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Abstract 
 
This paper addresses likely error rates for measuring teacher and school performance in the upper elementary 
grades using value-added models applied to student test score gain data. Using realistic performance measurement 
system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes 
estimators. Simulation results suggest that value-added estimates are likely to be noisy using the amount of data 
that are typically used in practice. Type I and II error rates for comparing a teacher’s performance to the average 
are likely to be about 25 percent with three years of data and 35 percent with one year of data. Corresponding 
error rates for overall false positive and negative errors are 10 and 20 percent, respectively. Lower error rates can 
be achieved if schools are the performance unit. The results suggest that policymakers must carefully consider 
likely system error rates when using value-added estimates to make high-stakes decisions regarding educators. 
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Foreword  v 

Foreword 
 
The National Center for Education Evaluation and Regional Assistance (NCEE) conducts 
unbiased large-scale evaluations of education programs and practices supported by federal funds; 
provides research-based technical assistance to educators and policymakers; and supports the 
synthesis and the widespread dissemination of the results of research and evaluation throughout 
the United States.   
 
In support of this mission, NCEE promotes methodological advancement in the field of education 
evaluation through investigations involving analyses using existing data sets and explorations of 
applications of new technical methods, including cost-effectiveness of alternative evaluation 
strategies. The results of these methodological investigations are published as commissioned, 
peer reviewed papers, under the series title, Technical Methods Reports, posted on the NCEE 
website at http://ies.ed.gov/ncee/pubs/. These reports are specifically designed for use by 
researchers, methodologists, and evaluation specialists. The reports address current 
methodological questions and offer guidance to resolving or advancing the application of high-
quality evaluation methods in varying educational contexts.  
 
This NCEE Technical Methods paper addresses likely error rates for measuring teacher and 
school performance in the upper elementary grades using student test score gain data and value-
added models. This is a critical policy issue due to the increased interest in using value-added 
estimates to identify high- and low-performing instructional staff for special treatment, such as 
rewards and sanctions. Using rigorous statistical methods and realistic performance measurement 
schemes, this report presents evidence that value-added estimates are likely to be quite noisy 
using the amount of data that are typically used in practice for estimation.  
 
If only three years of data are used for estimation (the amount of data typically used in practice), 
Type I and II errors for teacher-level analyses will be about 26 percent each. This means that in a 
typical performance measurement system, 1 in 4 teachers who are truly average in performance 
will be erroneously identified for special treatment, and 1 in 4 teachers who differ from average 
performance by 3 to 4 months of student learning will be overlooked. Corresponding error rates 
will be lower if the focus is on overall false positive and negative error rates for the full 
population of affected teachers. With three years of data, these misclassification rates will be 
about 10 percent.  
 
These results strongly support the notion that policymakers must carefully consider system error 
rates in designing and implementing teacher performance measurement systems based on value-
added models, especially when using these estimates to make high-stakes decisions regarding 
teachers (such as tenure and firing decisions). 
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 Introduction  1 

Chapter 1: Introduction 

Student learning gains, as measured by students’ scores on pretests and posttests, are increasingly being 
used to evaluate educator performance. Known as “value-added” measures of performance, the average 
gains of students taught by a given teacher, instructional team, or school are often the most important 
outcomes for performance measurement systems that aim to identify instructional staff for special 
treatment, such as rewards and sanctions.  
 
Spurred by the expanding role of value-added measures in educational policy decisions, an emerging 
body of research has consistently found—using available data—that value-added estimates based on a 
few years of data can be imprecise. In this paper, we add to this literature by systematically examining—
from a design perspective—misclassification rates for commonly-used performance measurement 
systems that rely on hypothesis testing.  
 
Ensuring the precision of performance measures has taken on greater importance with the proposal and 
implementation of policies that require the use of value-added measures for higher-stakes decisions. The 
most common application of these measures is to provide monetary bonuses to teachers or schools whose 
students have large learning gains (see Podgursky and Springer 2007). For instance, the Dallas 
Independent School District provides bonuses of $10,000 to teachers with high value-added estimates 
who agree to teach in the district’s most disadvantaged secondary schools (Fischer 2007; Dallas 
Independent School District 2009). In other schemes, even higher stakes have been proposed for the 
bottom of the performance distribution. A highly publicized proposal by Gordon et al. (2006) 
recommends that districts rank novice teachers on the basis of value-added estimates in conjunction with 
other types of measures at the end of their first two years of teaching, and that teachers in the bottom 
quartile of performance should generally not be rehired for a third year unless a special waiver is granted 
by district authorities. As the federal government prepares to channel more than $4 billion from the 
American Recovery and Reinvestment Act of 2009 (ARRA) into state education reforms, of which a 
prominent feature consists of “differentiating teacher and principal effectiveness” for determining 
compensation (U.S. Department of Education 2009), the use of value-added measures for policy decisions 
is likely to become even more widespread in the coming years.  
 
Given that individual teachers and schools can be subject to significant consequences on the basis of their 
value-added estimates, researchers have increasingly paid attention to the precision of these estimates. A 
number of studies have examined the extent to which differences in single-year performance estimates 
across teachers are due to persistent (or long-run) differences in performance—the types of differences 
intended to be measured—rather than to transitory influences that induce random error, and thus 
imprecision, in the estimates. As discussed by Kane and Staiger (2002a, 2002b), estimation error stems 
from two sources: (1) random differences across classrooms in unmeasured factors related to test scores, 
such as student abilities, background factors, and other student-level influences; and (2) idiosyncratic 
unmeasured factors that affect all students in specific classrooms, such as a barking dog on the test day or 
a particularly disruptive student in the class. As both sources of error are transitory, they are directly 
reflected in the amount of year-to-year volatility in a given teacher’s performance estimates.   
 
Existing research has consistently found that teacher- and school-level averages of student test score gains 
can be unstable over time. Studies have found only moderate year-to-year correlations—ranging from 0.2 
to 0.6—in the value-added estimates of individual teachers (McCaffrey et al. 2009; Goldhaber and 
Hansen 2008) or small to medium-sized school grade-level teams (Kane and Staiger 2002b). As a result, 
there are significant annual changes in teacher rankings based on value-added estimates. Studies from a 
wide set of districts and states have found that one-half to two-thirds of teachers in the top quintile or 
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quartile of performance from a particular year drop below that category in the subsequent year (Ballou 
2005; Aaronson et al. 2008; Koedel and Betts 2007; Goldhaber and Hansen 2008; McCaffrey et al. 2009). 
 
While previous work has documented instability in value-added estimates post hoc using several years of 
available data, the specific ways in which performance measurement systems should be designed ex ante 
to account for instability of the estimates have not been examined. This paper is the first to systematically 
examine this precision issue from a design perspective focused on the following question: “What are 
likely error rates in classifying teachers and schools in the upper elementary grades into performance 
categories using student test score gain data that are likely to be available in practice?” These error rates 
are critical for assessing appropriate sample sizes for a performance measurement system that aims to 
reliably identify low- and high-performing teachers and schools.  
 
We address this precision question both theoretically and through simulations. For the theoretical 
analysis, we employ a commonly-used statistical framework for calculating value-added estimates using 
ordinary least squares (OLS) and Empirical Bayes (EB) methods, and derive associated variance 
formulas. We then discuss several performance measurement system schemes based on hypothesis 
testing, and use the variance formulas to derive equations for calculating system error rates. We then 
simulate system error rates for various assumed sample sizes by applying the theoretical formulas with 
empirically-based parameter values. 
 
The error rates examined by this paper are a key factor to be considered in designing and applying 
performance measures based on value-added models. However, several other features of value-added 
estimators that have been analyzed in the literature also have important implications for the appropriate 
use of value-added modeling in performance measurement. These features include the extent of estimator 
bias (Kane and Staiger 2008; Rothstein 2010; Koedel and Betts 2009), the scaling of test scores used in 
the estimates (Ballou 2009; Briggs and Weeks 2009), the degree to which the estimates reflect students’ 
future benefits from their current teachers’ instruction (Jacob et al. 2008), the appropriate reference point 
from which to compare the magnitude of estimation errors (Rogosa 2005), the association between value-
added estimates and other measures of teacher quality (Rockoff et al. 2008; Jacob and Lefgren 2008), and 
the presence of spillover effects between teachers (Jackson and Bruegmann 2009). Thus, this paper 
contributes to a growing literature that carries important lessons for systems aimed at holding educators 
accountable for their performance.        
 
The remainder of the paper proceeds as follows. Chapters 2 and 3 provide the theoretical framework for 
the teacher- and school-level analyses, respectively. Chapter 4 presents findings from the simulation 
analysis, and Chapter 5 provides a summary and conclusions.



 

Chapter 2: Statistical Framework for the Teacher-Level Analysis 

The Basic Statistical Model and Assumptions 

Our analysis is based on standard education production functions that are often used in the literature to 
obtain estimates of school and teacher value-added using longitudinal student test score data linked to 
teachers and schools (Todd and Wolpin 2003; McCaffrey et al. 2003; McCaffrey et al. 2004; Harris and 
Sass 2006; Rothstein 2010). We formulate reduced-form production functions as variants of a four-level 
hierarchical linear model (HLM) (Raudenbush and Bryk 2002). The HLM model corresponds to students 
in Level 1 (indexed by i), classrooms in a given year in Level 2 (indexed by t), teachers in Level 3 
(indexed by j), and schools in Level 4 (indexed by k):   
 

(1a) 1: :

(1b) 2 : :

(1c) 3: :

(1d) 4 : : .

itjk tjk itjk

tjk jk tjk

jk k jk

k k

Level Students g

Level Classrooms

Level Teachers

Level Schools

ξ ε

ξ τ ω

τ η θ

η δ ψ

= +

= +

= +

= +   
 
In this model,  is the gain score (posttest-pretest difference) for student i in classroom (year) t taught 

by teacher j in school k; 
itjkg

tjkξ , jkτ , and kη  are level-specific random intercepts; itjkε , tjkω , jkθ , and kψ  are 

level-specific iid 2 )(0,N εσ ,  iid 2,(0 )N ωσ , iid 2(0, )N θσ , and iid 2(0, )N ψσ  random error terms, 

respectively, where the error terms across equations are distributed independently of one another; and δ  
is the expected student gain score in the geographic area used for the analysis—which is assumed to be a 
school district (but, for example, could also be a state, a group of districts, or a school). Note that the 
level-specific intercepts are conceptualized as random in this framework, although as discussed below, we 
sometimes treat some intercepts as fixed.  
 
The reduced-form model includes gain scores as the dependent variable, because a student’s pretest score 
captures past influences on the student’s posttest score. In addition, the use of gain scores produces more 
precise parameter estimates than the use of posttest scores only. Furthermore, measuring the growth in 
test scores from pretest levels can help adjust for estimator biases due to differences in the abilities of 
students assigned to different classrooms and attending different schools. Note that an alternative 
formulation of (1a) is a “quasi-gain” model in which posttest scores are the outcome variable and pretest 
scores are a Level 1 covariate. Given the presence of a vertical scale across pretest and posttest scores, 
value-added estimates from gain score models are typically very similar to those based on quasi-gain 
models (Harris and Sass 2006). 
 
