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Abstract  
This exploratory study examined the experiences and difficulties certain first-year 
university students displayed in reading new passages from their mathematics textbooks.  
We interviewed eleven precalculus and calculus students who were considered to be good 
at mathematics, as indicated by high ACT mathematics scores.  These students were also 
good general readers, as indicated by their high ACT reading comprehension scores and 
by their use of many of the metacognitive strategies developed in reading comprehension 
research.  To gauge the effectiveness of students’ reading of passages from their 
mathematics textbooks, we asked them to attempt straightforward mathematical tasks, 
based directly on what they had just read.  Our students demonstrated enough difficulties 
with these tasks, that it appears they do not benefit from reading their textbooks as much 
as their teachers or textbook authors would hope.  Analysis of the data suggests that the 
reading strategies used by these students were not sufficient for them to complete many 
of the tasks.  Instruction or guidance in strategies that are specifically related to 
mathematics reading may be needed to help students deal with mathematical text.   
  
 
Keywords:  reading mathematics, first-year university students, precalculus, calculus  
 
Introduction 
From our own experience and in talking with colleagues, we have come to believe that 
many, perhaps most, first-year university students do not read large parts of their 
mathematics textbooks effectively.  Whether this is because they cannot do so, or choose 
not to do so, seems not to have been established.  However, there have been a number of 
calls for teachers to instruct students on how to read mathematics (Bratina & Lipkin, 
2003; Cowen, 1991; Datta, 1993; DeLong & Winter, 2002; Draper, 2002; Fuentes, 1998; 
Pimm, 1987; Shuard & Rothery, 1988).  Also the textbooks for many first-year university 
courses, such as college algebra, precalculus, and calculus seem to be written with the 
assumption that they will be read thoroughly and precisely.  For example, this is 
suggested by the preface of the precalculus book used by our students:  

The following suggestions are made to help you get the most out of this book and 
your efforts.  As you study the text we suggest a five-step approach.  For each 
section, 

1. Read the mathematical development. 
2. Work through the illustrative examples. 

                                                 
1 Mary Shepherd is Associate Professor of Mathematics at Northwest Missouri State University. 
2 Annie Selden is Professor Emerita of Mathematics at Tennessee Technological University and Adjunct 
Professor of Mathematics at New Mexico State University.  
3 John Selden taught mathematics at Tennessee Technological University and is now Adjunct Professor of 
Mathematics at New Mexico State University. 

 
 

1



3. Work the matched problem. 
4. Review the main ideas in the section 
5. Work the assigned exercises at the end of the section. 

All of this should be done with a graphing utility, paper, and pencil at hand.  In 
fact, no mathematics text should be read without pencil and paper in hand; 
mathematics is not a spectator sport.  Just as you cannot learn to swim by 
watching someone else swim, you cannot learn mathematics by simply reading 
worked examples—you must work problems, lots of them. (Barnett, Ziegler, & 
Byleen, 2000). 
 

In this exploratory study we examine whether first-year undergraduate mathematics 
students can read their mathematics textbooks effectively, that is, we examine (1) what 
they do when reading, (2) whether they benefit from their reading, and (3) what 
difficulties or obstacles they encounter.   
In Section 1, we discuss how mathematics textbooks differ from other textbooks, describe 
the Constructively Responsive Reading framework (CRR), a theoretical framework 
developed in reading comprehension research (Pressley & Afflerbach, 1995), and point 
out some potential problems in reading mathematics.  Next, in Section 2, we refine our 
research questions.  In Section 3 we describe the students, their courses, and our research 
methodology; and in Section 4, we offer our observations concerning students’ use of the 
reading strategies mentioned in the CRR framework and describe students’ difficulties in 
working straightforward tasks.  In Section 5, we discuss these observations and suggest 
some reading strategies from the CRR framework that teachers might stress.  Finally, in 
Section 6, we suggest some implications for teaching and some suggestions for future 
research. 
 
1.  Background and Literature Review 
1.1 Mathematical text 
In mathematical writing, mathematicians appear to prize brevity, conciseness, and 
precision of meaning.  Most first-year university mathematics textbooks currently 
published in the U.S. contain exposition, definitions, theorems and less formal 
mathematical assertions, graphs, figures, tables, examples,4 and end of section exercises.  
Often the definitions, theorems, and examples are set apart from the expository text by 
boxes, colors, or spacing.  Figures containing graphs and explanatory captions often 
appear in the margins.  Typically there is a repeated pattern consisting of first presenting 
a bit of content, such as a definition or theorem and perhaps some less formal 
mathematical assertions, then a few closely related example tasks are worked out, and 
finally students are invited to work very similar tasks themselves.  In these respects, the 
textbooks (Barnett, Ziegler, & Byleen, 2000; Larson, Hostetler, & Edwards, 2002) read 
by the students in this study appear to us to be typical.  (See Appendices A and B.)      
 
Some special features of mathematical text that can lead to student difficulties as 
indicated by Barton and Heidema (2002) and  Shuard and Rothery (1988) include: 

                                                 
4 The word “example,” as used here, normally refers to mathematical tasks, some with solutions provided 
in the textbook, some without.  This contrasts with some other mathematical writing where “example” 
refers to an object, such as 6 is an example of an even integer.   
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1. Reading mathematics often requires reading from right to left, top to bottom, 
bottom to top, or diagonally. 

2. The text in mathematics textbooks has more concepts per sentence, per word, 
and per paragraph than ordinary textbooks. 

3. Mathematical concepts are often abstract and require effort to visualize. 
4. The text in mathematics textbook is terse and compact—that is, there is little 

redundancy to help readers uncover the meaning. 
5. Words have precise meanings which often are not fully understood.  Students’ 

concept images5 of them may be “thin,” or stipulated meanings may be treated 
as extracted meanings. 

6. Formal logic connects sentences so the ability to understand implications and 
make inferences across sentences is essential.  

7. In addition to words, mathematics textbooks contains numeric and non-
numeric symbols. 

8. The layout of many mathematics textbooks can make it easy to find and read 
worked examples while skipping crucial explanatory text. 

9. Mathematics textbooks often contains complex sentences which can be 
difficult to parse and understand. 

 
In addition, definitions are to be read and used in an unusual way, and play an especially 
important role in mathematics.  Readers of mathematical text must know how to read a 
definition as a stipulation of meaning, attending to every part with no extraneous 
connotations.  Such definitions are unlike dictionary definitions which are often only 
approximate descriptions extracted from everyday language usage.  Edwards and Ward 
(2004) indicated that even more advanced university students of mathematics have 
difficulty understanding the role and use of mathematical definitions.  In our experience, 
even when students can correctly state and explain a mathematical definition, they may 
not use it correctly, because they do not understand the distinction between mathematical 
(stipulated) and dictionary (extracted) definitions.6  For example, students may attend to 
only part of a mathematical definition or may inadvertently add some additional property.  
Precise use of language is also required in applying theorems, and we suspect leads to 
similar difficulties.   
 
