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I. Introduction 

 

Computerized based testing (CBT) has been widely used in K-12 education assessment. 

Recording response times (RT) on test items becomes a routine test activity for many large scale 

state test administrations.  Besides RT, the examinee’s auxiliary information, such as background 

(gender, ethnicity), and academic history (course taken, grades received, and scores on other 

subject area) are also routinely collected in many testing programs.  

However, it is still a common practice to estimate person and item parameters based on 

item response theory (IRT) from item responses alone and ignore both RT and auxiliary or 

collateral information (CI,  Mislevy & Sheehan, 1989),  even though it is available for many 

psychometric applications, such as test scoring, equating and scaling.  The purpose of this study 

is to exploit student RT, background information, and academic information as auxiliary 

information to improve the precision of parameter estimates in IRT. 

It has long been recognized that RT on a test is an important source of information on the 

student’s behavior and research topic of interest in psychophysics and cognitive psychology 

(Luce, 1983; Roskam, 1997).  The RT is also collected routinely in empirical studies such as 

biological, social, and development and clinical psychology. In fact, more than 27,000 abstracts 

in PsychInfo database spanning from 1887 to the end of April, 2000 make reference to reaction 

or response time or latency (Van Zandt, 2002).  In educational measurement, however, ignoring 

RT has been accepted since early part of the 20th century (Baxter, 1931, Mayer, 1960) and this 

may be partially true due to the difficulty of collecting response time data at the individual item 

level with paper-and-pencil testing.  But this, for most part, is because of the need for the 

standardization for large-scale standardized norm-referenced tests (SNRT, Anastasi, 1976; Ebel 

& Frisbie, 1991).   

In theory, educational tests are still classified exclusively as either power tests that assume there 

is no time limit with student achievement ability is as only account for student score, or speed 

tests that assume RT is the only account for student score and the difficulty of items is not an 

issue. Under this framework of making an exclusive distinction between speed and power test 

with ideal assumptions,  instead of treating RT as a valuable source of information that may 

reveal the reason why student s perform in certain way, their behavior, and cognitive style in the 

testing, RT still be regarded as nuisance variable in traditional testing programs that measure 
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student achievement.  In practice, however, it is very hard or almost impossible to obtain the 

pure power tests (unlimited time) and pure speed tests (very easy items), which means at least on 

an individual level, pure measures of ability, uncontaminated by personality and cognitive style 

reflected by RT, are unattainable (Dennis & Evans, 1996). 

Recently, researchers have shown how to use RT as auxiliary information to improve 

calibration items (Klein Entink, Fox, & van der Linden, 2009; Klein Entink, Kuhn, Hornke, & 

Fox, 2009; van der Linden, 2010; van der Linden, Klein Entink, & Fox, 2010), to analyze 

speediness of test (van der Linden, 2009b; van der Linden, Breithaupt, Chuah, & Zhang, 2007), 

to detect cheating and check test behavior for possible aberrances (van der Linden & Guo, 2008).  

Currently, there are three different types of models to extract RT related information (van der 

Linden, 2007).  The first type of model focuses on RT exclusively and response scores are not 

taken into account; the second type of model conducts separate analysis of responses and RT; the 

third type of model conduct analysis jointly using both information from response and RT. An 

example of the third type of modeling is a multivariate multilevel approach (Klein Entink, Fox, 

& van der Linden, 2009) that jointly models dichotomous responses by using regular IRT model 

and continuous RT by using a lognormal model. For this approach, binary and continuous 

responses on test items are assumed to be nested with person or examinee and data structures are 

multivariate clustered data.  Modeling such data is necessarily complex, because two types of 

correlations must be considered correlation between measurements on different variables for 

each person and correlation between measurements on different variables within a person.  

Besides using RT as CI, personal information was also used to improve estimation procedures.  

For example, Hall (2006) and Mislevy (1989) showed that collateral information can reduce the 

uncertainty in parameter estimations.  