For several reasons, we do not include other student- or teacher-level covariates in the HLM model. First, 
commonly-used value-added modeling approaches, such as the Education Value-Added Assessment 
System (EVAAS) model (Sanders et al. 1997; see below) do not include model covariates under the 
philosophy that teachers should be held accountable for the test score growth of their students, regardless 
of their students’ pretest score levels or their own characteristics (such as their teaching experience or 
education level). Second, the bulk of the evidence indicates that demographic characteristics explain very 
little of the variation in posttest scores—at any level of aggregation—after a single lag of the outcome 
variable is controlled for (Hedges and Hedberg 2007; Bloom et al. 2007), although the analysis of Ballou 
et al. (2004) is an exception. Thus, our basic findings regarding the precision of value-added estimators 
are likely to be representative of those from models that include baseline covariates. 
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4  Statistical Framework for the Teacher-Level Analysis 

Estimates of jkτ  in the HLM model are the focus of the teacher-level analysis. A jkτ  is defined as the 
expected gain score of a randomly chosen student if assigned to teacher j, and represents the persistent 
“value-added” of the teacher over the sample period that is common to all her students (and does not refer 
to the teacher’s influence on her students’ longer-term achievement). As can be seen by inserting (1d) into 
(1c), jk k jkτ δ ψ= + θ+ , so jkτ  reflects (1) the contribution of all district-level school, non-school, and 

student inputs influencing the expected student test score gain in the district (δ ); (2) the contribution of 
factors common to all teachers in the same school ( kψ ), such as the influence of the principal, school 
resources, and the sorting of true teacher quality across schools; and (3) the contribution of the teacher net 
of any shared contribution by all teachers in her school ( jkθ ).  
 
As can be seen further from (1a) and (1b),  is influenced not only by itjkg jkτ  but also by a random 

transitory classroom effect jktω  (for example, a particularly disruptive student in the class), and by a 

random student-level factor ijktε . 
 
In this paper, we consider schemes that compare estimates of jkτ  for upper elementary school teachers 

within and between schools. For the within-school analysis, the focus is on jkθ , because kψ  and δ  are 
common to teachers within the same school and are therefore not pertinent for within-school 
comparisons. For the between-school analysis, the focus is instead on ( )jkkψ θ+ .  
 
We assume that the value-added HLM model is estimated for upper elementary school teachers who teach 
self-contained classrooms within a school district; each teacher is assumed to teach a single classroom per 
year. For notational simplicity, we assume a balanced design, where data are available for c self-contained 
classes per teacher (that is, for c years, so that 1, ...,t c= ) with n new students per class each year (so that 

) and m teachers in each of the s schools (so that 1, ...,i = n 1, ...,j m= ). For unbalanced designs, the 
formulas presented in this paper apply approximately using mean values for c, n, and m (Kish 1965).  
 
We focus on the upper elementary grades because there is available empirical evidence on key parameters 
affecting the precision of value-added estimates, and pretests are likely to be available. Importantly, for a 
given number of years of data, more precise value-added estimates could be obtained for teachers who 
teach multiple classes per year.  
 
To permit a focused and tractable analysis, we assume a best-case scenario in which commonly cited 
difficulties with value-added estimation are resolved or nonexistent. In particular, we assume the 
following: 
 

1. Test scores are available for all students and can be vertically scaled across grades so that 
they can be seamlessly compared across grades.  

2. All teachers stay within their initial schools and grades for all years in which data are 
collected. 

3. Unbiased estimates of differences in jkθ  values for teachers in the same schools can be 
obtained, assuming that students in a given school are randomly assigned to teachers. 



 

4. Unbiased estimates of differences in )k jk(ψ θ+  values for teachers in different schools can 
be obtained, assuming that students in the district are randomly assigned to schools. 

Assuming this best-case scenario is likely to produce lower bounds for the sample sizes that will be 
required for an ongoing performance measurement system.  
 
Importantly, in practice, the conditions necessary to obtain unbiased estimates of teacher performance 
differences are likely to be more realistic for within-school comparisons than for between-school 
comparisons. Student characteristics appear to be balanced across classrooms within many schools 
(Clotfelter et al. 2006), suggesting that at least some schools may assign their students to teachers in an 
approximately random fashion. In these cases, it may be possible to obtain unbiased estimates of within-
school jkθ  differences. However, since families select their children’s schools through residential choice 
or explicit school choice mechanisms, there is a likelihood of nonrandom student sorting across schools in 
ways that are correlated with student achievement. In this case, estimates of between-school ( )k jkψ θ+  

differences could be biased. Furthermore, teachers’ contributions to differences in ( )jkkψ θ+  may be 
difficult to separate from non-teacher factors, such as school resources, that constitute part of the variation 
in kψ .  
 
Nevertheless, most teacher performance measurement systems in development have compared teachers 
across schools. Thus, we consider such between-school comparisons under the idealized assumption that 
students are randomly assigned to schools, making it possible to obtain unbiased estimates of between-
school ( k jk )ψ θ+  differences. 
 
The HLM model used for the analysis can be considered a repeated cross-section model of test score 
gains. As discussed in Appendix A, this model is likely to produce similar value-added estimates as the 
EVAAS model (Sanders et al. 1997) that is often used in practice. The EVAAS model uses longitudinal 
data to directly model the growth in student test scores over time, but essentially reduces to the HLM 
model if it is expressed in terms of first differences. As discussed below and in Appendix A, the main 
difference between the EVAAS model and the HLM model is that the former yields more efficient 
estimators by accounting for the serial correlation of the gain score residual, itjkε , for each student over 
time. However, our sensitivity analysis in Chapter 4 shows that these efficiency gains are likely to be 
small. Thus, our results using the HLM model likely pertain to an important class of models that are used 
to obtain value-added estimates. 
 
Finally, the above analysis assumes that gain scores are used from a single academic subject only. 
However, value-added estimates for upper elementary school teachers are sometimes obtained using test 
scores from multiple subject areas. For example, the EVAAS model estimates separate teacher effects for 
each subject area, and then averages these estimates to obtain overall value-added estimates. Our primary 
analysis assumes a test score from a single subject (or from highly correlated tests), but in our sensitivity 
analysis, we examine precision gains from using multiple tests (as discussed further below).  
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Considered Estimators 

We consider two estimators for jkτ  using variants of the HLM model in (1a) to (1d). The first is an 
ordinary least squares (OLS) estimator that is obtained using the following model, where (1b) is inserted 
into (1a) and jkτ  are treated as fixed effects: 
 

(2) ( ).itjk jk tjk itjkg τ ω ε= + +  
 

This model yields the following OLS estimator: 
 

, ..ˆ(3) ,jk OLS jkgτ =  

where ..
1 1

( /
c n

jk itjk
t i

g g
= =

= ∑∑ )cn  is the mean gain score for all students taught by teacher j in school k over 

the c years.  
 
The second approach for estimating jkτ  is an Empirical Bayes (EB) approach (see, for example, 
Raudenbush and Bryk 2002; Berger 1985; Lindley and Smith 1972). Under this approach, equations (1b) 
to (1d) are viewed as defining normal “prior” distributions for the random intercepts tjkξ , jkτ , and kη  
(given random intercepts from higher HLM levels). Similarly, (1a) is viewed as defining the conditional 
distribution of  given all random intercepts. Bayes theorem can then be used to combine the 

conditional distribution for  with the prior distributions for the random intercepts to yield a posterior 

distribution for 

ijktg

ijktg

jkτ  given the data (and similarly for the other random intercepts). The EB estimator for 

jkτ  is the mean of the posterior distribution for jkτ .    
 
We consider EB estimators for comparing teachers within schools and between schools. For the within-
school comparisons, we use (1a) to (1c)—but not (1d)—and assume that kη  are fixed effects that are 

estimated using the school-level means ... ..
1

ˆ ( /
m

k k jk
j

g gη
=

= = ∑ ).m  This approach yields the following EB 

estimator: 
 
 , , .. ...ˆ(4) (1 ) ,jk EB Within jk kg gθ θτ λ λ= + −  
 
where 2 2 2

|/( )gθ θ θ τλ σ σ σ= +  is the “reliability” weight (0 1)θλ≤ ≤ , and 2 2 2
| ( / ) ( / )g c cτ ω εσ σ σ= + n  is 

the variance of .. jkg  conditional on jkτ .  
 
The estimator in (4) “shrinks” the teacher-level mean to the mean for all teachers in the same school (that 
is, to ˆkη ). This estimator is biased, but it could yield a smaller expected mean square error than the OLS 
estimator because it exploits information on other teachers in the school. The extent of shrinkage will 
depend on the ratio of the variance of the prior distribution 2

θσ  relative to the total variance 2 2
|gθ τσ σ+ ; all 

else equal, the weight θλ  increases as 2
θσ  increases and more weight is given to the teacher-level mean. 

6  Statistical Framework for the Teacher-Level Analysis 



 

In practice, θλ  will typically differ across teachers depending on available sample sizes, but we do not 
index θλ  by j and k given the assumed balanced design.    
 
There are several EB estimators that could be used for the between-school comparisons. One estimator 
uses the four-level HLM model from above and is as follows:  
 
 ,ˆ jk EB, 1 .. ... ....(1 )[ (1 ) ],Between jk kg g gθ θ ψ ψτ λ λ λ λ= + − + −(5)  
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where .... ...
1

ˆg δ= = ( / )
s

k
k

g s
=
∑  is the grand district-level mean, 2 2 2

|/( )gψ ψ ψ ηλ σ σ σ= +  is the between-

school reliability weight (0 1)ψλ≤ ≤ , and 2 2 2 2
| ( / ) ( / ) ( / )g m cm cnθ ω εησ σ σ σ= + + m  is the variance of 

...kg  conditional on kη . This estimator shrinks the teacher-level mean toward the school-level mean, 
which, in turn, is shrunk toward the grand district-level mean (Raudenbush and Bryk 2002). This can be 
seen more clearly by rewriting (5) as follows:  
 
 ,ˆ jk , 1 .. ... ... .... ....(5a) ( ) ( ) (1 (1 )) .EB Between jk k kg g g g gθ ψ ψ θ ψτ λ λ λ λ λ= + − + − −  
 
Note that this approach could lead to result that a teacher with a higher value for .. jkg  than another 
teacher is given a lower performance ranking because she teaches in a lower-performing school (which 
may be difficult to explain to educators).  
 
The second EB estimator that we consider does not adjust for performance differences across schools. It 
can be obtained from a three-level HLM model where (1d) is inserted into (1c). This estimator is as 
follows: 
 
 ,ˆ jk EB, 2 ' .. ' ....(6) (1 ) ,Between jkg gτ ττ λ λ= + −  
 
where 2 2 2 2 2

' ( ) /( g | )τ θ ψ θ ψ τλ σ σ σ σ σ= + + +  is the between-school reliability weight '(0 1)τλ≤ ≤ . This 
estimator directly shrinks the teacher-level mean to the grand district-level mean, and will ensure that 
teacher performance ratings will always be made based on .. jkg  values, without regard to ...kg  values.  
 
For several reasons related to the clarity of presentation, we adopt the estimator in (6) rather than (5) for 
our analysis. First, for the system error rate analysis, we must calculate the variance of the EB estimator, 
which is the posterior distribution for jkτ  given the data. This variance formula is very complex for the 
estimator in (5) (see Berger 1985), although it could be estimated through simulations using a Gibbs or 
related sampler (see, for example, Gelman et al. 1995; Gelman et al. 2007). The variance formula for the 
estimator in (6), however, is much simpler, as shown below.  
 
Second, it is more straightforward to use (6) rather than (5) to specify null hypotheses for comparing jkτ  
values for teachers across different schools so that the test statistics (z-scores) have zero expectations 
under the null hypotheses. This occurs because the expected value of the estimator in (5) is 

( (1 ) )jk kθ θ θ ψλ θ λ λ λ ψ− ++ + δ , whereas the expected value of the estimator in (6) is ( )jk kτλ θ ψ δ′ + + . 

Thus, null hypotheses using (6) can focus on the equality of ( )jk kθ ψ+  values across teachers, whereas 



 

null hypotheses using (5) must specify more complex conditions regarding the equality of  jkθ  and kψ  
values across teachers and schools. 
 