We also note that mathematics textbooks contain many complexes of symbols that 
function as ideographs rather than letters.  The meaning of such complexes cannot be 
“spelled or sounded out” while students read, as is often the case with an unfamiliar 
word.  The decoding of a word – from patterns of letters, to phonemes, to the sound of 
the word, to its meaning – occurs very largely outside of consciousness.  In contrast, the 

                                                 
5 One’s concept image (Tall and Vinner, 1981) is a mental construct including such knowledge as relevant 
examples, non-examples, facts, properties, relationships, diagrams, images, and visualizations, that one 
associates with the concept. 
6 In a stipulated, also called an analytic, definition one must use all parts of the definition and not infer 
additional conditions.  Such a definition can bring a concept or mathematical entity into existence.   In 
contrast an extracted, also called a synthetic or a dictionary, definition is a description of an already 
existing entity.  One need not use all parts of such a definition and may appropriately infer additional 
conditions.    
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decoding and comprehension of a complex of mathematical symbols usually requires 
their conscious repetition in inner speech – and, probably considerable working memory.  
Consider  
 
  Cxxxf +−= 53)( 2

or 
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In converting these expressions to inner speech and comprehending them, students need 
to know that they represent implicitly universally quantified sentences, with “=” being 
the verb.  That is, instead of a literal decoding (“f, left parenthesis, x, right parenthesis, 
equal sign, …”), the first example is read “f of x equals . . .” and the second is read from 
bottom to top and left to right. 
 
Other passages in typical first-year university mathematics textbooks (e.g., college 
algebra, precalculus, and calculus) include both notation and words such as the following 
(from Larson, Hostetler, & Edwards, 2002, p 174):   
 

A function  is increasing on an interval if for any two numbers  and 
 in the interval,  implies 

f 1x

2x 21 xx < )()( 21 xfxf < . 

 
 
 
 
Students often find the syntax of such sentences confusing.  It is different from that of 
ordinary text; it contains abstractions; and there are few clues to the meaning of less 
familiar vocabulary or symbols (Shepherd, 2005).  For example, the “if” in the above 
sentence should be interpreted as “if and only if,” and the sentence is implicitly 
universally quantified.  In addition,  and  are variables that do not have a special 
status because of the subscripts, as many students suppose.   

1x 2x

 
1.2 Reading Comprehension Research 
During the past forty years, conceptual shifts have led reading researchers to view 
reading as an active process of meaning-making in which readers use their knowledge of 
language and the world to construct and negotiate interpretations of texts in light of the 
particular situations within which they are read. (Borasi, Seigel, Fonzi, & Smith, 1998; 
Brown, Pressley, Van Meter, & Shuder, 1996; Dewitz & Dewitz, 2003; Flood & Lapp, 
1990; Kintsch, 1998; McNamara, 2004; Palincsar & Brown; 1984; Pressley & 
Afflerbach, 1995; Rosenblatt, 1994; Schuder, 1993; Siegel, Borasi, Fonzi, Sanridge, & 
Smith, 1996).   These conceptual shifts have expanded the notion of reading from that of 
simply moving one’s eyes across a page of written symbols and translating these symbols 
into verbalized words, into the idea of reading as a mode of thinking and learning 
(Draper, 2002).   
 
Current discussions of reading focus on how the reader creates meaning as a result of the 
interaction, or transaction, between the text and the reader (Flood & Lapp, 1990; Pressley 
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& Afflerbach, 1995; Rosenblatt, 1994).  Reading researchers have found that competent 
readers actively construct meaning through a process in which they interact with the 
words on the page, integrating new information with preexisting knowledge structures 
(Flood & Lapp, 1990). 
 
Reading and literacy researchers agree that reading includes both decoding and 
comprehension.  Research on comprehension indicates that there are several strategies 
that good readers employ before, during, and after they read.  These strategies seem to 
vary from reader to reader and depend on the material being read and the goals of the 
reader (Borasi et al., 1998; Brown et al., 1996; Flood & Lapp, 1990; Fuentes, 1998; 
Palincsar & Brown; 1984; Pressley & Afflerbach, 1995; Siegel et al., 1996).   
 
One of the most comprehensive metastudies of reading research was conducted by 
Pressley and Afflerbach (1995).  They developed a framework called Constructively 
Responsive Reading (CRR) that effectively combined the frameworks of many previous 
reading researchers (Rosenblatt, Brown, Kintsch, and others).  They noted about 330 
different activities that readers reported, or were observed, doing while reading.  They 
produced a “Thumbnail Sketch” of the CRR framework that categorized activities of 
good readers into fifteen constructive responses.  We have further reduced these 
responses to the following eight that we call strategies.   
 
 
Table 1  Eight basic strategies for reading comprehension obtained from the CRR  
    framework  
 

1. Preview the text to be read before reading to gain an overview and to make 
predictions about the text. 

 
2. Pay greater attention to information perceived as most important. 
 
3. Activate prior knowledge, integrate reading within text and with prior 

knowledge to interpret the text, construct meaning, and revise/adjust prior 
knowledge. 

 
4. Make inferences about information not explicitly stated. 
 
5. Determine the meanings of new or unfamiliar words. 
 
6. Monitor comprehension and change reading strategies if needed. 
 
7. Evaluate the text, remember text, and reflect on it after reading 
 
8. Anticipate the use of the knowledge gained. 
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In addition to the above strategies derived from the CRR framework, we found four 
slightly different collections of reading strategies.  Each includes some subset of the eight 
strategies noted above.  The four strategies are: Reciprocal Teaching (RT) (Palincsar & 
Brown, 1984); Transactional Strategies Instruction (TSI) (Brown et al., 1996); Self-
Explanation Reading Training (SERT) (McNamara, 2004); and Transactional Reading 
Strategies (TRS) (Borasi et al., 1998).  RT, TSI and SERT have been used for general 
reading, not the technical reading of a mathematics textbook.  RT has been used with 
middle-school age poor readers with great success; TSI has been used successfully with 
second graders; and SERT was used with limited success with undergraduates.  
 
TRS has been used with high school students; it employed texts, mainly essays about 
mathematics, but not passages taken from textbooks.  TRS appears to be the only 
collection of strategies using activities to help student readers integrate and construct 
knowledge.  In one such strategy, students used a string, thumbtack, and pencil to 
construct and explore circles—an activity that is said to have increased their 
understanding greatly.  It would be interesting to investigate if, or how, such strategies 
could also support the reading of more technical mathematics textbooks, but such an 
investigation is beyond the scope of this paper.  
 
Other research (Fuentes, 1998) has indicated that some difficulties in comprehension can 
be traced to an inability to integrate what is read with prior knowledge.  The causes of 
this could range from insufficient prior knowledge and an inability to add to it, to 
adequate prior knowledge but an inability to integrate what is read with that prior 
knowledge.  However, insufficient prior knowledge, in and of itself, does not necessarily 
lead to difficulties in comprehension.  For instance, a reader with good algebra skills and 
knowledge, who has no background in, or prior knowledge of, complex numbers, might 
have no difficulty reading a beginning passage about complex numbers – provided there 
were somewhere he/she could look for additional background.   
 
1.3 Potential Difficulties in Reading Mathematics 
Combining what has been learned in reading research (Section 1.2) with some of the 
differences noted about mathematical text (Section 1.1), one might suspect that 
difficulties in learning from reading mathematics textbooks might include: (1) dealing 
with insufficient prior knowledge that comes from underdeveloped concept images; (2) 
dealing with the syntax and precision of mathematical definitions, examples, and 
exposition in mathematical writing; and (3) grounding the abstractness of mathematical 
ideas in concrete objects or actions while reading. 
 
When reading mathematical text, there appears to be little room for an acceptable 
interpretation of a passage that is different from the one intended by the author.  
However, Edwards and Ward (2004) indicated that formal definitions are not used by 
students as much as their concept images when reasoning about the abstract ideas 
encountered in a typical upper-level mathematics class such as abstract algebra.  This 
dependence on concept images may also occur for lower-division courses, and the 
concept images of different readers may contain different examples or procedures. This 
suggests that reading strategies for mathematics should advocate that students actively 
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engage in working from their concept images to the actual definitions, and vice versa, in 
order that they come to a reasonable semblance of the meaning intended by textbook 
authors (Pinto & Tall, 2002).   
 
