four.’
 M: Let’s count the cameras. ‘One, two, three, four. Four cameras.’”

(3) The alternating strings or “joint ‘dialogic’ number string” with a clear 
teaching intention, for example:

 “M: Count with me. One . . .
 C: One
 M: Two
 C: Two.” (Ibid.)

Of these three kinds of number-word experiences, it was during the “alternating 
strings” dialogue that the18-month- to 3-year-old children produced most of their 
number words .15

Not less significant in Durkin  et al.’s study was their observation of an 
abundance of linguistic ambiguities in the parental inputs. In the sentence ‘take that 
one,’ for instance, the word one is used as a pronoun. The use of ‘one’ as pronoun 
was so prevalent that, in the table in which they listed the mean frequencies of 
number-word usage, two separate columns were devoted to ‘one,’ the first for 
‘one’ as a pronoun and the second for ‘one’ as a number word. Other sources 
of linguistic ambiguities were homophones of number words . For instance the 
preposition ‘to’ and the adverb ‘too,’ as in “give this one to Dan,” and ‘that one 
too,’ could be confused with two. Similarly, the preposition for as in ‘one for you 

14 Ibid., p. 277
15 Ibid., p. 279
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and one for mom’ can be confused with the number word, four.16 The playful use 
of number words in the sequential-complements routine, such as ‘one, two, three, 
go,’ mixes the number-words sequence with words that have nothing to do with 
numbers or enumeration activity, thereby obscuring the function of the number 
words that are used in these sequences. The imitative alternating strings routine in 
which the child is asked to repeat the number word used by her mother (e.g., “M: 
‘one;’ C: ‘one,’ M: ‘two,’ C: ‘two’”) is equally confusing, for it distorts the proper 
‘one-two-three-’ counting sequence.17

But Durkin  et al. did not consider these contradictions as hindrances to 
number acquisition. On the contrary, they maintained that the semantic ambiguities 
inherent in parental inputs actually contribute to children’s number development 
as much as the overall pedagogical nature of this input and the information it 
provides.18 They argued that when the available information is inconsistent and 
confusing, the child must acquire competence either through an alternative source 
of information or because of the cognitive gain that was achieved as a result of 
the strategies she developed to resolve these inconsistencies. Only when children 
“become more active contributors to number-oriented dialogues,” can we learn 
how children solve these contradictions.19

The way children deal with the ambiguities involving numbers and number-word 
usage, however, is related to their cognitive development in general as much as 
to the social/linguistic context in which they are first introduced to numbers. In 
this respect, the period between their first and third year of age is of a particular 
interest. During this period children’s mastery of their mobility, dexterity, bodily 
functions, and speech articulation significantly increases. As these capabilities 
develop children’s sense of autonomy and self-reliance grows, and not always in a 
way that makes their parents happy.20 This spirit of independence is also reflected in 
2-year-old children’s speech. Mussen , Conger , and Kagan , for example, comment 
that at 30 months a child’s words and grammar are seldom a faithful repetition 
of adult speech.21 It has long been observed that young children use words in a 
peculiar way, which, though erroneous, indicates that they are making intelligent 
hypotheses about grammar. Alison Gopnik , one of the coauthors of The Scientist in 
the Crib, provided a charming example of this prevalent phenomenon by citing her 
sister’s description of their rather large family: “All of we’s is childs.”22 Gopnik ’s 

16 Ibid., p. 271
17 Ibid., p. 283
18 Ibid., p. 270, 286 
19 Ibid., p. 284
20 Mussen , et al., 1969, p. 261
21 Ibid., p. 191
22 Gopnik , Meltzoff , and Kuhl , 2001, p. 119  
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sister’s speech suggests that she generalized the underlying grammatical rules of 
English and applied them according to her own independent thinking.

A similar growth in linguistic independence could be seen in Durkin  et al.’s 
data that show that the frequency of children’s use of the words ‘one’ and ‘two’ 
stands in a sharp contrast to that of their mothers.’ Whereas the mean frequencies 
for the mothers’ use of the word ‘one’ exceeded that of all other number words  
throughout the study, the children’s use of the word ‘one—’both as a number 
word and as a pronoun—lagged behind their use of the word ‘two’ until they were 
24 months. But when the use of ‘one’ as number word alone was considered, 
children’s use of ‘one’ continued to be less than that of ‘two’ until they were 33 
months old. At 15 months, which was the earliest age at which children produced 
number-words, the word ‘one’ was completely absent in their vocabulary compared 
to a mean frequency of 0.89 in using the word ‘two.’ In contrast, their mothers’ 
mean frequency of using the word ‘one’ was more than twice than that of the word 
‘two’ (9.86 for both kinds of ‘one’ compared to only 4.00 for ‘two’). By 18 months 
the gap between mothers’ and children’s use of ‘one’ and ‘two’ was even greater: 
While the mothers’ use of ‘one’ was more than four times the frequency of their 
use of ‘two’ (11.44 for both kinds of ‘one’ against a meager 2.55 for ‘two), the 
children’s combined use of ‘one’ was one third of their use of the word ‘two’ (at 
0.33 for both kinds of ‘one’ against 1.00 for ‘two’).

The fact that children’s outputs do not match parental inputs suggests that in 
number-word acquisition, as in language acquisition in general, children develop 
their own ideas about words and become active contributors to the process of 
learning. Likewise children’s interpretation and usage of words might be in conflict 
with that of their parents.’ The excerpt below, which was taken from Durkin  et al.’s 
study, is an example of such friction arising from the child’s resistance to using the 
word ‘one’ in counting :

M  (to Ben, 24 months): Tell Mummy, how many eyes has Mummy got? 
How many eyes?

C:  Mm . . . er. (C walking towards M, looks at her face)
M:  One, (C crawls under table)
C:  Doo, fwee. (C remains under table)
M:  Two, three? Oh, poor Mum! 23

This recorded exchange hints that the child is unwilling to use the word ‘one;’ 
but knowing that this is a word his mother wants him to include in his counting , he 
crawls under the table where he probably feels safer to hold on to his own way of 
counting, namely, “Doo, fwee [two, three]” instead of “one, two.”