 
Schemes for Comparing Teacher Performance 

In any performance measurement system, there must be a decision rule for classifying teachers as 
meriting or not meriting special treatment. One of the most prevalent value-added models applied in 
practice is the EVAAS model used by the Teacher Advancement Program (TAP; see National Institute 
for Excellence in Teaching 2009), which classifies each teacher into a performance category based on the 
t-statistic from testing the null hypothesis that the teacher’s performance is equal to average performance 
in a reference group (see Solmon et al. 2007; Springer et al. 2008). Thus, hypothesis testing is an integral 
part of the policy landscape in performance measurement, and forms the basis for our considered schemes 
for comparing teacher value-added estimates. 
 
This section discusses our considered schemes, in which we assume a classical hypothesis testing strategy 
for both the OLS and EB estimators. A comprehensive discussion of performance schemes is beyond the 
scope of this paper (see Podgursky and Springer 2007 for a detailed discussion). Rather, we outline 
several options that are used for the simulation analysis. Our results pertain to these options only.  
 
 
Scheme 1  

The first considered design is a within-school scheme that aims to address the question, “Which teachers 
in a particular school performed particularly well or badly relative to all teachers in that school?” The 

considered null hypothesis for this scheme is 0 .H : 0jk kτ τ− = , where .
1

( / )
m

k jk
j

mτ τ
=

= ∑  is the mean 

teacher effect in school k. Equivalently, the null hypothesis is that jkθ  equals the mean jkθ  value in 
school k. This testing approach will identify for special treatment teachers for whom the null hypothesis is 
rejected; the chances of identification will increase the further the teacher’s true performance is from her 
school’s mean. This scheme could be pertinent for school administrators who aim to identify exemplary 
or problem teachers in a particular school, without regard to the performance of teachers in other schools. 
 
Using the OLS approach and the estimator in (3), this null hypothesis can be tested using the z-score  
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1, .. ... 1,[( ) / ]OLS jk k OLSz g g V= − , where the variance  is defined as follows: 1,OLSV
 

 
2 2

1,
1(7) ( )( ).OLS

mV
c cn m
ω εσ σ −

= +  

 
The first bracketed term in (7) is the variance of a teacher-level mean, and is the standard variance 
formula for a sample mean under a clustered design (see, for example, Cochran 1963; Murray 1998; 
Donner and Klar 2000). In our context, design effects arise because of the clustering of students within 
classrooms. The second bracketed term reflects the estimation error in the school-level mean and the 
covariance between the teacher- and school-level means.  
 
Importantly, for moderate m, the variance in (7) is driven primarily by the variance of the teacher-level 
mean (because the second bracketed term is close to 1). Thus, Scheme 1 has similar statistical properties 
to a more general scheme where statistical tests are conducted to compare a teacher’s performance 



 

relative to fixed threshold values that are assumed to be measured without error. Threshold values could 
be based, for example, on a percentile gain score in the state gain score distribution, or the average gain 
score such that a low-performing school or district would meet adequate yearly progress (AYP) 
benchmarks. These threshold values could effectively be assumed to have zero variance if they are based 
on very large samples or subjective assessment. Our results are also likely to be representative of schemes 
using fixed thresholds that do not involve hypothesis testing (although false positive and false negative 
error rate tradeoffs differ for these schemes and the ones that we consider). 
 
Using the EB approach and the estimator in (4), the null hypothesis for Scheme 1 can be tested with 
classical procedures using the z-score 1, .. ... 1,[ ( ) / )]EB jk k EBz g g Vθλ= − , where  is an approximation 

to the variance of the posterior distribution for 
1,EBV

jkτ  given the data. This approximation, which assumes 

that ...ˆk kgη =  is estimated without error, is defined as follows: 
 

 2
1, 1, |(8) ( ) ,

1EB OLS g
mV V

mθ θ τλ λ σ= =
−

 

 
where θλ  is the within-school reliability weight defined above (see Gelman et al. 2009; Berger 1985). 
 
The variance of the EB estimator in (8) is smaller than the variance of the OLS estimator in (7) by a factor 
of /( 1)m mθλ − . Importantly, however, the z-score is smaller for the EB estimator by a factor of 

( 1) /mθλ − m , suggesting that the OLS approach tends to reject the null hypotheses more often—and 

thus has more statistical power than the EB approach. This occurs because as θλ  decreases, the teacher-
level means are shrunk toward their school-level means faster than the EB variances are shrunk toward 
zero.  
 
Gelman et al. (2009) argue that the smaller test statistics under the EB framework are appropriate for 
helping to reduce the multiple testing problem (see Schochet 2009). The multiple testing problem could 
plague the OLS approach because of the large number of comparisons that are likely to be made under a 
teacher performance measurement system, which could increase the chances of finding false positives. 
We do not consider multiple comparisons adjustments for the OLS estimator in this paper, which 
typically involve lowering significance levels with a resulting loss in statistical power.    
 
In some instances, school administrators—especially those in small schools—may want to compare the 
performance of two specific teachers (A and B) within the same school. In this design—referred to as 
Scheme 1a—the null hypothesis is 0H : 0Ak Bkτ τ− = , and the z-score using the OLS approach is 

1 , .. .. 1 ,[( ) / ]a OLS Ak Bk a OLSz g g V= − , where the variance  is defined as follows: 1 ,a OLSV
 

    
2 2

2
1 , |

2 2(9) 2 .a OLS gV
c cn
ω ε

τ
σ σ σ= + =  

 

For this scheme, the z-score under the EB approach is 2
1 , .. .. |[ ( ) / 2 ]a EB Ak Bk gz g gθ θ τλ λ= − σ .   

 
Finally, we assume one-sided rather than two-sided tests, where the direction of the alternative hypothesis 
depends on the sign of the z-score. For instance, under Scheme 1, if the observed z-score is positive, then 
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the alternative hypothesis is 1H : . 0jk kτ τ− > , whereas if the observed z-score is negative, then the 

alternative hypothesis is 1H : . 0jk kτ τ− < . We adopt a one-sided testing approach, because it is likely 
that school administrators will want to gauge the performance of a teacher relative to others after 
examining the teacher’s performance measure.   
 
 
Scheme 2 

The second considered design is a between-school scheme that aims to address the question, “Which 
teachers performed particularly well or badly relative to all teachers in the entire school district?” Under 

this scenario, the considered null hypothesis is 0 ..H : 0jkτ τ− = , where .. .
1

( /
s

k
k

sτ τ
=

= ∑ )  is the mean 

value of jkτ  across all teachers in the district. Stated differently, the null hypothesis is that ( )jk kθ ψ+  

equals the mean value of ( )jk kθ ψ+ .  
 
Using the OLS approach, in which teacher and school effects remain fixed, the null hypothesis for 
Scheme 2 can be tested using the z-score 2, .. .... 2,[( ) / ]OLS jk OLSz g g V= − , where the variance  is 

defined as follows: 
2,OLSV

 
2 2

2,
1(10) ( )( ).OLS

smV
c cn sm
ω εσ σ −

= +  

 

The z-score using the EB approach is 2
2, ' .. .... ' |[ ( )] /EB jk gz g gτ τ τλ λ σ= − . 

 
 
Accounting for Tests From Multiple Subjects 

The above analysis assumes that value-added estimates are obtained using gain scores from a single 
academic subject. However, value-added estimates for upper elementary school teachers are sometimes 
obtained using test score data from multiple subject areas. To account for these multiple tests in the 
variance calculations, we adopt the EVAAS approach where teacher effects are estimated separately for 
each subject area, and are then appropriately scaled and averaged to obtain aggregate value-added 
estimates that are used by policymakers. We assume that each subject test provides information on a 
teacher’s underlying jkτ  value.  
 
Suppose that gain score data are available for  subject tests for each student in the classroom, so that 

 test score observations are available for each classroom. These d test score observations are 
“clustered” within students, and now define Level 1 in the HLM model (where students are now Level 2, 
classrooms are Level 3, and so on). Standard methods on the variance of two-stage clustered designs (see, 
for example, Kish 1965) can then be used to show that the effective number of observations per classroom 
can be approximated as follows: 

d
nd

 
  (11) /[1 ( 1)],eff dn nd dρ≈ + −  
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where dρ  is the average pairwise correlation among the  tests. The denominator in (11) is the design 
effect, and will increase as the correlations between the subject tests increase. The design effect will equal 

 if 

d

d 1dρ = , in which case there are no precision gains from using the multiple tests. Conversely, the 
design effect will equal 1 if 0dρ = , in which case the effective sample size is .  nd
 
To account for multiple tests in the above variance formulas, the effective class size, , can be used 

rather than n . Realistic values for d  and 
effn

dρ  are discussed below. 
 
 
Accounting for the Serial Correlation of Student Gain Scores Over Time 

The benchmark HLM model uses only contemporaneous information on student test score gains to 
estimate the value-added of the students’ current teachers. However, some models such as EVAAS pool 
together gain scores from multiple grades for a given student, and information on gain scores from all 
available grades is used to estimate teachers’ value-added at a particular grade level. Because the student-
level error term, itjkε , may be serially correlated across grades, the gains achieved by a teacher’s current 

students in other grades reduces uncertainty about the students’ current values of itjkε  and, hence, can 
improve the precision of the value-added estimates. 
 
Suppose that the HLM model in (1a) through (1d) is specified separately for two consecutive grades, and 
the two grade-specific models are estimated jointly as a system of seemingly unrelated regressions 
(SURs) using generalized least squares (GLS) (see, for example, the discussion of seemingly unrelated 
regressions in Amemiya 1985 and Appendix A). By comparing well-known variance formulas for the 
GLS estimator and the OLS estimator (Wooldridge 2002, Chapter 7), it can be shown that the variance of 
the SUR estimator is approximately the variance of the OLS estimator based on the effective number of 
observations per classroom, 2

2 /(1 )eff t tn n ρ , 1−≈ − , where , 1t tρ −  is the correlation of itjkε  across the two 
grades. Hence, the greater the absolute value of the serial correlation in the student-level error term, the 
greater the efficiency gains from exploiting serial correlation in estimation. In our sensitivity analysis, we 
present results using  rather than n, using empirical values of 2effn , 1t tρ − . As discussed below, empirical 
values of error correlations across non-consecutive grades are very small, so we do not consider the case 
of pooling more than two grades together. 
 
 
Measuring the Reliability of Performance Estimators 

The variance formulas presented above have a direct relation to reliability (stability) measures that the 
previous literature has used to gauge the noisiness in value-added estimators (see, for example, 
McCaffrey et al. 2009). Reliability is the proportion of an estimator’s total variance across teachers that is 
attributable to persistent performance differences across teachers, and can be calculated as the correlation 
between a teacher’s value-added estimates for two non-overlapping time periods. In our notation, the 
reliability of the OLS estimator is θλ  for the within-school analysis and τλ ′  for the between-school 
analysis. Clearly, reliability will increase as student sample sizes increase. Reliability in our context is 
parallel to the usual psychometric definition of reliability as the consistency of a set of measurements or 
of a measuring instrument, because both definitions aim to measure signal-to-noise ratios. 
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In our view, reliability statistics are likely to carry little practical meaning for most stakeholders in a 
performance measurement system, unless they can be linked to a clear, direct measure of the accuracy 
with which the system can identify teachers who deserve special treatment. Thus, as discussed next, we 
use a direct approach to measure system misclassification rates. Nonetheless, we present reliability 
statistics for key simulation analyses.      
 
 
Calculating System Error Rates  

In this section, we discuss our approach for defining system error rates for Schemes 1, 1a, and 2, and key 
issues that must be considered when applying these definitions. 
 
