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Effect of Person Cluster on Accuracy of Ability Estimation of Computerized Adaptive Testing  
in K-12 Education Assessment 

 
 
 

Abstract 
 
The ability estimation procedure is one of the most important components in a 

computerized adaptive testing (CAT) system. Currently, all CATs that provide K-12 student scores 

are based on the item response theory (IRT) model(s); while such application directly violates the 

assumption of independent sample of a person in IRT models because ability estimation is mostly 

based on cluster (or correlated) educational data in which students usually are clustered in certain 

groups or settings (classrooms or schools).  The consequences of such violations are commonly 

ignored.  The purpose of this study is to investigate the effect of ignoring hierarchical data 

structures of students sample on the accuracy of ability estimation by using a regular Rasch model. 

Results show that ICCs have not only statistically significant effect on the accuracy of a person’s 

ability estimation, but also large effect sizes. 
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I. Introduction 

The Race to the Top Fund has put tremendous pressures on states to develop high-quality 

and high-utility assessment systems that can measure comparable academic achievement across 

states.  Recently, the CAT has been seen as a particularly effective method in measuring an 

individual student’s growth over time in K-12 assessment (Way, Twing, Camara, Sweeney, Lazer, 

& Mazzeo, 2010).  Right now, besides Oregon, Delaware, and Idaho which are using CAT based 

on Rasch model (RM) in their state assessments, many other states (Georgia, Hawaii, Maryland, 

North Carolina, South Dakota, Utah, and Virginia) are also in various stages of CAT development.  

As a matter of fact, among the two consortia, SMARTER Balanced Assessment Consortium 

(SBAC) consists of 31 states, and Partnership for the Assessment of Readiness for College and 

Careers (PARCC) consists of 26 states, one of them (SBAC) is committed to a computer adaptive 

model because it represents a unique opportunity to create a large-scale assessment system that 

provides maximally accurate achievement results for each student (Race to the Top Assessment 

Program, 2010).  

The CAT is of considerable interest to states right now because of its advantages, such as a 

short test, immediate feedback on student scores, better reliability, and accuracy (Lord, 1977; 

Kingsbury & Weiss, 1983; Steinberg, & Thissen, 1990) over traditional paper-pencil tests.  Its 

unique advantages in K-12 assessment also include cost saving, multiple testing opportunities for 

formative and interim assessments, and better validity (Way, 2006).   

In practice, when a CAT is used, IRT models (Hambleton & Swaminathan, 1985) are used 

to fulfill the purpose of estimating student’s provisional ability.  However, the use of any of IRT 

models is valid only when the IRT assumptions have been met. One of the IRT assumptions is the 

independence of observations in the sample or population, i.e., the persons should be sampled from 

simple random sample (SRS).  This independence of observations assumption can be met in many 

situations such as in licensure, certification,  and admission CATs, where examine can be regarded 

as independent each other.  However, sample or population in an educational setting always 

involve a nested data structure where individual students are nested within organizational settings, 

such as a class or school.  The dependencies between individuals in cluster sample (CS) pose 

unique challenge for proper application of CAT in educational setting, especially for the accuracy 

of ability estimation.  Figure 1 presents both SRS and CS sampling designs. 
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The unique feature of educational sample is the cluster effect in which group students learn 

or study together so they share certain characteristics as a group.  The correlation within cluster is 

called the intra-class correlation (ICC).  If the ICC is nonzero, the assumption of independence, 

one of the necessary conditions for IRT, is violated.  Many published literatures have discussed the 

ICC issues in statistical field (Cochrane, 1977; Cornfield, 1978; Kish, 1965; Walsh, 1947) and 

medical field (Rosner, 1984; Munoz, Rosner, & Carey, 1986). Few studies have examined the 

dependence nature of educational data in large scale achievement context.  A Schochet (2005) 

study shows that all achievement tests have certain degrees of dependence in samples.  Wang 

(2006) conducted study on the effect of cluster data at test score level on sample size requirement 

for IRT calibration. A study by Wang, Jiao, Jin & Thum (2010) shows that degrees of dependence 

in educational data could lead to a biased person parameter estimation and misleading results in 

vertical scaling.   