We conjecture that some reading strategies that can help comprehension when reading, 
say, a history textbook might also work when reading a mathematics textbook.  However, 
emphasizing strategies that “engage” students in activities that can help create “hooks” to 
prior knowledge, ground concepts in concrete objects or actions, or encourage readers to 
use the stated definitions as opposed to their individual concept images may be more 
important when reading a mathematics textbook.  Since mathematics textbooks often do 
not have many clues, beyond the definitions themselves, to the meanings of less familiar 
terms and symbols, students need to be especially active in attempting to understand 
definitions and in monitoring their comprehension.   
 
2. Research Questions 
Although mathematics textbooks differ considerably from other texts (Section 1.1), what 
matters in the context of this study is the degree to which such textual differences 
actually influence the effectiveness of students’ reading.  Thus we ask:  (1) Can first-year 
university students read their mathematics textbooks effectively?  That is, (2) do they 
benefit mathematically from their reading?  Here we took the point of view of an old 
proverb, “the proof of the pudding is in the eating.”  We examined whether our students 
could successfully carry out straightforward tasks (sometimes called examples, exercises, 
or problems) immediately after reading passages explaining how the tasks should be 
carried out, and with the passages still available.   
 
We also considered our students general mathematical preparedness, as indicated by their 
ACT mathematics scores,7 and their general reading ability as indicated by both their 
ACT reading scores and their use of CRR strategies.  Because our students were good 
general readers and good at mathematics, any inability to properly complete a task should 
reflect mainly difficulties in reading specifically mathematics textbooks.   
 
(3) In addition we ask what students do when reading and what obstacles they encounter?  
This includes examining what reading strategies our students are using.  And are these 
strategies adequate?  We begin to answer these questions by observing our students while 
they read aloud passages from their textbooks and worked straightforward tasks based on 
those readings.   
 
3.  Methodology 
3.1 The students   
The eleven precalculus and calculus students in this study attended a U.S. mid-western 
comprehensive state university at which they took all their coursework.  The university 
has a student body of 6,500 students of which 5,500 are undergraduates.  It has a 
moderately selective admissions standard.  Six of the students were university age 
students. Five were students in a mathematics/science magnet secondary school located 
                                                 
7 The ACT (American College Test) is a university admissions examination that includes a mathematics 
portion and a general reading portion. 
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on the campus of the university.  Eight of the students were female, none were minorities.  
The mathematics courses taken by the eleven students carried normal university credit 
and were taught by a member of the regular university faculty --  the first author.     
 
Students for the study were selected from a precalculus class of 17 (the secondary  
magnet school students) and from two sections of Calculus I with 41 students total.  In 
the fourth week, we identified 33 good readers (12 precalculus, 21 calculus) with an ACT 
reading score ranging from 24 (70th percentile) to 36 (99th percentile).  Based on the 
instructor’s judgment, nine students (4 precalculus, 5 calculus) were eliminated because it 
appeared they had no problems reading mathematics and may have seen the material in 
previous courses.  Of the remaining twenty-four students, eleven (5 precalculus, 6 
calculus) volunteered to participate in this study.  Ten of the students received a small 
amount of extra credit for participating in the study.  The amount of extra credit received 
did not change any final grades.  One calculus student dropped the class before the fourth 
week, but agreed to participate.  That student was grouped with the precalculus students 
since that was the passage she read for the study. 
 
 The average reading ACT score for the eleven students was 28.6 (the median, 28, 
corresponds to the 87th percentile) which compares favorably to the university average 
reading ACT score of 22.3 for incoming first-year students.  For these eleven, the reading 
ACT scores were further broken into Social Studies/Science where their subscores ranged 
from 12 (68th percentile) to 17 (98th percentile) and Arts/Literature where their subscores 
ranged from 12 (63rd percentile) to 18 (99th percentile). 
 
All but two volunteers — both calculus students who were not first-year university 
students—had ACT mathematics scores ranging from 23 (71st percentile) to 30 (96th 
percentile).  The average mathematics ACT score for the eleven students was 25.2 
(median score 27) which compares very favorably with the university average 
mathematics ACT score of 20.9 for all incoming first-year students.  Thus, according to 
their ACT scores, these students were good students; that is, they were good at 
mathematics and were good readers of both the Social Studies/Science and 
Arts/Literature portions of the ACT.   
 
3.2 The Courses   
From the beginning, both the precalculus and calculus courses from which the students 
were chosen had a strong emphasis on reading their mathematics textbooks.  The students 
were given handouts about reading mathematics on the first day of class, and beginning 
the second class period, students were given reading guides for use with the first several 
sections of their mathematics textbooks.   An example of a reading guide and additional 
information about the teaching practices of this instructor appeared in Shepherd (2005).   
 
During the first two weeks of the courses, all 58 students from the pre-calculus and 
calculus classes participated in a diagnostic interview as part of the instructor’s normal 
teaching practice.  This consisted of reading one of four short (one-half to two page) 
passages on partial fractions, algebraic vectors, absolute value, or symmetry.  Students at 
this level are unlikely to be familiar with readings on these topics, but will normally find 
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them accessible.  After reading the short passage, each student was asked to complete a 
task, based on the passage read.  In addition to being used diagnostically in teaching, 
these interviews served to familiarize the 11 subsequent volunteers with the interview 
procedures that they would experience later.   
 
3.3 The Conduct of the Study   
During the sixth and seventh weeks of the courses, the volunteers each selected a 90- 
minute time slot during which they were asked to read aloud a new section selected by 
the instructor/researcher from their respective textbooks.  Five calculus students read 
Section 3.1 entitled “Extrema on an Interval” in Larson et al. (2002, pp. 160-164). The 
one calculus student who had dropped the course and the five pre-calculus students read 
Section 5.1 entitled “The Wrapping Function” in Barnett, Ziegler, and Byleen (2000, pp. 
336-343).  Along with definitions, theorems, examples, figures, and discussions, the 
calculus book has “Exploration” and the precalculus book has “Explore/Discuss” tasks to 
encourage students to become active as they read. 
 
The students were stopped at intervals during their reading and asked to try a task based 
on what they had just read, or asked to try to work a textbook example without first 
looking at the provided solution.  The calculus students were stopped an average of eight 
times (a maximum of nine times, a minimum of seven times).  The precalculus students 
were stopped an average of three times (a maximum of four times, a minimum of three 
times). The tasks were straightforward; that is, they were based directly on the reading 
and required very little in the way of genuine problem-solving skills.  The reading pages 
along with the interruptions and requested tasks appear in Appendix A for precalculus 
and in Appendix B for calculus.  For example, for the reading from Larson et al. (2002), 
the calculus students were asked to determine from a graph whether a function has a 
minimum on a specified open interval.   From Barnett et al. (2000), the precalculus 
students were asked to find the coordinates of a circular point, that is, a point such as 

( / 2)W π on the unit circle given by the wrapping function.  After the entire section had 
been read and a few final tasks were attempted, the students were questioned about how 
reading during the interview differed from their normal reading of their mathematics 
textbooks (Appendix C). 
 
All interviews were audio-recorded and transcribed.  The interviewer also made notes 
during the interviews.  The written work produced by the students during the interview 
was collected.  The first author listened to the recordings carefully at least three times, 
making additional notes.  These additional notes, along with the notes taken during the 
interview, were compared with the transcripts to create Tables 2 and 3 below. 
 
4.  Observations, Difficulties, and Strategies  
4.1 Use of the CRR Strategies 
Table 2 indicates that, for the most part, the students were attempting to employ the CRR 
strategies characteristic of good readers.  It confirms that they were, in general, good 
readers, as indicated by their ACT reading scores (Section 3.1).  In Table 2, for each of 
the eight CRR strategies (Section 1.2), we provide examples of observed behaviors, 
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together with the number of students exhibiting that behavior.  For example, six students 
read the title of the section, the introduction, or the caption at the start of their reading. 
 