 
Defining System Error Rates 

We define system error rates using false positive and negative error rates from classical hypothesis 
testing. To help explain our error rates, consider Scheme 2 where a hypothesis test is conducted to assess 
whether a teacher performs significantly worse than the average teacher in her district using test score 
data for c years. Suppose also that a teacher is considered to be deserving of special assistance if her true 
performance level is T standard deviations (SDs) below the district average (see Figure 2.1). We assume 
this scenario for the remainder of this section; symmetric results apply for tests that aim to identify high-
performing teachers and for Schemes 1 and 1a.1  
 
 
Figure 2.1: Hypothetical True Teacher Value-Added Measures 
 
Teacher ID: 1 2  3  4   5  
 
                 x x    x  x   x      
  
   A = T SDs Below Average  B = Average Teacher   
                                                                  

True Teacher Value-Added Measure (Gain Score Units) 
 
Using Figure 2.1, the Type I error rate (α ) is the probability that based on c years of data, the hypothesis 
test will find that a truly average teacher (such as Teacher 4) performed significantly worse than average. 
Stated differently, α  is the probability that an average teacher will be erroneously identified for special 
assistance, and is usually set in advance in classical hypothesis testing to determine the rejection region 
for the null hypothesis. For Scheme 2, α  can be expressed as follows:  
 

0 ..(12) Pr(Reject | 0).jkHα τ τ= − =  
 
Given α , the false positive error rate, ( )FPR q , is the probability that a teacher (such as Teacher 5) 
whose true performance level is q  SDs above average is falsely identified for special assistance. For a 
one-tailed z-score test,  ( )FPR q  can be expressed as follows: 
 
                                                      

1 We express SDs in gain score units because the HLM pertains to gain scores. However, the results would be 
identical if the SDs (and our SD targets) were instead expressed in posttest score SD units.  
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1
0 ..

2

(13) ( ) Pr(Reject | ) 1 [ (1 ) ]jk
qFPR q H q

V
σλτ τ σ α−= − = = −Φ Φ − +

)

 for  0,q ≥

 
where 2 2 2 2 2( ψ θ ω εσ σ σ σ σ= + + +  is the total variance of the student gain score,  is the variance of the 

OLS or EB estimator for Scheme 2, 
2V

λ  equals 1 for the OLS estimator and 'τλ for the EB estimator, and 
 is the normal distribution function. (.)Φ ( )FPR q  will decrease as the teacher’s true performance level 

increases beyond Point B in Figure 2.1 (that is, as q  increases) and as the sample size increases. The 
Type I error rate equals .  (0)FPR
 
The overall false positive error rate for the population of average or better teachers can be obtained by 
calculating the expected value (weighted average) of population ( )FPR q  values:   
 

0 .. ..
0

(14) _ Pr(Reject | ) ( | 0) ,jk jk
q

FPR TOT H q f q qτ τ τ τ
≥

= − = −∫ ≥ ∂  

 
where (.)f  is the density function of true teacher performance values for the considered population. 
Clearly, _ TOTFPR α≤ .  For the simulations, we assume that (.)f  has a normal distribution with 

variance 2 2/θfV σ σ=  for the within school analysis and 2 2 ) /fV ψ θ
2(σ σ σ= +  for the between-school 

analysis, and estimate fV  using values that are discussed below.2 To calculate the integral in (14), we 
used a simulation estimator where we (1) obtained 10,000 random draws for  from a truncated normal 
distribution, (2) calculated 

q
( )FPR q  for each draw, and (3) averaged these 10,000 false positive error 

rates.  
 
Given α  and the threshold value T , the false negative error rate is the probability that the hypothesis test 
will fail to identify teachers (such as Teachers 1 and 2 in Figure 2.1) whose true performance is at least T   
SDs below average. This error rate, ( )FNR q , is the probability that a low-performing teacher will not be 
identified for special assistance, even though the teacher is deserving of such treatment. For a one-tailed 
z-score test, ( )FNR q  for Scheme 2 can be expressed as follows: 
 

 

1
0 ..

2

(15) ( ) Pr(Do Not Reject | ) [ (1 ) ]jk
qFNR q H q

V
σλτ τ σ α−= − = = Φ Φ − +   

 
for . This probability will decrease as the teacher’s true performance level moves further to the 
left of Point A in Figure 2.1. The Type II error rate, 

0q T≤ <
(1 )β− , equals ( )FNR T , where β  is the statistical 

power level. Note that T can be interpreted as the minimum difference in performance between a given 
teacher and the average that can be detected with a power level of β . Thus, our framework is parallel to 
the framework underlying minimum detectable effect sizes in impact evaluations (see, for example, 
Murray 1998; Bloom 2004; Schochet 2008). 
                                                      

2 In Scheme 1a, since the null hypothesis is that two given teachers do not differ in performance, (.)f  is the 
density function of true differences in performance between two teachers, expressed in gain score standard 
deviations. The variance of these pairwise performance differences within schools is 2 22 /fV θσ σ= . 
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The overall false negative error rate for the population of low-performing teachers can be calculated as 
follows:   
 

 
..

0

(16) _ ( ) ( | ) .jk
q T

FNR TOT FNR q f q T qτ τ σ
≤ <

= −∫ ≤ ∂  

 
Note that we do not include teachers in (16) whose performance values are between points A and B in 
Figure 2.1 (such as Teacher 3). This is because it is difficult to assess whether or not these teachers 
deserve special treatment and, in our simulations, we conduct calculations assuming different threshold 
values. 
 
We also define two additional aggregate error rates that have a Bayesian interpretation. First, for a given 
α , we define the population false discovery rate, _FDR TOT

_

, as the expected proportion of all 
teachers with significant test statistics who are false discoveries (that is, who are truly average or better).3 
It is desirable that this error rate below to ensure that most teachers identified for special assistance are 
deserving of such treatment. Using Bayes rule, FDR TOT  can be approximated as follows:     
 

 
0 ..

_ *.5(17) _ .
Pr(Reject | ) ( )jk

q

FPR TOTFDR TOT
H q f q qτ τ σ

≈
− = ∂∫

 

 
The denominator in (17) is the expected proportion of all teachers with significant test statistics, and 
includes teachers whose performance values are between points A and B in Figure 2.1. 
 
Second, for a given α  and T , we define the false non-discovery rate, _FNDR TOT , as the expected 
proportion of all teachers with insignificant test statistics who are truly low performers. This error rate can 
be approximated as follows:  
 

 
0 ..

_ *(1 (| | / )
(18) _ .

Pr(Do Not Reject | ) ( )
f

jk
q

FNR TOT T V
FNDR TOT

H q f q

σ

τ τ σ

−Φ
≈

q− = ∂∫
 

 
 
Applying the System Error Rate Formulas  

Several real-world issues must be considered to apply the error rate formulas for our simulations. A 
proper analysis must recognize that an assessment of the errors for a performance measurement system 
(and, hence, appropriate sample sizes) will depend on system goals and stakeholder perspectives. The 
remainder of this section discusses key issues and our approach for addressing them.   
 
Acceptable levels for false positive and false negative error rates. Tolerable error rates will likely depend 
on a number of factors. First, they are likely to depend on the nature of the system’s rewards and 
                                                      

3 The FDR was coined by Benjamini and Hochberg (1995) in the context of discussing methods to adjust for 
the multiple testing problem. 
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penalties. For instance, acceptable levels are likely to be lower if the system is to be used for making 
high-stakes decisions (such as promotions, merit pay decisions, firings, and identifying high-performing 
teachers who could be moved to low-performing schools) than for making less consequential decisions 
(such as identifying those in need of extra teacher professional development). 
 
Second, acceptable error rate levels are likely to differ by stakeholder (such as teachers, students, parents, 
school administrators, and policymakers) who may have different loss functions for weighing the various 
benefits and costs of correct and incorrect system classifications. For example, teachers may view false 
positives as more serious than false negatives for a system that is used to penalize teachers, because high 
false positive rates could impose undue psychic and economic costs on teachers who are falsely identified 
as low performers, thereby discouraging promising teachers from entering the teaching profession and 
reducing teacher morale. Teachers, however, may hold the opposite view for a system that is used to 
reward teachers. Parents, on the other hand, are likely to be primarily concerned that their children are 
taught by good teachers and, thus, may view false negatives as particularly problematic. As a final 
example, the loss function for school administrators is likely to be complex, because they must balance 
the loss functions of other stakeholders with competing interests, and must also consider their school 
report cards, the supply of qualified teachers in their local areas, and the positive and negative effects that 
a performance measurement system could have on the teacher supply. 
 
Because it is not possible to define universally acceptable levels for system error rates, we present error 
rates for different assumed numbers of years of available data, and are agnostic about what error rate 
levels are appropriate and whether false positives or false negatives are more problematic.  
 
The location of the threshold value for assessing system error rates. A critical issue for computing false 
negative rates is how to define high- and low-performing teachers. As is the case for determining 
tolerable error rates, the choice of threshold values will depend on stakeholder perspectives and system 
objectives. For example, parents may have a different view on what constitutes a low-performing teacher 
than school administrators or teachers.  
 
As discussed below, we define educationally meaningful threshold values using information on the 
natural progression of student test scores over time. Furthermore, we conduct the simulations using 
several threshold values to capture differences in stakeholder perspectives.  
 
The system error rates on which to focus. We focus on Type I and II error rates as well as the overall 
error rate measures discussed above, because these are likely to be of interest to a broad set of 
stakeholders. Type I and II error rates are likely to provide an upper bound on system error rates for 
individual teachers or schools. These rates may be applicable if the system is to be used for making high-
stakes decisions and stakeholders view misclassification errors as highly consequential. The Type I error 
rate may be of particular interest to teachers or schools who believe that their performance is at least 
average (but who are not sure how much above average), because this rate is the maximum chance that 
such a teacher or school will be falsely identified for sanctions. Type I error rates may also be of interest 
to individuals who are considering entering the teaching profession and have no reason ex ante to believe 
that they are different from average. The Type II error rate may be of particular interest to administrators 
and parents who want a conservative estimate of the chances that a very low-performing teacher will be 
missed for special assistance and remain in the classroom without further intervention. 
 
We also present results using the overall error rate measures for those interested in aggregate 
misclassification rates for the full population of “good” and “poor” educators. Such interested parties 
might include designers of accountability systems whose focus is on the social equity of a performance 
measurement system. To these stakeholders, the issue that some “good” teachers and schools will have 
higher error rates than other “good” teachers and schools (and similarly for “poor” teachers and schools) 



 

is less important than population error rates. Thus, the Type I and II error rates may be relevant to those 
focused on individual teachers and schools, whereas the overall error rates may be more relevant to those 
focused on groups of educators.    
 
In order to balance the myriad objectives from above and keep the presentation of simulation results 
manageable, we report results from three types of analyses. First, we report Type I and II error rates 
subject to the restriction that these two error rates are equal. For given values of c and T , these error rates 
can be calculated as follows: 
 

| |(19) 1 1 ,
2 ( )

T
Var Contrast

σλα β
⎡ ⎤

= − = −Φ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where  is the variance of the contrast of interest and other terms are defined as above. 
Second, we used a grid search using different Type I errors to calculate and report values for 

(Var Contrast

_

)

FPR TOT  and _FNR TOT  subject to the restriction that these two error rates are equal. For these 
derived values, we also present _FDR TOT  and _FNDR TOT  values. Finally, because some 
stakeholders may place different weights on false negatives and positives, we report results on the number 
of years of available data per teacher that are required to attain various combinations of Type I and II 
errors and _FPR TOT  and _FNR TOT  errors.  
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Chapter 3: Statistical Framework for the School-Level Analysis   
The schemes and statistical methods from above can also be used to identify schools for special treatment. 
These schemes can be implemented using estimates of (k )kη δ ψ= +  from variants of the HLM model 
from above. For the OLS approach, estimates of kη  can be obtained using the following model, where kη  

and jkθ  are treated as fixed effects: 
 

(20) ( ).itjk k jk tjk itjkg η θ ω ε= + + +   
 

The resulting OLS estimator is , .ˆk OLS kg ..η = .  
 