The problems of mistaking a cluster sample (CS) as a simple random sample (SRS) can be 

coped with by using multilevel models (Bryk & Raudenbush, 1992; Goldstein, 1995; Longford, 

1993). Some researchers (Adams, Wilson, & Wu, 1997; Kamata, 2001; Mislevy & Bock, 1989) 

have shown that IRT models can typically be treated as logistic mixed models. Mislevy and Bock 

(1989) applied multilevel modeling in the framework of IRT models where group-level and 

student-level effects were combined in a hierarchical IRT model. Adams et. al. (1997) showed that 

latent ability could be used as outcomes in a regression analysis.  Fox and Glas (2001) introduced a 

general approach for binary outcomes in a strictly clustered setting (i.e., items nested within 

students and students are nested within schools).  Many of these developments fall under the rubric 

of generalized linear mixed model (GLMM, McCulloch & Searle, 2001), which extend generalized 

linear models (GLM, includes logistic regression) by the inclusion of random effects in the 

predictor.  Recently, Rijmen, Tuerlinckx, De Boeck, & Kuppens (2003) provided a comprehensive 

overview and bridge between IRT models, multilevel models, mixed models, and GLMMs. 

According to them, only the Rasch model (RM, Rasch, 1960) and family of Rasch models belong 

to the class of GLMMs. Other IRT models, such as two- and three-parameter models, are not 

within the class of GLMMs because they include a product of parameters and no longer linear.  

The mixed-effect (or multilevel) Rasch model (MRM) that explicitly recognize the clustered 

nature of the data and directly incorporate random effects to account for the various dependencies 

is used in this study.  The MRM is a common choice for analysis of multilevel dichotomous data 
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(that has value 0 or 1). The major differences between GLMM and general linear model are in two 

aspects. First, the distribution of dependent variable in GLMM can be non-normal, and does not 

have to be continuous. Secondly, the dependent variable in GLMM still can be predicted from a 

linear combination of independent variable(s), but they are "connected" via a link function. In the 

GLMM context, this model utilizes the logit link, namely (De Boeck & Wilson, 2004), 

K L
ij

ij ij ij k ik jl il
k 0 l 0ij

g( ) log it( ) ln X Z
1
μ

μ μ η β
μ = =

⎡ ⎤
= = = = +⎢ ⎥−⎢ ⎥⎣ ⎦

∑ ∑θ =  Xβ + Zθj ,                        (1)                                  

where i for item, i=1,2,…, I; j for person, j=1,2,…, J; k for item predictors, k=0, 1,…, K; l for 

person predictors, l=1,2,…,L. Xjk is the value of predictor k for item j; Zil is the value of predictor l 

for item i; βk is the fixed regression weight of predictor k and θjl is the random regression weight of 

predictor l for person j. ηij is linear predictor, the conditional expectation μij = E(Yij | X, β, Z, θ) 

equals P(Yij = 1| X, β, Z, θ), namely, 

                                   P(Yij = 1|X, β, Z, θ) = g−1(ηij ) = Ψ(ηij )                                                 (2) 

the conditional probability of a response given the random effects (and covariate values if there is 

any one)  and Yij is observations  where the inverse link function g−1(ηij ) or Ψ(ηij ) is the logistic 

cumulative distribution function (cdf), namely Ψ (ηij ) = [1 + exp(−ηij)]−1.  

RM gives the probability of a correct response to the dichotomous item i (Yij = 1) 

conditional on the random effect or ‘ability’ of subject j (θj): 

j i
ij j i

j i

exp( -b
(  ) ( -b  ) 

exp( -bij i

)
p( y 1 )
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θ

θ Ψ η Ψ θ
θ

= = = =
+

                                                                (3) 

where bi is the difficulty parameter for item i. Comparing (2) to (3), it can be seen that RM is 

special case of a random-intercepts model that includes item dummies as fixed regressors.   

Although IRT models were not originally cast as GLMMs, formulating them in this way easily 

allows covariates to enter the model at either level (i.e., items or subjects).  Kamada (2001) also 

formulated MERM in the context of multilevel model (multilevel RM) within GLMM framework.   

         Given that recently the CAT in K-12 assessment has rapidly grown and little work 

has been done on evaluating the accuracy of ability estimation of CAT with clustered data, the 

urgent need for better understanding the impact of educational cluster data on CAT quality can’t be 

overstated.  The purpose of this study is to investigate the effect of ignoring hierarchical data of 
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structures of student sample by using regular RM on the accuracy of ability estimation in CAT 

environment.  

 

 

II. Methods and Data Source 

A Monte Carlo (MC) technique used to investigate effect of ignoring cluster data structures 

on the accuracy of ability estimation in CAT in this study.  Two types of data sets will be 

simulated by using RM and MRM in fixed test length (30 and 50 dichotomous items) CAT.  

 

2.1. Simulation of Cluster Data 

The cluster data structures are simulated and different clusters effect in data are measured 

by ICCs. For this study, the student response score is our interest and used as dependent variable, 

proportion of total variance for given three levels, level-1: item, level-2: student, and level-3. 