The goal of all modeling in test theory is to make test scores more informative, since CI 

is part of student performance and a byproduct of testing in a computer-based test. It seems 

natural  to use it to improve parameter estimation in many education assessments.  Another 

reason to use RT when estimating parameters is that use of RT does not change the construct 

measured by a test, but increases the accuracy of estimations.  Overall, CI can be used to 

improve traditional IRT parameter estimations that are based solely on item responses.  Despite 

the fact that many studies have shown that CI can be used to check the quality of the items, 

improve the design of the tests, monitor their quality during test administrations, diagnose the 
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response behavior of the test takers, and increase the efficiency of test scoring (Van der Linden, 

2010).  Few studies have been done on how to use CI to improve the precision of parameter 

estimation in real applications,  the purpose of this study is to compare the parameter estimations 

with and without the use of CI in a large-scale CBT. 

 

II. Methods and Data  

 

2.1 Instrument 

         Two Skills Checklist tests (Northwest Evaluation Association, 2009) from Measures of 

Academic Progress for Primary Grades (MAP™ for Primary Grades, MPG) were used in this 

study. The goal of MPG is to provide information about specific skills and concepts. The MPG 

can be used prior to instruction to help teachers determine which skills need the most 

instructional focus.  These tests can be administered as many times as necessary during the 

school year to give an indication of the student actual learning.  The MPG includes Screening 

tests, diagnostic Skills Checklist tests, and adaptive Survey with Goals tests in Reading and 

Mathematics (NWEA, 2009).  For this study, among 27 mathematics Skill Checklists tests and 

13 reading Skill Checklists tests, only Number Sense (NS34) with 34 items was used for 

mathematics test and only Letter Identification (LI52) with 52 items was used for reading test. 

All MPG tests are computerized linear tests.   

 

2.2 Sample 

All samples are from 2009 administrations across 50 states (including Washington DC) 

and sample size for each test is about 1454 students who are drawn from 66712 original student 

pools.  For all joint estimations, student test scores were matched (the same students took NS34 

and LI52) on tests that are used as CI. Besides RT, student’s gender and ethnicity are also 

identified.  

 

III. Methods 

Because we are trying to model clustered data (items within person) with binary (0, 1) 

and continue responses (response time), a joint model (Cox & Wermuth, 1992; Fitzmaurice, &  

Laird, 1995; Klein  Entink, Fox, & van der Linden, 2009; Snijders & Bosker, 1999) for 
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multivariate mixed ordinal and continuous responses will be used. The major advantage of joint 

model is its capability to model the dependence between student ability and speediness across 

different conditions.    

 

3.1 Joint Model without Person Covariates 
 

The joint model used in this study is the multivariate model under generalized linear mixed 

models (GLMM) framework. Unlike univariate methods used in GLMM framework that 

estimate parameters separately with other information, this model simultaneously models binary 

item response and continuous RT response on test items that nested within person (Klein Entink, 

et al. (2009).  Let Yij denote the response and Tij denote the RT for person i =1, …, N on item 

j=1,.., J, then the probability that person i answer item j correctly is p(Yij =1|θi) =

)]b(exp[1
1

ji −−+ θ
, which is Rasch model and where θi is person ability parameter, bj is item 

difficulty parameter,  and θi ∼ N(μθ, σθ2);  the log-response time of person i on item j follow a 

normal model: Tij = -ζi + λj + εζij and where ζi is person speed parameter, λj is time intensity 

parameter, and εζij ∼ N(0, σj
2). If let μ1ij = p(Yij =1|θi) and μ2ij = E(Tij |ζi), the joint mode is given 

by 

  Logit(μ1ij) = η1ij = θi – bj                                                                           (1) 

                        Log(μ2ij)   = η2ij = –ζi + λj                                                                         (2) 

where (θi, ζi) ∼ MV , Σ d  N(0 ) an

                         Σ =ቈ
ఏଶߪ ߩ
ߩ ଶߪ

                                                                                            (3) 