The EB estimator for kη  can be obtained using the four-level HLM model and is 

, ... ....ˆ (1 )g g−k EB kψ ψη λ λ= + , where 2 2 2
|/( )gψ ψ ψ ηλ σ σ σ= +  is the between-school reliability weight  and 

2 2 2 /m cσ 2
| ( / ) ( ) ( / )g m cnmθ ω εησ σ σ= + + . Unlike the OLS framework, the EB framework treats kη  and 

jkθ  as random rather than fixed.  
 
For the school-level analysis, the null hypothesis for Scheme 2 is 0 .H : 0kψ ψ− = , where 

.
1

( /
s

k
k

s)ψ ψ
=

= ∑  is the mean school effect in the district. Using the OLS approach, this null hypothesis 

can be tested using the z-score 2, , ... .... 2, ,[( ) / ]OLS School k OLS Schoolz g g V= − , where  is defined as 

follows: 
2, ,OLS SchoolV

 
2 2

2, ,
1(21) ( )( ).OLS School

sV
cm cnm s
ω εσ σ −

= +  

 
The z-score using the EB approach is as follows: 
 

2
2, , ... .... |(22) [ ( ) / ].EB School k gz g gψ ψ ηλ λ= − σ    

 
Similarly, for the school-level analysis, the null hypothesis for Scheme 1a that compares the performance 
of two schools (A and B) is 0H : 0A Bψ ψ− = . Using the OLS approach, the z-score for this null 

hypothesis is 1 , , ... ... 1 , ,[( ) / ]a OLS School A B a OLS Schoolz g g V= − , where  is the same as in (21) except 

that ( 1
1 , ,a OLS SchoolV

) /s s−  is replaced by 2. Using the EB approach, the z-score is 
2

1 , ... ... |[ ( ) / 2 ]a A B gz g gψ ψ

 Statistical Framework for the School-Level Analysis   17 

,EB School ηλ λ σ= − .  

 
Finally, our approach for assessing appropriate sample sizes for the school-based analysis is parallel to the 
approach discussed above for the teacher-based analysis. 



 

 



 

Chapter 4: Simulation Analysis 
This section addresses the following question: “What are likely error rates for the performance 
measurement schemes and estimators considered above?” To answer this question, we simulated system 
error rates using empirically based values for key parameters. The focus of the analysis is on teachers and 
schools at the upper elementary level where each teacher is responsible for one class per year.   
 
This section is in four parts. In the first two sections, we discuss key parameter assumptions for the 
simulations. Third, we discuss threshold values to adopt for identifying low- and high-performing 
teachers and schools. Finally, we discuss the simulation results.  
 
Obtaining Realistic Values for the Variance Components 

The error rate formulas from above depend critically on the variances of the specific performance 
contrasts. These variances are functions of the intraclass correlations (ICCs) 2 2/ψ ψρ σ σ= , 2 2/ ,θ θρ σ σ=  

2 /ω ω
2ρ σ σ= , and 2 /ε ε

2ρ σ σ= , which express the variance components in (1a) to (1d) as fractions of 
the total variance in gain scores across all students in the district.  
 
To obtain realistic ICC estimates, we reviewed ten recent studies from the value-added literature that 
provide information on at least one ICC. In addition, we conducted primary analyses of data from five 
large-scale experimental evaluations of elementary school interventions conducted by Mathematica 
Policy Research (see Appendix B). 
 
The average ICCs across the studies that are presented in the final row of Appendix Table B.2 are the 
benchmark ICCs that were used in the simulations. Student heterogeneity is the key source of imprecision 
in estimating differences in value-added across teachers and schools. On average, 92 percent of the total 
gain score variance is attributable to student differences within the same classroom ( 0.92ερ = ); in all 
but one estimate, ερ  is at least 80 percent. Another source of imprecision stems from idiosyncratic 
classroom-level factors, which, on average, account for 3 percent of the total variance in gain scores  
( 0.030ωρ = ). In addition, the proportion of the total variance that is attributable to persistent, within-
school differences in teacher value-added is about 3.5 percent ( 0.035θρ = ). School-level factors 

account for an additional 1.1 percent of the gain score variance ( 0.011ψρ = ). 
 
By taking the square root of the average θρ  and ψρ  estimates, we see that increasing θ  and ψ  by one 
standard deviation (SD) in their respective distributions equates to an increase of 0.187 and 0.105 SDs in 
the gain score distribution, respectively. Our compilation of ICCs confirms the commonly reported 
finding that variation in teacher value-added within schools is greater than variation in school value-
added. Nevertheless, persistent differences in teacher and school value-added collectively account for less 
than 5 percent of the total variation in student learning gains. 
 
 
Additional Assumptions for Key Parameters 

Other parameters that enter the error rate formulas are the class size , the number of teachers per 
school , and the number of schools in the district (

( )n
( )m )s . We assume 21n = , which is the median class 
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size for self-contained classrooms in elementary schools according to our calculations from the 2003-04 
School and Staffing Survey (SASS).  
 
The assumed value of  depends on the number of elementary grade levels that are likely to be included 
in a performance measurement scheme. Under No Child Left Behind (NCLB), state assessments must 
begin no later than third grade, so it is likely that longitudinal data systems will contain gain score data for 
fourth grade and beyond. However, some states and districts administer uniform assessments to their 
students in grades below third grade; for example, the California Standards Test (CST) begins in grade 2. 
Therefore, we make an optimistic assumption that each elementary school has three grade levels for 
which teacher value-added can be estimated, and that these three grades collectively have  
teachers (or an average of 3.3 teachers per grade). This assumption yields 70 students per grade level per 
school, which is approximately the median fourth grade enrollment of elementary schools in 2006-07 
according to our calculations from the Common Core of Data.  

m

10m =

 
We assume multiple values of  because districts vary widely in size. In particular, we present results for 

 and , which imply districtwide grade level enrollment in the 81st and 98th percentiles of 
district fourth grade enrollment in 2006-07. Our focus on the top quintile of district size stems from the 
fact that districts in this quintile educate more than 70 percent of the nation’s students. 

s
5s = 30s =

 
For our sensitivity analysis, we require values of  (the number of tests) and d dρ  (the average pairwise 
correlation between student gain scores from multiple tests). NCLB requires that elementary and middle 
school students be tested annually from grades 3 to 8 in reading and math, and tested at least once in 
science during grades 3 to 5 and 6 to 9. Districts must administer tests of English proficiency to all 
Limited English Proficient students, and sometimes administer their own tests in other subjects (such as 
social studies). It is likely, however, that most districts will consistently have available gain score data in 
at most 2 subject areas (reading and math); thus, we assume 2d =  for the sensitivity analysis.  
 
To obtain realistic values for dρ , we calculated correlations between math and reading fall-to-spring gain 
scores using the Mathematica data discussed in Appendix B. These correlations range from 0.2 to 0.4. 
Thus, for our analysis, we assume 0.3.dρ =  Applying (11) with 2d = , 0.3dρ = , and  yields an 

effective sample size, , equal to 32 students per classroom. 

21n =

effn
 
Finally, the sensitivity analysis that exploits longitudinal student information from consecutive grades 
requires values of , 1t tρ − , the correlation of itjkε  across consecutive grades. Using data on the population 
of North Carolina’s students in third, fourth, and fifth grades, Rothstein (2010) finds that the correlation 
in gain score residuals between fourth and fifth grade is -0.38 in math and -0.37 in reading. Thus, our 
sensitivity analysis uses , implying an effective sample size of  students per 
classroom. Importantly, Rothstein finds that the correlation between gain scores in grades three and five 
range from -0.02 to 0.02; thus, we ignore error correlations across non-consecutive grade levels.  

, 1 0.38t tρ − = − ,2 24.5effn =

    
 
Identifying Threshold Values 

A critical simulation issue for Schemes 1, 1a, and 2 is the threshold to adopt for defining meaningful 
performance differences between teachers or schools (that is, the value of T  in Figure 2.1). Following the 
approach used elsewhere (Kane 2004; Schochet 2008; Bloom et al. 2008), we identify educationally 
meaningful thresholds using the natural progression of student test scores over time.  
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To implement this approach, we use estimates of average annual gain scores compiled by Bloom et al. 
(2008). For each of seven standardized test series, the authors use published achievement data for national 
samples of students who participated in the assessment’s norming study. Because these assessments use a 
“developmental” or “vertical” achievement scale, scale scores are comparable across grades within each 
assessment series. Thus, for each pair of consecutive grades, an estimate of the average annual gain score 
in SDs of test score levels can be estimated by (1) calculating the cross-sectional difference between 
average scale scores in the spring of the higher grade and the spring of the lower grade, and (2) dividing 
this difference by the within-grade SD of scale scores. Bloom et al. (2008) average these estimates across 
the seven test series for each grade-to-grade transition. To express the average gain score in terms of SDs 
of gain scores, we divide the final estimates of Bloom et al. (2008) by 0.696, the estimated ratio of the SD 
of test score gains to the SD of posttest scores from the Mathematica data discussed in Appendix B. 
 
Table 4.1 shows the resulting average annual gain scores expressed in gain score effect size units for each 
of three grade-to-grade transitions in the upper elementary grades. On average, annual growth in 
achievement per grade is 0.65 SDs of reading gains and 0.94 SDs of math gains.  
 
To help interpret these estimates, it is important to recognize these average gains reflect inputs to learning 
from both school-based settings and influences outside of school during a twelve-month period. In 
addition, a consistent pattern from prior studies is that average annual gains decrease considerably with 
grade level; hence, while our thresholds are selected in reference to typical learning growth in the upper 
elementary grades, different thresholds might be justifiable in lower or higher grades. 
 
 

Table 4.1: Average Annual Gain Scores From Seven Nationally Standardized Tests 

Average Test Score Gain, in Standard Deviations of Gain Scores 

Grades Between Which Test Score Gains 
are Calculated Reading Math 

2 and 3 0.86 1.28 

3 and 4 0.52 0.75 

4 and 5 0.57 0.80 

Average  0.65 0.94 

 
Source: Authors’ calculations based on findings in Bloom et al. (2008). 

 
Note: Figures for reading are based on the analysis of Bloom et al. (2008) for the following seven tests: 

California Achievement Tests, Fifth Edition; Stanford Achievement Test Series, Ninth Edition; 
TerraNova Comprehensive Test of Basic Skills; Gates-MacGinitie Reading Tests; Metropolitan 
Achievement Tests, Eighth Edition; TerraNova, the Second Edition: California Achievement Tests; 
and the Stanford Achievement Test Series, Tenth Edition. Figures for math are based on all of the 
aforementioned tests except the Gates-MacGinitie. Calculations assume that one standard deviation of 
gain scores is equal to 0.696 standard deviations of test score levels, on the basis of data from the 
Mathematica evaluations listed in Table B.2.  

 
 
Based on these estimates, we conduct our simulations for the teacher analyses using threshold values of 
0.1, 0.2, and 0.3 SDs. A 0.2 value represents 31 percent of an average annual gain score in reading, or 
about 3.7 months of reading growth attained by a typical upper elementary student; in math, it represents 
21 percent of an average annual gain score, or about 2.6 months of student learning. Importantly, these 
differences are large relative to the distribution of true teacher value-added: a performance difference of 
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0.2 SDs in student gain scores is equivalent to the difference between a district’s 50th percentile teacher 
and its 82nd percentile teacher in terms of performance. In other words, a 0.2 SD threshold in Scheme 2 
specifies that all teachers at or above the 82nd percentile of true performance deserve to be identified in a 
system for identifying high-performing teachers (or, symmetrically, that all teachers at or below the 18th 
percentile deserve to be identified in a system for identifying low-performing teachers). The other 
thresholds can be expressed in similar metrics: a 0.1 value represents 1.8 months of learning in reading, 
1.3 months of learning in math, and the difference in performance between a district’s 50th and 68th 
percentile teachers, and a 0.3 value represents 5.5 months of learning in reading, 3.8 months of learning in 
math, and the difference in performance between a district’s 50th and 92nd percentile teachers.4 
 
We use smaller threshold targets for the school analysis than for the teacher analysis. While thresholds 
retain the same “absolute” educational meaning regardless of whether teachers or schools are the units of 
comparison, we have seen that the variation in school value-added is smaller than the within-school 
variation in teacher value-added (that is, ψρ  values tend to be smaller than θρ  values). Therefore, for 
school comparisons, we use thresholds that are half the size of those from the teacher comparisons; the 
resulting values of 0.05, 0.1, and 0.15 represent the differences between a district’s 50th percentile school 
and, respectively, its 68th percentile, 83rd percentile, and 92nd percentile schools. These performance 
differences amount, respectively, to 0.9, 1.8, and 2.8 months of learning in reading; in math, these 
performance differences amount, respectively, to 0.6, 1.3, and 1.9 months of learning. 
 