23 Durkin  et al., 1986, p. 284
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The phenomenon of delayed use of the word ‘one’ in a toddler population was 
observed four years prior to Durkin  et al.’s study by Wagner  and Walters  in their 
1982 longitudinal study of early number concept. In that research, Wagener and 
Walters  discovered an intriguing feature in the 1- to 2-year old children’s use of 
the first number words , that is, that they included two in their vocabulary before 
one.24 Besides indicating that children feel sufficiently autonomous to use their 
preferable words, children’s hesitation to use the word ‘one’ must also signify 
what they understand about number words. The notion that the delayed uses of 
the word ‘one’ is linked to the way children conceive the concepts of number did 
not escape Wagner  and Walters . They speculated that children deem a singular 
item first as an object rather than a number. Possibly, one object “is first of all ‘the 
object.’” Only after a child understands what “two” of the same things is, can she 
understand what “one” thing is. (Ibid.)

By measuring the frequencies of number-word use, Durkin  et al. explicated 
Wagener and Walters ’s observation of the delayed use of the word ‘one,’ yet they 
did not offer a hypothesis of their own to explain this delay. Still, their theory 
of learning through resolving contradictory inputs may point to an additional 
explanation for that phenomenon. To understand why, we have to take into 
consideration what children of that age already know about numbers. As some 
of the previously cited research demonstrates, children uniformly responded to 
the question, ‘how many’ either by counting  or with a number word (see VII-5). 
These responses indicate that children associate number words  with the idea 
of ‘many,’ that is, pluralities, and with the counting thereof. ‘One’ does not fit 
into this framework, for it is not only incongruent with the ideas of plurality or 
‘many,’ but also, when there is only one object there is no need to count. Hence, 
the conjunction of ‘one’ with the question, ‘how many,’ or the activity of counting 
could be confusing for toddlers. Greek philosophers, who undoubtedly were 
numerically savvy (and most probably employed the word ‘one’ in their counting), 
did not regard ‘one’ as a number either. ‘One’ was inconsistent with their definition 
of number as “a multitude composed of units.”25 It is possible that children feel as 
the Greek philosophers did that there is a logical contradiction between the idea of 
number, which connotes multitude and the idea of one, which connotes singleness. 
Some children, like 24-month-old Ben in our example, resolve this contradiction 
by simply ignoring ‘one,’ and starting to count from ‘two.’ In an indirect way, the 
delayed use of the word ‘one’ reaffirms that children as young as two understand 
the basic intent of number words.

Though confused by ambiguities and often erroneous, children’s independent 
contribution to the usage of number words  is an important development for 

24 Wagner  and Walters , 1982, p. 147
25 Euclid ’s Elements Book VII
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it points to their spontaneous interest in numbers without which the mentally 
challenging acquisition of more and larger numerical concepts cannot proceed. 
This genuine interest in numbers is also documented statistically in Durkin  et 
al.’s study. Their data showed that by age 3 children’s independent recitation of 
number strings constituted close to half (46.24%) of their number-word usage, 
even though their mother’s recitations dropped to zero .26 Indeed, it was this 
spontaneous counting  that caught Gelman ’s attention and made her wonder about 
the role of counting in children’s development of numerical concepts27—to be 
discussed in the next chapter.

But children’s interest by no means implies a propensity for numbers. As 
Durkin  et al.’s study shows, parental inputs with their distinctive pedagogical 
nature start early on: By 9 months babies are already exposed to the ‘sequential 
complements,’ by 12 months nursery rhymes, stories, and songs are added to 
this exposure, and by 15 months babies are already exposed to unmistakable 
pedagogical inputs such as the ‘repetition and clarification of cardinality,’ ‘number 
string recitation,’ and ‘alternating strings.’ That parents initiate number familiarity 
so early in their children’s lives, suggests that it takes considerable effort and 
time on the part of parents to awake their children’s interest in numbers. However 
independent and self-directed children’s interest in numbers eventually becomes, 
it is still the invaluable linguistic and social inputs and the active coaching by 
parents or other social agents combined with the children’s own motivation to 
adapt to their social and cultural milieu that sets in motion the whole process of 
number-concept acquisition.

VIII-3. THE ROLE OF COUNTING IN THE ACQUISITION OF 
PRIMAL NUMERICAL CONCEPTS

It has long been held that children learn numbers by means of counting , and 
psychological studies have provided scientific weight to this intuitive belief. 
However, the ways in which counting helps children to understand numbers are 
still not entirely clear. This chapter discusses the studies and theories that deal with 
the relationship between counting and the acquisition of numerical concepts.

The earliest controlled study to establish a connection between a child’s 
perception of number and counting  was Beckmann ’s 1924 study of the development 
of number competence in 2-6-year-old children. In this study, Beckmann  observed 
that children’s ability to accurately estimate the numerical value of a group 
depended on whether or not they could count up to that number. Psychologist Peter 

26 Durkin  et al., 1986, p. 278
27 Gelman  and Gallistel , 1978, p.68
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Bryant  regards Beckman’s findings as persuasive evidence that the recognition 
of absolute numerical values of small groups cannot rely on perception alone; 
“counting precedes subitizing [and] not the other way around,” he argued.28 
Wynn ’s 1992 research demonstrating that children have the ability to correctly 
count groups of objects long before they are able to correctly retrieve a requested 
number of objects29 is consistent with Beckmann ’s and Bryant ’s conclusion that 
counting precedes number recognition. Gelman ’s observation (in her studies that 
involved a comparison between two aggregates) that children started to count 
without ever being asked to do so reinforces this conclusion. Likewise Kaufman  
et al.’s 1949 study of number discrimination, which demonstrated an increase in 
subjects’ response time as the number of dots presented to them increased, implies 
that what its adult participants may have experienced as capturing the exact number 
of objects in small groups at a glance is, in fact, a process of very rapid counting 
(see detail in III-3). Indications of a covert counting process in subitation  are even 
more striking in a child population. Gelman  and Gallistel  pointed out that adults 
require about 46 milliseconds more to identify two items than to identify one 
item. But five-year-old kindergarteners require 120 milliseconds, approximately 
2.6 times longer than adults. And while the difference in response time between 
estimation of two items and three items remains 46 milliseconds for adults, it 
jumps all the way to 280 milliseconds for children, that is, six times more than 
that of adults.30