             The covariance matrix Σ  models the variability in ability and speed (-ζi) of the person 

and allows for dependence between them by parameter ρ in the model. If ρ>0, this means that 

person who answer faster than average on the test are expected to have above- average ability; if 

ρ<0, this means that person who answer faster than average on the test are expected to have 

below- average ability.  If two data source are independent, then ρ = 0, which means 

independence between ability and speed, but this doesn’t mean the independent between the 

response and RTs.   
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3.2 Joint Model with Person Covariates 
 
 Although some researches (Adams, Wilson & Wu, 1997; Mislevy, 1987; Rijmen, 

Tuerlinckx, De Boeck & Kuppens, 2003) have shown examples of univariate approach of using 

person covariates in the latent regression.  A few studies have focused estimation parameters 

jointly with CI.  According to Klein  Entink, Fox, & van der Linden (2009) and Snijders & 

Bosker (1999), regression of random effects (person ability and speed) on covariates can be 

formulated as: 

 

                       θi = γ10 + CVi1 γ11 + CVi2 γ12 + CVi3 γ13 + … + CVim γ1m + e1i,                              (4) 

                       ζi = γ20 + CVi1 γ21 + CVi2 γ22 + CVi3 γ23 + … + CVim γ2m + e2i,                              (5) 
 

    where covariates (CV, 1,2, …, to m) could be either categorical or continue as fixed 

effects in this regression model, γ1m and  γ2m are regression coefficients of CVs. Here (e1i, e2i)t 

~MVN(0, Σ) and  Σ =ቈ
ఏଶߪ ߩ
ߩ ଶߪ

.  For example, if we would like to know the effect of RT of each 

item, totally scores of LI52, gender, ethnicity as CI for each individual students on student 

person and NS34 test item parameter estimations, we could get following joint model by 

substituting (4) and (5) into (1) and (2), 

 

        Logit(μ1ij) = η1ij = γ10 + LI52i γ11 + gender γ12 + ethnicity γ13 – bj  + e1i,                          (6)                         

        Log(μ2ij)   = η2ij = γ20 + LI52i γ21 + gender γ22 + ethnicity γ23 + λj  + e2i,                          (7)                         
 

Similar, the effect of RT of each item, totally scores of NS34, gender, ethnicity as CI for each 

individual students on student person and LI54 test item parameter estimations 

        Logit(μ1ij) = η1ij = γ10 + NS34i γ11 + gender γ12 + ethnicity γ13 – bj  + e1i,                         (8)                         

        Log(μ2ij)   = η2ij = γ20 + NS34i γ21 + gender γ22 + ethnicity γ23 + λj  + e2i,                         (9)                        
 

3.3 Estimation /Calibration 

The SAS procedure PROC GLIMMIX (GLIMMIX Procedure Documentation, 2005) was 

used to jointly analyze a continuous and binary outcome outcomes.  The GLIMMIX procedure 
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fits statistical models to data with correlations or nonconstant variability and where the response 

is not necessarily normally distributed. These models are known as GLMM.  The limitation of 

GLMIMXED is when number of items and observations become large or in case of many 

missing, then the GLIMMIX sometimes cannot converge.  Although there are two ways to model 

the dependence between response and RT for the same student (see, GLIMMIX Procedure 

Documentation, 2005), in this study, the dependence ρ between θi and ζi was directly estimated 

and correlations matrix was obtained by estimated G matrix in the Generalized linear mixed 

models (GLMM) in matrix form:                      

                                 E[Y|θ] = g-1(Xβ + Zθ) = g-1(η) 

and the inverse link function is defined as g-1(η) = μ  and a linear predictor can contain random 
effect:                      
                                             η = Xβ + Zθ 
 
Where θ ~ N(0,G).  The estimation method used throughout this study is restricted maximum 
likelihood estimation methods (as the default estimation method of GLIMMIX).   
 