Table 2.  Observed CRR activities of the students in this study. 
 
CRR strategy 
(shortened) 

Number  
of 
students 
observed 

Examples of Observed Activities, Behaviors, and Comments 

1.  Overview before 
reading. 

6 Read titles, introduction or outline captions at the start of the reading. 

2.  Look for important 
information and pay 
greater attention to it. 

11 
 
3 
 
2 

Reading selectively, slowing down, pausing and rereading sentences. 
 
Specifically stated something like, “This must be important.” 
 
In questioning at the end, reported only looking at the examples. 

3.  Attempt to relate 
important points in text 
to one another. 

7 
 
11 

Tried to relate a point in the current reading to earlier points. 
 
Looked at tables or went back in the reading to reread previous parts. 

4.  Activate and use 
prior knowledge to 
interpret text. 

6 Students did not activate prior knowledge before reading but were observed recalling 
things learned in previous mathematics courses while reading. 

5.  Relate text content 
to prior knowledge. 

7 Specifically related what they read to something in their prior knowledge. 

6.  Reconsider or revise 
hypotheses about 
meaning of text. 

5 Showed that they had revised their understanding of the text by the end of the reading. 

7.  Reconsider or revise 
prior knowledge based 
on text. 

None There were no overt observations of the changing of prior knowledge, however this does 
not mean students did, or did not, do this. 

8.  Attempt to infer 
information not 
explicitly stated. 

11 
 
1 

Tried to fill in details and give reasons while reading the examples. 
 
Filled in a reason incorrectly and subsequently corrected his reasoning. 

9.  Attempt to 
determine the meaning 
of unfamiliar words  

11 Recognized when something was not understood and many tried different strategies, 
such as rereading definitions or paraphrasing, hoping to determine some meaning. 

10.  Use strategies to 
remember text. 

11 
 
4 
 
1 
 
 
3 
 
 
11 

Repeated or reread parts of passage. 
 
Wrote notes or copied important ideas onto paper. 
 
Seemed to create a concrete visualization of a concept; for instance, comparing the 
wrapping function to a ribbon. 
 
Constructed analogies, identifying the u-v coordinate system as the x-y coordinate 
system. 
 
Paraphrased, though, not always correctly. 

11.  Change reading 
strategies when 
comprehension is not 
proceeding smoothly. 

3 Stated they would “go ask for help.” 

12.  Evaluate the 
qualities of text. 

7 Several students had specific comments about the text in the debriefing (see Appendix 
B) related to the appropriateness of examples, the clarity of the author, etc. 

13.  Reflect on text after 
text has been read. 

11 
 
3 

Gave some indication of reflecting on the text while reading. 
 
Specifically recognized some unresolved understanding at the end of the reading. 

14.  Carry on 
responsive conversation 
with the author 

3 Several students commented on “what the book wants” while reading or working 
examples. 

15.  Anticipate the use 
of knowledge gained 
from the reading. 

2 Anticipated how the reading would be used in an application. 

 
 
4.2 Difficulties in working tasks 
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All of the students in our study had considerable difficulty correctly completing some of 
the straightforward tasks based on their reading.  The percent of tasks done correctly by 
individual students ranged from 13% to 76%.  The tasks were what might be called 
“routine exercises.”   For instance, after the textbook had defined the wrapping function, 
W, and had explained the calculation of the exact values for ( ) ),(,2),0( ππ WWW  and 
( 23 )πW , the routine exercise given was:  Find the coordinates of the circular point 
( 2)π−W .  A similar explanation was given for values of the wrapping function at 

integer multiples of ,3,4 ππ  and 6π , followed by routine exercises.  Five of the six 
students who read the precalculus passage did not find correct values of the wrapping 
function in two or more instances.  Also, four of the five students who read the calculus 
passage containing the definition of extrema of a function on an interval could not 
determine from its graph whether the function had a minimum.  Ten of the students stated 
at some point that they did not understand something and yet made no attempt to locate 
the source of their confusion.  Five students, three precalculus and two calculus, gave up 
at some point.  They stated that they had no idea what to do either while trying to work 
on a task or when reading through an example with a solution.  When questioned, one 
calculus student stated she would just move on, the other four stated they would quit and 
ask for help before continuing.  However, they continued to read at the request of the 
interviewer.  Table 3 gives information on the number of tasks attempted, done correctly, 
incorrectly, or not done, by each student and the number of different CRR strategies each 
student was observed using.    
 
Table 3.  Correctness of tasks and number of CRR strategies observed. 
Student # tasks 

att em
pted

# C
orrect 

(%
 correct) 

# Incorrect 

# not done 
(skipped or 
gave up) 

Incom
-

plete 

R
ead/ not 

w
orked 

R
ead as 

w
orked 

“correct” 
w

/w
rong 

reasons 

# C
R

R
  

strategies 
observed 

Precalculus         
  Alicia 8 19 9      (47%) 5 5     7 
  Bryan  18 9      (50%) 4 2 1 2   8 
  Christie 21 3      (14%) 7 7 1 2  1 10 
  Darcy 8 1      (13%) 2 2 1 2   12 
  Ellis 17 13    (76%) 2 1 1    11 
  Faye 20 6      (30%) 6 7  1   8 
Calculus          
  Tara 22 8      (36%) 2 2 4 5  1 9 
  Vannie 22 12.5 (57%) 2.5 1  2 4  11 
  Winnie 22 10.5 (48%) 1.5 3 1  6  11 
  Yates 22 8      (36%) 4 2 2 1 5  10 
  Zoe 23 8.5   (38%) 6.5 1 1 1 5  8 
 
In Table 3, there appears to be little or no relationship between the number of good 
reading strategies observed and the percent of correctly performed tasks.  However, good 
reading strategies might have been present without having been observed.  Also, good 
readers may favor different strategies in different situations (Pressley & Afflerbach, 

                                                 
8 Students’ names are pseudonyms. 
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1995). This still leaves open the question, why good readers, doing the things good 
readers are supposed do, had the number of difficulties exhibited in Table 3.    
 
There is a pattern in Table 2 that suggests where to start answering this question.  The 
CRR strategies related to activation, use, and revision of prior knowledge (Strategy 3) 
and the CRR strategies related to an evaluation of what has been read (Strategies 6 and 
7), though observed in some of the students, were not generally favored.  This lends some 
support to the idea that some of the difficulties related to reading mathematics might 
include dealing with insufficient prior knowledge and the evaluation of what has been 
read.  Such evaluation may depend to some extent on understanding the precision in 
meaning intended in mathematical writing, and the grounding of abstractions in concrete 
objects or actions (Section 1.3). 
 
Next we discuss some of the specific difficulties observed.  We present observations 
related to:  (1) understanding definitions; (2) use, or non-use, of theorems; (3) 
consideration and use of examples encountered during reading; (4) doing unguided 
explorations; and (5) reading expository passages. 
 
4.2.1 Understanding definitions.   
In mathematical writing, it is intended that everyone who reads the definition of a 
concept with comprehension will have essentially the same basic understanding of that 
definition.  Different individuals’ concept images need not agree, but everyone should be 
able to agree on whether or not an example satisfies the concept’s definition.   
 
For the calculus students, one difficulty appeared to come from an inadequate concept 
image of the word “function.”  After reading the definition (Appendix A), Vannie9 was 
asked to look at the graphs of eight functions and determine whether they had minimum 
values.  As she looked at the graph of the first one, 51a, a piecewise continuous function, 
she went back to the definition and tried to compare the graphical information with the 
definition.   

