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Background / Context:  
 Experiments are the gold standard for research in education. The randomization of units 
to treatment conditions affords experiments high internal validity. That is, on average the only 
difference between the treatment and control groups is the causal effect of the treatment.  This is 
in comparison to observational studies, in which it is difficult to disentangle the effect of a 
treatment and the mechanism by which units select their treatment conditions.   
 Unfortunately, experiments do not completely circumvent selection, since units rarely 
enter the experiment randomly. The number of social experiments that have drawn their 
experimental samples using random sampling methods is very very small (Shadish, Cook and 
Campbell, 2002).  This means that units – e.g. individuals, schools, districts, or even states –enter 
an experiment through a non-random selection process. For example, researchers may target a 
small subset of schools in a state for recruitment, and of these, only certain types of schools may 
agree to the experimental protocols. If we are certain that the effect of a treatment is constant or 
additive, then this sort of non-random selection is not problematic. However, we argue that if we 
believe that the effect of a treatment may vary, then this selection process matters.  
 The main result of an experiment is typically an estimate of the average treatment effect 
(ATE) and its standard error. To see how non-random selection can introduce bias into an 
estimate of the population ATE, assume the simple case in which a single variable X, as a result 
of non-random selection, has a different distribution in the experiment and population. If the 
estimate of the ATE is the difference !̂ = YT "YC , Yti = ft(Xi) and Yci = fc(Xi), then it can be 
shown that  
 E(bias(!̂ | ! )) = ("T # "C )(XE # XP ) . 
Here the expectation is over the within-study randomization of units to treatment and control 
groups. The point is that non-random selection leads to bias in the estimator of PATE when !T " 
!C, as happens when X is also a treatment effect moderator. In most experiments, the number of 
covariates that may be moderators is large.  
 One way we typically skirt this issue is by interpreting the ATE as the average effect for 
“some” population. Cornfield and Tukey (1956) famously explained the process of 
generalization as involving two bridges. The first bridge, they argued, is statistical, from the 
sample in hand to “some” putative population like it. The second bridge, then, is a subject-matter 
span from this putative population to the one truly of interest. Indeed, this is how experimental 
results are interpreted in the policy context. Policy makers take an estimate of the ATE and its 
accompanying standard error and ask how “like” the population they are concerned with is to the 
one in the study.  This reasoning is generally qualitative, and may involve comparing a few 
univariate statistics on a small number of variables. In comparison to the first bridge, this second 
bridge is largely astatistical. 
 
Purpose / Objective / Research Question / Focus of Study: 
 The focus of this paper is to develop a method for making this second bridge in 
generalization a statistical bridge. The goal is to formalize the process of moving from a non-
random sample in hand to making inferences about the estimate and standard error of a treatment 
effect in a particular, policy relevant population.  The method we propose is an extension of 
propensity score matching, which is commonly used in observational studies to adjust for the 
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process of selection into treatment. Here we propose using propensity scores to adjust for the 
process of  selection into the experiment. This application of propensity scores was first 
proposed by Hedges and O’Muircheartaigh (under review), but with a slightly different focus.  
 The theory and method of propensity scores was introduced by Rosenbaum and Rubin 
(1983). In this first paper, they define the propensity score e(X) = Pr(Zt =1|X), where Zt is an 
indicator for a unit selecting the treatment condition, and X is a vector of covariates that are 
related to the propensity to be in the treatment. They show that the propensity score has two 
important characteristics. First, it is a balancing score, in the sense that two units with the same 
e(X) value on average will have the same values on all the variables in X. Second, they show that 
e(X) can be interpreted as a probability of being assigned to the treatment condition, much like 
would be found in a randomized experiment. Additionally, they show that these propensity 
scores can be estimated using a logistic regression model.  
 As an extension to Cochran (1968), Rosenbaum and Rubin (1984) introduces a 
subclassification estimator that uses the propensity score. The most widely cited result of this 
work is that by stratifying the units in the observational study into five equally sized strata based 
on the distribution of e(X) in the treatment group, approximately 90% of the bias in the original 
estimate of the ATE can be removed.  They show that this result is true under all of the 
conditions studied by Cochran, when there is a monotonic relationship between e(X) and the 
outcome in the two groups.  
 This paper develops a propensity score based method for generalization that builds upon 
this previous work. In addition to data from the experiment, the method we propose requires 
information on the population of interest. For example, a population data set could consist of a 
state administrative data system, a census, or a probability survey. Our method requires that 
either the units in the experiment can be located in the population data set, or that variables 
collected in the experiment can be matched to variables collected in the population. Note that the 
outcome variable only needs to be collected for those units in the experiment. Here we let e(X) = 
Pr(Ze =1|X) be the probability that a unit in the population is in the experiment.  We focus on the 
subclassification estimator, since it is easy to use and works under a variety of conditions.  
 