 
3.4 Model Selection 
 

Models described in equation (6) to (9) are full models in which all predictors, items (I), 

raw score (R), gender (G), and ethnicity (E) are included.  A variety of nested models or reduced 

models (special case of full model) can be statistically tested by constraining predictors in the 

full models.  Because the GLMMIX use quasi-likelihood, the goodness of fit (GOF) statistics 

used to test model fit is the Likelihood-Ratio (LR) statistics that involves quasi-likelihood 

instead of likelihood.  The statistical test hypothesis is 

 
       H0: Reduced model is true against H1: Full (current) model is true.  

 

The LR statistics is  

                G = χ2 = –2 log (pseudo) likelihood of reduced model  

                               – (– 2 log (pseudo) likelihood of current model) 

                             = –2 LLr – (2LLc)  

                             = –2ln(LLr/2LLc)                                                                                            (10) 

and the degree of freedom d is the difference of number predictors in two models, the p-value is  

p(χ2
d ≥ G).  Table 1 lists all nested models that are jointly tested for both NS34 and LI52 tests.  
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3.5 Real Data Analysis 

Because the purposes of the study is to see how effectiveness of CI on test parameters 

calibration, different baseline models will be used for the comparison purpose.  Because of time 

limited in this study, models that jointly estimated but do not include dependence between 

bivariate variables (person ability and speed) are not tested, the results of bivariate without 

dependence modeling should be the same as the results from two separated univariate modeling 

approach.  In this study, all real data analyses are based on joint-models approaches and different 

nested models are tested.  For example in Table 1, models 3 is the model 4 without raw-score.  

 

IV. Results and Discssions 

 

4.1 Model Fit 

The summary of fit statistics for both NS34 and LI52 are shown in Table 2. Two type 

GOF test results are presented in the Table 2. First type of tests (G1) uses model without CI as 

base model (I); second type of tests (G2) uses previous nested model as base model.   

The results for NS34 show that G1 indicates that alternative hypotheses (H1) are true for 

model 2, 4, and 5 and the same is true for G2. These results mean that (1), models with R, R and 

G, and all CI variables are better than the base model 1; and (2), current model is better than 

reduced model when adding R to model1, R and G to model 3, and all CI variables to model 4.  

The results for LI52 show that G1 indicates that alternative hypotheses (H1) are true for 

model 7, 8, and 9 and the same is true for G2 except for model 8. These results mean that (1), 

models with R, G, and R and G are better than the base model 6; and (2), current model is better 

than reduced model when adding R to model 6, R and G to model 8. 

 
4.2  Person Parameter Estimation 

Table 3 presents means and standard deviations of theta and eta parameter estimations 

and standard error of estimations for both NS34 and LI52 tests.  Figures 1 and 2 include the 

scatter plots of theta parameters for NS34 and LI52. The results show that the distribution of 

theta parameters of NS34 is negative skewed and the distribution of theta parameters of LI52 is 

close to the normal distribution, which means either the items in NS34 are very easy or students 
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have high ability for NS34 test.  The difference among models have a little effect on theta 

parameter estimations for both NS34 and LI52 tests. 

Figure 3 and 4 contain the scatter plots of zeta parameters for NS34 and LI52. The results 

show that the distribution of zeta parameters of NS34 is close to normal distribution and the 

distribution , while the distribution of parameters in LI52 is a little bit of positively skewed. The 

difference among models have more effect on zeta parameter estimations for both NS34 and 

LI52 tests than that on theta parameter estimations. 

 

4.2  Relationship Between Person Parameters  

The correlations ρ(θi, ζi) between theta and zeta across different models are listed in the 

Table 2. The negative sign of ρ means that higher ability students tend to response the item fast.  

The range of ρ for NS34 test under different models are from -0.18389 to -0.16582; The range of 

ρ for LI52 test under different models are from -0.34984 to -0.29045. Figures 5 and 6 contain the 

scatter plots of person theta and speed parameters for base model (1) of NS34 Test and base 

model (6) of LI52 test.  From these correlation results, it is clear that the student ability measured 

by LI52 test tend to be affected more by the speed than the ability measured by NS34 test.  