 
Simulation Results 

Tables 4.2 through 4.9 provide the main findings from the simulation analysis for the considered 
estimators and performance measurement schemes. Tables 4.2 to 4.7 present results for the teacher-level 
analysis, while Tables 4.8 and 4.9 present results for the school-level analysis.  
 
The interpretation of the results in the tables will likely depend on the various considerations discussed 
above, such as acceptable system error rates, the relative weight that is placed on false negative and 
positive error rates, whether interest is on the individual-focused Type I and II error rates or on the group-
focused overall error measures, and meaningful threshold values for defining low- and high-performing 
teachers and schools. How these factors are viewed may depend on the nature of the system rewards and 
sanctions as well as the stakeholder perspective. Accordingly, we report a range of estimates.  
 
Table 4.2 shows Type I and II error rates assuming that policymakers are indifferent between—and are 
thus willing to equalize—the two error rates. Table 4.4 displays parallel findings when _FPR TOT  and 

_FNR TOT  are restricted to be equal, and Table 4.6 displays associated false discovery and non-
discovery rates. Table 4.3 shows reliability estimates for the OLS estimator. Because some readers may 
place different weights on false negatives and positives, Table 4.5 reports the number of years of data that 
are required to attain various combinations of system error rates. Table 4.7 shows how results change 
when key parameters are modified, and Tables 4.8 and 4.9 present key results for the school-level 
analysis.  

                                                      
4 These percentiles were calculated using results and assumptions from above that (1) teacher value-added 

estimates are normally distributed; (2) one standard deviation of ( )θ ψ+  is equivalent to 0.2145 standard deviations 
of gain scores (and thus that a 0.20 standard deviation increase in gain scores is equivalent to a 0.932 (0.20/0.2145) 
standard deviation increase in teacher value-added within the district); and (3) (0.932) 0.82.Φ =  To express 
threshold values in terms of months of learning within each subject, threshold values in gain score effect size units 
were multiplied by 12 and divided by the average test score gain for the given subject (0.65 or 0.94) in Table 4.1. 
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Table 4.2: Teacher-Level Analysis: Type I and II Error Rates that are Restricted to be Equal, by 
Threshold Value, Scheme, and Estimator 

Threshold Value (Gain Score SDs from the Average)a 

OLS  Empirical Bayes (EB) 

Number of Years of Available 
Data Per Teacher 0.1 0.2 0.3 0.1 0.2 0.3 

Scheme 1: Compare a Teacher to the School Average (10 Teachers in the School) 

1 0.42 0.35 0.28 0.46 0.42 0.38 

3 0.37 0.25 0.16 0.40 0.31 0.23 

5 0.33 0.19 0.10 0.36 0.25 0.15 

10 0.27 0.11 0.03 0.30 0.15 0.06 

Scheme 1a: Compare Two Teachers in the Same School 

1 0.45 0.40 0.35 0.47 0.44 0.41 

3 0.41 0.33 0.25 0.43 0.36 0.30 

5 0.39 0.28 0.19 0.40 0.31 0.23 

10 0.34 0.21 0.11 0.35 0.23 0.13 

Scheme 2: Compare a Teacher to the District Average (50 Teachers in the District) 

1 0.43 0.36 0.29 0.45 0.41 0.37 

3 0.37 0.26 0.17 0.40 0.30 0.22 

5 0.34 0.20 0.11 0.36 0.24 0.14 

10 0.28 0.12 0.04 0.29 0.14 0.05 

Scheme 2: Compare a Teacher to the District Average (300 Teachers in the District) 

1 0.43 0.36 0.29 0.45 0.41 0.37 

3 0.37 0.26 0.17 0.40 0.30 0.22 

5 0.34 0.20 0.11 0.36 0.24 0.14 

10 0.28 0.12 0.04 0.29 0.14 0.05 
 

Note: See the text for formulas and assumptions. Calculations assume test score data from a single subject 
area. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores 
below or above the average true value-added measure in the appropriate population. 
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Table 4.3: Reliability of the Teacher Value-Added Estimator, by the Number of Years of Available Data 

 Type of Performance Comparison 

Number of Years of Available 
Data Per Teacher Within Schools Only Within and Between Schools 

1 0.32 0.38 

3 0.58 0.65 

5 0.70 0.76 

10 0.82 0.86 
 
Note: Figures are based on the ordinary least squares (OLS) estimator and assume test score data from a 

single subject area. See the text for formulas and assumptions.  
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Table 4.4: Teacher-Level Analysis: Overall False Positive and Negative Error Rates that Are Restricted to 
be Equal 

Threshold Value (Gain Score SDs from the Average)a 

OLS  Empirical Bayes (EB) 

Number of Years of 
Available Data Per Teacher 0.1 0.2 0.3 0.1 0.2 0.3 

Scheme 1: Compare a Teacher to the School Average (10 Teachers in the School) 

1 0.26 0.21 0.17 0.36 0.33 0.30 

3 0.16 0.10 0.06 0.21 0.16 0.12 

5 0.11 0.06 0.03 0.15 0.10 0.06 

10 0.06 0.02 0.01 0.08 0.04 0.01 

Scheme 1a: Compare Two Teachers in the Same School 

1 0.28 0.25 0.22 0.36 0.34 0.32 

3 0.18 0.14 0.11 0.23 0.19 0.16 

5 0.14 0.10 0.06 0.17 0.13 0.09 

10 0.09 0.05 0.02 0.10 0.06 0.03 

Scheme 2: Compare a Teacher to the District Average (50 Teachers in the District) 

1 0.24 0.20 0.16 0.33 0.30 0.27 

3 0.15 0.10 0.06 0.19 0.14 0.10 

5 0.10 0.06 0.03 0.13 0.08 0.05 

10 0.06 0.02 0.01 0.07 0.03 0.01 

Scheme 2: Compare a Teacher to the District Average (300 Teachers in the District) 

1 0.25 0.21 0.17 0.33 0.30 0.27 

3 0.15 0.10 0.06 0.19 0.14 0.10 

5 0.11 0.06 0.03 0.13 0.08 0.05 

10 0.06 0.02 0.01 0.07 0.03 0.01 
 

Note:  See the text for formulas and assumptions. Calculations assume test score data from a single subject 
area. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores 
below or above the average true value-added measure in the appropriate population. 
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Table 4.5: Teacher-Level Analysis:  The Number of Years of Data Required to Achieve Various System 
Error Rates for Scheme 2 

Type II Error Rate / Overall False Negative Rate 

Type I Error Rate / 
Overall False Positive 
Rate 0.05 0.10 0.15 0.20 

Threshold Value = .1 SDsa 

0.05 78 / 12  62 / 8  52 / 6 45 / 5 

0.10 62 / 8 48 / 5 39 / 4 33 / 3 

0.15 52 / 6 39 / 4 31 / 3 26 / 2 

0.20 45 / 5 33 / 3 26 / 2 20 / 2 

Threshold Value = .2 SDsa 

0.05 20 / 6 15 / 4 13 / 3 11 / 3 

0.10 15 / 4 12 / 3 10 / 2   8 / 2 

0.15 13 / 3 10 / 2   8 / 2   6 / 1 

0.20 11 / 3   8 / 2  6 / 1   5 / 1 

Threshold Value = .3 SDsa 

0.05 9 / 4  7 / 3  6 / 2  5 / 2 

0.10 7 / 3  5 / 2  4 / 2   4 / 1 

0.15 6 / 2  4 / 2  3 / 1  3 / 1 

0.20 5 / 2  4 / 1  3 / 1  2 / 1 
 

Note: In cells with two entries, the first entry represents the number of years required to achieve Type I and 
Type II error rates represented, respectively, by the row and column headers; the second entry 
represents the number of years required to achieve overall false positive and false negative rates 
represented, respectively, by the row and column headers. Figures are based on the ordinary least 
squares (OLS) estimator and assume test score data from a single subject area. Scheme 2 assumes that 
a teacher is compared to the district average with 50 teachers in the district. See the text for formulas 
and assumptions. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores below 
or above the average true value-added measure in the appropriate population. 
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Table 4.6: Teacher-Level Analysis:  False Discovery and Non-Discovery Rates for Scheme 2 Using The 
Overall False Positive and Negative Error Rates in Table 4.4 

 Threshold Value (Gain Score SDs from the Average)a 

 0.1 0.2 0.3 

Number of Years of 
Available Data Per 
Teacher 

False 
Discovery 

Rate 

False Non-
Discovery 

Rate 

False 
Discovery 

Rate 

False Non-
Discovery 

Rate 

False 
Discovery 

Rate 

False Non-
Discovery 

Rate 

1 0.27 0.14 0.25 0.06 0.23 0.02 

3 0.17 0.08 0.13 0.03 0.10 0.01 

5 0.12 0.06 0.08 0.02 0.05 0.00 

10 0.07 0.03 0.03 0.01 0.01 0.00 
 

Note: Figures are based on the OLS estimator and assume test score data from a single subject area. Scheme 
2 assumes that a teacher is compared to the district average with 50 teachers in the district. See the text 
for formulas and assumptions. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores  below 
or above the average true value-added measure in the appropriate population. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 4.7: Teacher-Level Analysis: Sensitivity of System Error Rates to Key ICC Assumptions and the Use 
of Multiple Tests 

Type I = Type II Error Rate / False Negative = False Positive Error Rate  
for Scheme 2: Threshold=.2 SDsa 

Number of Years of 
Data = 1   

Number of Years of 
Data = 3  

Number of Years of 
Data = 5 

Parameter Assumptions 
OLS 

Estimator 
EB 

Estimator 
OLS 

Estimator 
EB 

Estimator 
OLS 

Estimator 
EB 

Estimator 

Baseline Assumptions:   

0.92; 0.03;ε ωρ ρ= =  
Single Subject Test 0.36 / 0.20 0.41 / 0.30 0.26 / 0.10 0.30 / 0.14 0.20 / 0.06 0.24 / 0.08 

       

Sensitivity Analysis for 
ICC Parameters: 

  

0.80; 0.03ε ωρ ρ= =  0.35 / 0.12 0.37 / 0.15 0.25 / 0.05 0.27 / 0.06 0.19 / 0.03 0.20 / 0.03 

0.92; 0ε ωρ ρ= =  0.31 / 0.12 0.35 / 0.17 0.20 / 0.05 0.22 / 0.06 0.14 / 0.02 0.16 / 0.03 

0.87; 0.08ε ωρ ρ= =  0.39 / 0.25 0.44 / 0.36 0.31 / 0.14 0.36 / 0.21 0.26 / 0.10 0.30 / 0.14 

  

Sensitivity Analysis for 
Multiple Subject Tests   

2 ; 0.30dd Tests ρ= =  0.34 / 0.18 0.39 / 0.26 0.24 / 0.08 0.27 / 0.11 0.18 / 0.04 0.21 / 0.06 

  

Sensitivity Analysis for 
Longitudinal Gain Score 
Data (Two Grades)   

, 1 0.38t tρ − = −  0.35 / 0.19 0.40 / 0.28 0.25 / 0.09 0.29 / 0.13 0.19 / 0.05 0.23 / 0.07 
 