Significance / Novelty of study: 
 While propensity score methods are well developed for the treatment selection problem – 
indeed there is over 30 years of research in this area – the experimental selection process is 
different enough that this theory cannot be directly applied without some adjustments. This is 
particularly true for the subclassification estimator, for which many results hinge on the 
distributional and functional form assumptions found in Cochran. We argue that these 
assumptions are easier to accept in the treatment selection case than in the generalization case. At 
the level of distributions, we develop an extension to Cochran (1968) and Rosenbaum and Rubin 
(1984) for the generalization case, with regards to the expected amount of bias reduction and 
variance inflation or deflation for the subclassification estimator.   
 Additionally, we carefully construct the assumptions needed to generalize from an 
experiment, those needed for using propensity score methods for this purpose, and finally, we 
introduce new estimands that become important in the generalization case, but that are not as 
important in observational studies. We focus on these at the level of distributions, but make clear 
the connection to the level of observed samples as well.  
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Statistical, Measurement, or Econometric Model:  
Model and Assumptions 
 In this paper, we focus on three potential relationships between the sample (experiment) 
and population: (1) when the sample is a subset of the population data set; (2) when the sample 
and population data sets intersect, as happens if the population data set is itself from a sample 
survey; and (3) when the population and sample data sets are disjoint, for example if an 
experiment is conducted in Texas but we wish to find an estimate of the treatment effect in 
Florida.  Note that in observational studies, we are nearly always in case (1), since often the data 
set containing both treatment and control units itself contains the population of interest.  
Additionally, we define the propensity to be in the experiment as follows. 
 
Definition: Sampling Propensity Score (variation of Rosenbaum and Rubin, 1983) 
We define the propensity score to be  
 e(X) = Pr(Z=1|X)  
where we assume Pr(Z1,…,ZN|X1,…,XN) = #1

N e(Xi)Zi (1-e(Xi))1-Zi.   
Note that here by propensity we refer to the propensity to be sampled into the experiment not to 
be assigned to treatment. Furthermore, the propensity score is a balancing score, in the sense that   
X $ Z | e(X), i.e. the conditional distribution of X given e(X) is the same for the sampled (Z=1) 
and the non-sampled (Z=0). 
** 
 In order to generalize from an experiment to a population, we propose that 4 assumptions 
are needed. Additionally, in order to use the particular method presented here, we will need an 
additional assumption (A5). In our paper, we carefully lay each of these out. Briefly, these are: 

(A1) Random Assignment to Treatment: Within the experimental sample, the treatment  
must be assigned randomly.  

(A2) Stable Unit Treatment Value Assumptions for the Sample and Population: SUTVA 
 (Rubin 1986) must be met not just for all units in the experiment, but also for all  
 units in the population of interest.  
(A3) Treatment Applicability: A unit can have a zero probability of being in the  
 experiment only if  it has a non-zero probability of receiving the treatment in the  
 population. It can have a unitary probability of being in the experiment only if the 
 sample is a subset of the population.  
(A4) Ignorability: Conditional on the covariates used in the model, the unit-level  

treatment effect is independent of the sampling mechanism,  
i.e. (Y(1) – Y(0)) ! Z | e(X).  

 (A5) Monotonic conditional treatment effects (Optional): The conditional treatment  
 effect distribution is a monotone function of e(X).  
 

 Note that when the sample is a subset of the population (Case 1 above), in many cases A5 
will hold. For example, if a study is conducted in Texas and the population is the state of Texas, 
then it may be realistic to assume that the units with larger treatment effects were more likely to 
be included in the study.  However, A5 is less likely to hold in the intersect or disjoint cases. In 
our paper, we investigate a few situations for these cases in which this assumption may be made. 
For the remainder of this paper, we assume that A5 holds. 
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Subclassification Estimator 
 While there are many propensity score matching methods, the focus of this paper is on 
creating a subclassification or stratification estimator for the treatment effect. In particular, we 
focus on this type of estimator, since the number of experimental units is much smaller than the 
number of population units, which makes close matching difficult. We define such an estimator 
for this purpose in generalization as follows. 
 
