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Abstract Body 
 

Background / Context:  
 

Most people would agree that helping students learn new information is important; 
however, there are numerous methods for achieving this goal, and not all of them have been 
proven to be effective. One method with intuitive appeal and some empirical backing is 
prompting students to self-explain. A self-explanation can be defined as generating explanations 
to oneself in an attempt to make sense of new information (Chi, 2000). The self-explanation 
effect has been studied since the 1980s, and has been examined in many learning domains, from 
chemistry to mathematics to argumentation (e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989).   

Self-explanations are thought to be useful because they foster the integration of new 
knowledge with existing knowledge, and they support the learner in updating his or her current 
mental model (Chi, de Leeuw, Chiu, & LaVancher, 1994).  Having students self-explain might 
also help them monitor their levels of understanding more accurately (Chi et al., 1989).  In 
addition, self-explanation may encourage students to discover underlying principles in a domain 
by increasing their ability to generalize information (Lombrozo, 2006).  One learning domain in 
which the self-explanation effect has been studied frequently is mathematics (e.g., Aleven & 
Koedinger, 2002; Rittle-Johnson, 2006; Siegler, 2002).  Self-explanations can help students 
improve their conceptual and procedural knowledge of mathematics by integrating knowledge of 
the problem solving process and knowledge of the underlying principles in the learner’s mental 
model.  For the purposes of this meta-analysis, procedural knowledge was defined as “the ability 
to execute action sequences to solve problems” (Rittle-Johnson, Star, & Durkin, 2009, p. 837).  
Conceptual knowledge was defined as an understanding of underlying principles in a domain 
(Rittle-Johnson et al., 2009).  While there are some findings that support the previously 
mentioned hypotheses of the potential benefits of self-explanation in mathematics, the actual 
empirical findings are ambiguous.  There are studies that reveal a positive effect of self-
explanation in mathematics (e.g., Aleven & Koedinger, 2002; Mitrovic, 2005); however, there 
are also studies that reveal no effect (e.g., Große & Renkl, 2007; Matthews & Rittle-Johnson, 
2009) or a negative effect for self-explanations (e.g., Berthold & Renkl, 2009; Hilbert, Renkl, 
Kessler, & Reiss, 2008).  Consequently, there is a need to determine if self-explanation in 
mathematics has actually been shown to be useful overall in past research.   

 
Purpose / Objective / Research Question / Focus of Study: 
 

The purpose of the current meta-analysis reported in this paper is to determine if there is 
a significant, positive self-explanation effect in mathematics domains or not.  In addition, this 
meta-analysis will examine the possibility that study setting might relate to the effectiveness of 
self-explanation in mathematics. 
 
Setting: 
 
 Due to the nature of this paper as a meta-analysis, the included studies come from a 
variety of research settings and countries, as listed in Table 1 (please insert Table 1 here). These 
studies were often conducted by the researchers or with researchers closely monitoring a teacher, 
and six studies occurred in a lab setting, while twelve studies occurred in classrooms.   
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Population / Participants / Subjects:  
 
 The coded study characteristics are summarized in Table 1.  The mean number of 
participants in each study was around 55.28.  Also, the mean age of participants was 15.62 years 
old, with ten studies involving pre-college students and eight studies including college students.  
The included studies contained a mean of 39.55% male students.  A majority of these studies 
involved interventions teaching probability or geometry, but there were quite a few different 
math domains studied.  The majority of studies were conducted with participants in the United 
States of America or in Germany, but there were also studies conducted in Australia, Japan and 
New Zealand.   
 
Intervention / Program / Practice:  
 

A detailed list of eligibility criteria was developed to determine the eligibility of studies 
for inclusion in this meta-analysis, including requirements for the intervention used in each 
study.  These criteria included: 
1) The study included at least 2 participants. 
2) The study assessed an intervention that was in a mathematics domain (economics was not 

considered mathematics for the purposes of this study). 
3) The study assessed an intervention that included instructional time during which participants 

engaged in self-explanation. 
4) The study included a control group that did not engage in any type of self-explanation. 
5) The study used an experimental or quasi-experimental design. 
6) The study used a quantitative measure of conceptual and/or procedural knowledge of 

mathematics.  Studies that implemented only self-report measures were not eligible. 
7) The study was reported in English. 
 
Research Design: 
 
 The current paper is a meta-analysis that used data from studies that met the above 
eligibility criteria and included studies that used an experimental or quasi-experimental design.  
Standardized mean difference effect sizes were calculated for each study and used to calculate an 
overall mean effect size.   
 
Data Collection and Analysis:  
 
Search and Retrieval of Studies 
 An attempt was made to locate all studies that fit the above criteria, including both 
published and unpublished work.  Searches were completed in March 2010 using the electronic 
databases of PsycINFO, ERIC, ProQuest, the ISI Web of Knowledge, the National Technical 
Information Service (NTIS), the IES What Works Clearinghouse, and Google Scholar.  In 
addition to these resources, the Vanderbilt library catalog was searched, along with available 
conference archives from the Cognitive Development Society and the Society for Research in 
Child Development.  Typically the search terms self-explanation and mathematics were used in 
these searches.  The NTIS, What Works Clearinghouse, Google Scholar, and ProQuest Theses 
and Dissertation databases were searched along with conference proceedings in an effort to 
identify all possibly eligible grey literature. 