According to model (1) and Kamata (2001), for MRM model,  
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where ijmη  is linear predictor for item i of student j in class m; pijm is the probability that person j in 

class m answers item i correctly and Xqijm is qth dummy variable (q = 1,2,..,k-1) for the ith item for 

person j in class m. β0jm is the effect of the reference item, and βqjm is the effect of the qth item 

compared to the reference item. Because the level-2 (student-level) models for student j in class m 

are written as β0jm = γ00m + u0jm, β1jm = γ10m, β2jm = γ20m, …, β(k-1)jm = γ(k-1)0m. Where u0jm ~N(γ00m, 

τγ) and τγ (σ2
level-2), the variance of u0jm within class m is assumed to be identical across classes. In 

level 3 (class-Level) model, the intercept γ00m is only term that arises across classes and item 

effects are constant across classes. For class m, γ00m = π000 + r00m, γ10m = π100, γ20m = π200,  γ(k-1)0m = 

π(k-1)00, where r00m ~N(0, τπ). τπ is σ2
level-3. So if let +00m 0 jmr uθ jm = which meansθ jm ~N(γ00m, τγ) and 

γ00m~ N(0, τπ), and also let =ib 000π π− −i00 , then we have (5). Item effect is treated as fixed effect 

in GLMM framework, there is not supposed to have variance at item level, however, probability of 

item responses are logistic given item parameters and ability, the individual level variance equal to 
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π2/3 (Goldstein, Browne, Rashash, 2002; Rashash, Steele, Browne, 2003; Snijders, Basker, 1999) 

or ≅ 3.29, and we label it as σ2
level-1. The total variance and ICCs can be expressed as  

 
       σ2   = σ2

level-3 + σ2
level-2 + σ2

level-1 = τπ + τγ + π2/3 

       ICClevel-2 (between students) = σ2
level-2/( σ2

level-3 + σ2
level-2 + σ2

level-1) = τγ / (τπ + τγ + π2/3)       (6)                 

       ICClevel-3 (between class) = σ2
level-3/(σ2

level-3 + σ2
level-2 + σ2

level-1) = τπ / (τπ + τγ + π2/3).            (7)                 

 
For traditional Rasch model, the assumption is that student ability as a random variable 

with standardized normal distributed N(0,1), in GLMM framework from (6), which means τγ has 

to be 1 and τπ has to be 0. Even though, ICClevel-2 ് 0 but remains a constant value 1/(1+π2/3)= 

0.2331.  

It can be seen, in the traditional IRT calibration context, one may argue that between-

examinee ICC is not zero but is fixed by default at 1.0/(1.0+ π2/3) since the distribution of ability 

is assumed to be distributed normal with mean 0 and variance 1.0 (Thum & Wang, 2011). The 

argument is that, in practice, the distribution of clusters of students is likely to be distributed with 

non-zero mean and variance.  If students are sampled in clusters, the assumption of independence 

among students, a necessary condition for IRT, is violated.  The cluster effects of simulated data 

with 1000 examinees are generated by using different values of τπ (τπ ് 0) and ICC values are 

presented in Table 1.  

Besides, ICCs, one sizes (1000 items) of item bank are used in simulation and all items 

difficulty parameters are generated from standard normal distribution for both RM and MRM 

models.  Two ability estimation methods (Wang & Wang, 2001) are used to estimate examinee 

ability;  maximum likelihood estimate (MLE) and expected a posteriori estimate (EAP).  Because 

this study focuses only on the accuracy of ability parameters recovery under different type of data 

structures, content balance and item exposure control is not a concern in this study. However, at 

each step of CAT during the test, each item is randomly selected from a selected group items based 

on item information that have item difficulty range from 0.1 logit below provisional ability 

estimate to 0.1 logit above provisional ability estimate.  Simulation procedure takes the following 

steps: 

 

Step 1:  To start the test, an initial ability estimate of 0.0 is assumed. The maximum information  
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item selection algorithm is used to select next item among a group items that have item   

difficulty range from 0.1 logit below provisional ability estimate to 0.1 logit above    

provisional ability estimate. 

Step 2.  After an item is selected, a response based on the simulee's true ability is generated from  

two models.  One is for RM, the other is for MRM.  For RM, ICC=0 and For MRM, the  

correlated data were generated with two different  ICC values (0.2, 0.4) under the  

assumption that the average cluster (class or school) size was 25 and the number of clusters  

was 40 so there are 1000 examinees.   

Step 3.   After a response is generated, the provisional ability level is estimated using one of two  

ability estimation methods (MLE and EAP).  The provisional estimate using EAP after the 

first item was based on a normal prior.  Based on this provisional estimate, the next item is 

selected the procedure described in step 1. 