Notes: In cells with two entries, the first entry represents the Type I and II error rates that are restricted to be 

equal, and the second entry represents the overall false positive and false negative error rates that are 
restricted to be equal. For the sensitivity analysis for the ICC parameters, if changes in the values of 
the two indicated parameters do not offset each other, then the changes are assumed to be offset by 
changes in θρ . Scheme 2 assumes that a teacher is compared to the district average with 50 teachers in 
the district. 

 
aSee Figure 2.1 in the text for a depiction of this threshold value, which is measured in SDs of gain scores below or 
above the average true value-added measure in the appropriate population. 
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Table 4.8: School-Level Analysis: System Error Rates that Are Restricted to be Equal, by Threshold Value 
and Scheme 

Threshold Value (Gain Score SDs from the Average)a 

Type I = Type II Error Rate  
Overall False Positive = Overall 

False Negative Error Rate 

Number of Years of 
Available Data Per School 0.05 0.1 0.15 0.05 0.1 0.15 

Scheme 1a: Compare Two Schools 

1 0.42 0.34 0.27 0.18 0.14 0.11 

3 0.36 0.24 0.14 0.09 0.06 0.03 

5 0.32 0.18 0.08 0.06 0.03 0.01 

10 0.26 0.10 0.03 0.03 0.01 0.00 

Scheme 2: Compare a School to the District Average (5 Schools in the District) 

1 0.37 0.26 0.16 0.14 0.10 0.06 

3 0.29 0.13 0.05 0.07 0.03 0.01 

5 0.23 0.07 0.01 0.04 0.01 0.00 

10 0.15 0.02 0.00 0.02 0.00 0.00 

Scheme 2: Compare a School to the District Average (30 Schools in the District) 

1 0.38 0.28 0.19 0.16 0.11 0.07 

3 0.30 0.15 0.06 0.08 0.04 0.01 

5 0.25 0.09 0.02 0.05 0.02 0.00 

10 0.17 0.03 0.00 0.02 0.00 0.00 
 

Note:  Calculations assume test score data from a single subject area. Figures are based on the OLS estimator. 
See the text for formulas and assumptions. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores below 
or above the average true value-added measure in the appropriate population. 
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Table 4.9: School-Level Analysis:  The Number of Years of Data Required to Achieve Various System 
Error Rates for Scheme 2 

Type II Error Rate / Overall False Negative Rate 

Type I Error Rate / 
Overall False Positive 
Rate 0.05 0.10 0.15 0.20 

Threshold Value = .05 SDsa 

0.05 31 / 5 24 / 3 21 / 3 18 / 2 

0.10 24 / 3 19 / 2 15 / 2 13 / 1 

0.15 21 / 2 15 / 2 12 / 1 10 / 1 

0.20 18 / 2 13 / 1 10 / 1   8 / 1 

Threshold Value = .1 SDsa 

0.05 8 / 2 6 / 2  5 / 2  4 / 1 

0.10 6 / 2 5 / 1  4 / 1  3 / 1 

0.15 5 / 1 4 / 1  3 / 1  3 / 1 

0.20 4 / 1 3 / 1  3 / 1  2 / 1 

Threshold Value = .15 SDsa 

0.05 3 / 2  3 / 1   2 / 1  2 / 1 

0.10 3 / 1  2 / 1   2 / 1   1 / 1 

0.15 2 / 1  2 / 1   1 / 1  1 / 1 

0.20 2 / 1  1 / 1   1 / 1  1 / 1 
 

Note: In cells with two entries, the first entry represents the number of years required to achieve Type I and 
Type II error rates represented, respectively, by the row and column headers; the second entry 
represents the number of years required to achieve overall false positive and false negative rates 
represented, respectively, by the row and column headers. Figures are based on the ordinary least 
squares (OLS) estimator and assume test score data from a single subject area. Scheme 2 assumes that 
a school is compared to the district average with 30 schools in the district. See the text for formulas 
and assumptions. 

 
aSee Figure 2.1 in the text for a depiction of these threshold values, which are measured in SDs of gain scores below 
or above the average true value-added measure in the appropriate population.



 

The key results can be summarized as follows: 
 
Finding 1: Using sample sizes typically available in practice, the considered performance measurement 
systems for teacher-level analyses will generally yield Type I and II error rates of at least 20 percent. 
Consider a system that aims to identify high-performing teachers in the upper elementary grades using 
sample sizes typically available in practice (1 to 5 years of data per teacher). Suppose also that 
policymakers find it acceptable to set 1α β= −  and to set the threshold level for defining a high-
performing teacher at 0.2 SDs above the average performance level (about 3 extra months of student 
learning per year in math and 4 months in reading). In this case, with 3c =  years of data, Scheme 2 
(comparing a teacher to the district average) would yield a Type I or II error rate of 26 percent using the 
OLS estimator (Table 4.2). In other words, the system would miss for recognition more than one-fourth of 
truly high-performing teachers who are at the 82nd percentile of performance in their district, and would 
erroneously identify for recognition more than one-fourth of persistently average teachers. In this 
example, the Type I and II error rate for the OLS estimator is 25 percent for Scheme 1 (comparing a 
teacher to the school average) and 33 percent for Scheme 1a (comparing two teachers in the same school); 
the error rates are about 3 to 6 percentage points larger for the EB than OLS estimator (Table 4.2).    
 
Type I and II error rates would exceed one-third with only 1 year of data and would drop to one-fifth with 
5 years of data (Table 4.2). The error rates would increase by about 10 percentage points using a threshold 
value of 0.1 SDs rather than 0.2 SDs, and would decrease by about 10 percentage points using a threshold 
value of 0.3 SDs (Table 4.2). Parallel results apply to systems that aim to identify below-average 
performers. 
 
To link these findings to typical analyses found in the literature, Table 4.3 shows the reliability of the 
OLS estimator for measuring teacher value-added. As discussed, reliability in our context is the 
proportion of an estimator’s total variance across teachers that is attributable to persistent performance 
differences across teachers. For , about one-third to two-fifths of the total estimator variance across 
teachers is due to true, persistent performance differences. The remainder is due to student- and 
classroom-level variance factors. Reliability rises with c, consistent with the decrease in Type I and II 
error rates. For instance, reliability is about .60 for 

1c =

3c =  and more than .70 for . As discussed, we 
focus primarily on system error rates rather than reliability, because we believe that system error rates can 
be more easily interpreted by system stakeholders.   

5c =

 
An alternative approach for assessing system error rates is to calculate the number of years of data 
required to achieve various Type I and II error rates (Table 4.5). For a threshold value of 0.2 SDs, the 
OLS estimator would require about 11 years of data to ensure a Type I error rate of 5 percent and a Type 
II error rate of 20 percent (conventional levels used in hypothesis testing). Corresponding values are 45 
years using a threshold value of 0.1 SDs and 5 years using a threshold value of 0.3 SDs.  
 
Importantly, the Type I error pertains to teachers of average performance, and the Type II error pertains to 
teachers whose performance is at the selected threshold value. As discussed, these error rates are likely to 
be of interest to those requiring upper bounds on system error rates for individual teachers. These rates, 
however, are likely to be larger than overall false positive and negative error rates that may be of interest 
to those requiring system misclassification rates for teachers as a group.  
 
To demonstrate this point, consider Scheme 2 for identifying high-performing teachers using 3c =  years 
of data. For this scenario, Figure 4.1 displays the false negative error rate by the distance between the 
teacher’s true performance level and the threshold value of 0.2 SDs above average (the solid line), and the 
estimated frequency of teachers at each performance level for the high-performing population (the dotted 
line).  
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False Negative Error Rates andandFigure 4.1:  Population Frequencies for Scheme 2, by True 
Teacher Performance Level    

 

 Population Frequencies for Scheme 2, by True 
Teacher Performance Level    

 

 
 

FNR(q) calculations assume 0.26

q = Distance o alue Added Above T=.2 SDs    f True V

Note: α =  and three years of available data. Frequency(q) is the  normal 
density function at (q+T), that is proportionally scaled to satisfy the following restriction: the sum of 
the scaled density function across all input values from -5 to 5 in increments of 0.05 is set equal to1. 
The scaled density function is then multiplied by 10 to yield the values shown in the figure. 

 false ne

 
 
As can be seen in the figure, as true performance increases, the gative error rate decreases more 
sharply than the frequency distribution. Thus, small values of ( )FNR q  beyond d value are 
assigned nontr s in the calculation of the overall false negative rate _

 the threshol
ivial weight FNR TOT  in (16). T

suggests that _
his 

FNR TOT  is likely to be considerably smaller than the Type II error rate. A similar 
pattern holds for comparing the Type I error and the overall false positive rate (not shown). This analysis 

otivates our second key finding that is discussed next. 

 and high-pe ing 
teachers are 

m
 
Finding 2: Overall false negative and positive error rates for identifying low- rform

likely to be smaller than Type I and II error rates. Suppose that _FNR TOT  and 
_FPR TOT d to b cheme 2, and assume a threshold value of 0.2 SDs and 3c are restricte e equal for S = . 

_In this case, FNR TOT  and _FPR TOT  equal 10 percent for the OLS estimator (Table 4.4), whereas 
α  and (1 )β−  equal 26 percent when equated (Table 4.2). The corresponding error rates using the EB 
estimator are 14 and 30 percent, respectively. A similar pattern holds for the other schemes and threshold 

alues. 

using 
a threshold value of s, the OLS estimato

v
 
Consistent with these findings, fewer numbers of years of data are required to achieve various system 
error levels using the overall error rates than the Type I and II error rates (Table 4.5). For example, 

0.2 SD r would require about 3 years of data to ensure that 
0.05  and _ 0.20FNR TOT = , compared to 11 years to ensure that 0.05_FPR TOT = α =  and 

0(1 ) 0.2β− = ou
_

. Ab t 6 d to achieve error rates of 5 percent for both years of data would be require
PR TOT  and _FNR TOT  (Table 4.5).    F

 



 

Finally, Table 4.6 sh scovery and non-discovery rates for Scheme 2 using the _ows false di FPR TOT  
and _FNR TOT  values from Table 4.4. Assuming 3c =  and a threshold value of 0.2 SDs, the OLS 
estimator yields an _FDR TOT  value of 13 perce ns that slightly more than one-eighth o

e identified for special treatment are expected to be false discoveries; this error rate is 
larger than the corresponding 10 percent value f

n mea

or 

t. This 

_

f 
teachers who ar

FPR TOT  in Table 4.4. For this same scenario, 
F _NDR TOT  is 3 percent, which means that only a small percentage of all teachers with insignificant 
test statistics are expected to be misclassified.  
 
Finding 3: The simulation results for the teacher-level analysis are robust to alternative ICC 
assumptions, the use of two subject tests, and the use of two successive years of gain scores on each 
student. Our benchmark simulations were conducted using the average of the ICC values reported in 

pendix Table B.2. However, because of the uncertainty in the ICC estimates and their critical role in 
the simulations, we examined the sensitivity of our main results by varying the k  parameters 
Ap

ey ωρ  and 

ερ . As shown in Table 4.7, even if ωρ  and ερ  were much lower than the benchmark values, the error 
s would, in general, remain similar to those in T bles 4.2 and 4.4. Reducing rate a ερ  from 0.92 (the 

baseline assumption) to 0.80 (a value lower than all but one estimate in Ap x Table B.2), or reducpend ing i
ωρ  to zero (  is equivalenwhich t to assuming that ω  is a fixed effect specific to a teacher and year), 

leaves the Type I and II error rates at a mini  of 20 percent (assuming mum 3c = ). The error rates f r o
_FPR TOT  and _FNR TOT , however, are somewhat more sensitive to lowering or raising the ICC

values than the Type I and II errors.  
 

llowing for multiple tests (for example, math and reading) instead of one test has little effec

 

t on the A
error rate estimates (Table 4.7). For instance, with 3c = , allowing for two tests decreases the Type I o
error rate from 0.26 to 0.24 and the overall false positive or negative rate from 0.10 to 0.08.  
 
