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Abstract 

For developmental education students, rates of developmental math course 

completion and persistence into required college-level math courses are particularly low. 

This literature review examines the evidence base on one potential means for improving 

the course completion and learning outcomes of developmental mathematics students: 

reforming mathematics classroom pedagogy. Each study examined for this review was 

classified into one of six sets according to the main instructional approach focused on in 

the study. The six sets are: student collaboration, metacognition, problem representation, 

application, understanding student thinking, and computer-based learning. Because most 

of the studies across the sets did not employ rigorous methods, the evidence regarding the 

impact of these instructional practices on student outcomes is inconclusive. An analysis 

of the studies that did employ rigorous designs suggests that structured forms of student 

collaboration and instructional approaches that focus on problem representation may 

improve math learning and understanding. This paper concludes by making a number of 

methodological recommendations, proposing several needed areas of research related to 

developmental math pedagogy, and suggesting instructional practices that may improve 

the outcomes of developmental math students.  
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1. Introduction 

A majority of community college students enroll in developmental education 

(Bailey, Jeong, & Cho, 2010), but evidence of its effectiveness in promoting student 

progression and degree completion is mixed. While some studies have found that 

remediation reduces students’ probability of dropping out (Bettinger & Long, 2009; 

Lesik, 2007), other studies find that students in remediation accumulate fewer college 

credits and are less likely to complete a degree (Boatman & Long, 2010; Calcagno & 

Long, 2008; Martorell & McFarlin, 2008). Equally concerning are the low levels of 

developmental education course completion, especially for developmental math. At the 

57 community colleges participating in the Achieving the Dream: Community Colleges 

Count initiative (see www.achievingthedream.org), only one third of students who were 

referred to developmental education completed the recommended sequence of math 

courses (Bailey et al., 2010). Of the students who enrolled in developmental education 

courses, only 20% eventually completed a required college-level math course (Bailey et 

al., 2010). 

Failing to complete developmental math and required college-level math not only 

prevents individuals from earning a college degree and pursuing certain professions but 

also has consequences for a young adult’s likelihood of employment. Young adults with 

low levels of quantitative literacy skills, including the types of arithmetic operations and 

applications typically covered in developmental math courses, are more likely to be 

unemployed—and, moreover, low levels of quantitative literacy partially account for the 

lower employment rates for African Americans compared to Whites (Rivera-Batiz, 

1992). Given the negative consequences of failing to complete developmental 

mathematics, it is critical to identify potential ways to improve developmental students’ 

math success. Other working papers in the CCRC Assessment of Evidence Series discuss 

potential ways to improve developmental course completion through improved entry 

assessment (Hughes & Scott-Clayton, 2011), accelerated course structures (Edgecombe, 

2011), and contextualized curricula (Perin, 2011). This paper examines the evidence base 

on another potential means for improving learning outcomes and course completion 

among developmental mathematics students: reforms to mathematics classroom 

pedagogy.  
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While national studies that document the common features of developmental 

education classroom instruction do not exist (Levin & Calcagno, 2008), typical 

developmental math pedagogy is thought to rely largely on procedural skill-building 

(Goldrick-Rab, 2007; Hammerman & Goldberg, 2003). Observational studies at 

community colleges in California found that mathematics instruction was characterized 

by review, lecture, independent seat-work, and math problems devoid of application to 

the real world (Grubb, 2010; Grubb & Worthen, 1999). Although traditional features of 

math instruction have been linked to better performance on standardized tests and much 

of the mathematics we encounter in our lives requires the ability to use algorithms to 

quickly and accurately solve computations, in order to understand mathematics, students 

need much more than procedural fluency (Hiebert & Grouws, 2007; Kilpatrick, Swafford, 

& Findell, 2001).  

Kilpatrick et al. (2001) identified five interdependent strands of mathematical 

learning that instructional practices must address to build mathematical proficiency: 

1. conceptual understanding—the understanding of why and 
when a mathematical idea is important or useful,  

2. procedural fluency—the ability to use procedures in the right 
way and for the right purpose,  

3. strategic competence—problem formulation and 
representation,  

4. adaptive reasoning—logical reasoning about mathematical 
relationships, and  

5. productive disposition—the belief that a sustained effort in 
learning mathematics will lead to greater understanding and 
benefit one’s life. 

This paper discusses forms of instruction that are thought to support components of 

mathematical learning beyond procedural fluency and should, therefore, develop 

mathematical proficiency more effectively than traditional instruction. 
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1.1 Studies Included in the Review 

Although the purpose of this literature review is to identify promising 

developmental math pedagogy, there is very little empirical research on this topic and 

population specifically; thus, I also reviewed the literature on mathematics pedagogy in 

elementary and secondary schools and in college-level courses, focusing on empirical 

studies that evaluate the impact of an instructional practice on student outcomes.1 The 

elementary and secondary school math pedagogy literature is included not only because it 

is more prevalent than empirical research on math instruction in higher education but also 

because recommended best practices in teaching are often similar across grades and even 

subjects. For example, important works that outline best practices for developmental 

education (e.g., Blair, 2006; Boroch et al., 2007; Boylan, 2002) and K-12 mathematics 

teaching (e.g., Donovan & Bransford, 2005) provide similar recommendations: that 

educators connect new knowledge to prior learning; use a variety of instructional 

methods, including learner-centered activities; and provide students with feedback 

through the use of ongoing assessment. Reviewing the K-12 empirical literature 

illustrates how these general recommendations are implemented in the classroom in ways 

that are effective or ineffective for primary and secondary students. These findings can 

then be used to make recommendations regarding how pedagogy that works in the K-12 

math classroom could perhaps be adapted for adult students in the developmental 

education classroom in an effort to apply commonly accepted best practices in teaching.  

It is important to note that articles on curriculum reforms that may also lead to or 

require changes to pedagogy are not included in this review. Curriculum reforms 

typically can involve so many interconnected instructional changes that it is difficult to 

isolate the effects of the individual reforms (Hamilton et al., 2003). For example, this 
                                                 
1 The inclusion criteria for this study encompass qualitative and quantitative (excluding single-subject 
design) studies published from 1990 to the present whose target population includes students in K-12 
schools and institutions of higher education in the United States. To find publications within the topic 
scope, major databases and websites were searched using the term mathematics in combination with 
instruction or pedagogy or in combination with instructional (or pedagogical) practices or strategies. 
Databases and websites included: EBSCO’s Academic Search Premier, Education Research Complete, 
Education Full Text (Wilson), ERIC, JSTOR, ProQuest, state higher education websites, community 
college system websites, Mathematical Association of America (MAA), American Mathematical 
Association of Two-Year Colleges (AMATYC), and Google Scholar. I also conducted a manual search of 
the following pertinent publications: Journal of Developmental Education, Remedial and Special 
Education, Community College Journal of Research & Practice, Community College Review, and 
Community College Journal. 
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paper does not review a study that evaluated the impact of a reform-based undergraduate 

calculus textbook (Darken, Wynegar, & Kuhn, 2000), which includes exercises that use 

group work and technology and emphasize conceptual understanding. The authors did not 

report the extent to which instructors who volunteered to use these texts incorporated 

these changes to pedagogy in their classrooms, and it is impossible to understand the 

discrete impact of each pedagogical change on the overall results. In contrast, while many 

studies included in this review required changes to content (e.g., using multi-step word 

problems rather than problems that require only a few steps to solve), they focus on the 

methods teachers use to teach the content. 

1.2 Assessing the Quality of Evidence 

In reviewing papers, I critiqued the findings according to the strength and rigor of 

the research designs of the studies in order to evaluate the direction and quality of 

evidence on math pedagogy. Table 1 (found in the appendix) provides a concise summary 

of each reviewed article, including the author’s findings, effect size of the results, and 

methodological problems that weaken the internal validity of the results.2 This review 

describes the results of rigorous studies and draws conclusions about effective pedagogy. 

In general, to be considered rigorous, a study had to be transparent about the 

comparability of the treatment and control conditions, providing some confidence that 

any outcomes are the result of the instructional intervention, not differences between the 

treatment and control groups. Most importantly, rigorous studies either demonstrated that 

there were no pretreatment ability differences between students who received the 

instructional intervention and students in the comparison group or statistically controlled 

for pretreatment ability, and they made an effort to assign similar instructors to the 

treatment and comparison groups. The results of the remaining studies are inconclusive 

because they could be due to differences between the treatment and control group rather 

than the instructional intervention.3 

                                                 
2 There were four methodological flaws commonly found across studies: student design non-equivalency, 
teacher design non-equivalency, possible attrition issues, and lack of a comparison group. The notes for 
Table 1 include a detailed explanation of each of the four main flaws. 
3 Except for a few higher education studies, the results of the non-rigorous studies are not described in this 
review, but they can be found in Table 1. 
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1.3 Organizational Framework 

There are several ways to categorize instructional practices. Grubb (2010) 

organizes practices along a behaviorist–constructivist continuum. Commonly accepted 

groupings of instructional practices include broad categories, such as student-centered 

versus teacher-directed instruction or direct instruction versus inquiry-based teaching 

(Hiebert & Grouws, 2007). The current paper uses a more detailed classification system 

driven by specific theories of learning, which provide concrete explanations of particular 

mechanisms underlying different pedagogical approaches. Based on an inductive 

approach, studies were organized into six sets, each containing similar types of practices 

that share a clearly identifiable (although not always explicitly identified by each study’s 

authors) theory of learning. Each set of practices is therefore supported by a particular 

theory that explains why these practices should lead to improved math learning and 

understanding. The six sets are student collaboration, metacognition, problem 

representation, application, understanding student thinking, and computer-based 

learning.4 

In the first section, for each of the six sets, I explain the relevant theories that 

support the pedagogical practices in the set, provide an example of how the theoretical 

concepts are applied in the developmental math classroom today, and evaluate the 

empirical evidence from the articles in the set. Subsequent sections describe the 

recommendations based on the review of this literature, including methodological 

recommendations and new directions for developmental math pedagogy research. The 

paper concludes with examples of instructional changes to the developmental math 

classroom that may contribute to improved outcomes for developmental math students. 

                                                 
4 The practices across the six sets can interact in the classroom and overlap in myriad ways. Hiebert and 
Grouws (2007) emphasize that “teaching is a system of interacting features” (p. 374); different features do 
not fit easily into categories. For this paper, studies were categorized according to the feature by which they 
were most clearly defined. For example, in the application set, instructional practices always involve 
students working together and often promote metacognition and problem representation skills. Studies in 
the application set are distinct from studies in the other five sets because instruction is characterized by the 
use of elaborate problem-solving activities that use real-world contexts. This type of pedagogy is supported 
by distinct theories of learning, suggesting that student learning in classrooms that use real-world problem 
solving is enhanced in different ways than learning in classrooms that use student collaboration, promote 
metacognition, and/or build problem representation but do not use real-world problem solving. 
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2. Theory, Practice, and Empirical Evidence 

2.1 Student Collaboration 

This first set of studies evaluates different models of student collaboration in the 

math classroom. Some studies examine the impact of informal forms of student 

collaboration, while others evaluate the effectiveness of more structured forms of peer 

collaboration, such as Math Excel, Peer-Led Team Learning, the Learning Together 

model of cooperative learning, peer-assisted learning strategies (PALS), peer-mediated 

instruction (PMI), and Team Accelerated Instruction. 

Theory. Springer, Stanne, and Donovan (1999) organize the theories that support 

student collaboration into three theoretical perspectives that identify the different 

mechanisms that link small-group instruction to improved student outcomes. The 

motivational perspective supports the notion that in competitive learning environments, 

the probability of success decreases at an increasing rate as other students succeed, but in 

small-group learning environments, success is dependent on students working together to 

achieve a common goal. The affective or humanist perspective explains that interaction 

among students leads to a nonthreatening environment in which underrepresented 

students have more opportunities to participate and learn. Finally, according to the 

cognitive perspective, student collaboration on open-ended questions leads to greater 

cognitive growth, and the act of explaining material to another student is one method of 

cognitive elaboration, which facilitates the retention of information.  

Johnson and Johnson’s social interdependence theory, which is cited in a number 

of empirical and instructional publications on cooperative learning in higher education 

math courses (e.g., Arendale, 2004; Dees, 1991; Norwood, 1995; Summers & Svinicki, 

2007; Zachry, 2008), draws from all three theoretical perspectives (motivational, 

affective, and cognitive). Negative interdependence, which is characterized by a 

competitive learning environment, can potentially be demotivating because students can 

only succeed if others are failing (Johnson, Johnson, & Smith, 1991). In addition, in both 

classrooms with no interdependence (where students work on their own) and classrooms 

with negative interdependence, students do not benefit from an improvement in social 

skills and cognitive growth that is thought to result from positive social interactions and 
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the exchange of information between peers (Johnson et al., 1991). On the other hand, 

positive interdependence, where the success of one individual is dependent on the success 

of others, is found in cooperative learning environments characterized by face-to-face 

interaction, personal responsibility in working toward a shared goal, the use of 

interpersonal skills, and group processing through the exchange of feedback, 

explanations, and other information (Johnson et al., 1991). In structured cooperative 

learning situations with these elements, motivational, affective, and cognitive 

mechanisms are thought to lead to improvements in learning outcomes.  

Student collaboration methods are also supported by Lev Vygotsky’s theory of 

the zone of proximal development and the theory of constructivism. The zone of 

proximal development is the cognitive space between what a learner can do 

independently (i.e., their ability) and what a learner can do with the aid of a teacher or 

through peer collaboration (i.e., their potential) (Safford-Ramus, 2008). Constructivism 

describes learning as a process in which knowledge is constructed through building on 

prior experiences, engaging in self-discovery, and collaborating with peers (Yilmaz, 

2008). Collaborative learning in developmental math education is a way to both expand 

students’ zone of proximal development and apply the principles of constructivist 

learning (Casazza, 1998; Norwood, 1995; Safford-Ramus, 2008). 