 

4.3  Item Parameter Estimation 

Table 4 presents means and standard deviations of b and lambda parameter estimations 

and standard error of estimations for both NS34 and LI52 tests.  Figures 7 and 8 include the 

scatter plots of theta parameters for NS34 and LI52. Both results show that the distributions of 

item difficulty parameters are positively skewed. Figure 9 and 10 contain the scatter plots of item 

time intensity parameters for NS34 and LI52. Both results show that the distributions of item 

time intensity parameters are negatively skewed. For both b- and lambda-parameters, the model 

effects are small. 

 
4.4  Relationship Between Item Parameters  

Pearson correlation coefficients ρ(bi, λi) of item parameters (b and lambda) estimations 

across different models for NS34 and LI52 are listed in Table 5.  Figures 11 and 12 contain  

scatter plots of item difficulty and time intensity parameters across models for NS34 Test.  It is 

clear that models have little impact on correlations between b and lambda.  Comparing to the 
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ρ(θi, ζi) that has higher absolute values for LI52 test than for NS34 test,  ρ(bi, λi)  has higher 

absolute values for NS34 test than for LI52 test. 

 

4.5 Overall Conclusions 

 Currently, the common practices in educational assessment is still treat CI as by-products 

even though that CIs are all simultaneously collected (or available) during the test administration 

along student responses.  Many researchers (Mislevy & Sheehan, 1989; van der Linden, Klein 

Entink, & Fox, 2010) from the psychometric field suggested that the benefit role or contribution 

of CI in improving both the accuracy and the bias of item and person parameter estimates should 

not be ignored.  Other researchers (Dennis & Evans, 1996) from psychology fields believed that 

incorporating cognitive elements that may be reflected in RT in standard psychometric model 

(psycho-metric model) will greatly enhance the quality of current educational assessments, and 

they called for developing statistical models that models not only the cognitive ability, but also 

personality or cognitive style.  The notion that most educational tests are pure power tests is 

inconsistent with reality because giving student unlimited time to finish any test rarely happens 

in practice, so the RT has more or less impact on student’s performance.  The ultimate goal here 

to using RT as CI is to make test that is fair to all candidates by accounting for the difference of 

personality or cognitive style among test takers, just like current practice in educational test that 

have to account for the gender and ethnicity difference through differential item functioning 

(DIF) analysis.   

 The results in this study show that in general, models with CI fit better than models 

without CI or reduced model with less CI. Besides the benefit of RT (for more information on 

advantages of using RT, see van der Linden, Klein Entink, & Fox, 2010) as one type of CIs in 

data –model fit, RT does not alternate the construct being measured in NS34 and LI52 and only 

increase the accuracy of estimates.  However, construct measured by a given test can be 

improved by the construct measured by different test. As matter of fact, student’s mathematics 

score (NS34) can improve item parameter estimation for students using their reading scores 

(LI52). It is important to emphasize that the improvement in estimates of item parameters using 

RT as CI in estimate ability parameters are not compared to any base model because separated 

analysis of theta and eta is not conducted because the limited time in this study.  
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Besides to joint in person (person as random effect in GLMM), it is also possible to conduct 

analysis on joint in items.    

 

V. Scientific Significance of the Study 
 
 The advantages of IRT methods over traditional methods allow substantive researchers 

and testing practitioners to solve many difficult problems in activities such as scoring, equating, 

scaling, computerized adaptive testing, bias analysis, and so forth.  Because these activities are 

important components in K-12, licensure, certification, and admission tests, accurately 

estimating IRT parameters plays a dominant role in psychometric research. For decades, 

researchers and practitioners have made a great deal of efforts to study a variety of methods to 

increase parameter accuracy, but only recently can, researchers start focusing on improving 

parameter estimations by using joint model that could incorporate RT and students information 

as CI.  Given that many tests are currently administrated by computers and recorded RT as much 

other personal information is usually thrown out as test byproduct,  how to use such available 