Still, the idea that counting  gives rise to number concepts contains, in its 
simplistic interpretation, a paradox, and empirical evidence of such exists. The 
logical contradiction is plain: If counting is to inform the numerical value of a given 
group, each counting word must convey a numerical meaning, for potentially it 
may be the one that defines the requested numerical value. Without their attached 
numerical signification, the words used in counting are as helpful for forming a 
meaningful idea about the total number of objects in a collection as are the sticks 
used by the Wedda tribesmen in the primitive one-to-one procedure  described in 
chapter I-3. “We cannot be said to be discovering the number of objects counted 
unless we attach some meaning to the words one, two, three,” warned Bertrand 
Russell .31 That truth implies that the prerequisite for effective counting  is the 
presence of already existing numerical concepts. It is illogical to assume that the 
counting procedure may originate the very concepts without which its results are 
devoid of meaning. Questions regarding the role of counting in the acquisition of 
number concepts also emerged from Piaget ’s studies (described in VII-2), which 

28 Bryant , 1974, p. 120
29 Wynn,  1992, p. 234
30 Gelman  and Gallistel , 1978, p. 64-71, 222
31 Russell , 1952, p.193
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showed that counting had no effect on the child’s ability to ‘conserve’ (the ability 
to base estimation of a group’s size on purely numerical criteria regardless of 
its spatial distribution). For instance, when a group of objects that had just been 
counted was spread out, children, nonetheless, judged that same group to be more 
numerous. Piaget  concluded that even when a child can count he still prefers to 
quantify by relying on ‘global’ impressions of the groups.32

That said, it is important to recognize that the counting  that aims to establish 
the numerical value of a group is different in kind from the counting that is 
interpreted as the child’s way to grasp her social environment. The former, as 
pointed out by Russell , is meaningless without pre-existing numerical concepts, 
while the latter is an activity that may serve as a tool to instill meanings into the 
child’s observation of counting behavior and the words used therein. What, then, 
does the number-naïve child learn by counting, and how?

Wynn  simply maintains that the children learn about the cardinal meaning 
of number words  by their position in the counting sequence.33 If this claim were 
true, English readers would associate each letter of the alphabet with a specific 
numerical content as a matter of fact. After all, they have recited these letters in 
their fixed order throughout their lives since early childhood. Apparently the ordinal 
position of these letters in their standard sequence does not inform numerical 
values. Why, then, should the order of number words be more informative? Much 
of other scholars’ explanations regarding the connection between the counting 
procedure and the formation of numerical concepts are influenced by Piaget ’s 
dictum that numbers are “disassociably cardinal and ordinal.”34 This thesis 
implies that each number concept encodes simultaneously the specific quantity 
of units it encompasses as well as its ordinal position in the counting sequence. 
Accordingly, the processes of number-concept formation involve the synthesis 
of numbers’ cardinal and ordinal values , or in Piaget ’s words, the “intermingling 
of cardinal and ordinal processes.”35 In a similar vein, Fuson  called the ability 
to connect between the cardinal meaning of the number words and the counting 
process “count to cardinal transition.”36 As does Piaget , she believes that the 
desirable level of understanding is that in which it is “difficult to disentangle” 
the cardinal meaning of the number words from their counting sequence—they 
become a “cardinalized number-word sequence.”37 Wagner  and Walters  echoed 

32 Piaget , 1965, p. 28, 29
33 Wynn , 1992, p. 228
34 Piaget , 1965, p. VIII 
35 Ibid., p. 154
36 Fuson , 1988, p. 250, 363
37 Ibid., p. 363
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this idea with their belief that numerical concepts are inherently a synthesis of 
their ordinal and cardinal values .38

The problem with these assumptions is that a number’s cardinal value  is an 
absolute property that does not change, whereas a number’s ordinal value  is a 
relative property that changes in relation the particular sequence in which they 
were ordered. For example, ‘three,’ which is the cardinal value of the third number 
in the counting  sequence, is the second number in both the odd number and the 
prime number sequences, and is the first number in the three-multiples number 
sequence. Only in the counting sequence does a number’s ordinal value match its 
cardinal value. In order to fulfill the purpose of counting, ‘three’ is ordered after 
‘two’ and before ‘four’ because its sum is exactly one unit larger than the former, 
and one unit smaller than the latter. As is the case with the counting sequence, in 
all the other sequences the ordinal values of ‘three’ are determined by virtue of 
its cardinal value. Since the ordinal value of a number is a product of its cardinal 
value, the relationship between them is that of a cause and effect, or a fact and 
result. For the same reasons that effects cannot generate or transform their causes, 
the order in which number words  are used in counting cannot instill in these words 
cardinal values or transform them in any way or fashion. Owing to the dependence 
of the ordinal value of a number upon its cardinal value, it becomes clear that the 
evolution of numerical meaning is not simply the result of an interactive process 
between the cardinal and ordinal aspects of numbers. The relation of counting 
to the acquisition of numerical concepts cannot be found within the framework 
of the counting procedure alone; it must be based on an additional process that 
is independent of counting, as Russell  had advised a long time ago: “[Counting] 
has no meaning unless the numbers reached in counting have some significance 
independent of the process by which they are reached.”39

To better understand how counting  helps pre-number concept children to 
establish numerical concepts, let us first reestablish that each number is a discrete 
concept of an explicit and definite amount of units. This property implies that the 
formation of any given numerical concept involves the identification of constituent 
units as well as the identification of their sum as a discretely recognized entity. 
Since units must be recognized individually before they are viewed together as 
a specific sum, the formation of a specific concept of number begins with the 
analysis and acknowledgment of the units. This initial analysis and recognition of 
units is well served by establishing a visual contact with the objects counted while 
pointing to them in a temporal/sequential manner. In addition to acknowledging 
units, pointing also helps to control and regulate the separation of units already 
counted from those yet to be counted. But however carefully and accurately it is 

38 Wagner  and Walters , 1982, p. 144
39 Russell , 1952, p.192 (emphasis mine) 
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executed, unit recognition alone will not result in the formation of numerical ideas. 
It must be followed by the visualization of these units as a uniquely recognized 
sum. For this purpose, the units, which have been identified through the process 
of counting, must be retained in memory long enough so that they can be viewed 
or imagined simultaneously. By assigning number words  (or other symbols) to 
units, especially when the units are visually acknowledged and words are actually 
articulated, the child helps herself to register and commit these units to active 
memory.40

Because imagery draws on the same integrative and visual processes on which 
actual perception relies,41 number imagery (as imagery in general) demands the 
detachment of the cognitive system from the individual’s external stimuli.42 
As Neisser  explained, “Visualizing one thing and looking at another is just as 
difficult as looking at two things simultaneously.”43 Visualization, then, must be 
a process that is separated from the actual counting  activity, which requires the 
acknowledgement of external inputs—the objects to be counted. As a process that 
is detached from the counting procedure  per se, the visualization of sums introduces 
an additional element that, though originated by the counting procedure, is still 
autonomous and separated from it. In other words, visualization gives meaning to 
number words  by a process that is independent of the counting procedure, fulfilling 
Russell ’s requirement for effective counting.