Empirical evidence. For the most part, the 15 studies in this set (see Table 1) 

found that student collaboration has a positive impact on math learning. Most of these 

studies did not ensure treatment and control group equivalency; thus, their results could 

be due to factors other than the student collaboration method. However, five rigorous 

elementary school student collaboration studies demonstrate that highly structured forms 

of student collaboration are especially effective for low-achieving math students.5 

With PALS and PMI, teachers train students to follow a routine that involves 

students taking turns, acting either as the tutor who asks questions and provides feedback 

at every step of the problem-solving process or as the tutee who answers questions at 

every step (Fuchs, Fuchs, Phillips, Hamlett, & Karns, 1995; Fuchs et al., 1997; Fuchs, 

Fuchs, & Karns, 2001). Lower-achieving students are usually paired with higher- or 

                                                 
5 The Calhoon and Fuchs (2003) study is also rigorous but evaluates the effects of PALS and curriculum-
based measurement (CBM) in combination and, therefore, the outcomes cannot be attributed strictly to 
student collaboration. 
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average-achieving students. Across the three studies of PALS and PMI (Fuchs et al., 

1995; Fuchs et al., 1997; Fuchs et al., 2001),6 results varied for students with different 

levels of math aptitude. Students with learning disabilities and average-achieving 

students usually made small gains in achievement compared to their counterparts in the 

control classrooms. Lower-achieving students benefited the most from the different 

student collaboration treatments, making small to moderate gains on all tests but one that 

measured application skills in one study. Higher-achieving students only benefited from 

paired work when more complex math tasks were included in the PMI treatment. 

Similarly, a randomized study by Ginsburg-Block and Fantuzzo (1998) found that low-

income, low-achieving third- and fourth-grade students who used a highly structured 

peer-tutoring format to review and reinforce math skills outperformed comparable 

students who received traditional instruction. In contrast, Karper and Melnick’s 

randomized study (1993) in a wealthy school district found that the cooperative learning 

technique Team Accelerated Instruction had no impact on the math achievement of 

students in the treatment group. Taken together, the five studies suggest that structured 

student collaboration may be more beneficial for low-achieving elementary school 

students struggling with math. 

Finally, the highest quality developmental education study in this review (Dees, 

1991)7 suggests that an instructor-designed, structured student collaboration method may 

be a promising practice for the developmental math classroom. Dees (1991) randomized 

over 70 students in her developmental math course into four laboratory sections taught by 

graduate assistants: two that used small-group instruction and two that used teacher-

directed instruction. Students in the cooperative learning lab outperformed students in the 

control group on teacher-made tests and a standardized final exam; however, the internal 

validity of the study’s findings is undermined by the lack of detail about the research 

design, such as how graduate assistants were assigned to sections.  

                                                 
6 One concern with these studies is that although teachers were randomized to the treatment and control 
classrooms and implemented the treatment with the whole class, due to resource constraints only a subset 
of students were chosen to take the posttest. However, these studies show that there are no statistical 
differences along observable characteristics between the treatment and control students in the whole class 
and subset of students.  
7 The Dees article meets the inclusion criteria because it was published after 1990; however, it is important 
to note that the study took place in 1982, so it is much older than most of the studies included in this review 
that were conducted during the past 20 years. 
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Student Collaboration in Practice 
 

Peer‐Led Team Learning (PLTL) was first established at the City University of New York and has since been 

used in math and science courses at colleges across the country (Arendale, 2004). Through the PLTL 

program, advanced students are trained in teaching and cooperative learning techniques, becoming “peer 

leaders” who lead weekly collaborative workshops with small groups of students (Arendale, 2004). The 

developmental math faculty at Mountain Empire Community College (MECC) in Virginia have 

implemented PLTL in the developmental math course Algebra I.* Peer leaders are assigned to sections of 

Algebra I, which they attend for one hour on Mondays and Wednesdays. Students from these courses 

who have chosen to participate in PLTL meet with their peer leaders during the PLTL session, named 

“Power Hour,” held on Fridays directly before their Algebra I course. During the PLTL sessions, the peer 

leaders and students work cooperatively in small groups on areas of Algebra the students are struggling 

with. A PLTL leader who was a former tutee in the program spoke about her experience with PLTL: “I love 

math. I’m a math tutor. But after being out of school for so long, it was like reading Hebrew the first 

semester, and the Power Hour made me feel more comfortable. I could understand mostly what my 

instructor told me, but it was just a different language coming from my PLTL leader.” 

 
*Information on PLTL is from a Community College Research Center site visit to MECC in spring 2010. 
 

 

 

2.2 Metacognition 

The second set of studies includes instructional practices that promote 

metacognition, or an awareness of one’s own thought processes, through comprehension 

monitoring, cognitive strategy instruction, or using writing and questioning during the 

problem-solving process to foster self-reflection. 

Theory. The connection between metacognition and math learning is supported 

by a number of theories. Garofalo and Lester (1985) extended Flavell’s (1979) theory 

about the role of metacognition to identify its two main aspects, “knowledge of 

cognition” and “regulation of cognition” (p. 164), and apply them to the mathematical 

problem-solving process. In Garofalo and Lester’s (1985) cognitive–metacognitive 

framework, the knowledge of cognition begins in the orientation phase, in which the 

problem solver assesses the information given about the mathematical task, his or her 

level of familiarity with the task, the difficulty of the task, and possible strategies to use. 

Next, in the organization or planning phase, the regulation of cognition aids the problem 
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solver in connecting his or her understanding of the concept to an understanding of the 

appropriate strategies to use to solve the problem. In the execution stage, the problem 

solver solves the problem using the necessary strategies and procedures. Finally, during 

the verification stage, the problem solver confirms that the solution is correct by checking 

the computations and problem-solving process for errors. Garofalo and Lester (1985) 

argue that mathematical problem solving can be improved by training students to 

incorporate the stages of metacognition into their problem-solving process.  

The theory of information processing provides another justification for the 

importance of metacognition, contending that learning occurs as individuals think about 

their own thinking as they retrieve stored information from memory (i.e., prior 

knowledge) and use it to process new information (Safford-Ramus, 2008). Metacognition 

has also been integrated into forms of constructivism. For example, in Narode’s (1989) 

description of instruction in a constructivist developmental math program for students at 

the University of Massachusetts, Amherst, he writes, “the method of instruction 

incorporates two key notions: constructivism, the idea that students must construct 

knowledge for themselves, and metacognition, the supposition that the vehicle for the 

construction of knowledge is self-reflection” (p. 6). In the math classroom, instruction 

that uses the cognitive–metacognitive framework would emphasize not only each 

student’s ability to solve problems but also each student’s capacity to assess a problem’s 

difficulty, choose the appropriate strategy or strategies to solve a problem, engage in self-

monitoring during the problem-solving process, and evaluate the final solution for its 

accuracy. 

Empirical evidence. The eight reviewed studies (see Table 1) describe unique 

pedagogical practices that seek to improve students’ ability to monitor their problem-

solving process, but only one study employed a rigorous experimental design. In 

Tournaki’s (2003) study, second-grade students with and without disabilities were 

randomized into a control group and two treatment groups in which, in addition to their 

regular class time, students received either explicit instruction in either strategy 

instruction (verbalizing problem-solving steps), or drill-and-practice strategies. Students 

with learning disabilities who received strategy instruction experienced large gains in 

addition facts performance compared to students with learning disabilities who received 
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drill-and-practice instruction, but there were no differences in addition facts achievement 

between students without disabilities who received the strategy instruction versus drill-

and-practice instruction. Tournaki concludes that explicit instruction in problem-solving 

strategies, even for tasks as simple as adding, may be especially important for students 

with learning disabilities.  

 

 
 

Metacognition in Practice 
 

The College Transition Initiative (CTI) at the CUNY community colleges prepares GED graduates to take the 

COMPASS placement math exam, with the related aims of reducing their need for remediation, deepening 

their understanding of algebra, and preparing them for their first college‐level math course (Hinds, 2009). 

In addition to a supportive structure in which the CTI math course is part of a learning community and an 

innovative math curriculum, CTI math instruction employs a number of non‐traditional pedagogical 

practices. Procedural rules are not taught; in their place, students build their conceptual understanding by 

discussing mathematical relationships, and rules that emerge through these activities are discussed at the 

end of lessons so that students can also build their procedural fluency. The instructor does not lecture; 

instead, the instructor asks students higher order thinking questions about contextualized functions that 

help students transition to more abstract work. For most of class time, students work in groups to solve 

problems and are constantly involved in discussions sparked by metacognitive questioning. Common 

questions asked by the instructor include:  

 

What did you do?  

Why did you do that? 

Do you agree with what she/he just said? Why? 

Did any of you do it differently? Why? 

What do you see? 

Does this remind you of anything? 
 

 

 

2.3 Problem Representation 

The third set of articles encompasses pedagogy that improves students’ problem 

representation skills, such as the use of multiple representations and strategies during the 

problem-solving process, the learning/teaching approach, concept-based instruction, the 

concrete-to-representational-to-abstract (CRA) instructional sequence, schema-based 
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instruction, and the Quantitative Understanding: Amplifying Student Achievement and 

Reasoning (QUASAR) project.8 

Theory. The cognitive phases of problem solving are analogous to the 

metacognitive framework except that in the first phase, called the problem representation 

phase, the focus is on building a mental representation of the problem rather than 

assessing the problem’s difficulty, strategies to use, and other aspects of the problem-

solving process (Brenner et al., 1997). The importance of problem representation is based 

on the cognitive theory that problem solvers must understand the connection between the 

problem and its different representations before they can move on to planning and 

executing the procedural steps to solve a problem (Brenner et al., 1997; Chappell, 2006). 

By focusing on the procedures needed to execute or solve problems, teachers and 

instructors neglect this critical first phase of problem solving. Higher levels of math, such 

as algebra, require an understanding of how algebraic (or symbolic) representations can 

be represented by graphs and other forms, so students who did not learn problem 

representation skills in lower-level math courses, such as pre-algebra, may experience 

increasing difficulties as they progress in math (Brenner et al., 1997; Zawaiza & Gerber, 

1993). 

The cognitive phases of problem solving suggest that problem representation 

skills will lead to more success in the use of procedures during the problem execution 

phase, and Rittle-Johnson, Siegler, and Alibali (2001) find empirical evidence suggesting 

that, in fact, problem representation is the mechanism underlying the process by which 

conceptual knowledge can lead to improved procedural fluency, which in turn can lead to 

improvements in conceptual knowledge. In the Rittle-Johnson et al. study, fifth-grade 

students were randomly assigned to receive assignments on placing decimals on a 

number line that provided different levels of representational supports (e.g., a zero-to-one 

number line with no markings versus a zero-to-one number line with the tenths place 

marked). The level of representational supports determined students’ problem 

representation skills, measured by their ability to explain why they chose a spot on the 

number line to represent each decimal, on an intervention test, and their procedural 

                                                 
8 The QUASAR project includes many more instructional components than strategies that improve 
students’ problem representation skills (Silver & Stein, 1996), but the QUASAR articles in this review 
focus on instructional tasks that use multiple representations or solution strategies. 
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fluency, measured by marking the position of a decimal on a number line, on a posttest. 

Procedural skill performance was then a significant predictor of conceptual knowledge, 

measured by student performance on new tasks that required an understanding of decimal 

fractions, on a posttest. 

The Rittle-Johnson et al. study (2001) does not suggest a specific instructional 

strategy, such as providing students with worksheets that include representational 

supports. Rather, it supports the theory that students who develop an understanding of 

how concepts can be represented in different, connected ways will be able to link these 

representations to the procedures that are necessary to solve a problem. This will lead to 

more accurate procedural fluency (or solution execution), and solving problems with 

understanding will enhance conceptual knowledge.  

Empirical evidence. Five of the nine studies in this set (see Table 1) are among 

the strongest studies in this review and provide compelling evidence that improving 

students’ problem representation skills has a small to moderate positive effect on math 

learning. The four high-quality studies that took place in elementary and middle school 

classrooms (Brenner et al., 1997; Jitendra et al., 1998; Jitendra et al., 2009; Witzel, 

Mercer, & Miller, 2003) found support for the routine use of multiple representations 

during problem solving by teachers and students. 

In the only higher education study in this set, Chappell (2006) employed a number 

of methods to ensure that even though students self-selected into concept-based calculus 

and traditional calculus sections (unaware of the instructor or instructional method of 

each section), the faculty and students across both groups were comparable. In addition, 

frequent, unannounced classroom observations by faculty not directly involved in the 

study confirmed that in the concept-based sections, faculty taught students how to solve 

problems using numerical, graphical, and algebraic methods while constantly connecting 

new ideas to prior knowledge. In the control sections, faculty moved through the 

textbook teaching definitions and formulas in a linear manner. Students in the concept-

based sections performed significantly better on the midterm and final and were better 

able to transfer their understanding to unfamiliar concepts. For example, on a final exam 

problem that had never been introduced in any of the classes, 88% of the students in the 

concept-based classrooms answered this question correctly, and only 3% did not support 
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their answer with an explanation. Only 54% of the students in the traditional sections 

answered this question correctly, with most of them providing textbook definitions to 

explain their answer and 31% not providing any explanation at all. 