Step 4.  Step 2 and step 3 are repeated until a termination criterion is researched.  Fixed test length  

             stopping rule is used to terminate the test.   

Both descriptive methods and inferential procedures are used to analyze the results from 

the simulation.  Total 10 replications are conducted in this study.  

 

2.2  Design of Study 

 

2.2.1   Independent variables 

Independent variables in this study include ICC (three levels:  0, 0.2, and 0.4), estimation 

method (two levels: MLE and EAP) and test length (two levels: 30 and 50).  For the purpose of 

verification, test length 1000 (total item bank) is also used for each of conditions but not included 

as the level of test length variable. 

 

2.2.2   Dependent variables 

There are varieties of statistics that can be used to evaluate how well true parameters are 

recovered for each of the simulation conditions. Five dependent (criterion) variables used in this 

study are: correlations between true and estimated parameters, biases, absolute biases (Abias), 

standard errors (SEs), root mean square errors (RMSEs).  These criteria are used to examine the 

effects of the manipulated independent variables described in the last subsection to provide 
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complementary evidence.  For each person j, the conditional bias (Abias), SE, and RMSE of an 

estimator θ෡௝ across size R (r=1, 2, … , R) of replications (here R=10) can be expressed as 

following:   

         Bias൫θ෠  =E൫θ෠ ൯ െ θ ൌ
1

෍ θ෠୰୨

R

െ θ୨ ൌ
1
R ෍ θ෠ െ

1
෍ θ ൌ

1
୨൯ ୨ ୨ R ୰୨ R ୨ R

୰ୀଵ

෍൫θ෠ െ θ ൯
RRR

        ሺ8ሻ ୰୨ ୨
୰ୀଵ୰ୀଵ୰ୀଵ

              Abias൫θ෠୨൯ =|ܧ൫θ෠௝൯ െ θ௝| ൌ ଵ
ோ

∑ หθ෠௥௝ െ θ௝หோ
௥ୀଵ                                                                          ሺ9ሻ 

൫θ෠௝൯ܧܵ                ൌ ටܸܽݎ൫θ෠௝൯ ൌ ටܧሾቀθ෠௝ െ ൫θ෠௝൯ቁܧ
ଶ

ሿ ൌ ඩ1
ܴ ෍ ൭θ෠௥௝ െ

1
ܴ ෍ θ෠௥௝

ோ

௥ୀଵ

൱

ଶோ

௥ୀଵ

                   ሺ10ሻ 

                 Where θ෠௝ is the estimated person ability and θ௝ is true person ability of person j. 
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1
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T ere is the el onship between MS  (=RMSE2 , SE nd bias: 
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ଶ
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h  r ati E ) , a

This relationship can be used to verify the correctness of calculation of each criterion 

index. Besides bias, absolute bias (absolute value of bias) is used because the direction of bias 

(positive or negative) is a function of either person ability or item difficulty.  The average of bias, 

Abias, SE, and RMSE across N persons (j=1, 2, …, N) can be described as following: 

1
ܴ                     Bias൫θ෠൯ =

1
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1
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Where θ is the true ability of simulees, which was used to generate responses in the 

simulation,  is the estimated ability for the rth replication, and R is the number of replications.  

The relationship among average bias, SE, and RMSE in (12) is no longer true for average bias, SE, 

and RMSE.  

rθ̂

These dependent (criterion) variables (equation 13-16) are used for two set simulation 

design.  First design include three design factors of ICC (3 levels), methods (3 levels), and test 

length (2 levels);  Second design still keep first two factors (ICC and methods) but test length is 

equal to total item bank.  There are a total [2(method) x 2(test length) x 3(ICC) + 2(method) x 

1(full bank) x 3(ICC)] x10 (replication) = 180 calibrations conducted in this study. The Table 1 

shows detail information of simulation design.   

 

III. Results 

 

This study investigates the effect of ICC, method, and test length on the accuracy of 

personal parameter estimation in the CAT.  Parameter recovery is evaluated by comparing the 

estimates to the true (generated) parameters in terms of five dependent variables: correlations, bias, 

Abias, SE, and RMSE. The descriptive statistics, such as tabular summaries and graphical 

presentations, are used to present these dependent variables.   