 

2011 SREE Conference Abstract Template 3 

 After completing these searches, there were 199 references found after removing 
duplicate references.  The abstract from each of these references was scanned to determine 
whether it met the eligibility criteria, and after doing so, 47 potentially relevant references 
remained eligible.  These references were read in full.  Eleven of these references were excluded 
after being read in their entirety; most often, these references were excluded because they did not 
contain a control group or the intervention was not in a mathematics domain.  Four references 
were excluded because they could not be found or because they could only be obtained by 
purchasing them.  One reference could not be retrieved in time for inclusion in this meta-analysis 
abstract.  Nine references were excluded because they contained data that was already reported 
in another reference, and three references were excluded because they were not reported in 
English.  Finally, three references were excluded because they were missing data that was 
necessary to calculate an effect size.  This left eighteen separate studies (from sixteen references) 
that met the eligibility criteria and were coded for this meta-analysis. 
 
Coding of Studies 
 Studies were coded to determine a mean difference between conditions (participants who 
self-explained and those who did not) on procedural knowledge at posttest.  The procedural 
knowledge measure was coded because all studies contained a procedural knowledge measure.  
Effect sizes were calculated using data from posttest measures because that was the assessment 
time closest to the intervention.  In addition to coding a standardized mean difference effect size 
for each study, a variety of other variables were coded.  These included knowledge type assessed 
(procedural, conceptual, or both), number of assessment items, whether it was an experimenter-
created or standardized measure, total number of participants, total number of participants in 
each condition, grade of participants, average age of participants, participants’ gender (percent 
male), study setting (lab or classroom), country of study, publication type (journal article, book, 
etc.), publication year, specific mathematics domain (algebra, geometry, etc.), and additional 
condition activities (not including self-explanation)  (see Table 1). 
 
Analysis Strategies 
 A standardized mean difference effect size was calculated for each study; the 
standardized mean difference is the difference between the treatment and control group means on 
their procedural knowledge scores divided by their pooled standard deviation (Lipsey & Wilson, 
2001).  Hedge’s g correction was used on each of these effect sizes to correct for small sample 
sizes.  This involved multiplying each effect size by 1 – (3/4n – 9), where n is the total number of 
participants in the study (Lipsey & Wilson, 2001).  Each study was then weighted using its 
inverse variance.  The mean standardized mean difference effect size was calculated using a 
random effects model.  A random effects model was chosen because it was desirable for these 
results to be generalizable, and it did not seem likely that the calculated value would be the one 
true population effect size.  When multiple effect sizes could be calculated in a given study, the 
effect size related to studying correct examples was used.  If all possible effect sizes in the study 
used correct examples, then an effect size was chosen at random for inclusion in the meta-
analysis.  In addition, a heterogeneity analysis, a meta-regression moderator analysis, and a 
publication bias analysis were run.  The results from these analyses are reported below. 
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Findings / Results:  
 
 The overall standardized mean effect size was 0.373 with a 95% confidence interval 
ranging from 0.118 to 0.629 (please insert Figure 1 here).  This effect size of 0.373 was 
statistically significant (p = 0.004).  Consequently, there does appear to be a small, positive 
effect for students who self-explain when learning mathematics.   

After examining Figure 1, it seemed as if there was some heterogeneity in these effect 
sizes.  After running an analysis for heterogeneity, Q(17) = 63.62, p < 0.001, we should reject the 
null hypothesis that there was not heterogeneity in these effect sizes.  To find out how much of 
this variance was due to true variability, an I2 value was calculated.  I2 = 73.3% which indicated 
that 73.3% of this heterogeneity is true heterogeneity.  In addition, τ2 = 0.2118, which indicated 
that there was some variability between studies.  When taking all of these heterogeneity analyses 
into account, this was a sign that there were most likely moderators influencing these effect 
sizes. 

 
Moderator Analysis  
 Due to the small number of studies included in this meta-analysis, only one moderator 
analysis could be run.  Frequently in many areas of research, effect sizes of interventions are 
found to be affected by whether they are conducted in a lab setting or in a classroom setting.  A 
moderator analysis was run to examine whether performing the intervention in a lab setting was 
a moderator for the standardized mean difference effect size.  After running a meta-regression 
model including study setting, it appeared that being performed in a lab slightly increased a 
study’s effect size, but this difference was not significant, β = 0.235, p = 0.377, τ2 = 0.194.  
Consequently, it seems that study setting was not a significant moderator contributing to the 
heterogeneity in effect sizes.  One possible reason this was not a significant moderator is that 
even the classroom-based studies were either run by researchers in classrooms or with the 
researchers very closely guiding the teachers.  Thus the differences between the lab studies and 
classroom studies in this case may not have been very large. 
 