 

 
 

Problem Representation in Practice 
 

The traditional approach to introducing radical equations teaches the procedural skills related to solving 

them, as in the following exercise*: 
 

Solve 2 2+x  = 10 
 

First, isolate the radical by dividing both sides of the equation by 2: 

2+x  = 5 
 

Next, square both sides of the equation: 

( )2+x 2 = 52 

x + 2 = 25 
x = 23 
 

Now check for extraneous solutions.  
 

The following exercise is thought to better promote conceptual understanding of radical equations:  
 

X  f (x) = √x 

0  √0 = 0 

1  √1 = 1 

2  √2 =1.414 

3  √3 = 1.732 

4  √4 = 2 

5  √5 = 2.236 

7  √7 = 2.646 

9  √9 = 3 
 

  Graph the basic square root function using the data from the input/output table. 

  Drawing the graph by hand helps students remember concepts about domain. 
 

  Now draw the graphs of f (x) = 1, f (x) = 2, f (x) = 3, and f (x) = ‐1 all on the same axes.   

  This allows students to see the points of intersections (the solutions) and where there are no 

points of intersection (the extraneous solutions). Then, they will be more prepared to solve the 

radical equation below. 
     

  Solve  1022 =+x . 
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Problem Representation in Practice, Continued 
 

Students should continue to connect procedures and solutions to the graph of the equation by answering 

the following questions: 
 

What is the basic function? 

What is the translation or the transformation of the function?  

Solve f (x) by labeling all important points on a graph. 
 

*This example is adapted from Gowribalan A. Vamadeva’s presentation “Fostering Conceptual Understanding in a 

Developmental Algebra Classroom” at the 2009 AMATYC Conference proceedings and included with her permission.  
 

 

 

2.4 Application 

Application-oriented instructional approaches include project-based learning, the 

modeling-based approach, the functional approach, enhanced anchored instruction, the 

algorithmic instructional technique, and culturally responsive pedagogy, all of which are 

designed to teach math concepts and skills through real-world problem-solving. Many of 

these instructional approaches may be referred to as “problem-based learning” (Boroch et 

al., 2007, p. 45), which is one form of contextualization (Perin, 2011).  

Theory. The link between application of math concepts to students’ everyday 

lives and improvements in math performance is supported by the theory of situated 

cognition (The Cognition and Technology Group at Vanderbilt, 1990). Situated cognition 

is based on the idea that since an important objective of schooling is the transfer of skills 

from the abstract to the concrete, skills and concepts should not be taught without 

reference to the real world; rather, they should be situated in authentic activities (Brown, 

Collins, & Duguid, 1989). Authentic activities value the experiences and knowledge 

students bring with them to the classroom and allow students to learn math in a context 

that is meaningful to them. For example, culturally responsive pedagogy, which utilizes 

authentic, culturally based activities, is believed to be more effective than traditional 

instruction because “it filters curriculum content and teaching strategies through their 

cultural frames of reference to make the content more personally meaningful and easier 

to master” (Gay, 2000, p. 24). 
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The cognitive apprenticeship model of learning explains how pedagogy and 

content (e.g., authentic activities) based on the theory of situated cognition are connected 

to student learning and transfer of skills. In this model, students are apprentices who 

through guided practice become independent learners, and the skills they learn are both 

physical and cognitive, since “knowing and doing” (Brown et al., 1989, p. 39) are 

inseparable. First, teachers introduce a new concept by modeling how to solve a problem 

that students are familiar with; then, as students become more comfortable with the 

concept, they are given authentic activities to work on in collaborative groups (Brown et 

al., 1989). Finally, as opposed to traditional instruction that begins with equation solving 

and ends with word problems that situate math in real-world contexts, instructional 

approaches based on situated cognition may end with students independently using 

algorithmic procedures to solve problems that assess the understanding of the same math 

ideas and skills embedded in the authentic activities (Brown, et al., 1989; Laughbaum, 

2003; Vasquez, 2003). In other words, this learning process is thought to aid in the 

transfer of math skills to both procedural problem solving and open-ended, realistic 

problem-solving activities (Boaler, 1998). 

Another mechanism that may explain why application-oriented instructional 

approaches in this set may improve math learning is motivation. Motivation may be the 

result of pedagogical techniques, such as collaborative learning (Johnson et al., 1991; 

Springer et al., 1999), and the contextualized curriculum (Perin, 2011). The practices in 

this set may improve student learning through different mechanisms because they are 

defined by a number of instructional and curricular supports, including instructor 

scaffolding, complex problem-solving embedded in real-world or culturally based 

situations, collaborative group work, and hands-on activities that use technology that 

helps students contextualize math concepts in real-world problems (Bottge, Heinrichs, 

Chan, & Serlin, 2001; Bottge, Heinrichs, Mehta, & Hung, 2002; Brenner, 1998; 

Ellington, 2005a, 2005b; Ganter & Jiroutek, 2000; Hickey, Moore, & Pelligrino, 2001; 

Hollar & Norwood, 1999; Kennedy, Vasquez, & Huber, 2003; Laughbaum, 2003; Lipka 

& Adams, 2004; O’Callaghan, 1998; Shore, Shore, & Boggs, 2004; Vasquez, 2003, 

2004).  
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Application in Practice 
 

At Maricopa community colleges, students in arithmetic review courses were given two weeks to solve 

the following problem in groups (Tannehill & Zeka, 1997): 

 

You are interested in purchasing a new vehicle.  

What should your annual salary be to afford the car you want? 

 

Instructors acted as facilitators, providing students with web resources and formulas to help them 

calculate their dept‐to‐income ratio, car costs, loan payments, and other critical pieces of information that 

students needed to be able to calculate how much they would have to earn to finance the car they want.  
 

 

 

Empirical evidence. The eleven studies in this set (see Table 1) consistently find 

a positive association, with trivial to large effect sizes, between teaching math through 

application and improved performance on tests of conceptual understanding. However, 

only the Hickey et al. (2001) study attempted to ensure that the treatment and control 

conditions and students and teachers in both groups were comparable, and the treatment 

effects were too small for the results to conclusively support the use of a video series that 

takes elementary students on complex math adventures. In many of the studies in this set, 

treatment students outperformed control students on tests of understanding, but there 

were no differences in performance on more traditional tests of procedural fluency 

(Bottge et al., 2001; Bottge et al., 2002; Hickey et al., 2001; Hollar & Norwood, 1999; 

O’Callaghan, 1998)—a finding that is consistent with studies in the problem 

representation set (Brenner et al., 1997; Chappell; 2006). These studies highlight the 

possible trade-offs that are made when reform-based instructional practices are used in 

the math classroom at both the K-12 and college levels. While these practices show 

promise for improving students’ conceptual understanding, which is considered a 

necessary condition to be successful in math at any level (Bransford, Brown, & Cocking, 

1999; Hiebert & Grouws, 2007; Katz, 2007; Kilpatrick et al., 2001), they may require 

more time and preparation and sometimes do not improve students’ computational skills 

(Brenner et al., 1997). 
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2.5 Understanding Student Thinking 

The fifth set of practices encompasses instructional methods that help teachers 

understand student thinking and adjust their instruction to meet the needs of their 

students. These pedagogical practices include assessment methods that are used during 

instruction to monitor student progress and guide instruction, such as frequent testing, 

classroom assessment techniques, classroom voting, the Keystone Method, progress 

monitoring, and curriculum-based measurement (CBM).  

Theory. While cognitive and behavioral theories explain the relationship between 

assessment and students’ understanding of their own thinking, theories and applications 

of cognitively guided instruction (CGI) explain the importance of teachers’ 

understanding of student thinking (Bransford, Brown, & Cocking, 1999; Carpenter, 

Fennema, Peterson, Chiang, & Loef, 1989; Villasenor & Kepner, 1993). CGI is the use of 

instructional practices that are informed by research on how students solve math 

problems and by knowledge of the prior math skills and misconceptions students bring to 

the math classroom (Carpenter et al., 1989; Villasenor & Kepner, 1993). CGI is based on 

a cognitive perspective of teaching that examines the interaction between teachers’ 

instructional choices, their knowledge of student thinking, and student performance 

(Carpenter et al., 1989). The cognitive view of teaching hypothesizes that teachers who 

have an understanding of their students’ thinking (as well as strong subject matter and 

pedagogical content knowledge) will make better instructional choices that result in 

improvements in student math achievement (Ball & Bass, 2000; Bransford et al., 1999; 

Carpenter et al., 1989; Kieran, 2007). 

Applying the cognitive view of teaching can be challenging, however, since 

monitoring the progress of a classroom of students “create[s] an overwhelming demand 

on the cognitive resources of the teacher” (Carpenter et al., 1989, p. 501). As a result, 

teachers are only able to make small adjustments in their instruction based on their 

assessment of student understanding and thinking. However, today, formative 

assessment, or the adjustment of instruction based on performance of students, can be 

driven by technological tools that provide an efficient means of monitoring student 

progress through frequent assessment, especially at the college level (Blair, 2006; Boroch 

et al., 2007; Cline, 2006). Technological supports, such as clickers (see, e.g., Cline, 

 18



2006), are aligned with a cognitively based perspective on instruction that hypothesizes 

that teachers make more effective instructional choices that help students build their 

mathematical understanding when they are able to assess students’ prior knowledge and 

current understanding of the material. 

Empirical evidence. While it is generally accepted that college instructors should 

adapt instruction to meet the needs of their students through meaningful, ongoing 

assessment (Adams, 1997; Blair, 2006; Boroch et al., 2007; Boylan, 2002; Siadat et al., 

2008), the four studies targeting college and developmental education students did not 

utilize comparison groups or compared non-equivalent groups (see Table 1), so their 

findings cannot confirm the positive impact of ongoing, formative assessment. Among 

the nine K-12 studies (see Table 1), the rigorous studies by Fuchs and Fuchs (1990), 

Fuchs, Fuchs, Hamlett, and Stecker (1991), and Fuchs, Fuchs, Hamlett, Phillips, and 

Bentz (1994) find strong support for using CBM that provides teachers with expert 

recommendations to make instructional changes with elementary school students with 

learning disabilities. However, given that all three studies were conducted by the same 

researchers in the same setting, confidence in the validity of these studies would be 

strengthened if their results were replicated elsewhere. 

 

 
 

Understanding Student Thinking in Practice 
 

Daley  College  implemented  the  Keystone Method  in  Elementary  Algebra,  Intermediate  Algebra,  and 

College Algebra  (Siadat et al., 2008). This  instructional method utilizes daily assessment of  students  to 

inform  the  instructor  of  the  progress  of  the  class  and  each  student.  The  instructor  can  then  adjust 

instruction accordingly and inform students of their individual progress. Before each class, the instructor 

conducts an  item analysis of student answers on the quiz questions that tells the  instructor which areas 

should be  retaught or  reviewed  the next day  and which problems  to  include on  future quizzes.  If  the 

standard  deviation  of  the  quiz  scores  is  greater  than  0.25  (i.e.,  if  there  is  considerable  divergence  in 

student understanding of specific skills), the  instructor creates small, heterogeneous groups of students 

with one from each of the quiz performance quartiles. As a result, groups have weak, average, and high‐

performing  students who  can motivate and help each other  learn  the material.  If quiz  scores  reflect a 

general understanding of skills across all students, the instructor uses more traditional modes of teaching 

to move on to new concepts. 
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2.6 Computer-Based Learning 

This last set includes studies in which students work through technology-

delivered mathematics content at their own pace during some or all of classroom time, 

with the instructor providing some face-to-face interaction through individualized 

attention, delivery of instruction, or technology support. Computer-based learning may 

also encompass many of the approaches previously discussed, such as using computer-

based technology to provide students with real-world problem-solving opportunities and 

monitoring the progress of students in order to guide instruction and content. Computer-

based learning includes course redesign models, a popular trend in developmental 

mathematics where some or all of face-to-face instruction is replaced with a set of self-

paced, online curriculum modules (Epper & Baker, 2009; Twigg, 2005); hybrid or 

blended online learning; and forms of computer-based learning where the traditional 

course structure is maintained and the instructor still has a role in the classroom. 

Theory. Originally, computer-based instruction was based on the theory of 

behaviorism (Hung, 2001; Safford-Ramus, 2008). According to behaviorism, responses 

to stimuli (e.g., questions) that are directly followed by positive or negative 

reinforcement will lead to the conditioning of consistent, correct responses representing 

the learning of material (Safford-Ramus, 2008). In one of the first educational 

applications of behaviorism, a “teaching machine” provided students with academic 

material followed by factual questions; students’ responses were then fed back into the 

machine (Skinner, 1960). The machine provided immediate responses to each answer: the 

student received new material for correct answers and the same question for incorrect 

answers. Skinner (1960) believed that this type of programmed instruction motivated 

learning by breaking down concepts into small, manageable pieces of information that 

students could work through at their own pace while continually receiving immediate 

feedback on their understanding.  

Computer-based learning has evolved since the advent of Skinner’s teaching 

machine. First, there is a range of pedagogy inherent to instructional software programs. 

Some computer-based tutorial and learning programs deliver drill-and-practice exercises 

(Hung, 2001), while other instructional software programs provide problem-solving 

activities that emphasize deeper understanding of mathematical concepts (Epper & 
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Baker, 2009; Hung, 2001; Stillson & Alsup, 2003; Twigg, 2005). As a result, technology-

mediated instructional content may determine the extent to which students experience a 

balanced learning environment where procedural skills, conceptual understanding, and 

other components of mathematical proficiency are all addressed. Second, computer-based 

learning can be designed to incorporate principles of constructivism (Kanuka & 

Anderson, 1999). For example, because of its self-paced learning component, computer-

based instruction is called a student-centered model of learning (Trenholm, 2006; Zhu & 

Polianskaia, 2007). Computer-based learning utilizes an important constructivist 

principle—that students are active in the construction of knowledge rather than passive 

recipients of knowledge, and educators serve as their guides and helpers (Kanuka & 

Anderson, 1999). Other essential features of a constructivist classroom are discovery-

based learning and meaningful interactions between students, which can also be 

incorporated into computer-based instructional models (Kanuka & Anderson, 1999). 