The a priori assumption that spatial/visual processes have a role in the 
conceptualization of numbers is consistent with recent neuroscientists’ studies 
that with the aid of new imaging technologies have shown that the same regions 
in the brain that represent numerical values also represent perceptual or spatial 
magnitudes.44 The familiar tendency of children in their early phases of number 
acquisition to denote numbers by means of showing fingers instead of by verbally 
naming them adds another intimation that spatial/visual processes are involved 
in the conceptualization of numbers. It is highly plausible that children prefer to 
indicate numbers in this manner because displaying fingers allows them to remain 
within the visual-spatial mode by which their initial and rudimentary numerical 
concepts have been created, whereas naming numbers forces them to give up this 

40 It worthwhile to mention in this regard the counting  method used by native-signers 
of American Sign Language  (ASL). Secada,  1984, cited by Fuson  1988, p. 116, The 
hearing impaired signers count either by pointing with one hand while signing with the 
other, or by using only one hand, pointing and then signing at each object counted.   

41 Neisser, 1976, 128-134
42 Ibid., p. 85
43 Ibid., p. 146, Neisser’s proposition is supported by several studies: Brooks  (1967 and 

1968), Segal  and Fusella , (1970), Byrne  (1974), and Salthouse  (1974 and1975)
44 Sarama  and Clement,  2009, p. 42 
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congruous modus operandi and shift to the verbal sequential mode with which 
number words  are generated. What is more, the fingers provide children with a 
perceptible feedback for these abstract concepts, which at this point are in their 
earliest stages of formation. The behavior of finger showing is so prevalent among 
preschoolers that in an experiment conducted by Fuson  and Hall  children were asked 
to identify the number of stars on cards that were presented to them by showing the 
appropriate number of fingers.45 To produce the particular number of fingers that 
were needed to represent a given number, the child had to direct her attention away 
from the objects she counted (stars in our example) to her fingers. The child, as it 
were, counted twice: first when she was counting  the objects at hand, and second, 
when she was counting fingers intended for the presentation and verification of 
the freshly constructed numerical image. In this context the fingers serve as a 
perceptible metaphor for the abstract concept of unit, whereas the counted stars 
continue to be the objects that they are—stars. As an indicator of units the fingers 
should be viewed as an ideogram, or a symbolic representation  of a number rather 
than a presentation of the particular objects counted. Thus, Fuson  and Hall  were 
correct to consider finger showing a suitable substitute for number words.

This analysis suggests the presence of symbolic thinking even at the earliest 
stages of number-concept acquisition. Of course, the involvement of the symbolic 
function is essential for the formation of mathematically viable numerical 
concepts. Consider this: the words children employ in counting  various groups 
of objects constitute a standard list, and by assigning each object counted a word 
from this list (instead of tagging, pointing, or naming objects) the counted objects 
are no longer identified as what they are, but as abstract units. In other words, 
the use of the numeric symbols is instrumental in releasing the abstract idea of 
units from their particular phenomenological manifestations and transforms them 
into workable building blocks for the construction of genuine numerical concepts. 
Number imagery  that is based on such abstraction of units creates numerical 
concepts that are not restricted to particular objects and hence forms universal 
rather than adjectival ideas of numbers (see VI-3).

Besides their role in disassociating units from the objects that represent them, 
symbols are also essential for the process of unit-analysis and number-imagery. 
Unlike the sticks that the Wedda tribesmen used in the one-to-one procedure , 
each number word has a unique sound pattern. Consequently assigning one of 
these verbal symbols to each object counted helps the child to recognize units as 
discrete entities and keep them as such. Moreover, preschool children, as shown 
in the studies mentioned earlier, are already familiar with the first counting words 
even if they do not yet know their precise numerical meanings. The mnemonic 
support that these rehearsed verbal symbols afford is invaluable for successful 

45 Fuson , 1988, p. 213
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visualization of universal numbers, which requires the child to hold the identified 
units in working memory in order to view them together as unique sums. Because 
the symbolic function significantly increases the mind’s ability to retain, retrieve, 
and develop concepts,46 their association with the familiar symbols enhances 
these evolving numerical concepts.

The verbal counting  performed by the pre-number-concept child is a cognitive 
operation that makes use of symbolic thinking upon which mathematical thoughts 
depend. Hence it is valuable not only for the future development of numerical 
concepts but also for the development of mathematical thinking in general. Not 
less important, the efforts children invest in the serial matching of objects with 
number words  during counting is a deliberate and mindful behavior; in so doing 
the pre-number-concept counting couches the process of number conceptualization 
in the appropriate mental framework, that is, a conscious and rational thinking 
mode. Conscious attention is believed to play a key role in the acquisition of both 
cognitive and motor skills.47

VIII-4. THE LIMITATIONS OF COUNTING AS A TOOL OF 
ARITHMETIC EDUCATION

The understanding that counting  is a process through which units are marked 
and mentally registered for subsequent visualization of their sum suggests that 
counting can be useful only for the conceptualization of numbers that are small 
enough to be imagined globally, in an explicit way, namely, numbers within the 
subitation  range. As construction of larger numbers can no longer be based on 
explicit mental representation of sums, it must rely upon conceptual/symbolic 
thinking that uses previously acquired concepts of smaller numbers. For example, 
the number 7, which exceeds the subitation range, could be perceived as 4+3 or 
other combinations of smaller numbers; numbers beyond the base range, which 
require involvement of decimal units, create even more complex structures and 
higher levels of abstraction (see IV-2, and IV-3). As was argued earlier, children 
are introduced to the topic of number via the visual and spoken numerical symbols; 
consequently, even concepts of numbers that could be subitized are already tied 
to and are embodied in their symbolic representation . This enables children to 
structure numbers on a conceptual, symbolic level early on.

The test of a valid acquisition of a specific number concept is the child’s 
ability to mentally take that number apart and put it together again. This task is 
an inherently contemplative activity that relies on abstract conceptual thinking. 