(may be valuable) information to improve the quality of many high stake tests has become urgent 

issues for states and test industries.  So far in practice, the consequence of not using CI in 

estimation is ignored and few studies have focused on this issue; the present study attempts to 

provide empirical evidence on the consequence of ignoring CI on improvement parameter 

estimation.  
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Table 1.  Summary of Nested Joint-Models Tested in This Study 
 

Test Model Predictor Model Formulation 

    

NS34 1 Item (I) Logit(μ1ij) = η1ij = γ10 – bj  + e1i, 
Log(μ2ij)   = η2ij = γ20  +λj  + e2i, 

 2 Item (I), Raw-Score (R) Logit(μ1ij) = η1ij = γ10 + NS34i γ11 – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + NS34i γ21 + λj  + e2i,                                                 

 3 Item (I), Gender (G) Logit(μ1ij) = η1ij = γ10 + gender γ12  – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20  + gender γ12 + λj  + e2i,                                                 

 4 Item (I), Raw-Score (R) 
Gender (G) 

Logit(μ1ij) = η1ij = γ10 + NS34i γ11 + gender γ12– bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + NS34i γ21 + gender γ22 +λj  + e2i,                                    

 5 Item (I), Raw-Score (R) 
Gender (G), Ethnicity (E) 

Logit(μ1ij) = η1ij = γ10 + NS34i γ11 + gender γ12 + ethnicity γ13 – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + NS34i γ21 + gender γ22 + ethnicity γ23 + λj  + e2i,           

    

LI52 1 Item (I) Logit(μ1ij) = η1ij = γ10 – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20  +λj  + e2i,                                                 

 2 Item (I), Raw-Score (R) Logit(μ1ij) = η1ij = γ10 + LI52i γ11 – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + LI52i γ21 + λj  + e2i,                                                 

 3 Item (I), Gender (G) Logit(μ1ij) = η1ij = γ10 + gender γ12  – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20  + gender γ12 + λj  + e2i,                                                 

 4 Item (I), Raw-Score (R) 
Gender (G) 

Logit(μ1ij) = η1ij = γ10 + LI52i γ11 + gender γ12– bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + LI52i γ21 + gender γ22 +λj  + e2i,                                     

 5 Item (I), Raw-Score (R) 
Gender (G), Ethnicity (E) 

Logit(μ1ij) = η1ij = γ10 + LI52i γ11 + gender γ12 + ethnicity γ13 – bj  + e1i,   
Log(μ2ij)   = η2ij = γ20 + LI52i γ21 + gender γ22 + ethnicity γ23 + λj  + e2i,            
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Table 2.  Summary Results of Joint-Model Fit Statistics and Descriptive Statistics 
 
Test Model Predictor*1  ρ(θi, ζi) -2LL G1=Δ(-2LL) *2 p (χ2

x ≥ G1) *3 G2=Δ(-2LL) *4 p (χ2
1 ≥ G2) 

NS34 1 I -0.16582 591515.3     
 2 I, R -0.18389 590839.1 -676.2 <0.001 -676.2 <0.001 
 3 I, G -0.16656 591611.8    96.5 <0.001  772.7 <0.001 
 4 I, R, G -0.18335 590918.7 -596.6 <0.001 -693.1 <0.001 
 5 I, R, G, E -0.16681 590781.8 -733.5 <0.001 -136.9 <0.001 
         
LI52 6 I -0.34411 340680.7     
 7 I, R -0.29045 340618.8 -61.9 <0.001 -61.9 <0.001 
 8 I, G -0.34984 340678.9   -1.8 >0.25  60.1 <0.001 
 9 I, R, G -0.29643 340622.6 -58.1 <0.001 -56.3 <0.001 
 10 I, R, G, E -0.29052 340719.4  38.7 <0.001  96.8 <0.001 

 
Note: 
*1: I - Item, R-Raw Score, G - Gender, E – Ethnicity. 
*2: Reduced model used here is the model with I only. 
*3: The degree of freedom x for χ2

x has range from 1 to 4.  
*4: Reduced model used here is previous reduced model. 
 