Publication Bias 
 Although there are not many studies included in this meta-analysis, it is important to test 
for any possible publication bias.  An Egger’s regression test for small-study effects indicated 
that there was possibly publication bias.  The bias coefficient was 3.563 with p = 0.03.  Thus we 
rejected the null hypothesis and concluded that there was evidence of small-study effects in these 
studies.  As an additional measure of publication bias, a trim and fill analysis was run.  As a 
result of this analysis, 4 “filled” effect sizes were found.  By including these filled effect sizes 
into the random effects model, the overall standardized mean difference effect size changed from 
0.373 (reported previously) to 0.220.  This effect size of 0.220 was no longer statistically 
significant (p = 0.095).  This finding led to the conclusion that there was publication bias, with 4 
studies with higher positive effect sizes increasing the mean effect size for all of the studies.  
Once 4 studies were filled in to balance out the higher positive effect sizes, the overall mean 
effect size was no longer significantly different from 0. 

 
Summary of Results 
 The above analyses led to several findings about the self-explanation effect in 
mathematics.  First, there was a small, positive mean effect for self-explanation in math domains.  
There was also significant heterogeneity in the effect sizes from these studies with a large 
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portion of the heterogeneity being true heterogeneity; however, the one moderator tested here, 
study setting, was not significant.  In addition, there were multiple tests that indicated there may 
be publication bias in this meta-analysis, and these results must be examined with caution. 
 
Conclusions:  
 
 While an attempt was made to include every possible study that could contribute to the 
findings of this meta-analysis, there were some limitations.  First, there was publication bias, 
which means that the findings from this meta-analysis must be interpreted with caution.  Also, 
almost all of the studies were in journal articles, and journal articles are more likely to find some 
significant effects than other unpublished works.  There were also only a small number of studies 
in this analysis, which must be taken into consideration.  In addition, this study only examined 
the effect size of self-explanation in mathematics domains.  It is possible that these same findings 
would not be found in other domains, such as sciences or the humanities.  As a result, the 
findings from this meta-analysis can only be applied to self-explanation in connection to 
mathematics and not to the broader concept of the self-explanation effect.  Another limitation of 
this study was that no effect sizes based off of conceptual knowledge measures were used, due to 
the smaller number of conceptual knowledge data available.  It may be possible that the effect of 
self-explanation would be different for procedural and conceptual knowledge.  In fact, past work 
has illustrated differential self-explanation effects for these two knowledge types (Berthold & 
Renkl, 2009).  One must also consider that most all of the studies were implemented by 
researchers, and it is unclear if these same effects would be found in a less controlled setting.  
Finally, several references that could have been included based off of the eligibility criteria could 
not be found, and they could affect the overall mean effect size.   
 This meta-analysis illustrates that there is some evidence for the benefits of self-
explanation in math; however, the evidence is not as strong as some researchers might think.  It 
seems that self-explanation is not harmful to students, but whether or not it is worth the time it 
takes to go through them is unclear.  Future studies may want to include a control group that 
does not self-explain so that a direct comparison can be made to test for the self-explanation 
effect.  Many past studies did not include a control group and could not be included in this meta-
analysis.  Also, future research should continue to examine this self-explanation effect because it 
seems likely that there are moderators that have yet to be accounted for.  Additional research 
could help identify and test such moderators.  Further research is also needed to make 
conclusions about the effect of self-explanations on conceptual knowledge and in other learning 
domains.  Due to the large number of self-explanation studies in science domains, it would be 
beneficial for a future meta-analysis to be done examining the effectiveness of self-explanation 
in the sciences.  Self-explanation shows potential for being a useful instructional strategy, and 
future research will examine the intricacies of self-explanation more closely to see if self-
explanation should be incorporated into more classrooms in the future. 
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Appendix B. Tables and Figures 
 
Table 1 

Characteristics of the Studies in the Meta-Analysis 

Variable # of Studies Variable # of Studies 
Assessment Characteristics    
    Knowledge type      Gender (percent male)  
        Procedural 8         0 to 20 2 
        Conceptual 0         20 to 40 3 
        Procedural and Conceptual 10         40 to 50 7 
    Number of Assessment Items          > 50 2 
        1 to 10 6         Unknown 4 
        11 to 20 8 Other Characteristics  
        > 20 3     Setting  
        Unknown 1         Lab 6 
    Measure Creation          Classroom 12 
        Experimenter-Created     

Measure 
18     Country  

        Standardized Measure 0         USA 9 
Participant Characteristics          Germany 5 
    Number of Participants          Australia 2 
        0 to 40 5         New Zealand 1 
        41 to 80 9         Japan 1 
        > 80 4     Mathematics Domain  
    Grade Level          Geometry 4 
        preK to 2nd  1         Probability 6 
        3rd to 5th  3         Other (algebra, math 

equivalence, etc.) 
8 

        6th to 8th  1     Publication Type  
        9th to 12th  5         Journal 17 
        College or higher 8         Conference Paper 1 
    Age      Publication Year  
        5 to 10 years 3         1994 to 2000 2 
        10 to 15 years 2         2001 to 2005 6 
        15 to 20 years 4         2006 to 2010 10 
        > 20 years 3   
        Unknown 6   
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Figure 1.  Mean effect sizes and 95% confidence intervals for the effects of self-explanation 
 