46 Edelman , 1989, p.92-3, 104, Deacon , 1997, p. 434
47 Edelman , 1989, p. 201
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Counting is an activity in which the child must visually focus on the object 
counted. Since it relies on the same visual processes that guide imagery48 and 
abstract conceptual thinking, counting  interferes with the internal processes of 
conceptual/symbolic thinking on which the envisioning of numbers that exceed 
the subitation  range depend.

Another issue to consider is that children learn about numerical relationships 
and their mathematical logic by means of mental manipulation of numbers . These 
arithmetic operations entail both the ability to treat numbers as a whole, as well as 
to decompose and recombine them according to the arithmetic task at hand. For 
instance, the addition, ‘7+5’ calls for decomposing 5 into ‘3+2,’ and then to add the 
3 to the 7 as to complete it to the unit 10, thus: (7+3)+2= 10+2=12. Moreover, the 
further development of arithmetic skills  and understanding necessitates increasing 
the speed of manipulating numbers mentally. The more numerical operations one 
is able to accommodate in one’s working memory span, the more complex are the 
numerical relations one is able to form and to grasp. Since counting  replaces the 
rapid and instantaneous mental processes of conceptual thinking with a temporal 
and time-consuming ‘one-to-one’ process, it prevents the child from fitting into 
her working memory the amount of operations and numerical concepts needed 
to form more complex numerical relationships. Experience shows that children 
who depend on counting for basic subtraction and addition operations become 
perplexed and lost when they are required to solve more advanced problems. 
Therefore, the adverse results of excessive use of counting in basic arithmetic 
education are felt only when children move on to study more advanced arithmetic. 
Unfortunately, at this point learning not only must address the subject at hand but 
must also undo distracting habits.

Besides the short-term benefits of using conceptual/symbolic functions 
in arithmetic calculation , there are also long-term benefits: In arithmetic, as in 
mathematics in general, simpler and more primitive concepts serve as the raw 
material and referent for the generation, abstraction, and development of more 
advanced concepts. Counting as a means to obtain answers to arithmetic problems 
bypasses the employment of existing conceptual networks in arithmetic thinking 
and thus precludes the formation of new and more advanced arithmetical concepts 
that can only be developed by utilizing the already established conceptual 
network.

Counting is pedagogically justified as long as it is used as an instrument to 
familiarize children with the numerical symbols and their sequence, the concept of 
unit, the principle of ‘one-to-one correspondence ,’ and the recognition of numbers 
within the subitation  range. Requiring or encouraging children to count after they 
have already outgrown the developmental phases in which counting  is helpful and 

48 Neisser , 1973, p. 209-210; Neisser , 1976, p.128, 146-7; Neisser , 1967, p. 153
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relevant for number-concept learning is counter-productive and a waste of time. 
Most of all, it denies children the opportunity to engage in true and constructive 
mathematical thinking.

VIII-5. THE NATURE OF NUMBER-CONCEPT DEVELOPMENT

The number proficiency of preschool children is known to be restricted to the 
first three or four small numbers. This restriction, combined with preschoolers’ 
tendency to use phenomenological criteria for ascertaining the numerical values 
of larger groups, is attributed by some psychologists to an absence of the cognitive 
maturity requisite for true number comprehension. Piaget  proposed that a true 
understanding of the counting  numbers must rely on a fusion of the logic of 
‘class’ and the logic of ‘seriation,’ and it is only when they reach the ‘operational 
stage’ (at around seven years) that children can achieve that ‘fusion.’ Gelman  and 
Gallistel  claimed that children’s true understanding of numbers commences only 
when “the child’s reasoning moves from a dependence on specific representations 
to an algebraic stage in which representations of numerosity are no longer 
required.”49 According to these theories a genuine understanding of numbers 
demands either employment of two kinds of logical processes or advanced 
mathematical thinking.

But because each number is a concept of size that is defined by, and conceived 
as, a fixed sum of units, each and every number concept, however small, embodies 
the essence of the abstract idea of number. Consequently, mastery of even the 
smallest numbers satisfies the requisites for a true number comprehension. The 
fact that preschoolers’ number proficiency  is limited to small numbers does not 
make their acquisition mathematically invalid, immature, or less genuine.

Another issue that should be considered is that insofar as each number is 
envisioned as a distinct sum of units, each number is a unique concept. The amount 
of units each number encompasses determines the extent of sophistication and 
level of abstraction needed for its conceptualization. The level of erudition and 
abstraction required for conceptualization of numbers grows in tandem with their 
sizes. For example, the acquisition of numbers within the base does not require 
comprehension of the base system, not even the consideration of the number 
10 as a standard unit. Within the base there is a further distinction between the 
subitizable numbers and the numbers that can no longer be subitized. The former 
can be envisioned more or less explicitly, while the latter, which are constructed 
from concepts of smaller numbers, must resort to conceptual/symbolic processes. 
Numbers beyond 10 require the ability to regard certain sums as standard units 

49 Gelman  and Gallistel, 1978, p. 245 
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known as decimal units (1, 10, 100, etc.). Each of these units requires its particular 
level of abstraction. Numbers may employ several different decimal units, each 
accumulating different sums, such that larger numbers may involve several levels 
of abstraction and base-number concepts as in the instance of the number 764, 
for which the child has to successfully deal with three levels of abstraction to 
figure the units, 1, 10, and 100, and three different sum values, to figure the base 
numbers , 7, 6, and 4. The view that number-concept acquisition hinges upon a 
cognitive epiphany whereby all numbers may be conceptualized once and for all 
ignores the different levels of abstraction and sophistication presented by the great 
variety of numerical sizes and complexities.

The systematic increase in sophistication and level of abstraction needed 
for the conceptualization of the counting numbers as they progress along their 
continuum raises another consideration, namely, children’s cognitive readiness. 
The proposition that numerical-concepts acquisition is based upon a fixed set 
of principles or processes separates number acquisition from children’s overall 
cognitive development, their knowledge, experience, and training. As it were, 
some of the limitations cited by scholars as evidence of a lack of a genuine 
understanding of numbers can be explained by the children’s other developmental 
agendas. As previously argued, the visualization of numbers involves verbal and 
short-term memory tasks. Hence numerical competence  must correlate with the 
level of skill at these tasks, which in two-to-four-year-old children is not yet fully 
developed. The boundary of the numerical competence of preschool children, 
therefore, should be viewed as a reflection of their verbal and short-term memory 
proficiency, rather than an indication of their immature conception of number, or 
their lack of this or that principle and logic. The preschoolers’ state of development 
of the aforementioned skills is also likely to be the reason for what Descoeudres 50 
famously called “un, deux, trois, beaucoup ” (French for ‘one, two, three, many’), 
that is, the well-known phenomenon that there is a great discrepancy between 
two- and four-year-olds’ abilities to grasp small numbers and their ability to grasp 
larger numbers.