2.1 Descriptive Statistics of Conditional Dependent Variables  

2.1.1  Correlations among true and estimated person parameters. 

  Tables 2 show average Pearson's correlation coefficients true and estimated person 

parameters under different test lengths and ICC across different calibration methods and 

replication. The results show that as test length increases, correlation coefficient increase across 

different factors and test with 1000 items (total item in item bank) recovers the best among 

different test length. Apparently, ICC has a little effect on the recovery. 
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2.1.2  Conditional Bias  

 Figures 3 and 4 depict the conditional biases along the theta scale under different test 

lengths and ICCs with one replication for MLE and EAP estimation methods.  It is clear that 

Bayesian method (EAP) show “inward” biases, which means that for low ability, EAP over-

estimate true parameters and for high ability, EAP under-estimate true parameter. The MLE 

methods supposes to show a slight “outward” biases, which is opposite to EAP, but result do not 

show this trend very clear.   The effects of ICC and test length on biases are not clear from the 

Figures.  

2.1.3  Conditional SE  

The conditional SEs under different test lengths and ICCs with one replication for MLE 

and EAP estimation methods are presented in Figures 4 and 5.  Results show that the SE values 

with ICC്0 are lower than that SE values when ICCൌ0 and EAP has less SEs than MLE. 

2.1.4  Conditional RMSE  

SEs under different test lengths and ICCs with one replication for MLE and EAP 

estimation methods are presented in Figures 6 and 7. The RMSE of MLE has flat distributions that 

that of EAP. 

2.1.5  Average Dependent Variables of Bias, SE, and RMSE  

The average dependent variables (bias, abias, SE, and RMSE) are computed by using 

equations 13 to 16 and correlation remain the same.  Five average dependent variables (correlation, 

bias, abias, SE, and RMSE) under different simulation conditions over 10 replications  are 

presented in Table 3. In general, the correlations decrease as test length decrease. The estimation 

accuracy measured by bias, SE, and RMSE decreases as ICC increase, however, ICC has more 

impact on the accuracy of estimation than test length and method. 

 

2.2 Inferential Statistics of Average Dependent Variables  

 Another way to statistically check the effect of independent variables (ICC, method, and 

length) on the accuracy is to conduct ANOVA analysis on the simulation results.  
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2.2.1   Statistical Hypotheses 

For this study, the five dependent variables (correlation, bias, abias, SE, RMSE) are used to 

evaluate the accuracy of item calibration, based on research questions proposed in introduction 

section, the statistical null hypotheses are presented as follows. 

1) There are no effects of ICC on the accuracy of person parameter estimations when some or 

all of the dependent variables: correlation, bias, abias, SE, and RMSE are used in different 

simulation conditions. 

2) There are no effects of test length on the accuracy of item parameter estimations when 

some or all of the dependent variables: correlation, bias, abias, SE, and RMSE are used in 

different simulation conditions. 

3) There are no effects of calibration method on the accuracy of person parameter estimations 

when some or all of the dependent variables: correlation, bias, abias, SE, and RMSE are 

used in different simulation conditions. 

4) There are no three-way interaction effects between any of two factors mentioned above 

when some or all of the dependent variables: correlation, bias, abias, SE, and RMSE are 

used in different simulation conditions. 

5) There are no two-way interaction effects between any of two factors mentioned above 

when some or all of the dependent variables: correlation, bias, abias, SE, and RMSE are 

used in different simulation conditions. 

Because the Monte Carlo study is really a statistical sampling experiment with an 

underlying model, the number of replications in this Monte Carlo study is the analogue of sample 

size.  In this study, in order to have adequate power for the statistical tests in the Monte Carlo 

study to detect effects of interest, each simulated condition has been replicated 10 times.  The 

simulation results of dependent variables from three-way (ICC, calibration method, test length) 

crossed ANOVA are presented.  Both test statistics and effect sizes are used to determine levels of 

significant effects.  The magnitude of significant effects is estimated using eta-squared η2 

(empirical η2 as an effect size estimate).  Following the advice of Cohen (Cohen, 1988), the effect 

size in terms of η2 had been classified as: (a) no effect (η2 < 0.0099 ≈ 0.01), (b) small effect (0.01 

< η2 < 0.0588 ≈ 0.06), (c) medium effect (0.06 < η2 < 0.1379 ≈ 0.14), and (d) large effect (η2 > 

0.14).   
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2.2.2   ANOVA Results 

 Tables 4 to 13 show both results of the three-way ANOVA for average of correlation1, 

bias1, abias1, SE1, and RMSE1 that account the test length difference and two-way ANOVA for 

average of correlation2, bias2, abias2, SE2, and RMSE2 that do not account for the test length 

difference.  Using α = 0.05 for each hypothesis tested (means of each dependent variables are 

equal across ICC, method, and length).  Following the advice of Cohen (Cohen, 1988), the effect 

size in terms of η2 had been classified as: (a) no effect (η2 < 0.0099 ≈ 0.01), (b) small effect (0.01 

< η2 < 0.0588 ≈ 0.06), (c) medium effect (0.06 < η2 < 0.1379 ≈ 0.14), and (d) large effect (η2 > 

0.14).   