Finally, the Open Learning Initiative (OLI), which creates online courses for students at 

Carnegie Mellon University, has demonstrated how computer-based delivery of course 

content can incorporate instructional elements that traditional instruction cannot. For 

example, the structure of the OLI-Statistics course is influenced by the theory that 

instructional design should try to eliminate “extraneous cognitive load” (Lovett, Meyer, 

& Thille, 2008, p. 6), or tasks and information that are unnecessary to learn a concept or 

skill. Therefore, the course explains statistics concepts through animations that are 

accompanied by verbal explanations so that students do not have to process separate 

visual and text-based explanations of statistics concepts (Lovett et al., 2008). 

Computer-based learning is also a form of mastery learning (Hagerty & Smith, 

2005; Trenholm, 2006). Under the mastery learning approach, course content is divided 

into small units, and students must demonstrate mastery of one unit before they can move 

on to the next unit (Kulik, Kulik, & Bangert-Drowns, 1990). The mastery learning 

approach is thought to be more effective than traditional instruction because it is tailored 

to each student’s needs; students only work on material they are ready to learn (Kulik et 

al., 1990). Computer-based instructional programs allow instructors to efficiently provide 

their students with a mastery learning experience through individualized learning 
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programs that monitor student progress and adjust the content delivered accordingly 

(Hagerty & Smith, 2005). 

Empirical evidence. The evidence regarding the impact of computer-based 

learning is inconclusive because none of the 13 studies in this set (see Table 1) employed 

a rigorous research design. Lovett et al. (2008) randomized students in their study on the 

impact of the OLI-Statistics course, but because the treatment condition is an eight-week 

OLI-Statistics course and the comparison condition is a 15-week traditional course, it is 

impossible to disentangle the effects of the OLI pedagogy from the possible effects of 

acceleration. In other words, the eight-week structure of the course may have contributed 

to the outcomes either by motivating students or through another mechanism. The highest 

quality study used a quasi-experimental design and found that college algebra students in 

course sections using ALEKS (Assessment and Learning in Knowledge Spaces), a 

computer-adaptive, online assessment and learning program, experienced small gains in 

math learning compared to students in traditional algebra course sections (Hagerty & 

Smith, 2005). However, the final results only include students who took both the pretest 

and the posttest, not accounting for the test scores of students who enrolled late or 

withdrew from the course. As a result, differential attrition could have biased the results.  

 

 
 

Computer‐Based Learning in Practice 
 

Cleveland State Community College redesigned its developmental and college math courses by replacing 

three hours per week of class time with one hour per week in a computer classroom with faculty and two 

hours per week  in a  large computer  lab  (Squires, Faulkner, & Hite, 2009). Students use MyMathLab  to 

work  through 10–12  curriculum modules on  their own by watching  an  instructional  video,  completing 

homework,  and  then  passing  a  quiz.  Based  on  the mastery  learning  approach,  to move  to  the  next 

module, students must earn at least a 70% on the homework and quiz for each module. Faculty teach 10 

math sections each and spend 10 hours per week in the computer lab providing students with one‐on‐one 

attention  and  individualized  instruction.  The  Community  College  Futures Assembly  awarded  Cleveland 

State the Bellwether Award  in the  Instructional Programs and Services category for  its redesigned math 

courses. 
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3. Research Recommendations  

Evidence from this literature review supports the National Mathematics Advisory 

Panel’s (2008) conclusion that there is a crucial need for more methodologically rigorous 

scientific research in the area of effective math instructional practices. All of the 

pedagogical practices discussed in this review may have the potential to improve the 

outcomes of developmental math students, but given the poor internal validity of many of 

the studies, it is difficult to infer whether most of the pedagogy is effective in practice. 

The following are four methodological recommendations that could improve the internal 

validity of future research on developmental math instruction. The principal issues and 

patterns of findings that emerged from this review also highlight three directions for 

research on developmental math pedagogy.  

3.1 Methodological Recommendations 

Since it is difficult to conduct randomized experiments in K-12 and college 

settings, researchers should collect information on student abilities and demographics and 

control for any observable differences between groups using statistical methods. Doing so 

would provide more convincing evidence that differences in outcomes are due to the 

instructional intervention rather than preexisting differences between treatment and 

control students. Second, it is recommended that, if the treatment takes place across 

multiple classrooms, participating instructors teach both a treatment section and a control 

section, and that instructors be similar along observable measures of teacher quality. This 

would help ensure that the effects of an instructional practice can be more credibly 

disentangled from the impact of individual instructors. 

Third, multiple-choice math tests and other standardized assessments are often 

used to study the effects of reform-based math instructional practices, but traditional 

assessments may neglect to measure the types of skills that reform-based pedagogy 

promotes (Hamilton et al., 2003). However, assessments that are designed specifically for 

a study to measure the impact of a single pedagogical practice may not be fair outcome 

measures if they only emphasize the skills and knowledge that were taught in the 

treatment classrooms. It may be most appropriate, therefore, to use multiple outcome 
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measures that include standardized and thoughtfully designed alternative measures of 

math achievement and learning.9 

Finally, in higher education research, it is important to consider that even if 

students are unaware of which course sections have been assigned to the treatment or 

control group, course scheduling can influence the types of students that register for each 

course, and the characteristics on which these students differ may be related to 

educational performance. Therefore, offering treatment and control sections at similar 

times reduces the likelihood that any outcomes are partly determined by student 

characteristics related to the time of day the course sections are offered.  

3.2 Directions for Future Research 

Conducting rigorous evaluations of computer-based learning in developmental 

math is essential to furthering our understanding of how this popular developmental 

mathematics reform affects student math learning, persistence, and other outcomes. 

Anecdotally, some community colleges have experienced improved pass rates and 

persistence for developmental math students after the introduction of computer-based 

instruction and course redesign (see, e.g., Speckler, 2008; Squires et al., 2009; Twigg, 

2005). But many questions remain regarding exactly how these new models of 

developmental education are connected to observed outcomes. Course redesign models 

involve substantial changes to the way course content is delivered by replacing some or 

all of the traditional course structure with self-paced online learning modules (Epper & 

Baker, 2009; Twigg, 2003). As a result, outcomes may be due to any number of changes 

in how course content is delivered, when students can access course content, and the 

pedagogy utilized in each model. For example, in some models, students are able to 

access course content at any time from home or in a large computer lab, while in others, 

they must work through the content during structured lab times (Twigg, 2003, 2005). 

Regarding pedagogy, there is variation in how much time students spend working 

                                                 
9 The midterm and final exams in Chappell’s (2006) study are examples of well-designed outcome 
measures. A faculty member not involved in the study designed the midterm and final that tested 
knowledge and skills that were covered in both the control and treatment classrooms, and six other faculty 
members not involved in the study assigned each item to the procedural skill subscale or conceptual 
understanding subscale. Then, the four instructors in the study designed a rubric and graded the exams 
together, ensuring that the students in the treatment and control sections were assessed fairly.  
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through the course material on their own, and some models emphasize individualized 

attention from instructors or tutors and small-group work more than others (Twigg, 2003, 

2005). Differences in pedagogy also extend to the type of instructional software used 

(Hung, 2001): some computer-based course content may allow for investigative problem 

solving or discovery-based learning, while other software programs rely on drill-and-

practice problems.10 Finally, all of these components of course redesign may impact 

students in different ways, and they may even have differential effects for different types 

of students. Future research should aim to isolate the effects of different components of 

course redesigns or to assess the possible differential effects of this reform on student 

subgroups.  

Next, unlike the studies in the application and computer-based learning sets, 

which typically take place in colleges and universities, the studies in the other sets target 

diverse student populations, including elementary, secondary, developmental education, 

and college students as well as students with learning disabilities at each of these 

educational levels. Across all these sets, there are slightly larger effect sizes from high-

quality studies whose target population is students with learning disabilities compared to 

high-quality studies whose target population is typical students, and within rigorous 

studies that compare outcomes between subgroups of students, effect sizes are slightly 

larger for lower-achieving students or students with learning disabilities. It is important to 

note that many of studies focusing on students with learning disabilities are by the same 

set of authors (i.e., Fuchs et al.). Nonetheless, this pattern may be indicative of the 

importance of pedagogy that utilizes cooperative learning, teaches students to monitor 

their understanding as they solve problems, improves problem representation, and 

involves ongoing assessment and the adjustment of instruction for students struggling 

with mathematics. Therefore, a direction for qualitative and quantitative research could 

                                                 
10 For example, in a randomized study, Campuzano, Dynarski, Agodini, and Rall (2009) compared the 
effects of different software products (PLATO, Larson, and Cognitive Tutor) on middle school math 
achievement. PLATO is described as relatively behaviorist because it includes only independent practice 
on procedural skill building, while the Larson products address both skill building and problem solving, 
and Cognitive Tutor requires students to use graphs to represent and solve problem scenarios. None of the 
products had significant effects on student math achievement, and standard errors were large, such that one 
cannot say with confidence that their effects were negative, zero, or positive. However, this study still 
presents a model for research that should be performed at the higher education level.  
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be a more focused examination of how these types of pedagogy could be effective in 

building the foundational skills that adult students need to move beyond basic math and 

into more advanced math subjects. 

A final priority for developmental education  research is designing and 

investigating the impact of more balanced instructional approaches that promote all 

strands of mathematical learning. This is especially important since the Mathematical 

Association of America (MAA) and American Mathematical Association of Two-Year 

Colleges (AMATYC) recommend replacing traditional college algebra courses with 

modeling-based college algebra courses, in which students solve problems situated in 

real-world contexts by creating and interpreting mathematical models (Katz, 2007). 

However, while the studies in the application set do not suggest anything conclusive 

about the effects of this type of instruction, they do consistently suggest that application-

oriented instructional approaches may support some strands of mathematical proficiency 

but do not improve procedural fluency. A challenge for researchers and practitioners is to 

develop modeling-based approaches that improve students’ math understanding as well 

as their performance on traditional standardized tests of mathematics achievement. 

 

4. Instructional Recommendations  

There are a number of studies in the student collaboration and problem 

representation sets that employed rigorous designs with positive results, and, therefore, 

adaptation and evaluation of these pedagogical practices ought to be considered for the 

developmental mathematics classroom.  

4.1 Structured Student Collaboration 

Structured peer-collaboration methods for developmental and college math 

students are already taking place outside the classroom with programs like Peer-Led 

Team Learning (Hooker, 2010) and Math Excel, workshops where students work 

together collaboratively on math problems that reinforce or review material that is 

covered in their regular course (Dick, 2003). However, it is unknown how prevalent 

highly structured peer-collaboration methods are in the developmental math classroom. 
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Many instructors may use cooperative learning in informal ways, but theory and research 

suggest that cooperative learning may not be effective unless it is formally and 

systematically integrated into a course. According to social interdependence theory, 

positive educational outcomes are the result of engagement in frequent, meaningful 

interactions with others for the purpose of working toward a common goal (Johnson et 

al., 1991), and the rigorous student collaboration studies found that students benefited 

from cooperative learning methods in which all students played a role in working toward 

a shared goal.  

Applications of structured student collaboration in developmental math include 

collaborative problem-solving activities that have a group grade tied to them. Part of the 

final grade in a course may even include group performance on collaborative activities. A 

specific example of a more formal student collaboration activity comes from Dees’s 

(1991) study. In the developmental math lab sections, groups of four to six students 

received only parts of the instructions to a problem, and then students shared with their 

group the information they received. The group had to work together to understand the 

problem instructions and then solve the problem. At the end of the activity, one group 

member was randomly chosen to explain the group’s solution, and the group’s grade was 

based on this explanation, so group members had to collaborate to ensure everyone in the 

group understood the solution steps and final answer.  

Activities like the one from Dees’s classroom—those that ensure that each student 

has a role in accomplishing a task with a group grade—could be used to supplement more 

traditional instructional practices in the developmental math classroom and used in 

combination with other alternative pedagogical practices. For instance, the use of 

ongoing assessment can help determine the specific areas where students need more 

practice, so instead of conducting a whole-class review of the material, an instructor 

could group students together to work on only the specific areas with which they are 

struggling. Requiring students to explain out loud how they arrived at their solution may 

help them start thinking about their own mathematical thinking, thereby incorporating a 

metacognitive framework into their problem-solving process. Exercises could also 

require students to represent the problem situation in several ways in order to develop 

their problem representation skills. 
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4.2 Improving Problem Representation 

There were no developmental education studies that focused on problem 

representation, but rigorous studies involving other student populations demonstrate how 

instructors can improve student learning by integrating problem representation instruction 

into their lectures, interactive board work, and other traditional modes of instruction. For 

example, in a study by Brenner et al. (1997), pre-algebra students were taught and asked 

to represent problems using graphs, diagrams, tables, pictures, and equations and to solve 

problems using multiple representations. Similarly, in a study by Chappell (2006), faculty 

routinely represented calculus concepts numerically, algebraically, and graphically and 

solved them using these representations in their lectures, and students were expected to 

do the same on homework and assessments. Evidence from both of these studies suggests 

that improving students’ problem representation skills is a promising teaching strategy 

for improving math learning outcomes. 