Since the level of abstraction required for a particular number’s comprehension 
is determined by the amount of units it encompasses, the increasing abstraction 
levels required for the conceptualization of larger numbers is used not for better 
comprehension of what numbers are, but for better comprehension of their sizes. 
In other words, once the child attains the fundamental principles of number, the 
development of number concepts is about the construction of discrete concepts 
one by one and with accordance to the child’s cognitive development and 
educational experiences. Taken as a whole, then, the development of numerical 
concepts does not progress from a lesser understanding of numbers to a more 

50 Descoeudre, 1921, cited by Bryant , 1974, p.119
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correct understanding, but rather from smaller and less intellectually demanding 
numbers to larger and more challenging ones.

There is an understandable skepticism regarding the proposal that the generic 
idea of number is acquired prior the development of specific numerical concepts for 
it implies that two- and three-year-olds have the ability to form abstract concepts, 
whereas the conventional wisdom in child psychology is that such abilities 
only appear much later in children’s cognitive development. What is more, the 
human tendency to perceive small numbers as if they are physical phenomena (as 
described in III-2) deems such abstraction unnecessary in the first place. Yet, the 
evidence that two- and four-year-olds’ concepts of number are abstract early on is 
manifested by just about everything children at these ages do and say—or as the 
case may be, do not do and say—whenever they deal with enumeration tasks.

Let us, then, examine the validity of the proposal that children are aware early 
on that each number is an idea of size that is described exclusively by an explicit 
amount of units, and that both numbers and units have universal meanings in light 
of the research data described thus far:

That children know early on that numbers are ideas of size had already been 
discovered in Binet ’s pioneering explorations of this topic. Binet  asked his 2 ½- 
and 4-year-old daughters to compare two rows of beads, each row assembled from 
beads of a different size, such that the fewer but larger beads formed a longer line 
than that of the more numerous but smaller beads (see VII-1). His experiments led 
him to the conclusion that children evaluated the number of beads by the length of 
the row rather than by how many beads it contained. The numerous experiments, 
which followed Binet ’s, confirmed his finding that, when children encounter 
groups for which they have not yet established matching number concepts, they 
will judge the same number of objects spread over a larger area or forming a 
longer line as more numerous; in these instances, children use perceptual criteria 
for size evaluation, which unequivocally demonstrates that they conceive numbers 
as size ideas. Discussing his discovery, Binet  was quick to point out that while 
the child substituted the size of an area occupied by a group for true enumeration, 
her choice of words indicated that she saw a group of objects—“there are more of 
them here”—, he quoted her.51 Binet ’s observation suggests that even when they 
use perceptual criteria in their evaluation of numbers, children are aware that these 
size ideas are composed of discrete units. More indications for the recognition of 
the involvement of units were demonstrated by later research that showed that 
children associate number words  with counting , and that when they count, children 
as young as two years old pay close attention to units identification by stating 
aloud one number word while pointing to and touching each object counted. The 
phenomenon of omitting the word ‘one’ in early counting (discussed in VIII-2) is 

51 Binet  in Pollack  and Brenner , 1969, p., 88
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another indication that children understand that each numerical size consists of a 
group of units. Indeed, according to Wynn  children learn at a very early stage of 
counting that number words refer to specific sums of units.52 That children also 
understand that these units represent universal concepts of equivalent members 
belonging to the same group is demonstrated by children’s tendency to indicate the 
number of items counted by finger showing (discussed in VIII-3).

Perhaps the most compelling evidence that children understand numbers, and 
the units that construct them, as universal concepts is their approach to number 
words , including those whose meanings they have not yet acquired: All 3-year-old 
and most 2-year-old children begin counting  with the conventional sequence of 
number words. From age 2½ on children seldom use words that are not number 
words in counting. By age three, children’s counting words consist exclusively of 
the conventional number words, and when counting, use only number words.53 
Children’s willingness to repeat the same list of words to count diverse groups of 
objects is an unmistakable indication that they understand that the content of these 
words bear a universal meaning that transcends the particular objects to which the 
words were assigned, even if they point and touch each object while stating aloud 
one of these words.54 This a priori conclusion is consistent with Wynn ’s claim 
that the empirical data show that at no stage in their development of numerical 
concepts do children believe that the number words, which they use in counting, 
refer to the objects counted.55 Gelman ’s observation that even in the rare instances 
in which children did use non-number words in their counting, the words they 
chose did not refer to the objects’ properties (e.g., green) or identities (e.g., frog), 
confirms that indeed children do understand the abstract or universal nature of 
number as well as the units by which they are constructed.

Gelman ’s experiments show that when dealing with a number with which 
they are familiar, children seemed to be oblivious to any perceptual information 
that was not relevant to enumeration, such as density, length or area covered by 
the aggregate as a whole, the kinds of objects or their physical attributes;56 they 
disregarded the order in which objects were counted, and they followed all the 
other counting  and reasoning rules, including the ‘one-to-one’ procedure specified 
by Gelman  and Gallistel (see VII-4). In Fuson ’s meticulous and methodical 1988 
Children’s Counting and Concepts of Number, in which she refers to voluminous 

52 Wynn , 1992, p. 220 and p. 244. For the record in Wynn ’s terminology: 
‘numerosities.’

53 Fuson , 1988, p. 58, 190, 387, 389; Gelman and Gallistel , 1978, p. 90, Wagner  and 
Walters , 1982, p. 151

54 Gelman  and Gallistel , 1978, p. 51, 54, 55, and 205 
55 Wynn , 1992, p. 224
56 Gelman , and Gallistel , 1978, p. 54-55
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research data including her own, she comments about children’s counting, thus, 
“the single most striking attribute of the data about children’s counting and concepts 
of number reported in this book is the really amazing level of competence young 
children display.”57 Fuson ’s conclusion is consistent with Gelman  and Gallistel ’s 
observation that when the preschool children dealt with numerical quantities for 
which they possess a matching numerical concept,58 they were able to “bring to 
bear reasoning principles of surprising sophistication.”59 Since even the smallest 
numbers embody the abstract principle that underlies all numbers, it appears that 
the errors children make when dealing with larger numbers are not an indication 
that the children’s understanding of number is lacking or mathematically invalid, 
but rather, that they have not yet formed a specific and definite conceptual reference 
for these larger numbers.