2.2.2.1  Results of Three-way ANOVA  

For the three-way ANOVA, three main effects are ICC(I), Length (L), and method (M). 

effect (I x L x M).  For all dependent variables (correlation1, bias1, abias1, SE1, and RMSE1), all 

interaction effects (one three-way and three two-way) are not statistically significant; except for 

correlation1, all main effects of L and M of dependent variables are not statistically significant 

except for SE1 but all main effects of ICC of dependent variables are statistically significant.  For 

correlation1, one main effect of M is statistically significant and for SE1, all three main effects are 

statistically significant.  In terms of η2 (total variance in the dependent variable that is explained by 

independent variables), the main effect I accounts for most of the variance. More specifically, 

48.4% of the total sum of squares of the bias1, 53.0% of the total sum of squares of the abias1, 

74.9% of the total sum of squares of the SE1, and 62.8% of the total sum of squares of the RMSE1 

for the person estimation are due to ICC effect.  All effect sizes for ICC are in the large ranges (η2 

> 0.14).  Although main effect of L and M for SE1 are statistically significant, but two main effect 

account for much less total variations (2.7% for L and 7.9% for M) comparing to ICC. For 

correlations1, main effect of L is statistically significant and L account for 90.7% of total variation.  

 

2.2.2.2  Results of Two-way ANOVA  

  Among two main effects (I and M) and one interaction effect (I x M) for bias2, abias2, 

SE2, and RMSE2, only main effect I is statistically significant at α = 0.05 level. Again, 6.0% of 

the total sum of squares of bias2, 49.2% of the total sum of squares of abias2, 81.1.0% of the total 

sum of squares of SE2, 59.6% of the total sum of squares of RMSE2 for the person estimation are 

13 
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due to ICC effect.  For correlations2,  main effect of L is statistically significant and L account for 

94.5% of total variation.  

 In general, the results for average dependent variables are consistent with the results of 

conditional dependent variables. The factor of ICC has the most influence on bias1, abias1, SE1, 

RMSE1, bias2, abias2, SE2, and RMSE2 because it accounts for more than half percent of the total 

variations. On the other hand, the factor of method has the most influence on correlation.  

2.3  Summary of Results  

In general, for both conditional and average indices of dependent variables (bias, abias, SE, 

RMSE) increase as the values of ICC increase and as the value of test length decrease.  Among all 

manipulated independent variables (ICC, method, and length), the factor ICC has most impact on 

the accuracy of person ability estimation.    

 

Educational Importance of the Study 

The ability estimation procedure is one of the most important components in a 

computerized adaptive testing (CAT) system.  The accuracy of ability estimation methods used in 

CAT has a significant impact on the quality of CAT testing because it affects not only the final 

score reported, but also the item selection and test termination.  For decades, the computerized 

adaptive tests have been widely used in licensure, certification and admission purposes; and 

recently, the demanding on CAT in K-12 education has increased tremendously. However, the 

impact of the significant part of examinee characteristics difference between K-12 test and other 

types of tests on ability estimation in CAT has been totally neglected by both CAT researchers and 

developers.  Unlike in licensure, certification, and admission tests where students can be regarded 

as random independent samples, students in K-12 education are clustered into larger units, such as 

class, school, school district, and so on.  So far in practice, the consequence of such violation in 

regular IRT application such as CAT is usually ignored.  This study is the first study that attempts 

to examine the consequence of such common practice. 
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Table 1. Designs of Simulation Condition  

Simulation 
Design 

Simulation 
Conditions 

Estimation 
Method 

Test 
Length ICClevel-2 ICClevel-3 σ2

level-2 σ2
level-3 

First 1 MLE 30 .2331 0 1 0 
 2 MLE 30 0.8 0.2 0.8 0.2 
 3 MLE 30 0.8 0.4 0.666 0.333 
 4 MLE 50 .2331 0 1 0 
 5 MLE 50 0.8 0.2 0.8 0.2 
 6 MLE 50 0.8 0.4 0.666 0.333 
 7 EAP 30 .2331 0 1 0 
 8 EAP 30 0.8 0.2 0.8 0.2 
 9 EAP 30 0.8 0.4 0.666 0.333 
 10 EAP 50 .2331 0 1 0 
 11 EAP 50 0.8 0.2 0.8 0.2 
 12 EAP 50 0.8 0.4 0.666 0.333 

Second 1 MLE 1000 .2331 0 1 0 
 2 MLE 1000 0.8 0.2 0.8 0.2 
 3 MLE 1000 0.8 0.4 0.666 0.333 
 4 EAP 1000 .2331 0 1 0 
 5 EAP 1000 0.8 0.2 0.8 0.2 
 6 EAP 1000 0.8 0.4 0.666 0.333 