Developmental math instructors may want to consider modeling problem 

situations numerically, algebraically, and graphically in their lessons and expecting their 

students to represent and solve problems in multiple ways on homework and assessments. 

This would require more time devoted to lesson preparation, a change in the content of 

homework and assessments, and lessons that spend more time on each concept, which 

may reduce the time spent working on procedural fluency through solving equations 

(Brenner et al., 1997). It would be useful for researchers to design and evaluate balanced 

instructional approaches that are able to effectively teach all strands of mathematical 

proficiency, but individual instructors can also experiment with how to find ways to focus 

on problem representation while still providing students with practice on traditional 

equation solving.  

 

5. Summary of Recommendations 

To summarize, identifying effective pedagogical practices in developmental math 

could potentially lead to improved student learning outcomes and, ultimately, improved 

rates of course completion and persistence. However, more rigorous research in the area 

of developmental math education is needed in order to confirm that certain practices that 

 28



 29

seem promising are indeed effective in the classroom. First, evaluations of course 

redesign in developmental mathematics should attempt to separate the effects of the 

structural and instructional components of the various models of computer-based 

learning, examine how different types of students respond to reform, and consider the 

possible differential impact of instructional software that emphasizes procedural fluency 

and software that emphasizes mathematical understanding and application. Future 

research should also explore how cooperative learning, ongoing formative assessment, 

and strategies that encourage self-reflection and problem representation skills help 

developmental education students build foundational math skills. Finally, research should 

develop and test balanced instructional methods that have an impact on all strands of 

mathematical proficiency. 

In the meantime, the literature yields support for a few recommendations that 

instructors may find immediately useful. For example, instructors should consider using 

structured collaborative problem-solving activities in which each group member has a 

role in working toward a group product or answer. Second, instructors should consider 

representing the same problem numerically, graphically, and algebraically in their lessons 

on a routine basis. Students can then be expected to represent problems in multiple ways 

on in-class exercises, homework, and assessments. 

Currently, the academic outlook for students who enroll in developmental math 

courses is generally unfavorable. Improving outcomes for developmental math students 

will require the continued efforts of researchers and practitioners. The payoff for those 

efforts may be significant, since bringing more effective pedagogy to the developmental 

math classroom could have profound effects on academic outcomes and job attainment 

for developmental math students.



References 

Abdalkhani, J., & Menon, R. (1998). Using writing in college mathematics courses. 
Journal on Excellence in College Teaching, 9(3), 3–17. 

Adams, T. L. (1997). Technology makes a difference in community college mathematics 
teaching. Community College Journal of Research and Practice, 21(5), 481–491. 

 
Allinder, R. M., Bolling, R. M., Oats, R. G., & Gagnon, W. A. (2000). Effects of teacher 

self-monitoring on implementation of curriculum-based measurement and 
mathematics computation achievement of students with disabilities. Remedial and 
Special Education, 21(4), 219–226. 

Arendale, D. R. (2004). Pathways of persistence: A review of postsecondary peer 
cooperative learning programs. In I. M. Duranczyk, J. L. Higbee, & D. B. 
Lundless (Eds.), Best practices for access and retention in higher education. 
Minneapolis, MN: University of Minnesota, Center for Research on 
Developmental Education and Urban Literacy. 

Bailey, T., Jeong, D. W., & Cho, S.-W. (2010). Referral, enrollment, and completion in 
developmental education sequences in community colleges. Economics of 
Education Review, 29(2), 255–270. 

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and 
learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple 
perspectives on the teaching and learning of mathematics (pp. 83–104). Westport, 
CT: Ablex. 

Baxter, J. A., Woodward, J., & Olson, D. (2001). Effects of reform-based mathematics 
instruction on low achievers in five third-grade classrooms. Elementary School 
Journal, 101(5), 529–547.  

Beirne-Smith, M. (1991). Peer tutoring in arithmetic for children with learning 
disabilities. Exceptional Children, 57(4), 330–337. 

Bettinger, E. P., & Long, B. T. (2009). Addressing the needs of underprepared students in 
higher education: Does college remediation work? Journal of Human Resources, 
44(3), 736–771.  

Blair, R. R. (Ed.). (2006). Beyond crossroads: Implementing mathematics standards in 
the first two years of college. Memphis, TN: American Mathematical Association 
of Two-Year Colleges. 

Boaler, J. (1998). Alternative approaches to teaching, learning and assessing 
mathematics. Evaluation and Program Planning, 21(2), 129–141.  

 30



Boatman, A., & Long, B. T. (2010). Does remediation work for all students? How the 
effects of postsecondary remedial and developmental courses vary by level of 
academic preparation (NCPR Working Paper). New York, NY: National Center 
for Postsecondary Research. 

Boroch, D., Fillpot, J., Gabriner, R., Hope, L., Johnstone, R., Mery, P., Serban, A., & 
Smith, B. (2007). Basic skills as a foundation for student success in California 
community colleges. Sacramento, CA: Research and Planning Group of the 
California Community Colleges, Center for Student Success. 

Bottge, B. A., Heinrichs, M., Chan, S.-Y., & Serlin, R. C. (2001). Anchoring adolescents’ 
understanding of math concepts in rich problem-solving environments. Remedial 
and Special Education, 22(5), 299–314.  

Bottge, B. A., Heinrichs, M., Mehta, Z. D., & Hung, Y.-H. (2002). Weighing the benefits 
of anchored math instruction for students with disabilities in general education 
classes. Journal of Special Education, 35(4), 186–200. 

Boylan, H. R. (2002). What works: Research-based best practices in developmental 
education. Boone, NC: Continuous Quality Improvement Network with the 
National Center for Developmental Education, Appalachian State University.  

Boylan, H. R., & Saxon, D. P. (1998). An evaluation of developmental education in Texas 
public colleges and universities. Austin, TX: Texas Higher Education 
Coordinating Board.  

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). How people learn: 
Brain, mind, experience, and school. Washington, DC: National Academy Press.  

Brenner, M. E. (1998). Adding cognition to the formula for culturally relevant instruction 
in mathematics. Anthropology & Education Quarterly, 29(2), 214–244. 

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Durán, R., Reed, B. S., & Webb, D. 
(1997). Learning by understanding: The role of multiple representations in 
learning algebra. American Educational Research Journal, 34(4), 663–689. 

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of 
learning. Educational Researcher, 18(1), 32–42. 

Calcagno, J. C., & Long, B. T. (2008). The impact of postsecondary remediation using a 
regression discontinuity approach: Addressing endogenous sorting and 
noncompliance (NBER Working Paper. No. 14194). Cambridge, MA: National 
Bureau of Economic Research.  

Calhoon, M. B., & Fuchs, L. S. (2003). The effects of peer-assisted learning strategies 
and curriculum-based measurement on the mathematics performance of secondary 
students with disabilities. Remedial and Special Education, 24(4), 235–245.  

 31



Campuzano, L., Dynarski, M., Agodini, R., & Rall, K. (2009). Effectiveness of reading 
and mathematics software products: Findings from two student cohorts (NCEE 
Paper No. 2009-4041) . Washington, DC: National Center for Education 
Evaluation and Regional Assistance, Institute of Education Sciences, U.S. 
Department of Education.  

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C.-P., & Loef, M. (1989). Using 
knowledge of children’s mathematics thinking in classroom teaching: An 
experimental study. American Educational Research Journal, 26(4), 499–531. 

Casazza, M. E. (1998). Strengthening practice with theory. Journal of Developmental 
Education, 22(2), 14–20.  

Chappell, K. K. (2006). Effects of concept-based instruction on calculus students’ 
acquisition of conceptual understanding and procedural skill. In F. Hitt, G. Harel, 
& A. Selden (Eds.), Research in collegiate mathematics education VI (pp. 27–60). 
Providence, RI: American Mathematical Society.  

Cline, K. S. (2006). Classroom voting in mathematics. Mathematics Teacher, 100(2), 
100–104. 

The Cognition and Technology Group at Vanderbilt. (1990). Anchored instruction and its 
relationship to situated cognition. Educational Researcher, 19(6), 2–10. 

Darken, B., Wynegar, R., & Kuhn, S. (2000). Evaluating calculus reform: A review and a 
longitudinal study. In E. Dubinsky, A. H. Schoenfeld, & J. Kaput (Eds.), 
Research in collegiate mathematics education IV (pp. 16–41). Providence, RI: 
American Mathematical Society.  

Dees, R. L. (1991). The role of cooperative learning in increasing problem-solving ability 
in a college remedial course. Journal for Research in Mathematics Education, 
22(5), 409–421.  

DePree, J. (1998). Small-group instruction: Impact on basic algebra students. Journal of 
Developmental Education, 22(1), 2–6.  

Dick, T. (2003). Lessons learned in a Math Excel workshop: The importance of 
maintaining high cognitive demands. Journal of Mathematics and Science: 
Collaborative Explorations, 6, 65–74. 

Donovan, M. S., & Bransford, J. D. (Eds.). (2005). How students learn: Mathematics in 
the classroom. Washington, DC: National Academies Press.  

Duncan, H., & Dick, T. (2000). Collaborative workshops and student academic 
performance in introductory college mathematics courses: A study of a Treisman 
model Math Excel program. School Science and Mathematics, 100(7), 365–373.  

 32



Edgecombe, N. (2011, forthcoming). Accelerating the academic achievement of students 
referred to developmental education: A review of the evidence (CCRC Working 
Paper, Assessment of Evidence Series). New York, NY: Columbia University, 
Teachers College, Community College Research Center. 

Ellington, A. J. (2005a). A modeling-based approach to college algebra. Academic 
Exchange Quarterly, 9(3), 131–135.  

Ellington, A. J. (2005b). A modeling-based college algebra course and its effect on 
student achievement. Primus, 15(3), 193–214.  

Epper, R. M., & Baker, E. D. (2009). Technology solutions for developmental math: An 
overview of current and emerging practices. Seattle, WA: Bill & Melinda Gates 
Foundation. Retrieved from 
http://www.gatesfoundation.org/learning/Documents/technology-solutions-for-
developmental-math-jan-2009.pdf 

Fabry, V. J., Eisenbach, R., Curry, R. R., & Golich, V. L. (1997). Thank you for asking: 
Classroom assessment techniques and students’ perceptions of learning. Journal 
on Excellence in College Teaching, 8(1), 3–21.  

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-
developmental inquiry. American Psychologist, 34(10), 906–911. 

Fuchs, L. S., & Fuchs, D. (1990). The role of skills analysis in curriculum-based 
measurement in math. School Psychology Review, 19(1), 6–22. 

Fuchs, L. S., Fuchs, D., Hamlett, C. L., Phillips, N. B., & Bentz, J. (1994). Classwide 
curriculum-based measurement: Helping general educators meet the challenge of 
student diversity. Exceptional Children, 60(1), 518–537.  

Fuchs, L. S., Fuchs, D., Hamlett, C. L., Phillips, N. B., Karns, K., & Dutka, S. (1997). 
Enhancing students’ helping behavior during peer-mediated instruction with 
conceptual mathematical explanations. Elementary School Journal, 97(3), 223–
249.  

Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Stecker, P. M. (1991). Effects of curriculum-
based measurement and consultation on teacher planning and student achievement 
in mathematics operations. American Educational Research Journal, 28(3), 617–
641. 

Fuchs, L. S., Fuchs, D., & Karns, K. (2001). Enhancing kindergartners’ mathematical 
development: Effects of peer-assisted learning strategies. Elementary School 
Journal, 101(5), 495–510.  

 33

http://www.gatesfoundation.org/learning/Documents/technology-solutions-for-developmental-math-jan-2009.pdf
http://www.gatesfoundation.org/learning/Documents/technology-solutions-for-developmental-math-jan-2009.pdf


Fuchs, L. S., Fuchs, D., Phillips, N. B., Hamlett, C. L., & Karns, K. (1995). Acquisition 
and transfer effects of classwide peer-assisted learning strategies in mathematics 
for students with varying learning histories. School Psychology Review, 24, 604–
620. 

Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach 
for first- and second-grade place-value and multidigit addition and subtraction. 
Journal for Research in Mathematics Education, 21(3), 180–206.  

Ganter, S. L., & Jiroutek, M. R. (2000) The need for evaluation in the calculus reform 
movement: A comparison of two calculus teaching methods. In E. Dubinsky, A. 
H. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education 
IV (pp. 42–62). Providence, RI: American Mathematical Society.  

Garcia, H. I. (2003). From theory to practice: A case for developmental mathematics. 
Research & Teaching in Developmental Education, 20(1), 53–67.  

Garofalo, J., & Lester, F. K., Jr. (1985). Metacognition, cognitive monitoring, and 
mathematical performance. Journal for Research in Mathematics Education, 
16(3), 163–176. 

Gay, G. (2000). Culturally responsive teaching: Theory, research, & practice. New York, 
NY: Teachers College Press. 

Ginsburg-Block, M. D., & Fantuzzo, J. W. (1998). An evaluation of the relative  
effectiveness of NCTM standards-based interventions for low-achieving urban 
elementary students. Journal of Educational Psychology, 90(3), 560–569. 

 
Goldrick-Rab, S. (2007). Promoting academic momentum at community colleges: 

Challenges and opportunities (CCRC Working Paper No. 5). New York, NY: 
Columbia University, Teachers College, Community College Research Center. 

Grubb, W. N. (2010, September). The quandaries of basic skills in community colleges: 
Views from the classroom (NCPR Working Paper). Paper presented at the 
National Center for Postsecondary Research developmental education conference, 
New York, NY. 