Estimator: General subclassification estimator of PATE 
Assume that there are 2n units in the sample, and that S is a sample (experiment) and P is a 
population. Based on the distribution of e(X), divide the units in the population into k strata; for 
each stratum calculate a stratum conditional estimated average treatment effect, and combine 
these using weights wpi from the population P (such that "wpi = 1 ). Then the stratification 
estimator is defined as follows,  

!̂ S = wpi YTi "YCi( )
i=1

k

# . 

** 
 Rosenbaum and Rubin (1984) Theorem A.1. proves that stratification on the propensity 
score is equivalent to stratification on the outcome. In this paper, we show that under assumption 
A5, stratification on the propensity score is equivalent to stratification on the conditional 
treatment effects. In the remainder of our paper, we focus on determining the proportion of bias 
reduction that can be expected for a stratification estimator in the generalization case. 
 For observational studies, Cochran investigated the bias and variance reduction that can 
be expected for stratification estimators under a series of statistical distributions. These 
distributional results, however, are not adequate for the generalization case.  In the generalization 
case, we are likely to find that the population distribution of e(X) is skewed (e.g. chi-squared or 
log-normal), whereas in the experiment the distribution of e(X) is more likely to be normal.  For 
example, if propensity scores follow a logistic model, and if many cases are not likely to be 
sampled, then in the logit scale there will be a long tail. Similarly some covariates may be highly 
skewed in the population (e.g. income), yet in an experiment in which the units are chosen for 
being “modal” (by some standard), the experiment will not contain any of these extreme cases.  
 Finally, by focusing on cases with skewed distributions in the population and normal 
distributions in the experiment, we are able to provide tables comparing the subclassification 
based estimator with k=2,3,4, and 5 strata to the unadjusted estimator in terms of both bias 
reduction and variance inflation or deflation. We find that in some cases, the variance inflation 
can be very large. In these cases, it may be more desirable to generalize the experiment to a sub-
population of the larger population. For example, if the population is the set of schools in the 
state of Texas, it may be that by focusing on a particular sub-set of schools, the estimate of the 
PATE is more precise. In these cases, we can report an additional parameter, p*, which is the 
proportion of the population contained in this sub-set, and which we refer to as the area of 
generalization.  
 Preliminary results are reported in the Table and Figure in the Appendix for three cases. 
For these cases, we assume that the population distribution is Chi-Squared with 3 degrees of 
freedom, and that the experimental distribution is normal, with different means and variances. 
For each of these cases, we report two analyses, one in which the full population is used (p* = 1) 
and one in which the full population (Chi-squared (3)) is truncated at the value x = F-1(.99), 
where F is the CDF of the normal distribution used in that particular case. We do not truncate the 
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experimental distribution. In both cases, we report the proportion of average bias removed with 
k=2,3,4, or 5 strata, and the variance inflation as a function of the correlation % between the 
propensity score e(X) and the conditional treatment effect.  
 The Table reveals a few important trends. First, with k=5 strata, the average bias 
reduction is between 50 and 70%. However, the price in variance here can be quite large, and in 
all cases explored leads to variance inflation factors (VIF’s) of between 2 and over 10,000 
depending on the model and %.  Importantly, for k=2 strata, the average bias is reduced between 
20 and 40%, with much smaller costs in terms of variance; in some cases, these VIF’s are close 
or less than 1.  Furthermore, by focusing on a smaller portion of the population, the 
subclassification estimator performs even better. In the cases studied here, this amounts to p* 
values between .40 and .80, which lead to much larger reductions in average bias and smaller 
VIF’s. Note finally, that in the last case studied, the bias appears to increase in this case. This is 
because by truncating the population – without even subclassifying – the average bias reduces to 
close to zero.   
 
Usefulness / Applicability of Method:  
 In order to show the usefulness of this method, we briefly present an example using data 
from an experiment conducted by SRI in Texas (Roschelle et al, 2010 ). The intervention was a 
math curriculum for middle schoolers and the experiment took place in 78 schools across Texas. 
Here the focus is the school ATE for middle schools in Texas. We use the state AEIS 
administrative data system and match the schools in the experiment to those in the state using a 
set of 30 covariates, including student and teacher demographics, school structure, and prior year 
tests scores.  Briefly, we are able to show that: 

(1) The unadjusted effect is 3.26 (.35). 
(2) If we generalize using a subclassification estimator with k=5 strata,  the estimate is 
2.58 (2.30).  
(3) If we focus instead on the sub-population that is easy to generalize to, we find p* = 
0.70, meaning the results of the experiment can generalize to 70% of the population. In 
this case, a subclassification estimator is not needed, and thus for this sub-population the 
estimate is 3.26 (.35).  

It is important to note that one outcome of this analysis is that it clearly defines which regions of 
the state and types of schools that are not well represented by the experiment. Future experiments 
could be conducted to better represent these areas.  
 