The analysis of both the cognitive requirements for the acquisition of 
numerical concepts and the empirical research data mentioned here suggests 
that recognizing numbers as abstract ideas is an early and elemental step, and 
not necessarily one that poses the greatest challenge among the many steps taken 
in a process that may continue into adulthood. Grasping numbers as universal 
concepts of size is the beginning, not the ultimate completion, of number concept 
development. For the development of numerical concepts is not about a progress 
in the ability to understand what numbers are; it is about a progress in the ability 
to grasp increasingly larger numbers.

VIII-6. STEPS IN THE ACQUISITION OF NUMBER CONCEPTS

This concluding chapter presents a comprehensive outline of number 
development by describing the cognitive tasks involved in the acquisition of 
the counting numbers from the smallest and most tangible to the very large and 
elusive, step by step. Some of the issues were discussed at length in previous 
chapters; they are briefly reconsidered along with other subjects in order to offer a 
cohesive and complete view of a development that begins in infancy and continues 
into adulthood.

Introduction to numbers : Children’s number development is triggered by 
contacts with numerical symbols, which are a salient element in their cultural and 
social milieu. Research reveals that at the preliminary stage of number-symbol 

57 Fuson , 1988, p. 402
58 Gelman , and Gallistel , 1978, p. 51, For the record, Gelman ’s exact words were, “when 

the young child encounters numerosities that he can represent numerically.”
59 Ibid., p. 51
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acquisition  children’s involvement with numbers is initiated by parents. By 18 
months parents’ actions assume a clear pedagogical characteristic. Children start 
to become independently interested in numbers around the age of two. At this time 
they spontaneously initiate recitation of the number-words sequence and their 
employment in counting , and develop their own hypothesis about the meaning 
of these words. Data show that toddlers know to associate number words  with 
the question ‘how many’ and with counting, indicating that they understand that 
number words signify groups and that they are aware of the relevancy of units and 
unit analysis even if they have not yet developed definite ideas of numbers.

Comprehension of numbers within subitation range : The first numbers to be 
acquired are numbers that can be still envisioned explicitly, that is, numbers within 
the subitation range (up to 4 or 5). These are the smallest numbers and, as pointed 
out by Dehaene , are also the most frequently used in enumerated cultures.60 In this 
initial phase counting  plays an important role for it provides the mechanism for 
committing units to memory, which, in turn, enables the child to visualize them 
simultaneously so as to form a mental representation of a specific number. Since 
perceiving numbers within the subitation range is as much a verbal task as it is 
visual,61 the size of numbers preschool children can visualize and conceptualize 
must be commensurable with their verbal skills, particularly the length of the word 
sequence that they are able to retain in their working memory. The major cognitive 
processes involved in number conceptualization in this phase are the analysis 
of units and the rationally guided visualization of their sums as unique entities, 
while the children’s verbal and short-term memory capacity sets the boundaries 
of the sum sizes of this visualization. Even if children’s numerical proficiency  is 
limited to the first two or three numbers, those numerical concepts are genuine in 
the sense that they are established by units’ analysis, and are not associated with 
specific objects, and hence are mathematically valid. In enumerated cultures most 
children acquire the concepts of subitizable numbers before they start their formal 
education.

Comprehension of the first ten numbers : Number proficiency rests upon 
the mastery of the first ten numbers, that is, the base-numbers 1 through 9, and 
the base 10. These numbers provide the conceptual infrastructure and referents 
for the development of all other numerical ideas. The first ten numbers include 
both numbers that can be subitized and numbers too large for subitation . As was 
discussed above, the conceptualization of the former, which relies on counting , is 
suitable only for the smallest numbers, those that may be perceived and imagined 

60 Dehaene , 1997, p. 110
61 Neisser , 1967, p. 42, 43 
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explicitly. Construction of larger numbers, which can no longer rely on distinct 
mental images, must build upon the combination of previously acquired numerical 
concepts. The number 6, for example, may be constructed by smaller numerical 
concepts, say 5 and 1, 4 and 2, or, most likely, by 3 and 3. The conceptualization of 
larger numbers, then, employs conceptual/symbolic thinking, which requires more 
advanced cognitive operations and levels of abstraction than the visualization of 
explicit sums. Consequently, in the development of these larger numerical sizes, 
counting stops to be helpful and symbolic thinking takes over. At this juncture 
number-concept development becomes a mediated endeavor, that is, a learning that 
is achieved with adult guidance or with collaboration with more capable peers.62 
The learning mode at this level is arithmetic calculations  that aim toward gaining 
command of the numerical relationships of numbers within the unit 10. Experience 
demonstrates that mental computation  (a process of solving problems ‘in the head,’ 
so to speak) is the most helpful method to achieve this goal. Hence, mental/oral 
arithmetic  should be practiced before moving on to written-arithmetic exercises.63 
It is worthwhile to mention that in the early school years the very task of writing 
numerals demands from children an investment of considerable cognitive effort. 
When children are still struggling with the technical aspects of writing, written 
assignments distract them from the arithmetic task at hand, whereas oral exercises 
allow them to fully concentrate on those tasks. The rapid numerical operation 
afforded by oral exercises is necessary for establishing fluency and automatization 
of addition and subtraction operations within ten.64

Comprehension of numbers up to one hundred : The comprehension of 
numbers larger than the ‘base’, such as 13, 24, or 56, introduces into the process 
of number configuration the idea that a standard group of units can be considered 
and counted as a unit much like the unit one. For example, the digit 5 in the 
number 56 represents the ‘sum’ of the unit 10, and the digit 6 represents the ‘sum’ 
of the unit 1. Numbers such as 20, 30, 40, etc., can be conceived as products 
of 10 multiplied by a base number—making multiplication operations  part of 
number-concept formation. Hence the construction of numbers beyond 10 involves 
multiple levels of abstraction and cognitive operations. Whereas in the first ten 
numbers the focus is on fluency in addition and subtraction of the base numbers , 
the focus in numbers within the 100 range is the preliminary understanding of 
the base system’s structure, which is achieved by inductive generalization of the 
concept of unit .65 Acquisition of numbers within the hundred, then, requires a 