“You’re on the interval I as they designate.  You’re supposed to look at […] is it c 
or x they use. … for all the x’s, is supposed to be your minimum point.  
Well,  on this portion is your minimum point is a real number, but on this 
one it is not because it is open.  So, if you look at it from [...] since it’s totally two 
different things coming in.  I don’t know if you say well this one does have a 
minimum and this one doesn’t or if they go together, then they don’t. I don’t [...] 
that part I [...] I’m not clear on.” 

)(cf
)(cf

10  
 

She came to no resolution.  Vannie’s difficulty seemed to arise from her inadequate 
concept image of function.  Although she clearly tried to use the definition of extrema, 
she did not appear to recognize the graph of a function that has a jump discontinuity as a 
single function. 
                                                 
9 All names are pseudonyms.  Names starting with letters at the beginning of the alphabet are precalculus 
students and names starting with letters at the end of the alphabet are calculus students. 
10 When students are speaking, their comments are shown in regular typeface; when they are reading text 
they are shown in italics; pauses are shown as […] and … indicate omissions. 
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A second difficulty arises from not carefully re-reading a definition, but relying entirely 
on memory.  Christie read about the wrapping function and how to calculate its values for 
integer multiples of 2/π , orally answered two worked examples incorrectly (with the 
work hidden), and read their solutions.   She then tried to answer the first matched 
problem, find the coordinates of )( π−W .  She said, “It’s going to be (1,0) because you’re 
going . . . up π  every time, every quarter of a circle…. So if we just start at the top 
[(0,1)] and then go down one π , I think we’d be at (1,0).”  Not only did Christie start 
wrapping at the wrong point, but she did not understand that the measure of a quarter of a 
circle is only 2π .  She never went back to the definition to check her starting point.  
Later in her reading, she discovered the starting point was (1,0) instead of (0,1).  At the 
end of the interview, when asked if there was any notation that bothered her, she was still 
confused about the starting point.  She said, “And I still don’t [...] I mean they still start 
you at the v-axis sometimes, and they start you at the u-axis sometimes, I think.  So, I’m 
not real sure on that aspect of it.” 
 
A third difficulty related to definitions arises from not distinguishing between definitions 
with similar wording, such as relative extrema versus absolute extrema.  One of the tasks 
given the calculus readers included the directions, Determine whether the function has a 
relative maximum, relative minimum, absolute maximum, absolute minimum, or none of 
these on the interval shown. (Larson, et al., 2002, p. 165)  Zoe worked through the 
exercise, looked up the definition of extrema on an interval which included absolute 
extrema, but not relative extrema (Appendix B).  In the debriefing (Appendix C), she was 
asked if there were any words that bothered her; from her comments one can see that she 
had not been careful to distinguish between definitions of related concepts.  Below she 
refers to the exercise whose directions are given above. 

“It said to find any relative minimum, relative maximum, absolute minimum, and 
absolute maximum.  But in the first of it [definition of extrema], they said that 
those are the same things.  So I wasn’t quite sure why they were asking me to find 
possibly four different things if they’re supposed to be just the same thing, but 
synonyms.  If there’s something different they need to be more clear about that 
and […] I thought maybe one of them was dealing on an open interval and one of 
them was dealing on a closed interval, but since I didn’t know, I just went under 
the assumption that they’re the same thing.” 

 
4.2.2 The use, or non-use, of theorems.   
The students in this study also had some difficulties related to theorems encountered in 
the textbook.  Some students could not assign the correct authority to a theorem and some 
had difficulties understanding the implications of a theorem.  The calculus students read 
The Extreme Value Theorem, followed by an Exploration (Appendix B).  They were then 
asked to answer a true/false question:  If a function is continuous on a closed interval, 
then it must have a minimum on the interval.  One student, Tara, answered the true/false 
question correctly and correctly gave the Extreme Value Theorem as the reason.  Winnie 
answered true, but gave no reason, so we cannot tell whether her reasoning was correct or 
not. The other three calculus students had errors in their answers.  Two examples are 
given below. 
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One student, Vannie, tried to use the definition of Extrema on an Interval, but could not 
use it to answer the true/false question.  She consulted the definition of Extrema on an 
Interval, and then “pled the fifth” because she did not know the answer.  Vannie seemed 
to understand that the definition was not enough, but did not know where else to look, 
even though she had just read the Extreme Value Theorem.  
 
Two errors combined when a student, Zoe, relied on a visual part of her visual concept 
image that incorrectly indicated that a horizontal line had no extrema, and also confused 
an implication with its converse.  Zoe justified her incorrect answer with an example that 
seemed to show visual reasoning as opposed to using the Extreme Value Theorem.  She 
said, “That’s false, [...] because it doesn’t, it’s not continuous. [...]  If a function’s 
continuous on a closed interval, [...] well, it need not, but I can’t think of an example.  If 
it were a line it wouldn’t necessarily have a minimum.  I guess that will be my example.”   
She was unaware that her answer was wrong. 
 
4.2.3 Consideration and use of examples.   
Considering examples in a textbook can be thought of as a way to enrich one’s concept 
image.  Generally, examples are of three types and serve several purposes:  (1)  They 
allow a reader to check whether a concept or calculation has been understood.  For 
instance, after developing the wrapping function for multiples of 2/π , the textbook asks 
readers to find the coordinates of )2/( π−W  and )2/5( πW .  Similar requests follow the 
discussion of the wrapping function for multiples of 4/π , 3/π , and  6/π .  (2)  
Examples can be used to prepare for upcoming concepts and definitions.  For instance, 
after the definition of Relative Extrema and before the definition of Critical Number, the 
textbook asks readers to find the value of the derivative at each relative extrema of three 
functions, given their graphs and apparent relative extreme points.  (3)  Examples 
demonstrate/illustrate a concept and provide practice.  For instance, the calculus textbook 
gives the steps, and the reasoning behind them, for finding extrema on a closed interval 
and then asks readers to practice these on polynomial, rational exponent, and 
trigonometric functions. 
 

In the interviews, students were asked to solve each worked example with the textbook 
solution covered with a Post-it© note .  Most of the precalculus readers could work 
through most of the examples without looking at the solution.  These examples were all 
of type (1) above and involved only one or two reasoning steps.  After working the 
example themselves, some students would read the textbook’s solution thoroughly, while 
others would only skim it.  One precalculus student, Christy, did not write down her 
answers so upon checking the solution, was unaware of errors she had made.   Two 
precalculus students, Faye and Darcy, had difficulties with fractions, such as recognizing 
that 263π π= . 
 
None of the calculus readers was able to complete the final three examples in their 
textbook passage, without looking at the solutions provided or comparing their work with 
that of the book.  These examples were all of the third type above and concerned finding 
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the extrema of a trigonometric function and estimating extrema for graphically presented 
functions.  These examples required more than one reasoning step and more algebra to 
complete than did the precalculus examples.   
 
The textbook provides a list of steps to follow in order to find the extrema of a function 
on a closed interval.  Although the calculus students tried to follow the steps, three of 
them had difficulty with algebraic concepts (negative exponents, factoring, trigonometric 
identities), and all of them gave up trying to figure out the trigonometric example.  Even 
though the textbook clearly lays out the steps needed to find the absolute extrema on an 
interval, no student completed the three worked examples in the passage without great 
assistance from the textbook solution.  Although they continued to read for the interview, 
two students stated they would normally give up before reaching the final example.  
Vannie indicated she would ask her group for help before continuing, and Tara indicated 
she would ask the teacher about the example in the next class period.   
 