Conclusions:  
 The method and theory we present here is aimed at making the process of generalization 
from an experiment to a population a statistical process. One of its main virtues is that it allows 
the assumptions necessary for generalization to be clearly defined, and allows the experiment 
and population to be balanced on a large number of covariates. In addition to providing an 
estimator of the treatment effect that has less bias than the standard estimator, we have shown 
that under certain conditions there are no costs in terms of variance for using this method. 
Furthermore, it allows the identification of the proportion of the population that the experiment 
cannot easily generalize to (1-p*), which can help researchers clearly define sub-populations for 
future experimentation.  Finally, it should be noted that a weakness of this method is that the 
level of analysis for the treatment effect is restricted to that found in the population data set, 
which may or may not coincide with the level at which randomization to treatment occurred. 



 

2011 SREE Conference Abstract Template B-1 

Appendices 
Not included in page count. 

 
 
Appendix A. References 
Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in 
observational studies. Biometrics, 24(2), 295-313. 
 
Cornfield, J., & Tukey, J. W. (1956). Average values of mean squares in factorials. The Annals 
of Mathematical Statistics, 27(4), 907-949. 
 
Hedges, L.V. and O’Muircheartaigh, C.A. (under review) Improving generalization from 
designed experiments. 
 
Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2006). Matching as Nonparametric Preprocessing 
for Reducing Model Dependence in Parametric Causal Inference. Political Analysis, 15(3), 199-
236. doi: 10.1093/pan/mpl013. 
 
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 
observational studies for causal effects. Biometrika, 70(1), 41-55. doi: 10.1093/biomet/70.1.41. 
 
Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using 
subclassification on the propensity score. Journal of the American Statistical Association, 
79(387), 516-524. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20199225. 
 
Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., et al. (2010). 
American Educational Research Journal. American Educational Research Journal. doi: 
10.3102/0002831210367426. 
 
Rubin, D. B. (1986). Statistics and Causal Inference : Comment : Which Ifs Have Causal 
Answers. Journal of the American Statistical Association, 81(396), 961- 962. 
 
Shadish, W.R., Cook, T.D., & Campbell, D.T. (2002).  Experimental and Quasi-Experimental 
Designs for Generalized Causal Inference.  Boston: Houghton-Mifflin. 
 
 
 
 
 
 
 
 
 



 

2011 SREE Conference Abstract Template B-1 

Appendix B. Tables and Figures 
 

Table: Comparison of bias reduction and variance inflation, by number of (equal) strata and 
proportion p, for a population with Chisq(3) 

Bias reduction   Variance Inflation 
k equal population strata   k equal population strata Experiment 

distribution p* 

2 3 4 5 ! 2 3 4 5 
N(1,.5) 1 0.378 0.522 0.620 0.678 0.1 65.047 >10,000 >10,000 >10,000 
         0.2 57.738 >10,000 >10,000 >10,000 
         0.4 43.120 >10,000 >10,000 >10,000 
         0.6 28.502 >10,000 >10,000 >10,000 
         0.8 13.884 >10,000 >10,000 >10,000 
  0.461 0.630 0.743 0.877 0.917 0.1 0.910 0.967 1.024 1.043 
          0.2 0.843 0.877 0.920 0.932 
          0.4 0.708 0.697 0.712 0.710 
          0.6 0.573 0.517 0.504 0.488 
          0.8 0.439 0.338 0.296 0.266 
N(2,.5) 1 0.229 0.316 0.435 0.505 0.1 1.208 27.655 4078.230 >10,000 
         0.2 1.111 24.557 3595.594 >10,000 
         0.4 0.917 18.361 2630.322 >10,000 
         0.6 0.722 12.165 1665.050 >10,000 
         0.8 0.528 5.969 699.778 >10,000 
  0.633 0.682 0.846 0.883 0.916 0.1 1.620 3.708 5.871 7.985 
         0.2 1.481 3.321 5.229 7.093 
         0.4 1.202 2.548 3.946 5.309 
         0.6 0.923 1.775 2.664 3.525 
         0.8 0.644 1.001 1.381 1.741 
N(2,1) 1 0.232 0.353 0.474 0.544 0.1 0.947 1.507 3.454 8.525 
         0.2 0.876 1.361 3.085 7.573 
         0.4 0.734 1.071 2.347 5.670 
         0.6 0.592 0.780 1.609 3.766 
         0.8 0.450 0.490 0.871 1.863 
  0.772 1.794 2.006 1.650 1.527 0.1 0.893 0.913 0.923 0.929 
         0.2 0.828 0.829 0.829 0.829 
         0.4 0.696 0.659 0.642 0.631 
         0.6 0.565 0.490 0.455 0.433 
            0.8 0.434 0.320 0.267 0.235 
Note: The proportion of the population that can be generalized to is p*; ! is the correlation between 
e(X) and the conditional average treatment effects. 
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Figure: Population (Chisq(3)) and Experiment (N( -,-)) Distributions
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