62 Vygotsky , 1978, p. 86
63 Hope, Reys and Reys, 1988, p. V; Katz , 1981, Booklet A, p. 19
64 Katz , 1981, Booklet A, p. 24
65 Ibid., p. 35-36
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cognitive shift to a more advanced level abstraction. This requirement can prove 
mentally demanding, and many educators are tempted to introduce concrete 
objects known as manipulatives  in order to provide sensory illustration so as to 
lessen the mental demand. Alas, the manipulatives and the activities associated 
with them lock the children’s thinking in a concrete mode, which impairs their 
ability to make the necessary leap to a higher abstraction level. Indeed, in her, 
1992 article, Magical Hopes: Manipulatives and the Reform of Math Education, 
Deborah Loewenberg Ball  has discussed a few of the problems that arise from the 
use of manipulatives to illustrate mathematical ideas. With regard to the counting  
numbers in the 100 range, Ball described teachers ’ frustration with the fact that 
many students use ‘base-ten blocks’, or the “relatively” more flexible bundles of 
Popsicle sticks grouped by tens, as instructed, but cannot transform these concrete 
activities to the appropriate symbolic operations.66 Whereas some use of concrete 
demonstration could be useful, ultimately the acquisition of what many consider 
one of mankind’s greatest intellectual achievements cannot be reached without a 
considerable mental investment in abstract, conceptual, and symbolic thinking.

Yet, even if the conceptualization of 100 and the two-digit numbers that 
lead up to 100 may become quite complex and abstract, numbers within 100 
do not require comprehension of the graduated pattern of the base system. The 
acquisition of these numbers can still be contained within the conceptual realm 
of arithmetic progression (in which the rate of growth remains constant), that is, 
within the framework of addition, subtraction, and multiplication. The number 
34, for example, may be conceived as (10+10+10)+(1+1+1+1), or as (10x3)+4, 
or as 10+10+10+4. These operations and the numerical concepts they employ are 
within first and second grader’s ability to grasp.

Comprehension of numbers beyond one hundred : As numbers grow, 
conceptualization depends more and more on the comprehension of their largest 
decimal unit. The sequence of decimal units is formed by raising the base 10 to 
ever growing powers: 1=100, 10=101, 100=102, 1,000=103, etc. The mechanism by 
which units grow is simple, yet, as the decimal units continue to ascend, the link to 
the original perceptual reference 10 by which they were abstracted weakens, and 
as a result the appreciation of their magnitudes become increasingly challenging. 
The level of abstraction necessary for conceptualization increases along with the 
decimal-unit sizes. When the decimal units can no longer be matched with an 
appropriate concept, the comprehension of units depends on the conceptualization 
of the extremely rapid growth of their geometrical progression, in which not only 
the terms grow, but the rate of their growth is growing as well.

66 Ball, 1992, p. 29-30
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Indeed, in a series of experiments aimed to evaluate subjects’ ability to 
locate the position of a number on a number line in which only its endpoints 
were indicated by a numeral (detailed in VI-1), Siegler,  Laski;  and Booth,  Siegler  
effectively demonstrated that estimating correctly numbers in the 1,000 range calls 
for a different approach from that employed for estimating numbers in the 100 
range. They described two major approaches for locating a number on the number 
line: linear and logarithmic. A linear estimation is proportionally accurate. For 
example, in a number line representing the numbers between 0 and 1,000, the 
linear estimator is able to locate the number 100 at the end of the first tenth of the 
line, and the number 20 at the end of the first fiftieth portion of the line. One who 
estimates logarithmically, on the other hand, tends to overestimate the magnitude 
of the smaller numbers and underestimate that of the larger numbers, such that she 
may disproportionately locate the numbers 100 and 20 closer to the 1,000 end of 
the number line than they should be. Their research data show that when second 
graders were asked to locate numbers between 0 and 100 on the number line the 
majority operated on a linear level, but when they were asked to do the same 
on the number line that presented numbers between 0 and 1,000, the majority 
produced logarithmic estimates.67 It is significant that at this range even adults had 
an “impulse” to take a logarithmic approach for locating numbers on the number 
line.68 It is safe to assume that the mental challenge presented by the requirement to 
move from the arithmetic-progression framework  to that of the more intellectually 
demanding geometric progression  contributed to the errors in locating numbers 
between 0 and 1,000 on a number line.

Astronomers, who must measure the huge distances that lie between 
celestial bodies, circumvent the difficulties of dealing with ‘astronomical’ and 
difficult-to-imagine ‘units’ by redefining units in a way that makes them more 
tangible. To this end they invented the unit called the ‘light year ,’ which defines 
the distance traveled by light in the course of one year (approximately six trillion 
miles). The unit of a ‘light year,’ which uses a concept of time to define a unit of 
length, helps astronomers to ‘bring down to earth’ (so to speak) celestial distances. 

Another example of scientists’ way to circumvent the difficulties in comprehending 
very large units is the use of scientific notation. The ‘scientific notation ’ expresses 
numbers as the product of a ‘base number’ and a power of ten. For example, the 
expression ‘9.46x1015’ communicates the number 9,460,000,000,000,000, which 
is the number of meters in a light year. 69

67 Booth  Siegler , 2006, p. 189-190
68 Ibid., p. 200
69 Source. Baron’s 1987, Dictionary of Mathematics Terms
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Concluding notes: Number-concept development is a process of comprehending 
increasingly larger numbers, and thus increasingly complex and abstract numbers, 
as they progress along their infinite sequence. In the initial stages of number 
development the child’s progress is linked to verbal and short-term memory 
capabilities. Progress in the more advanced stages is tied to the scope of the child’s 
arithmetic experiences and concomitant expansion of his/her numerical-operations 
skills and powers of abstraction. In enumerated cultures such as ours, children 
already understand the generic idea of number before they start grade school. Hence 
educators  need not ask how children acquire the primary concept of number as a 
special category of size ideas, but rather how children build upon this acquisition 
the understanding of new and more advanced numerical concepts; and how, in 
their role as teachers , they can most effectively facilitate the child’s learning.
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