  

 
 
Table 3.  Summary Statistics of Person Parameter Estimation for NS34 and LI52 
 
Test Model Predictor Variable N Mean Std Dev 

NS34 1 I theta 1454 0.00 0.77 
   SE_theta 1454 0.45 0.04 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.08 0.00 
 2 I, R theta 1454 0.00 0.76 
   SE_theta 1454 0.45 0.04 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.08 0.00 
 3 I, G theta 1454 0.00 0.77 
   SE_theta 1454 0.45 0.04 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.08 0.00 
 4 I, G, R theta 1454 0.00 0.76 
   SE_theta 1454 0.45 0.04 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.08 0.00 
 5 I, G, R, E theta 1454 0.00 0.77 
   SE_theta 1454 0.45 0.04 
   Zeta 1454 0.00 0.27 
   SE_Zeta 1454 0.08 0.00 
LI52 6 I theta 1454 0.00 1.54 
   SE_theta 1454 0.97 0.36 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.06 0.00 
 7 I, R theta 1454 0.00 1.55 
   SE_theta 1454 0.98 0.36 
   Zeta 1454 0.00 0.27 
   SE_Zeta 1454 0.06 0.00 
 8 I, G theta 1454 0.00 1.54 
   SE_theta 1454 0.97 0.36 
   Zeta 1454 0.00 0.28 
   SE_Zeta 1454 0.06 0.00 
 9 I, G, R theta 1454 0.00 1.55 
   SE_theta 1454 0.98 0.36 
   Zeta 1454 0.00 0.27 
   SE_Zeta 1454 0.06 0.00 
 10 I, G, R, E theta 1454 0.00 1.55 
   SE_theta 1454 0.98 0.36 
   Zeta 1454 0.00 0.26 
   SE_Zeta 1454 0.06 0.00 
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Table 4.  Summary Statistics of Item Parameter Estimation for NS34 and LI52 
 
Test Model Predictor Variable N Mean Std Dev 

NS34 1 I b 34 -1.98 1.69 
   SE_b 34 0.11 0.05 
 2 I, R b 34 -1.85 1.69 
   SE_b 34 0.12 0.05 
 3 I, G b 34 -1.96 1.69 
   SE_b 34 0.11 0.05 
 4 I, G, R b 34 0.33 1.69 
   SE_b 34 0.11 0.05 
 5 I, G, R, E b 34 0.33 1.69 
   SE_b 34 - - 
 1 I Lambda 34 -2.42 0.51 
   SE_Lambda 34 0.02 0.00 
 2 I, R Lambda 34 -2.29 0.51 
   SE_Lambda 34 0.06 0.00 
 3 I, G Lambda 34 -2.40 0.51 
   SE_Lambda 34 0.02 0.00 
 4 I, G, R Lambda 34 -0.11 0.51 
   SE_Lambda 33 0.02 0.00 
 5 I, G, R, E Lambda 34 -0.11 0.51 
   SE_Lambda 33 0.02 0.00 
LI52 6 I b 52 -4.12 0.41 
   SE_b 52 0.15 0.01 
 7 I, R b 52 -4.43 0.41 
   SE_b 52 0.16 0.01 
 8 I, G b 52 -4.10 0.41 
   SE_b 52 0.15 0.01 
 9 I, G, R b 52 -2.17 0.41 
   SE_b 52 0.15 0.01 
 10 I, G, R, E b 52 -2.17 0.41 
   SE_b 52 - - 
 6 I Lambda 52 -2.02 0.04 
   SE_Lambda 52 0.01 0.00 
 7 I, R Lambda 52 -2.34 0.04 
   SE_Lambda 52 0.05 0.00 
 8 I, G Lambda 52 -2.00 0.04 
   SE_Lambda 52 0.02 0.00 
 9 I, G, R Lambda 52 -0.08 0.04 
   SE_Lambda 51 0.02 0.00 
 10 I, G, R, E Lambda 52 -0.08 0.04 
   SE_Lambda 51 0.02 0.00 