Another difficulty occurred when students did not pay close attention to relevant 
definitions as they worked examples.  As noted in Section 4.2.1, Christie did not pay 
close attention to, nor did she look up, at what point the wrapping function starts, and 
because of this, she worked the first two examples incorrectly. 
 
Another difficulty occurred when one precalculus student, Faye, focused on the 
development of the wrapping function and tried to derive its values for multiples of 4/π  
directly, rather than using symmetry as suggested by the textbook.  Both of her attempts 
indicated that while she might have understood the basic algebra, she did not see how to 
apply it to different quadrants.  Of the five precalculus students who read this passage, 
she is the only one who did not use symmetry.  Although this might be an example of  
"folding back," noted by Pirie and Kieren (1994), Faye seemed very interested in 
showing she could derive the values directly.  
 
Faye first read the algebraic development of the coordinates of )4/(πW .  Then, just 
before an example to work, she read:  Using the symmetry properties of a circle, the unit 
circle is symmetric with respect to both axes [She repeated this phrase.] and the origin, 
we can easily find the coordinates of any circular point that is reflected across the 
vertical axis, horizontal axis, or origin from )4/(πW . 
 
Faye then read the directions to Example 2.  “Find the coordinates of the circular points 
A. )4/5( πW  and B. )4/( π−W .  … Let’s see, one, two, three, four, five […] I don’t 
think so […] there’s nothing for me to count. [...] there’s no axis there […] so […] I don’t 
know if I [...] if my counting would be equal … I didn’t know,  if I would still like would 
count like in one ... like in, like that, I don’t know, just because there’s nothing to count 
on I don’t think OK,  alright.”  She started to rederive by writing , then read 
the solution to part A, mostly silently.  From her body language, she seemed to 
understand it, but did some deriving.  The answer she wrote was 

122 =+ ba

)21,21(− which 
was incorrect.  She read the solution to part B concerning ( / 4W )π− .  “ … (1,0) we 
proceed one-eighth the way around the unit circle in a clockwise direction…the fourth 
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quadrant…wait..  ok..that’s right…on the circle halfway between (0,-1) and (1,0) as 
indicated in Figure 6 [in the textbook].  This was followed by  silence and low 
whispering.  She rederived the values during this silence.  “That works.  Ok.”  She had 
written the answer to Example 2B as ( 2/1,2/1 −− ), which was incorrect.   
When Faye tried the matched exercise 2A, which was her third attempt to calculate one 
of these values, she apparently did use symmetry to find her answer.  At the end of the 
interview, when Faye tried to find the value of the wrapping function at 6/π , she 
correctly rederived the wrapping function at 4/π , instead of finding W( 6/π ).   
 
The students, particularly those in the calculus group, seemed to find it difficult to work 
the examples and reconcile their work with that shown in the textbook.  At the end of the 
interview, Winnie said, “A lot of the times their examples are the easier problems and 
then the ones you see in the lesson are […] (shrugging).”  It may have been that the 
passage selected for the interview had especially difficult examples, but it seems more 
likely that the examples in each section of the textbook progress from easy to more 
difficult, and that students sometimes only attempt to understand the easiest ones. 
 
Perhaps not surprisingly, the two students with the lowest ACT mathematics scores 16 
and 20 (23rd and 55th percentile, respectively), Tara and Vannie, had great difficulty 
completing the required algebra and in explaining the solutions given in the calculus 
textbook passage.  Their incomplete prior knowledge of algebra caused them difficulties.  
Vannie’s incomplete prior knowledge of negative fractional exponents caused her to 
become frustrated and give up attempting to understand the calculation.  She tried to 
work Example 4 that asked the reader to find the extrema of 3

2
32)( xxxf −=  on the 

interval [-1,3].  Vannie attempted to take the derivative and set it equal to zero.  She 
wrote 022)(' 3

1
=−=

−xxxf .  At this point she checked the solution to confirm her 
derivative and said, “They did something crazy.  Ok.  What did they do? […]  I’m 
confused. . . .  I don’t understand their math or their […] what they did. …  I figured it 
was just a basic [...] you did the derivatives in the subtraction.”  She eventually fixed her 
derivative but still could not get to the simplified derivative shown in the textbook, which 

was ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−= 31

31

31

1222)('
x

x
x

xf .  The negative exponent confused her, even though she 

had tutored college algebra in the past.  Her final comment after reading through the 
entire solution was, “At this point, if I was really reading this I would be frustrated and 
quit and then I would go ask somebody.” 
 
The difficulties that occurred when students tried to work the examples in the textbook 
were from (1)  not applying the definition correctly, (e.g., starting at the wrong point on 
the unit circle when wrapping), (2) trying to rederive the coordinates because of paying 
more attention to the detailed algebraic development and less to concepts like symmetry, 
or (3) having some weakness in prior knowledge, either procedural (algebraic) or 
conceptual.  
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That some students could not carry out these tasks does not necessarily indicate that they 
got nothing from their reading.  Some of the students “learned” from their mistakes.  
Bryan and Alicia, both precalculus students, had some errors in working the examples 
and the matched problems.  There were twelve tasks, each to find the wrapping function 
value for some multiples of ,3/,2/ ππ  or 4/π .  Each student did six correctly and four 
incorrectly.  Brian then read through the other two without appearing to work them, and 
Alicia skipped two tasks at the bottom of the page.  However, at the end of their reading, 
each was asked to complete some tasks similar to the ones they had done while reading, 
and each completed these tasks correctly. 
 
4.2.4 Doing unguided explorations.   
A feature of both textbooks used by the students in this study is a more open-ended type 
of task, called an “Exploration” or an “Explore/Discuss” task, where no guidance is given 
and an explanation may be required. The students were given the option of doing the 
Exploration (with two parts) in the calculus reading and the two Explore/Discuss tasks in 
the precalculus reading (Appendices A and B).  Four of the five calculus students chose 
to do the first part of the Exploration, and one, Tara, also did the second part.  Tara came 
to a wrong conclusion on the first part, saying that there was no maximum for a quadratic 
function on a closed interval.  She said, “I think it’s infinity because the graph keeps 
going and I can’t see any point.”  On the second part with a cubic on the same closed 
interval, she said, “I think the minimum and maximum of both of these is infinity since I 
can’t find an ending point on either one of them.”  Having read The Extreme Value 
Theorem just prior to this did not lead her to see a conflict between the theorem and her 
answers.  However, as noted above (Section 4.2.2), Tara answered correctly, with a 
correct reason, the true/false question posed immediately after this,  If a function is 
continuous on a closed interval, then it must have a minimum on the interval.  Zoe chose 
not to do the Exploration because “…that’s not going to help me.”  Most of the 
precalculus students chose not to do the Explore/Discuss features either with comments 
such as, “I don’t understand what they want me to do,” from Christy, or  “They might 
think that’s an effective memory aid but that’s confusing me so I’m moving on” from 
Ellis.  
 