Grubb, W. N., & Worthen, H. (1999). Remedial/developmental education: The best and 
the worst. In W. N. Grubb (Ed.), Honored but invisible: An inside look at 
teaching in community colleges (pp. 171–209). New York, NY: Routledge. 

Hagerty, G., & Smith, S. (2005). Using the web-based interactive software ALEKS to 
enhance college algebra. Mathematics and Computer Education, 39(3), 183–194.  

Hamilton, L. S., McCaffrey, D. F., Stecher, B. M., Klein, S. P., Robyn, A., & Bugliari, D. 
(2003). Studying large-scale reforms of instructional practice: An example from 
mathematics and science. Educational Evaluation and Policy Analysis, 25(1), 1–
29.  

 34



Hammerman, N., & Goldberg, R. (2003). Strategies for developmental mathematics at 
the college level. Mathematics and Computer Education, 37(1), 79–95.  

Hickey, D. T., Moore, A. L., & Pellegrino, J. W. (2001). The motivational and academic 
consequences of elementary mathematics environments: Do constructivist 
innovations and reforms make a difference? American Educational Research 
Journal, 38(3), 611–652.  

 
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on 

students’ learning. In F. K. Lester, Jr., (Ed.), Second handbook of research on 
mathematics teaching and learning (pp. 371–404). Greenwich, CT: Information 
Age Publishing.  

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ 
learning in second-grade arithmetic. American Educational Research Journal, 
30(2), 393–425.  

Hinds, S. (2009). More than rules: College transition math teaching for GED graduates 
at the City University of New York. New York, NY: City University of New York.  

 
Hohn, R. L., & Frey, B. (2002). Heuristic training and performance in elementary 

mathematical problem solving. Journal of Educational Research, 96(6), 376–380. 
 
Hollar, J. C., & Norwood, K. (1999). The effects of a graphing-approach intermediate 

algebra curriculum on students’ understanding of function. Journal for Research 
in Mathematics Education, 30(2), 220–226.   

Hooker, D. D. T. (2010). A study of the effects of the implementation of small peer led 
collaborative group learning on students in developmental mathematics courses 
at a Tribal Community College (Doctoral dissertation). Retrieved from ProQuest 
Dissertations and Theses database. (UMI No. AAT 3389625).  

Hopkins, W. G. (2009). A scale of magnitudes for effect statistics. In A new view of 
statistics. Retrieved from http://sportsci.org/resource/stats/effectmag.html 

Hughes, K., & Scott-Clayton, J. (2010). Assessing developmental education assessment 
in community colleges (CCRC Working Paper No. 19, Assessment of Evidence 
Series). New York, NY: Columbia University, Teachers College, Community 
College Research Center. 

Hung, D. (2001). Theories of learning and computer-mediated instructional technologies. 
Education Media International. Retrieved from 
http://edweb.sdsu.edu/Courses/ED795A/Hung_Theories.pdf 

Jaggars, S. S. (2011). Online learning: Does it help low-income and underprepared 
students? (CCRC Working Paper No. 26, Assessment of Evidence Series). New 
York, NY: Columbia University, Teachers College, Community College Research 
Center. 

 35

http://sportsci.org/resource/stats/effectmag.html
http://edweb.sdsu.edu/Courses/ED795A/Hung_Theories.pdf


Jitendra, A. K., Griffin, C. C., McGoey, K., Gardill, C. M., Bhat, P., & Riley, T. (1998). 
Effects of mathematical word problem solving by students at risk or with mild 
disabilities. Journal of Educational Research, 91(6), 345–356. 

Jitendra, A. K., Star, J. R., Starosta, K., Leh, J. M., Sood, S., Caskie, G., Hughes, C. L., & 
Mack, T. R. (2009). Improving seventh grade students’ learning or ratio and 
proportion: The role of schema-based instruction. Contemporary Educational 
Psychology, 34(3), 250–264. 

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Cooperative learning: Increasing 
college faculty instructional productivity (ASHE-ERIC Higher Education Report 
No. 4). San Francisco, CA: Jossey-Bass. 

Kanuka, H., & Anderson, T. (1999). Using constructivism in technology-mediated 
learning: Constructing order out of the chaos in the literature. Radical Pedagogy, 
1(2). Retrieved from http://radicalpedagogy.icaap.org/content/issue1_2/ 
02kanuka1_2.html 

Karper, J., & Melnick, S. A. (1993). The effectiveness of Team Accelerated Instruction 
on high achievers in mathematics. Journal of Instructional Psychology, 20(1), 49–
54.   

 
Katz, V. J. (2007). Algebra: Gateway to a technological future. Washington, DC: 

Mathematical Association of America.  

Kennedy, P. A., Vasquez, S., & Huber, J. (2003). Linear and exponential modeling in 
context: An experiential approach. Mathematics and Computer Education, 37(3), 
358–373. 

Keynes, H. B., & Olson, A. M. (2000). Redesigning the calculus sequence at a research 
university: Issues, implementation, and objectives. International Journal of 
Mathematical Education in Science and Technology, 31(1), 71–82. 

 
Kieran, C. (2007). Learning and teaching algebra at the middle school through college 

levels: Building meaning for symbols and their manipulation. In F. K. Lester, Jr., 
(Ed.), Second handbook of research on mathematics teaching and learning: A 
project of the national council of teachers on mathematics (pp. 707–762). 
Charlotte, NC: Information Age Publishing.  

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children 
learn mathematics. Washington, DC: National Academies Press. 

Kulik, C.-L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery 
learning programs: A meta-analysis. Review of Educational Research, 60(2), 265–
299.  

Laughbaum, E. D. (2003). Hand-held graphing technology in the developmental algebra 
curriculum. Mathematics and Computer Education, 37(3), 301–314.  

 36

http://radicalpedagogy.icaap.org/content/issue1_2/02kanuka1_2.html
http://radicalpedagogy.icaap.org/content/issue1_2/02kanuka1_2.html


Lesik, S. A. (2007). Do developmental mathematics programs have a causal impact on 
student retention? An application of discrete-time survival and regression-
discontinuity analysis. Research in Higher Education, 48(5), 583–608. 

Levin, H. M., & Calcagno, J. C. (2008). Remediation in the community college: An 
evaluator’s perspective. Community College Review, 35(3), 181–207. 

Lipka, J., & Adams, B. (2004). Culturally based math education as a way to improve 
Alaska native students’ math performance. Athens, OH: Ohio University, 
Appalachian Collaborative Center for Learning, Assessment, and Instruction in 
Mathematics (ACCLAIM) Research Initiative.  

Lovett, M., Meyer, O., & Thille, C. (2008). The Open Learning Initiative: Measuring the 
effectiveness of the OLI Statistics course in accelerating student learning. Journal 
of Interactive Media, 14. Retrieved from http://jime.open.ac.uk/2008/14 

Martorell, P., & McFarlin, I., Jr. (2008). Help or hindrance? The effects of college 
remediation on academic and labor market outcomes. Unpublished manuscript.  

McClendon, M., & McArdle, M. (2002, February). Comparing alternative algebraic 
modalities for remedial students. Paper presented at the Chair Academy 
Leadership Conference, Kansas City, MO.  

Narode, R. (1989). A constructivist program for college remedial mathematics at the 
University of Massachussetts, Amherst. Amherst, MA: University of 
Massachusetts, Scientific Reasoning Research Institute. 

National Mathematics Advisory Panel. (2008). Foundations for success: The final report 
of the National Mathematics Advisory Panel. Washington, DC: U.S. Department 
of Education.  

Norwood, K. S. (1995). The effects of the use of problem solving and cooperative 
learning on the mathematics achievement of underprepared college freshmen. 
PRIMUS, 5(3), 229–252. 

Nunnery, J. A., & Ross, S. M. (2007). The effects of the School Renaissance program on 
student achievement in reading and mathematics. Research in the Schools, 14(1), 
40–59. 

O’Callaghan, B. R. (1998). Computer-intensive algebra and students’ conceptual 
knowledge of functions. Journal for Research in Mathematics Education, 29(1), 
21–40.  

O’Dwyer, L. M., Carey, R., & Kleiman, G. (2007). A study of the effectiveness of the 
Louisiana Algebra I online course. Journal of Research on Technology in 
Education, 39(3), 289–306.  

 37

http://jime.open.ac.uk/2008/14


Perin, D. (2011, forthcoming). Facilitating student learning through contextualization 
(CCRC Working Paper, Assessment of Evidence Series). New York, NY: 
Columbia University, Teachers College, Community College Research Center. 

Porter, M. K. (1996). The effects of writing to learn mathematics on conceptual 
understanding and procedural ability in introductory college calculus (Doctoral 
dissertation). Retrieved from Proquest Dissertations and Theses database. (UMI 
No. AAT 9738758). 

Pugalee, D. K. (2001). Writing, mathematics, and metacognition: Looking for 
connections through students’ work in mathematical problem solving. School 
Science and Mathematics, 101(5), 236–245. 

 
Pugalee, D. K. (2004). A comparison of verbal and written descriptions of students’ 

problem solving processes. Educational Studies in Mathematics, 55(1–3), 27–47. 
 
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An interative process. Journal 
of Educational Psychology, 93(2), 346–362. 

Rivera-Batiz, F. L. (1992). Quantitative literacy and the likelihood of employment among 
young adults in the United States. Journal of Human Resources, 27(2), 313–328. 

Safford-Ramus, K. (2008). Unlatching the gate: Helping adult students learn 
mathematics. Lexington, KY: Xlibris Corporation. 

Schurter, W. A. (2002). Comprehension monitoring: An aid to mathematical problem 
solving. Journal of Developmental Education, 26(2), 22–33.  

Shore, M., Shore, J., & Boggs, S. (2004). Using spreadsheets and streaming video for 
developmental, teacher education, and general education mathematics courses. 
Mathematics and Computer Education, 38(2), 221–229.  

Siadat, M. V., Musial, P. M., & Sagher, Y. (2008). Keystone method: A learning 
paradigm in mathematics. PRIMUS, 18(4), 337–348.  

Silver, E. A., & Stein, M. K. (1996). The QUASAR project: The “revolution of the 
possible” in mathematics instructional reform in urban middle schools. Urban 
Education, 30(4), 476–521.  

Skinner, B. F. (1960). Teaching machines. Review of Economics and Statistics, 42(3), 
189–191.  

Speckler, M. D. (2008). Making the grade, V.3: A compendium of data-driven case 
studies on the effectiveness of MyMathLab and MathXL. Boston, MA: Pearson 
Education. 

 38



Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on 
undergraduates in science, mathematics, engineering, and technology: A meta-
analysis. Review of Educational Research, 69(1), 21–51.  

Squires, J., Faulkner, J., & Hite, C. (2009). Do the math: Course redesign’s impact on 
learning and scheduling. Community College Journal of Research and Practice, 
33(11), 883–886. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 
mathematical thinking and reasoning: An analysis of mathematical tasks used in 
reform classrooms. American Educational Research Journal, 33(2), 455–488.  

Stillson, H., & Alsup, J. (2003). Smart ALEKS ... or not? Teaching Basic Algebra using 
an online interactive learning system. Mathematics and Computer Education, 
37(3), 329–340.  

Summers, J. J., & Svinicki, M. D. (2007). Investigating classroom community in higher 
education. Learning and Individual Differences, 17(1), 55–67.  

Tannehill, D., & Zeka, Y. (1997). Problem-based learning in mathematics...What a 
concept! Maricopa Center for Learning and Instruction Forum, 5(2). Retrieved 
from http://www.mcli.dist.maricopa.edu/labyforum/Spr97/spr97F6.html 

Taylor, J. M. (2008). The effects of a computerized-algebra program on mathematics 
achievement of college and university freshmen enrolled in a developmental 
mathematics course. Journal of College Reading and Learning, 39(1), 35–53.  

Tournaki, N. (2003). The differential effects of teaching addition through strategy 
instruction versus drill and practice to students with and without disabilities. 
Journal of Learning Disabilities, 36(5), 449–458. 

Trenholm, S. (2006). A study on the efficacy of computer-mediated developmental math 
instruction for traditional community college students. Research & Teaching in 
Developmental Education, 22(2), 51–62.  

Twigg, C. A. (2003). Improving learning and reducing costs: New models for online 
learning. Educause Review, 38(5), 28–38. 

Twigg, C. A. (2005). Increasing success for underserved students: Redesigning 
introductory courses. Saratoga Springs, NY: National Center for Academic 
Transformation. 

Vamadeva, G. A. (2009, November). Fostering conceptual understanding in a 
developmental Algebra classroom. Presentation at the 35th Annual American 
Mathematical Association of Two-Year Colleges Conference, Las Vegas, NV. 

Vasquez, S. (2003). Utilizing an algorithmic instructional technique in the developmental 
mathematics classroom. Mathematics and Computer Education, 37(1), 16–28.  

 39

http://www.mcli.dist.maricopa.edu/labyforum/Spr97/spr97F6.html


 40

Vasquez, S. (2004). A report on the effectiveness of the Developmental Mathematics 
M.Y. Math Project—Making your mathematics: Knowing when and how to use 
it. Mathematics and Computer Education, 38(2), 190–199. 

Villasenor, A., Jr., & Kepner, H. S., Jr. (1993). Arithmetic from a problem-solving 
perspective: An urban implementation. Journal for Research in Mathematics 
Education, 24(1), 62–69.  

Waycaster, P. (2001). Factors impacting success in community college developmental 
mathematics courses and subsequent courses. Community College Journal of 
Research and Practice, 25(5), 403–416.  