  

 
Table 5.  Pearson Correlation Coefficients of Item Parameters (b and lambda) Estimations across Models for NS34 and LI52 
 
Test Variable b_I b_IR b_IG b_IRG b_IRGE Lambda_I Lambda_IR Lambda_IG Lambda_IRG Lambda_IRGE 

NS34 b_I 1.00000 1.00000 1.00000 1.00000 1.00000 -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 
b_IR 1.00000 1.00000 1.00000 1.00000 1.00000 -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 
b_IG 1.00000 1.00000 1.00000 1.00000 1.00000 -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 
b_IRG 1.00000 1.00000 1.00000 1.00000 1.00000 -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 
b_IRGE 1.00000 1.00000 1.00000 1.00000 1.00000 -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 
Lambda _I -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IR -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IG -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IRG -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IRGE -0.72945 -0.72945 -0.72945 -0.72945 -0.72945 1.00000 1.00000 1.00000 1.00000 1.00000 

LI52 b_I 1.00000 1.00000 1.00000 1.00000 1.00000 -0.28759 -0.28759 -0.28759 -0.28759 -0.28759 
b_IR 1.00000 1.00000 1.00000 1.00000 1.00000 -0.28762 -0.28762 -0.28762 -0.28762 -0.28762 
b_IG 1.00000 1.00000 1.00000 1.00000 1.00000 -0.28759 -0.28759 -0.28759 -0.28759 -0.28759 
b_IRG 1.00000 1.00000 1.00000 1.00000 1.00000 -0.28763 -0.28763 -0.28763 -0.28763 -0.28763 
b_IRGE 1.00000 1.00000 1.00000 1.00000 1.00000 -0.28762 -0.28762 -0.28762 -0.28762 -0.28762 
Lambda _I -0.28759 -0.28762 -0.28759 -0.28763 -0.28762 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IR -0.28759 -0.28762 -0.28759 -0.28763 -0.28762 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IG -0.28759 -0.28762 -0.28759 -0.28763 -0.28762 1.00000 1.00000 1.00000 1.00000 1.00000 
Lambda _IRG -0.28759 -0.28762 -0.28759 -0.28763 -0.28762 1.00000 1.00000 1.00000 1.00000 1.00000 

 Lambda _IRGE -0.28759 -0.28762 -0.28759 -0.28763 -0.28762 1.00000 1.00000 1.00000 1.00000 1.00000 
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Figure 1.  Scatter Plots of Person Ability Parameters Among Different Models for NS34 Test 
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Figure 2.  Scatter Plots of Person Ability Parameters Among Different Models for LI52 Test 
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Figure 3.  Scatter Plots of Person Speed Parameters Among Different Models for NS34 Test 
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Figure 4.  Scatter Plots of Person Speed Parameters Among Different Models for LI52 Test 
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Figure 5.  Scatter Plots of Person Theta and Speed Parameters from Base Model (1) for NS34 
Test. 
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Figure 6.  Scatter Plots of Person Theta and Speed Parameters from Base Model (6) for LI52 
Test. 
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Figure 7.  Scatter Plots of Item Difficulty Parameters Among Different Models for NS34 Test 
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Figure 8.  Scatter Plots of Item Difficulty Parameters Among Different Models for LI52 Test 
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Figure 9.  Scatter Plots of Item Time Intensity Parameters Among Different Models for NS34 
Test 
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Figure 10.  Scatter Plots of Item Time Intensity Parameters Among Different Models for LI52 
Test 
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Figure 11.  Scatter Plots of Item Difficulty and Time Intensity Parameters across Models for 
NS34 Test (L_ represents Lambda_). 
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Figure 12.  Scatter Plots of Item Difficulty and Time Intensity Parameters across Models for 
LI52 Test (L_ represents Lambda_). 
 