4.2.5 Reading expository passages   
One of the purposes of exposition in mathematics textbooks is to help students integrate 
definitions, theorems, and examples with prior knowledge. We did not observe specific 
difficulties related to the exposition.  All students read the expository parts of the 
textbook since it was part of the interview, but upon questioning at the end of the 
interview some students viewed exposition as less important -- something they often 
skipped or skimmed.  Students wanted to concentrate on problems and find examples 
similar to the problems given in the text, often ignoring the exposition that tied together 
concepts and examples.   Some of the student comments included:  “I learn by 
examples.”—Winnie.   “Sometimes it’s just jibberish, but stuff that they mean to attempt 
to stand out then I read that, but usually, at the beginning of the chapter I try not to read.  
I just read the definition because otherwise it’s just confusing.”—Zoe.  “It takes quite a 
while to read through [the chapter] like that, too, maybe an hour, hour and a half.”—
Yates. 
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5. Discussion  
Our students could not read their mathematics textbooks very effectively, as indicated by 
their inability to properly carry out many of the straightforward tasks in the reading 
interviews.  Correctly working most such tasks is an indication of the ability to use 
knowledge and understanding essential in carrying out more complex later tasks that are 
a major component of the students’ courses.  Only three of our eleven students (Bryan, 
Ellis, and Vannie) could work at least half of the tasks, and only one of them could work 
three-fourths of the tasks (Table 3).  Because our students were good mathematics 
students according to their ACT mathematics scores (Section 3.1) and good general 
readers according to both their ACT reading scores (Section 3.1) and their use of the 
CRR strategies (Tables 1 and 2), we suggest their inability to carry out the tasks arose 
largely from an inability to read mathematics textbooks in particular (as opposed to a 
general inability in mathematics or reading).  This agrees with the students’ own views, 
that is, they believe they do not benefit from  reading major parts of their mathematics 
textbooks, and often avoid doing so (Section 4.3).   
 
5.1 Why is Effective Reading of Mathematics Textbooks Difficult?     
We suspect that several factors may have contributed to our students’ ineffective reading.  
In Section 1.1, we pointed out a number of ways that reading mathematical text can differ 
from reading other text, and such differences might in some situations contribute to 
ineffective reading.  However, most of the differences pointed out in Section 1.1 do not 
occur in the passages our students read, and what differences were there did not often 
cause our students to stumble in reading.  For example, they could read equations and the 
notations for functions, intervals, and points.  Thus we have looked further for factors 
contributing to our students’ ineffective reading. 
 
5.2.1 The necessity of cautious reading     
There is a striking difference between our students’ reading and the way many 
mathematicians read similar passages.  By reading similar passages, we mean reading 
whose purpose is to construct new knowledge that is immediately testable procedurally – 
knowing how to reliably carry out small associated tasks such as measuring an angle 
when considering the wrapping function or finding the maximum of a function.   
 
From our experience as mathematicians, we suggest that most mathematicians read the 
above kind of material in what might be called a very cautious way.  They are aware of 
the precise nature of mathematical writing.  Thus, they tend to look for hints of their own 
misunderstandings by carrying out, and evaluating their performance on tasks provided 
by the author, and even by occasionally inventing and working additional tasks.  When an 
error is detected, mathematicians are likely to reread the associated passage and rework 
the task until their error is understood and corrected.  We further suspect that this kind of 
careful, usually slow, reading is based on individuals’ (perhaps tacit) knowledge that, in 
mathematics, neglected small errors are likely to lead to significant later errors, and that 
one’s own reading occasionally generates such small errors. 
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In contrast to the above picture, our students’ reading was quite incautious.  Ten of the 
students stated they did not understand something during the interviews, but made no 
attempt to determine what was causing their confusion, and five gave up at some point 
(Section 4.2).  
 
5.2.2 Main reasons for our students’ difficulties 
There seemed to be at least two main reasons for the observed student difficulties:  (1) 
Even good secondary and beginning university student, such as ours, often do not know 
how to use mathematical definitions and theorems.  (2) Our students had difficulty 
integrating and connecting what they had read with their own prior knowledge, and found 
it difficult to adjust, update, and revise their personal concepts images to include new 
examples that were more in line with the newly introduced concept definitions.  These 
difficulties presented obstacles for some students in this study, often resulting in  
frustration.  They then expressed a desire to quit reading, to ask for help, or to skip those 
parts of the reading passages that they felt were not helpful.  However, when someone 
was present to keep them on task, our students used many of the CRR strategies, although 
not always effectively.   
 
Still most of our students seemed to benefit at least somewhat from their reading.  This 
was observed for at least two students (Alicia and Brian), and was apparent to the 
teacher/interviewer for nearly all students when the content of the interview passages was 
subsequently discussed in class.  However, at the time of the interviews, our students did 
not seem to perceive that they were benefiting from their reading, and many indicated 
that they would have given up had it not been an interview situation.   
 
In the following section, we offer some suggestions that might be given to students to 
help them gain more from their reading. 
 
5.2 Some strategies from the CRR framework to stress for reading mathematics   
Our students’ difficulties suggest that, for reading a mathematics textbook, parts of the 
CRR framework might need to be emphasized more than currently seems to be the case.  
For example, Strategies 1 and 2 (Table 1) recommend that before reading a passage, a 
reader should decide which parts to concentrate on, or perhaps even to attend to.  For 
mathematics textbooks, such as those our students read, an unfortunate overly simplistic 
approach to Strategies 1 and 2 may be induced by portions of the textbook being visually 
set apart (Section 1.1).11  Some of our students reported that they normally read mainly 
the examples and found the expository parts of their textbooks confusing, or considered 
them of minor importance.  In this study, students read the expository parts only because 
they were part of the interview (Section 4.2.5).  At first glance, such selective reading 
may seem consistent with Strategies 1 and 2, but it is so extreme as to be unhelpful.  In 
reading a mathematics textbook, little material, except possibly for occasional historical 
notes, can be safely omitted.  The expository part of a textbook can help a reader build a 
rich concept image for a concept whose definition might otherwise seem too abstract.  

                                                 
11 Mathematics textbook authors probably set apart information such as definitions to encourage readers to 
look back to them when reading later passages.  Such looking back to check details is a common practice  
among skilled readers of mathematics, such as the authors.   
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Rich concept images can be useful in bringing to mind needed ideas and examples when 
carrying out subsequent tasks.   
 
In addition, Strategy 5 of the CRR framework (Table 1) indicates a need to determine the 
meanings of new and unfamiliar words.  In reading mathematical text readers need to be 
aware of the difference between stipulated and extracted definitions, whereas in reading 
most nonmathematical textbooks, it is often possible to infer meanings from the context.  
Also, when reading most nonmathematical text, different readers can infer different, even 
conflicting, information and meanings because the definitions on which the inferences are 
based can often be interpreted in more than one way.  However, if one uses considerable 
care and caution with the stipulated definitions of mathematics, it is possible for readers 
to be virtually certain that the inferences they draw are logically equivalent to the 
author’s.  Furthermore, for previously introduced technical terms, authors of mathematics 
textbooks assume their readers’ meanings will be the same as their own.  Thus, for 
reading mathematics, CRR Strategy 5 should include the idea that readers should be 
cautious in drawing inferences, but that with effort, readers can reliably arrive at the 
author’s meaning.   
 
Several of the difficulties observed in this study suggest our students were not following 
Strategies 4 and 5 (Table 1) with the degree of caution and preciseness required in 
mathematics.  For example, Vannie (Section 4.2.1) became confused and could not 
proceed because the textbook referred to a split-domain function that she saw as two 
separate functions.  It did not occur to her that her meaning of function might be 
incorrect.  However, careful checking with the definition might have revealed to Vannie 
that her idea of function included a requirement (continuity) that the definition does not 
mention.  Adding requirements is inappropriate when applying stipulated definitions.  
Thus, for mathematical reading, CRR Strategy 5 might need to include the strategy of 
carefully checking meanings with definitions.  Such careful checking could also have 
benefited Christie (Section 4.2.1) who “remembered” the wrapping function started at the 
wrong point (0,1) and seemed to have decided incorrectly that the measure of a quarter 
circle is π .  Including in CRR Strategy 4 the idea that it is not only permitted, but also 
very useful, to look back at definitions or theorems might prevent some incorrect 
inferences from being made.   
 