 

Table 2.  Average Pearson's Correlation Coefficients Between True and Estimated Person Ability 
across Different Calibration Methods and Replications 
 

Design N Level of Length ICClevel-3 Mean SD 

1 20 30 0 0.933 0.0032 

20 30 0.2 0.9329 0.005 

20 30 0.4 0.9321 0.0064 

20 50 0 0.9599 0.0019 

20 50 0.2 0.9596 0.0033 

20 50 0.4 0.9578 0.0043 

2 20 1000 0 0.9947 0.0025 

20 1000 0.2 0.9946 0.0026 

 
20 1000 0.4 0.9945 0.0027 
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Table 3.  Average Dependent Variable across ICCs, Estimation Methods, and Test Lengths over 10 Replications 
 
ICC Method Length N Cor1 Cor2 Bias1 Bias2 aBias1 aBias2 SE1 SE2 RMSE1 RMSE2 

0 MLE 30 10 0.931854 0.997068 0.031749 -0.04157 0.431598 0.294916 0.213736 0.08435 0.303168 0.159266

0 MLE 50 10 0.960008 0.997068 0.03063 -0.04157 0.376586 0.294916 0.151553 0.08435 0.232518 0.159266

0 EAP 30 10 0.934191 0.992308 0.025262 -0.04104 0.401423 0.307122 0.156972 0.091248 0.262128 0.16754

0 EAP 50 10 0.95982 0.992308 0.023333 -0.04104 0.367485 0.307122 0.130756 0.091248 0.22111 0.16754

0.2 MLE 30 10 0.931505 0.99707 -0.12314 -0.0846 0.638257 0.558652 0.363125 0.23821 0.644933 0.513556

0.2 MLE 50 10 0.959197 0.99707 -0.12333 -0.0846 0.609826 0.558652 0.312996 0.23821 0.590002 0.513556

0.2 EAP 30 10 0.934228 0.992189 -0.12396 -0.0842 0.596237 0.564643 0.273242 0.242161 0.56581 0.5189 

0.2 EAP 50 10 0.95993 0.992189 -0.12511 -0.0842 0.579344 0.564643 0.25914 0.242161 0.538709 0.5189 

0.4 MLE 30 10 0.932491 0.996994 -0.1713 -0.09505 0.745248 0.68064 0.473659 0.340206 0.885459 0.752522

0.4 MLE 50 10 0.958335 0.996994 -0.1714 -0.09505 0.715688 0.68064 0.41601 0.340206 0.815099 0.752522

0.4 EAP 30 10 0.931799 0.991928 -0.16984 -0.09439 0.696526 0.686843 0.358068 0.34559 0.770991 0.759412

0.4 EAP 50 10 0.957239 0.991928 -0.16984 -0.09439 0.685768 0.686843 0.351932 0.34559 0.754326 0.759412

 

Note: Cor1 is for test length 30 and 50, Cor2 is for test length 1000 (Whole item bank), the rest labels for other dependent variables 

are the same.
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Table 4.    Results of Three-way ANOVA of Correlation1 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

Main Effects       

ICC (I) 2 5E-05 3E-05 1.38 0.255 0.0022 

Length (L) 1 0.0209 0.0209 1119.6 <.0001 0.9066 

Method (M) 1 1E-05 1E-05 0.65 0.422 0.0005 

Interaction Effects       

I x L 2 9E-06 5E-06 0.24 0.7856 0.0004 

I x M 2 4E-05 2E-05 1 0.3725 0.0016 

L x M 1 2E-05 2E-05 1.08 0.3011 0.0009 

I x L x M 2 6E-06 3E-06 0.16 0.8501 0.0003 

 

Table 5.    Results of Two-way ANOVA of Correlation2 (Full Bank)) 
 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

ICC (I) 2 1E-06 6E-07 1.56 0.214 0.0015 

Method (M) 1 0.0007 0.0007 2028.1 <.0001 0.9448 

I x M 2 5E-07 2E-07 0.66 0.5164 0.0006 
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Table 6.    Results of Three-way ANOVA of Bias1 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

Main Effects       

ICC (I) 2 0.8601 0.4301 50.75 <.0001 0.4844 

Length (L) 1 2E-05 2E-05 0 0.9646 0 

Method (M) 1 0.0001 0.0001 0.02 0.8948 0.0001 

Interaction Effects       

I x L 2 1E-05 5E-06 0 0.9994 0 

I x M 2 0.0004 0.0002 0.02 0.9787 0 

L x M 1 2E-06 2E-06 0 0.9868 0 

I x L x M 2 2E-06 8E-07 0 0.9999 0 

 