Witzel, B. S., Mercer, C. D, & Miller, M. D. (2003). Teaching algebra to students with 
learning difficulties: An investigation of an explicit instruction model. Learning 
Disabilities: Research and Practice, 18(2), 121–131. 

Yilmaz, K. (2008). Constructivism: Its theoretical underpinnings, variations, and 
implications for classroom instruction. Educational Horizons, 86(3), 161–172. 

Ysseldyke, J., & Bolt, D. M. (2007). Effect of technology-enhanced continuous progress 
monitoring on math achievement. School Psychology Review, 36(3), 453–467.  

Ysseldyke, J., & Tardrew, S. (2007). Use of a progress monitoring system to enable 
teachers to differentiate mathematics instruction. Journal of Applied School 
Psychology, 24(1), 1–28. 

Zachry, E. M. (with Schneider, E.) (2008). Promising instructional reforms in 
developmental education: A case study of three Achieving the Dream Colleges. 
New York, NY: MDRC. 

Zavarella, C. A., & Ignash, J. M. (2009). Instructional delivery in developmental 
mathematics: Impact on retention. Journal of Developmental Education, 32(3), 2–
13.  

Zawaiza, T. R. W., & Gerber, M. M. (1993). Effects of explicit instruction on math word-
problem solving by community college students with learning disabilities. 
Learning Disability Quarterly, 16(1), 64–79.  

Zhu, Q., & Polianskaia, G. (2007). A comparison of traditional lecture and computer-
mediated instruction in developmental mathematics. Research & Teaching in 
Developmental Education, 24(1), 63–82. 



  

Appendix 

 
Table 1 

Review of Math Pedagogy Studies 
 

Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

 
Student Collaboration 

Baxter, 
Woodward, 
& Olson 
(2001) 
 
Qualitative 

X               

Whole‐class discussions were difficult for 
the low‐achieving students to follow, but 
these students were more engaged during 
pair work, especially when they worked 
with an average or high‐ability peer. 
However, close observation of pair work 
interactions revealed low‐achieving 
students primarily copying their partner's 
work or managing the materials. 

N/A  N/A X 

Beirne‐
Smith (1991) 

X             

Students with disabilities who were 
randomly assigned to work with peer 
tutors using two different instructional 
methods performed better on an addition 
facts assessment than the control group.  

0.75 
Moderate 
positive 

X  X

Calhoon & 
Fuchs (2003) 

X               

PALS and CBM show promise for 
improving the computational skills of 
secondary students with disabilities. 
However, since the PALS and CBM 
interventions were implemented in 
combination, it is impossible to attribute 
the outcomes strictly to CBM.  

‐0.29 to 
0.40 
 

Trivial 
negative to 

small 
positive 

X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Dees (1991)             X  

Students in the cooperative learning 
sections performed significantly better on 
the algebra word problem and geometry 
proof‐writing sections than students in the 
traditional sections. 

0.39 to 
0.56 

Small 
positive 

  X

DePree 
(1998) 

         X  

Latino and female students in cooperative 
learning classes had positive gains in self‐
reported math confidence relative to the 
control group, but there were no 
differences in the achievement gains of 
treatment and control groups. 

0.45 to 
0.72 

Small to 
moderate 
positive 

  X  X

Duncan & 
Dick (2000) 

         X 

The Math Excel students attained 
significantly higher grades than the non‐
Math Excel students, and students in the 
Math Excel Program outperformed their 
predicted grades, as determined by their 
SAT Math score, by half a grade point. 

N/A 
Moderate 
positive 

X  X  X

Fuchs et al. 
(1995) 

X               

Students with disabilities and average‐
achieving students in the PALS groups 
outperformed control group students on 
operations and application tests, while 
low‐achieving students outperformed 
their counterparts only on the math 
operations test.  

0.07 to 
0.95 

Trivial to 
moderate 
positive 

Fuchs et al. 
(1997) 

X               

Students with disabilities and low‐
achieving students in the peer mediated 
instruction (PMI) groups outperformed 
their peers in the control group, and when 
tasks that emphasized understanding were 
added to the PMI treatment, both 
average‐ and high‐achieving students 
made greater gains than their 
counterparts in the control group. 

0.18 to 
1.15 

Trivial to 
moderate 
positive 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Fuchs et al. 
(2001) 

X               

Medium‐ and low‐achieving students and 
students with disabilities in the peer‐
assisted learning strategies (PALS) group 
outperformed the control group, but 
growth was higher for high‐achieving 
control group students than high‐
achieving PALS students. 

‐0.20 to 
0.53 

Small 
negative to 

small 
positive 

Ginsburg‐
Block & 
Fantuzzo 
(1998) 

X               

Peer collaboration methods had a positive 
impact on the computational and word 
problem skills, academic motivation, and 
self‐concept of third‐ and fourth‐grade 
students. (Peer collaboration and problem 
solving methods were not significantly 
more effective in combination than 
implemented separately.) 

0.29 to 
0.36 

Small 
positive 

Hooker 
(2010) 

    X   

Students in pre‐algebra classes that used 
peer‐led team leader (PLTL) workshops 
had higher persistence and completion 
rates than control group students. 

N/A 
Trivial to 
small 

positive 
X  X  X   

Karper & 
Melnick 
(1993) 

X       

There were no significant differences 
between students using Team Accelerated 
Instruction and students in comparison 
classrooms at any grade level on scores of 
math aptitude, concepts, and 
computations.  

0.00 
Trivial 
positive 

       

Keynes & 
Olson (2000) 
 
Descriptive 

           X 

Students in the Calculus Initiative 
classrooms had higher GPAs, pass rates, 
and retention rates than students in 
traditional calculus. 

N/A 
Small 
positive 

X  X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Norwood 
(1995) 

             X  

Compared to students who took 
Developmental Algebra in the semester 
when instructors used traditional 
methods, a higher proportion of students 
who took Developmental Algebra in the 
semester that the instructors used the 
Learning Model of cooperative learning 
completed their first college‐level math 
course. 

N/A 
Small 
positive 

X

Summers & 
Svinicki 
(2007) 

         X 

Students in the cooperative learning 
classrooms reported significantly more 
motivation for mastery and perceived 
more interactive learning and classroom 
community but reported significantly less 
performance motivation than students in 
the traditional classrooms. 

‐0.65 to 
0.37 

Moderate 
negative to 

small 
positive 

X  X  X

 
Metacognition 

Abdalkhani  
& Menon  
(1998) 

         X  X 

In earlier courses in which journal writing 
was not used in math, students had a 
mean score of 65% on quizzes, while 
studends in the course that incorporated 
journal writing had a mean quiz score of 
72%. 

N/A 
Trivial 
positive 

X  X

Hiebert & 
Wearne 
(1993) 

X             

The opportunity for students to explain, 
describe, and question their learning 
contributed to higher gains in 
achievement in classrooms that used 
classroom discourse versus classrooms 
that did not. 

0.5 to 
1.5 

Moderate to 
large 

positive 
  X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Hohn & Frey 
(2002) 

X             

The SOLVED method, which stands for 
“state the problem, options to use, links to 
the past, visual aid, execute your answer, 
and do check back,” had a positive impact 
on third‐, fourth‐, and fifth‐grade students’ 
math performance compared to control 
group students. 

0.45 to 
0.93 

Small to 
moderate 
positive 

  X

Porter 
(1996) 

           X 

There were no differences in the number 
of procedural errors made by students in a 
college calculus course that used writing 
to learn math and students in a 
comparison course on a final exam, but 
students in the treatment group made 
more conceptual errors. 

‐0.63 to 
0.09 

Moderate 
negative to 

trivial 
positive 

X  X

Pugalee 
(2001) 
 
Qualitative 

  X            
A metacognitive framework emerged in 
high school students’ writings about their 
problem‐solving processes. 

N/A  N/A X 

Pugalee 
(2004) 
 
Qualitative 

  X            

Writing their problem solving process was 
more beneficial for a group of 20 high 
school math students than verbalizing 
their problem‐solving process. 

N/A  N/A X 

Schurter 
(2002) 

           X  

Students who received direct instruction 
in the use of comprehension monitoring or 
Polya’s four‐step problem‐solving method 
performed better in mathematical 
problem solving than those who did not.  

N/A 
Small 
positive 

  X

Tournaki 
(2003) 

X               

Students with and without learning 
disabilities who received strategy 
instruction in verbalizing the problem‐
solving process improved much more on 
an addition facts test than students who 
received drill‐and‐practice instruction. 

0.10 to 
1.58 

Trivial to 
large 

positive 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

 
Problem Representation 

Brenner et 
al. (1997) 

X               

Pre‐algebra students who received 
instruction in problem representation 
were better able to create and apply 
multiple representations than control 
students at significant levels, but the 
control students did significantly better on 
a test of symbol‐manipulation skills. 

‐0.21 to 
0.91 

Small 
negative to 
moderate 
positive 

Chappell 
(2006) 

             X 

Students in the concept‐based calculus 
sections scored significantly better on the 
midterm and final exams than the 
students in the traditional sections, except 
for on the final procedural skill section. 

0.34 to 
0.64 

Small to 
moderate 
positive 

Fuson & 
Briars (1990) 

X               

The addition and subtraction performance 
of the second graders in learning/teaching 
approach classrooms was above that 
reported for typical third graders. 

N/A 
Very large 
positive 

X X

Jitendra et 
al. (1998) 

X               

Elementary students with or at risk for 
mild learning disabilities who received 
schema‐based instruction, direct 
instruction in using schematic diagrams 
and multiple solution strategies, improved 
their word problem performance more 
than students in the control group. 

0.57 to 
0.81 

Small to 
moderate 
positive 

Jitendra et 
al. (2009) 

X               

A diverse group of high‐ and low‐ability 
students who received schema‐based 
instruction improved their understanding 
of ratio and proportion more than the 
control group. 

0.45 to 
0.56 

Small 
positive 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Silver & 
Stein (1996) 
 
Descriptive 

X             

Test performance and number of students 
eligible for ninth‐grade algebra increased, 
and QUASAR students performed 
significantly better on NAEP compared to 
a similar sample of urban, low‐SES 
students. 

N/A 
Small 
positive 

X 

Stein, 
Grover, & 
Henningsen 
(1996) 
 
Qualitative 

X               

QUASAR students were observed using 
multiple strategies and representations to 
solve and explain their solutions but had 
difficulty maintaining a high level of 
cognitive processing during many of the 
challenging tasks. 

N/A  N/A X 

Witzel et al. 
(2003) 

X               

Students with disabilities and at‐risk 
students who received concrete‐
representational‐abstract instruction 
showed greater improvements in their 
performance on single‐ and multiple‐
variable algebra equations than similar 
students receiving traditional instruction. 

0.52 to 
0.87 

Small to 
moderate 
positive 

Zawaiza & 
Gerber 
(1993) 

         X 

Community college students with learning 
disabilities who received a schema‐based 
intervention made greater gains on a word 
problem test than those who did not, and 
they performed at almost the same level 
as their math‐competent peers. 

0.27 to 
1.11 

Small to 
large 

positive 
X  X  X

 
Application 

Bottge et al. 
(2001) 

X             

The students in the remedial Enhanced 
Anchored Instruction (EAI) class matched 
the performance of students in the pre‐
algebra classes on the problem‐solving 
and maintenance test but not on the 
computation test. 

N/A 
Trivial 
positive 

X  X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Bottge et al. 
(2002) 

X             

Students in classrooms using EAI 
performed better than the group receiving 
traditional instruction on a video problem 
test but not on a computation and word 
problem test.  

0.11 to 
0.86 

Trivial to 
moderate 
positive 

X  X

Brenner 
(1998) 

X               

Native Hawaiian kindergarten students 
exposed to culturally responsive math 
instruction for a year performed better, on 
average, on the standardized math 
assessment than kindergarten students in 
the same class the year before. 

N/A  Small  X

Ellington 
(2005a) 

           X 

Students in modeling sections had higher 
levels of self‐reported confidence, lower 
levels of anxiety, and lower withdrawal 
rates than students in traditional sections. 

N/A 
Trivial to 
small 

positive 
X  X

Ellington 
(2005b) 

           X 

Students in modeling sections performed 
significantly better on an assessment and 
had higher pass rates than students in 
traditional sections. 

0.41 
Small 
positive 

X  X

Ganter & 
Jiroutek 
(2000) 

           X 

Calculus sections that utilized long‐term 
projects in the computer lab did not 
perform better than the control sections 
on the final exam. On the standardized 
exam the control group outperformed the 
treatment group.  

N/A 
Trivial 

negative 
  X

Hickey, 
Moore, & 
Pelligrino 
(2001) 

X               

From third to fifth grade, students in the 
reform‐oriented Jasper videodisc 
classrooms had the largest gains on the 
problem‐solving and conceptual sub‐tests 
and the largest decline on the 
computation sub‐test, compared to 
students in comparison classrooms and 
non‐reform‐oriented treatment 
classrooms. 

N/A 

Trivial 
negative to 

trivial 
positive 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Hollar & 
Norwood 
(1999) 

           X 

Scores on the function test were higher for 
the graphing‐approach group than for the 
control group, but there were no 
significant differences in terms of final 
exam scores (scores not reported). 

1.02 
Large 
positive 

X  X

Lipka & 
Adams 
(2004) 

X             

Teachers were randomly assigned to use 
culturally relevant pedagogy or traditional 
instruction with their sixth‐grade Yu’pik 
students, and students in the treatment 
classrooms had higher gains in 
understanding the concepts of perimeter 
and area than students in the control 
group.  