Successful readers of mathematics must not only determine the meanings of words (Table 
1, Strategy 5) or concepts, but must also be able to construct meanings and enhance their 
concept images by working through examples and nonexamples given in the textbook or 
by constructing and considering their own examples.  The most successful reader, as 
indicted by the highest percentage of tasks completed correctly, was Ellis.  He was the 
only student who, when he did not find the correct coordinates for )67( π−W , created 
his own example to make sure that he had understood the calculation.  This is reminiscent 
of the results of Dahlberg and Hausman (1997), who found that among senior 
mathematics majors, those most able to understand and use a newly introduced abstract 
definition tended to, and were able to, generate their own examples.   
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Another mark of successful readers of mathematics is their approach to worked examples 
(tasks) found in the textbook.  Often such worked examples involve computations, but 
they can also require visually inspecting a diagram and comparing parts of it with a 
definition.  While such worked examples can be read or inspected passively, it is better 
for a reader to approach them as if they were his or her own work, or as if the textbook 
might contain errors.  Many of the difficulties described in this paper surfaced when the 
interviewer asked students to take an active stance, working an example (task) before 
considering the textbook’s solution.  Students who develop a habit of reading 
mathematics textbooks actively will not necessarily avoid all difficulties; however, doing 
so can expose many difficulties.   
  
The above two points, students developing a habit of constructing examples for 
themselves and of reading worked examples (tasks) actively, do not appear explicitly in 
the CRR framework and might be useful additions for mathematics readers.   
 
6. Implications for Teaching and Future Research Questions 
This study suggests that many first-year university students could benefit from some 
instruction in how to read a mathematics textbook.  University mathematics instructors 
may need to encourage their students to become more active in reading.  This might 
include getting students to do a better job of activating their prior knowledge, teaching 
students strategies to help them integrate what they are reading and learning with prior 
knowledge, getting students to approach definitions as stipulative rather than descriptive, 
and teaching students how to construct their own examples and nonexamples by carefully 
consulting the formal mathematical definitions of concepts.   
 
Readers need to know how to “look up” definitions, and that it is “okay” to go back to 
definitions when reading mathematical text. This should carry with it the idea that a 
reader may need to adjust his or her concept image to be more in line with the concept 
definition.  Also, readers need to learn to pay attention to each word in a definition since 
changing even one word can signal a difference between two concepts.  While the 
students in this study did sometimes look up definitions, they frequently did not appear 
to, or could not, use that information correctly when attempting to carry out a 
mathematical task.   
 
One approach might be to try to help students both with their tendency to and ability to 
work through and understand the mathematical tasks that typically follow immediately 
after the introduction of new ideas or techniques.  Perhaps it would be helpful to assign, 
in each class, a brief passage of new material to be read in advance as homework.  A 
small portion of the next class could then be devoted to helping students having 
difficulties with that passage.  In that way, some of the difficulties we described (Section 
4.2) might be identified and dealt with.  Students might come to understand that it is 
appropriate to look back to previous definitions and theorems, and to be very careful 
about the meanings of words.  For a more nuanced, but still practical, approach to helping 
students with reading their mathematics textbooks, see Shepherd (2005).    
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Turning to future research, how might the CRR framework be further developed and used 
for teaching?  What additional specialized strategies are critical for understanding 
mathematics textbooks?  In what ways would using such an extended framework in 
teaching reduce the kinds of student reading difficulties we have described? 
 
It would also be very helpful to investigate student attitudes and beliefs about reading 
mathematics textbooks.  Do some students believe that they cannot usefully read a 
textbook without help?  Do many students believe that they will benefit most by reading 
mainly, or only, the worked examples?  Do they feel it is worth attempting a task that is 
already worked out in the textbook?   
 
Finally, this research looked at good readers, as indicated by their high ACT reading 
scores and their use of many of the strategies in the CRR framework, and found they are 
not necessarily successful at reading mathematics.  What are the actual reading practices 
of more typical students?  For example, do they go back to the details of a definition 
while attempting a task?  Students’ actual practices may differ from what they report 
doing.   
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Appendices A and B include copies of the textbook pages that the students were asked to 
read.  Permission to include these pages has been received from the publisher.   The 
pages have been cut apart so that comments and tasks could be inserted to indicate when 
the students were asked to perform a task.   
 
Appendix A contains the passage read by the precalculus students.  All tasks that the 
precalculus students were asked to perform were contained within the selected pages.  
 
Appendix B contains the passage read by the calculus students.  In addition to the 
selected pages and indicated tasks, it also includes copies of the exercises that the 
students were asked to attempt. 
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Appendix A (Part I) —Precalculus reading passages with interruptions: 
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The student readers were interrupted at this point and asked to work this example without 
looking at the solution, which was covered with Post-it© notes.  Then each student was 
asked to read through the solution and work the Matched Problem. 
 

 

The student was then asked to continue reading: 
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The student was interrupted at this point and asked to work this example without looking 
at the solution which was covered with a Post-it© note.  The student was then asked to 
read the solution and work Matched Problem 2. 
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After checking answers, the student was asked to continue reading: 
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Appendix A (Part II) —Precalculus reading passages (continued) 
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The student was stopped and was asked if he/she would do the Explore/Discuss.  None 
did.  The student was then asked to continue reading: 

 

Again, the student was asked to stop and to try to work this example with the solution 
covered. Then the student read the solution, worked Matched Problem 3, and continued 
reading. 
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If the interview got this far, the student was asked to try this Explore/Discuss. 
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Appendix B  Calculus reading passages with interruptions: 

 

The student was stopped at this point and was asked to try Exercises 51-54 below. 

 
 

35



 

The student was asked to continue reading.  (Note some of the figures are on the left side 
of the first portion of the reading which is on the previous page.) 
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The student was stopped and was asked if he/she would try the Exploration.  Upon 
completion of the Exploration, student asked to try the two true/false questions below 
from Calculus textbook, page 167. 
 
 
True or False?  In Exercises 61-64, determine whether the statement is true or false.  

If it is false, explain why or give an example that shows it is false. 

61. The maximum of a function that is continuous on a closed interval can occur at two 
different values in the interval. 

62. If a function is continuous on a closed interval, then it must have a minimum on the 
interval. 

 
 
Then the student was asked to continue reading: 
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The student was stopped and was asked to work Example 1 with the solution covered 
with Post-It© Notes.  Note that the remaining two figures for Figure 3.3 are beside the 
solution given below.  After the student had worked the example, he/she was asked to 
read the solution and then continue reading. 
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At the end of the proof, the student was stopped and was asked what the proof meant to 
him/her.  The student was then asked to continue reading: 
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The student was stopped and was asked to try the example without looking at the solution 
which was covered.  Then the student was asked to read the solution and continue 
reading. 

 
 

40



 

 
The student was stopped and was asked to try the example without looking at the solution 
which was covered, and then to read the solution. 
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The student was stopped and was asked to try the example without looking at the solution 
which was covered.  The student was then asked to read the solution. 
 

 

The student was then stopped (this was the end of the reading section) and asked to try 
Exercises 8 and 12. 
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In Exercises 11-16, find any critical numbers of the function. 

12.  )4()( 22 −= xxxg

 

 

 

 

 

 

 

 

 

 

 

 

\ 
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Appendix C—Debriefing questions: 

1. Were there any words or terms that bothered you as you read? 

2. Were there any symbols or notation that bothered you as you read? 

3. Are there any other ways this passage was difficult for you to read and/or 

understand? 

4. What things do you do when you read the textbook? 

5. Have you seen the material this passage covered anywhere before?  (If so, 

where?) 

6. Did the reading help you do the task?  In what way? 

7. Is there anything else you would like to say? 
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