 

Table 7.    Results of Two-way ANOVA of Bias2 (Full Bank)) 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

ICC (I) 2 0.0642 0.0321 3.65 0.029 0.0602 

Method (M) 1 9E-06 9E-06 0 0.9752 0 

I x M 2 3E-07 2E-07 0 1 0 
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Table 8.    Results of Three-way ANOVA of aBias1 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

Main Effects       

ICC (I) 2 2.0799 1.0399 63.06 <.0001 0.53 

Length (L) 1 0.0254 0.0254 1.54 0.2172 0.0065 

Method (M) 1 0.0302 0.0302 1.83 0.1787 0.0077 

Interaction Effects       

I x L 2 0.0036 0.0018 0.11 0.8973 0.0009 

I x M 2 0.0022 0.0011 0.07 0.9343 0.0006 

L x M 1 0.0022 0.0022 0.13 0.7155 0.0006 

I x L x M 2 0.0001 6E-05 0 0.9962 0 

 

 

Table 9.    Results of Two-way ANOVA of aBias2 (Full Bank)) 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

ICC (I) 2 3.0575 1.5287 55.23 <.0001 0.4919 

Method (M) 1 0.002 0.002 0.07 0.7894 0.0003 

I x M 2 0.0002 0.0001 0 0.9955 0 
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Table 10.    Results of Three-way ANOVA of SE1 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

Main Effects       

ICC (I) 2 1.054 0.527 306.42 <.0001 0.7492 

Length (L) 1 0.0385 0.0385 22.37 <.0001 0.0273 

Method (M) 1 0.1112 0.1112 64.64 <.0001 0.079 

Interaction Effects       

I x L 2 0.005 0.0025 1.45 0.2388 0.0035 

I x M 2 0.0031 0.0016 0.9 0.4088 0.0022 

L x M 1 0.0093 0.0093 5.38 0.0223 0.0066 

I x L x M 2 0.0001 6E-05 0.03 0.9671 0.0001 

 

 

Table 11.    Results of Two-way ANOVA of SE2 (Full Bank)) 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

ICC (I) 2 1.318 0.659 244.79 <.0001 0.8107 

Method (M) 1 0.0009 0.0009 0.33 0.569 0.0005 

I x M 2 4E-05 2E-05 0.01 0.992 0 
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Table 12.    Results of Three-way ANOVA of RMSE1 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

Main Effects       

ICC (I) 2 2.9275 1.4637 62.79 <.0001 0.5277 

Length (L) 1 0.0445 0.0445 1.91 0.1699 0.008 

Method (M) 1 0.0454 0.0454 1.95 0.1657 0.0082 

Interaction Effects       

I x L 2 0.0048 0.0024 0.1 0.9014 0.0009 

I x M 2 0.0029 0.0015 0.06 0.9389 0.0005 

L x M 1 0.0045 0.0045 0.19 0.6616 0.0008 

I x L x M 2 0.0001 7E-05 0 0.9972 0 

 

 

Table 13.    Results of Two-way ANOVA of RMSE2 (Full Bank)) 
 

Source DF Type I SS Mean Square F-Value Pr > F η2 

ICC (I) 2 7.1079 3.5539 84.16 <.0001 0.5961 

Method (M) 1 0.0014 0.0014 0.03 0.8557 0.0001 

I x M 2 4E-05 2E-05 0 0.9995 0 
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                Simple random sample (SRS)                             Cluster sampling (CS) 

  
Figure 1.  Sampling Design with Different Units of Sampling Frame (SRS and CS) 
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Figure 2.  Distribution of Conditional Bias Along Theta Scale for Different Test Length (L1=30 

and L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using MLE (M=2) with One Replication 
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Figure 3.  Distribution of Conditional Bias Along Theta Scale for Different Test Length (L1=30 

and L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using EAP (M=3) with One Replication 
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Figure 4.  Distribution of Conditional SE Along Theta Scale for Different Test Length (L1=30 and 

L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using MLE (M=2) with One Replication 
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Figure 5.  Distribution of Conditional SE Along Theta Scale for Different Test Length (L1=30 and 

L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using EAP (M=3) with One Replication 
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Figure 6.  Distribution of Conditional RMSE Along Theta Scale for Different Test Length (L1=30 

and L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using MLE (M=2) with One Replication 
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Figure 7.  Distribution of Conditional RMSE Along Theta Scale for Different Test Length (L1=30 

and L2=50) and ICClevel-3 (I=0, 0.2, 0.4) using MLE (M=2) with One Replication 
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