0.44 to 
0.63 

Small to 
moderate 
positive 

  X

O’Callaghan 
(1998) 

         X 

The Computer‐Intensive Algebra students 
scored higher than students in the 
traditional algebra classrooms on the 
function test, and there were no 
significant differences in final exam 
performance (scores not reported). 

0.86 to 
1.07 

Large 
positive 

  X  X

Vasquez 
(2004) 
 
Descriptive 

         X  

A greater percentage of students passed 
higher level math courses after the 
introduction of the Algorithmic 
Instructional Technique. 

N/A 
Trivial to 
small 

positive 
  X X 

 
Understanding Student Thinking 

Adams 
(1997) 
 
Qualitative 

             X 

The introduction of graphing calculators 
into the classroom improved an 
instructor’s assessment methods and 
understanding of student learning. 

N/A  N/A X 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Allinder et 
al. (2000) 

X               

Students with disabilities performed 
better on a test of computational ability in 
a classroom where teachers used 
curriculum‐based measurement (CBM) 
plus self‐monitoring of their instructional 
practices than students of teachers who 
only used CBM, and both treatment 
groups performed better than the control 
group. 

0.35 to 
0.92 

Small to 
moderate 
positive 

X X

Boylan & 
Saxon 
(1998) 
 
Descriptive 

             X  

Institutions with exceptional 
developmental education programs based 
on observation and developmental 
education pass rates reported using 
frequent testing in their developmental 
education classrooms. 

N/A  N/A X 

Calhoon & 
Fuchs (2003) 

X               

PALS and CBM show promise for 
improving the computational skills of 
secondary students with disabilities. 
However, since the PALS and CBM 
interventions were implemented in 
combination, it is impossible to attribute 
the outcomes strictly to CBM.  

‐0.29 to 
0.40 
 

Trivial 
negative to 

small 
positive 

X

Fabry et al. 
(1997) 
 
Qualitative 

             X  
Students self‐reported that the classroom 
assessment technique improved their 
perceptions and attitudes about learning. 

N/A  N/A X 

Fuchs & 
Fuchs (1990) 

X               

Students with disabilities who had 
teachers who used CBM and skills analysis 
(which allows teachers to analyze 
proficiency in specific skills) performed 
somewhat better on a computation test 
than students with disabilities whose 
teachers used only CBM, and both 
treatment groups outperformed the 
control group.  

0.28 to 
0.67 

Small 
positive 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Fuchs et al. 
(1991) 

X               

Students with disabilities who had 
teachers who used CBM with expert 
instructional recommendations made 
greater gains on an operations test than 
students in the control group. 

0.84 to 
0.94 

Moderate 
positive 

Fuchs et al. 
(1994) 

X               

Students with disabilities who had 
teachers who used CBM with instructional 
recommendations made slightly greater 
gains on an operations test than students 
with disabilities whose teachers used only 
CBM, and both treatment groups 
outperformed the control group. 

0.16 to 
0.43 

Trivial to 
small 

positive 

Nunnery & 
Ross (2007) 

X             

Students in Accelerated Math (AM) 
classrooms did significantly better on 
standardized assessments than students in 
comparison classrooms. 

0.17 to 
0.22 

Trivial to 
small 

positive 
  X

Siadat et al. 
(2008) 

         X  X 

Students in the Keystone Method classes 
had higher final exam scores and 
persistence rates than students in control 
classes. 

N/A 
Small to 
large 

positive 
X  X

Villasenor & 
Kepner 
(1993) 

X               
Students in the cognitively guided 
instruction classrooms outperformed 
students in the control classrooms. 

3.55 to 
5.44 

Very large 
to nearly 
perfect 
positive 

X

Ysseldyke & 
Bolt (2007) 

X               

AM classrooms performed significantly 
better on the STAR Math test compared to 
control classrooms, but there were no 
significant differences between the two 
groups in Terra Nova performance. 

0.37 
Small 
positive 

X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Ysseldyke & 
Tardrew 
(2007) 

X  X          

AM third‐ to sixth‐grade classrooms 
performed significantly better on 
standardized assessments than 
comparison classrooms. There were no 
significant findings for seventh‐ to tenth‐
grade classrooms. 

0.18 to 
0.57 

Trivial to 
small 

positive 
  X

 
Computer‐Based Learning 

Garcia 
(2003) 

         X  

Pre‐ to post‐test mean ACCUPLACER 
scores increased for students in an 
elementary algebra class with learning 
style and attitude surveys, workshops, 
computer‐based instruction, self‐
assessment, and supplemental instruction. 

N/A 
Small 
positive 

X  X 

Hagerty & 
Smith (2005) 

         X 
The students using ALEKS had higher gains 
from pre‐ to post‐test than the students in 
the traditional classrooms. 

0.49 
Small 
positive 

X   

Lovett et al. 
(2008) 

           X 

Students randomly assigned to an eight‐
week accelerated OLI‐Statistics hybrid 
course (in which students met with the 
instructor to review and reinforce 
material) performed better on the final 
exam than students randomly assigned to 
the traditional 15‐week statistics course. 

N/A 
Small 
positive 

X  X

McClendon 
& McArdle 
(2002) 

         X  
Retention was higher in the lecture mode 
of instruction versus ALEKS and Academic 
Systems. 

N/A 
Trivial to 
moderate 
negative 

X  X  X

O’Dwyer et 
al. (2007) 

X  X            

Algebra students in eighth and ninth grade 
using a hybrid online learning model 
scored slightly higher on an algebra test at 
the end of the year. 

0.13 
Trivial 
Positive 

X
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Speckler 
(2008) 
 
Descriptive 

         X  X 

At 18 colleges, retention and pass rates, 
course enrollments, and/or grades were 
generally higher for students in sections 
that used MyMathLab or MathXL, with a 
few exceptions.  

N/A 
Small to 
moderate 
positive 

X 

Squires et 
al. (2009) 
 
Descriptive 

             X  

At Cleveland State Community College, 
after the introduction of a course redesign 
model, course completion rates in 
developmental math and subsequent 
college‐level math courses increased. 

N/A  Small X 

Stillson & 
Alsup (2003) 
 
Qualitative 

           X 

A higher percentage of students failed the 
course in the semester that ALEKS was 
introduced than in previous semesters. 
Students in the study reported that ALEKS 
in combination with group work, the 
lectures, and individual assistance from 
the instructor was helpful in learning 
algebra. 

N/A 
Trivial to 
small 

negative 
X  X

Taylor 
(2008) 

         X  X 

The control group made larger gains from 
pre‐ to post‐test than the ALEKS group on 
the algebra test, but self‐reported math 
anxiety decreased more for the ALEKS 
group than for the control group, and self‐
reported attitudes about math improved 
for the ALEKS group and worsened for the 
control group. 

‐0.21 to 
‐0.12 

Small 
negative 

X  X

Twigg 
(2005) 
 
Qualitative/ 
Descriptive 

           X  X 

Different outcomes were examined at 30 
selected institutions, with in‐depth case 
studies on 15 institutions. Colleges that 
redesigned their math courses reported 
increases in retention, math learning, and 
course pass rates and decreased cost per 
student. 

N/A  N/A X 
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Target Students  Common Empirical Flaws4 

Study and 
Design1 

K‐8 
High 
School 

Developmental 
Education 

College 
Level 

Summary of Findings 
Effect 
Size2 

Effect 
Category3  Student Design

Non‐Equivalent
Teacher Design 
Non‐Equivalent

Possible 
Attrition 
Issues 

No 
Comparison 

Group 

Waycaster 
(2001) 
 
Qualitative/
Descriptive 

         X  X 

The success rates in 15 developmental 
math courses were not related to the 
method of instruction (lecture or 
Computer‐Aided Instruction). 

N/A 
Trivial 

negative 
X  X

Zavarella & 
Ignash 
(2009) 

         X  

20% of students in the lecture‐based 
course, 42% of students in the hybrid 
course, and 39% of students in the online 
course withdrew. 

N/A 
Small 

negative 
X  X 

Zhu & 
Polianskaia 
(2007) 

           X  

Over most years in a ten year period, a 
higher percentage of students in lecture 
courses had higher pass rates, course 
completion rates, and final exam scores 
than students in computer ‐mediated 
courses. 

N/A 
Trivial to 
small 

negative 
X  X

 

Notes 1‐4 appear on the next page. 



  

Table 1 Notes 

1. Study and Design 

 Unless otherwise noted, the study is a quantitative study that used a quasi-

experimental or randomized design. Descriptive studies usually did not utilize 

comparison groups but reported frequency outcomes of students in existing programs. 

Qualitative studies usually involved observation of students in some program or 

instructional environment, and most did not utilize a comparison group.  

2. Effect Size 
 Effect sizes are used to compare results across studies with different outcome 

measures and are also important in measuring meaningful changes in outcomes that may 

not necessarily be statistically significant. The table reports Cohen’s d effect sizes, which 

can be interpreted as the standardized difference between the treatment and control group 

means. A positive d indicates that the treatment group had superior outcomes; a negative 

d indicates that the comparison group had superior outcomes. When d was not reported in 

a given paper, the effect size was calculated using means and standard deviations for the 

treatment and control groups as provided in the article, using the following formula, 

where x is the mean, n is the sample size, s is the standard deviation, and the subscripts t 

and c denote treatment and control: 
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If the means and/or standard deviations were not provided but the F-statistic was, 

Cohen’s d was calculated using F and the sample sizes of the treatment and control 

groups: 
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3. Effect Category 

 For articles that do not report the information to necessary calculate Cohen’s d, 

“N/A” is written in the effect size column. However, some of these articles report group 

percentages or correlations that allow for an estimation of their effect size category. 

Hopkins (2009) proposes a scale that can be used to compare traditional effect size 

estimates to differences in percentages. The following scale was used to compare effect 

size estimates across various types of effects, in order to categorize them by size: 

 
 

Measure  Trivial  Small  Moderate  Large  Very Large  Nearly Perfect 

Correlation coefficient (r)  0–0.1  0.1–0.3  0.3–0.5  0.5–0.7  0.7–0.9  0.9–1.0 

Standardized difference in means (d)  0–0.2  0.2–0.6  0.6–1.2  1.2–2.0  2.0–4.0  4.0–∞ 

Percentage difference  0–10  10–30  30–50  50–70  70–90  90–100 

 

4. Common Empirical Flaws 

 Four common methodological flaws were identified across the studies. Studies 

that did not have any of these flaws are considered rigorous. Below is an explanation of 

each empirical flaw. 

Student design non-equivalent. The most common weakness, especially of the 

quantitative studies whose target population is developmental or college-level students, is 

a non-equivalent student design. Most of these studies allowed students to self-select into 

treatment and control groups but neglected to collect pre-treatment ability and 

demographic information on the student participants. As a result, any significant 

differences in outcomes could be due to the preexisting differences between the treatment 

and control students rather than the instructional intervention. Another common research 

design is to compare the outcomes of students who received the treatment to the 

outcomes of students from previous years or semesters, when traditional instructional 

practices were in use. However, this comparison introduces time-varying characteristics 

that are not controlled for and, therefore, could explain any differences in outcomes. 

Other studies do collect pretreatment information but do not use it to conduct a rigorous 

analysis of group equivalence. For example, these studies do not adjust post-treatment 
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test performance for pre-treatment test performance, or they do not test for statistical 

differences between treatment and control group pre-test scores. Finally, some articles do 

not report pre-test scores, but the author claims that they revealed no significant 

differences between the treatment and control groups. This lack of transparency raises 

doubts about the authors’ claims and the internal validity of these studies. 

Teacher design non-equivalent. The second flaw, teacher design non-

equivalency, could arise from a number of different study features. First, most of the 

reviewed empirical studies do not describe how teachers were assigned to the treatment 

and comparison groups and do not report characteristics of teachers who volunteered for 

the treatment and control sections. These studies disregard the influence that the 

underlying characteristics of individual teachers have on educational outcomes; 

variability in teacher characteristics could confound the relationship between the 

intervention and any outcomes. Second, even in a few randomized and quasi-

experimental studies, treatment teachers demonstrated intrinsic motivation to improve 

their teaching by volunteering for the treatment group. That they possessed intrinsic 

motivation can be inferred from the fact that the treatment required them to attend 

training. Therefore, differences in instructional quality or motivation may be responsible 

for the outcomes of the study rather than the treatment. Finally, in a number of studies, 

the researcher was also the instructor of the treatment and/or control group(s), implying 

an unconscious or maybe even a conscious investment in ensuring the classroom 

intervention is effective, which calls into question the researcher’s impartiality in the 

implementation of the treatment and analysis of the results.  

Possible attrition issues. Many studies do not address the substantial attrition that 

occurred over the course of the study. High attrition is common in studies at the 

developmental education level, where course dropout rates are high. If the attrition is 

more pronounced for students in a treatment or control group, it could bias the results of 

the study. For example, if lower-performing students were more likely to drop out of the 

control group, then this could have biased downward the impact of the treatment, but if 

lower-performing students dropped out of the treatment group at higher rates, then this 

could have inflated the impact of the treatment (for an illustration of differential attrition, 

see Figure 1 in Jaggars [2011]).  
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No comparison group. A comparison group provides information about what 

would have happened if the students did not receive the instructional intervention. It is 

not possible to attribute any observed outcomes to the instructional intervention when it 

is unknown if the student outcomes would have been similar, better, or worse in the 

absence of the treatment. Most of the quantitative studies employ a comparison group, 

while most of qualitative and descriptive studies do not. These studies provide important 

descriptive information about the outcomes of an instructional intervention or qualitative 

data about the challenges individual students may face when using alternative or reform-

based math pedagogy, but they do not provide evidence of a causal link between the 

instructional practice or program and student outcomes. 
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