Likewise, there are negligible reductions in error rates from using students’ gain scores in current and 
adjacent years—rather than in the current year only—as sources of information for estimating the
performance of students’ current teachers (Table 4.7). For 3c

r II 

 
= , both the Type I or II error rates and the 

overall false positive or negative error rates would decline by only 1 percentage point using the 
ngitudinal approach. These analyses suggest that our benchmlo ark findings, which are based on 

S 

hem 2 (com

he corresponding error rate

contemporaneous gain score data only, are likely to be applicable to value-added models such as EVAA
that exploit longitudinal gain score data on each student. 
 
Finding 4: Using the OLS estimator and comparable threshold values, the school-level analysis will 
yield error rates that are about 5 to 10 percentage points smaller than for the teacher-level analysis. 
With 3 years of data, the OLS estimator for Sc e paring a school to the district average) would 
yield a Type I or II error rate of about 15 percent using a threshold value of 0.1 SDs—which is equivalent 
to setting the threshold for defining a high-performing school at the district’s 83rd percentile school 
(Table 4.8). T  for _FPR TOT  or _FNR TOT  is about 4 perce

ould be required to achieve conventional Type I and II 
error rates of 

nt (Table 4.8). 
Under this scenario, about four years of data w

0.0α = 1 0 and 0.2β− year would be= , one  r eve values of equired to achi
_ 0.05TOT =  and _ 0.20FNR TOT = , and two years would be required to achieve values of 5 

percent for both _
FPR

FPR TO  and _FNR TOT  (Table 4.9). 
 
The school-level OLS analysis has more statistical power than the teacher-level OLS analysis, because 
school-level gain scores are estimated more precisely due to larger classroom and student sample s
Crucially, these precision gains occur because the variances of

izes. 
 the OLS estimator are conditional on fixed 
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values of jkθ  and kψ . Statistical precision for the school-level analysis is much lower for the EB 

estimator due to the variance contribution of jkθ  (not shown).
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Chapter 5: Summary and Conclusions 
This paper has addressed likely error rates for measuring teacher and school performance in the upper 
elementary grades using student test score gain data and value-added models. This is a critical policy
issue due to the increased interest in using value-added estimates to identify high- and low-performing 
instructional staff for special treatment, such as rewards and sanctions. Using rigorous statistical methods 
and realistic performance measurement schemes, the paper presents evidence that value-added e
for teacher-level analyses are subject to a considerable degree of ra

 

stimates 
ndom error when based on the amount 

d 
 

 than 1 
nths 

-

s for teacher-level estimates will be lower if the focus is on overall false positive 
ith 

 the 
r’s 

ment 
ting 

eration of error rates is especially important when evaluating whether and how to use 
value-added estimates for making high-stakes decisions regarding teachers (such as tenure and firing 
decisions) (see Harris 2009). There are no universal definitions for tolerable system error rates and 
appropriate error rate measures. Rather, these decisions will likely depend on the nature of the system’s 
rewards and sanctions, and stakeholder perspectives on how to weigh the various benefits and costs of 
correct and incorrect system classifications. 
 
A performance measurement system at the school level will likely yield error rates that are about 5 to 10 
percentage points lower than at the teacher level. This is because school-level mean gain scores can be 
estimated more precisely due to larger student sample sizes. Thus, current policy proposals to use value-
added models for determining adequate yearly progress (AYP) and other school-level accountability 
ratings may hold promise from the perspective of statistical precision. An important caveat, however, is 
that biases may exist for estimating performance differences between schools, due, for instance, to 
nonrandom student sorting across schools. 
 
Our findings suggest that value-added estimates for teachers are likely to be noisy. However, it is 
important to emphasize that value-added measures have some key advantages over other alternative 
measures of teacher quality. Teacher value-added estimates in a given year are still fairly strong 

of data that are typically used in practice for estimation.   
 
Type I and II error rates for teacher-level analyses will be about 26 percent if three years of data are use
for estimation. This means that in a typical performance measurement system, more than 1 in 4 teachers
who are truly average in performance will be erroneously identified for special treatment, and more
in 4 teachers who differ from average performance by 3 months of student learning in math or 4 mo
in reading will be overlooked. In addition, Type I and II error rates will likely decrease by only about one
half (from 26 to 12 percent) using 10 years of data.   
 

orresponding error rateC
and negative error rates for the full populations of low- and high-performing teachers. For example, w
three years of data, misclassification rates will be about 10 percent.  
 
Our results are largely driven by findings from the literature and new analyses that more than 90 percent 
of the variation in student gain scores is due to the variation in student-level factors that are not under
control of the teacher. Thus, multiple years of performance data are required to reliably detect a teache
true long-run performance signal from the student-level noise. In addition, our reported sample 
equirements likely understate those that would be required for an ongoing performance measurer

system, because our analysis ignores other realistic sources of variability, such as the nonrandom sor
of students to classrooms and schools. Moreover, in practice, the multitude of comparisons made in a 
performance measurement system imply higher overall Type I error rates than those identified by our 
analyses, which ignore multiple comparisons issues. 
 
Our results strongly support the notion that policymakers must carefully consider system error rates in 
designing and implementing teacher performance measurement systems that are based on value-added 
models. Consid
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predictors of subsequent-year academic outcomes in the teachers’ classes (Kane and Staiger 2008). In 
contrast, student achievement is only weakly associated with teachers’ credentials, education, experience, 
and other measurable characteristics (Hanushek and Rivkin 2006). Similarly, observational measures of 
classroom practices are often found to have little explanatory power in predicting student academic 
outcomes (see, for example, Constantine et al. 2009; Glazerman et al. 2009). While principals’ 
assessments of teacher effectiveness are reasonably accurate at identifying the best and worst teachers in a 
given school (Jacob and Lefgren 2008), their subjective nature leaves them more vulnerable to 
manipulation in a high-stakes setting than value-added measures.  
 
Our findings highlight the need to mitigate system error rates. Misclassification rates could be lower if 
value-added measures were carefully coordinated with other measures of teacher quality. For instance, 
value-added estimates may serve as an initial performance diagnostic that identifies a potential pool of 
teachers warranting special treatment. While our findings suggest that some teachers would be 
erroneously identified during this initial round, a subsequent round of more intensive performance 
measurement focused on this pool could further separate those who do and do not deserve special 
treatment. Indeed, Jacob and Lefgren (2008) find that value-added measures and principals’ assessments 
of teachers, in combination, are more strongly predictive of subsequent teacher effectiveness than each 
type of measure alone. 
 
System error rates may be reduced further through a number of implementation strategies that could 
improve the precision of the value-added estimates. For instance, developing tests with higher reliability 
could reduce the variation in student scores that is out of the teacher’s control. In addition, precision could 
be increased by implementing various types of teacher-student assignment mechanisms, such as the 
explicit balancing of student characteristics across classrooms and the assignment of each teacher to 
multiple classes per year. With these and other strategies, value-added measures could be a less error-
prone component of the overall “toolbox” that policymakers use for performance measurement. 
 
Finally, it is important to recognize that our findings pertain to an important class of estimators and 
performance measurement schemes that conduct hypothesis tests based on value-added estimates used in 
isolation. However, spurred by large, recent infusions of funding from the federal government and private 
foundations, the development and application of teacher performance measures are ongoing and evolving, 
as districts have begun to explore new ways of combining value-added measures with other types of 
performance measures. Further research is warranted to determine the error rates generated by these and 
other schemes.



 

Appendix A: Comparing the HLM and EVAAS Models 

The similarity of the variance estimates using the HLM and EVAAS models can be seen by comparing 
key features of the two models. For expositional purposes, we assume that both models aim to obtain 
teacher value-added estimates using students from a single large school who have available test score data 
from a single subject area. 
 
By inserting equations (1b) to (1d) into equation (1a) (and ignoring the k subscript since there is only one 
school), the HLM model can be expressed as follows: 
 

(A1) .itj j tj itjg δ θ ω ε= + + +    
 
This model can be considered a repeated cross-section model of test score gains. 
 
The EVAAS model uses longitudinal data on students and directly models the growth in a student’s 
posttest scores over time as a function of the value-added of the student’s current and prior teachers. The 
model assumes that teacher effects persist unabated over time and are additive. This EVAAS layered 
model can be expressed as follows (see McCaffrey et al. 2004): 
 

* *
1

(A2) ,t
it t cj j itc j

y I *δ θ ε
=

= + +∑ ∑  
 

where ity  is the posttest score (not the gain score) for student i in year (grade) t, cjI  is an indicator 

variable that equals 1 if the student was taught by teacher j in year c and zero otherwise, *
jθ  is the teacher 

effect for teacher j, *
itε  is the student effect that can be correlated across years for the same student, and 

*
tδ  is the mean posttest score in grade t. The EVAAS model does not include student- or classroom-level 

covariates.  
 
The HLM model uses first differences of the test scores. The EVAAS model can also be expressed in 
terms of first differences as follows:  
 

* * *
( 1) 1(A3) ( ) ( ) ,itj it i t t t ct j itj

g y y I uδ δ θ− −= − = − + +∑  

 
where . This differencing removes teacher effects from prior grades as well as the part 

of 

* *
( 1)(it it i tu ε ε −= − )

*
itε  that remains constant over time (for example, a student’s innate ability). 

 
Importantly, the model in (A3) reduces to the HLM model in (A1) if  * *

1( )t tδ δ δ −= − , *
.j j jθ θ ω= +  is 

the value-added parameter of interest rather than jθ  (so that teachers are fully responsible for their 

classroom effects), and the s are uncorrelated across time for each student (see McCaffrey et al. 2004 
for a similar point).  

itu

 
The key issue then, is the extent to which the EVAAS model achieves precision gains by accounting for 
any (likely negative) dependence in the s for a student over time. This can be seen by comparing itu
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variances of estimated *
jθ s from the EVAAS model that are obtained using two different approaches: (1) 

an OLS approach that estimates (A1) or (A3) separately for two consecutive grades, and (2) a generalized 
least squares (GLS) approach that allows for cross-equation correlations among the s for each student. 
As discussed in Chapter 2, the variances of the GLS estimators are approximately equal to the variances 
of the OLS estimators based on an effective sample size of  

itu

1
2

2 /(1 )eff t tn n ρ , −≈ −  per classroom, where 

, 1t tρ −  is the correlation of  across the two consecutive grades. itu
 
Our sensitivity analysis in Chapter 4, which uses  in place of n, suggests that the HLM and EVAAS 
models are likely to yield value-added estimates that have similar variances. 

2effn

 
 
 
 

 
 
 



 

Appendix B: Obtaining Realistic ICC Values 

To obtain realistic ICC estimates, we reviewed ten recent studies from the value-added literature that 
provided information on at least one ICC. In addition, we conducted primary analyses of data from five 
large-scale experimental evaluations of elementary school interventions conducted by Mathematica 
Policy Research. Appendix Table B.1 displays the considered studies, the test score outcomes for each 
study, and the reported ICCs or combinations of ICCs.  
 
Because state assessments on which performance measures are likely to be based often begin in grade 3, 
we only reviewed studies that reported ICCs for at least one upper elementary grade.5 Furthermore, for 
studies that provided estimates separately by grade level or grade span, we focused on ICC estimates for 
the upper elementary grades. Most of the reviewed studies used student-level data from entire school 
districts or states across broad geographic areas. Some studies used longitudinal data, while others used 
gain score data from only one year—in which case it was not possible to obtain separate estimates for 2

ωσ  

and 2
θσ . Importantly, for most studies, the ICCs in Appendix Table B.1 pertain to test scores measured in 

levels rather than in gains.6 Thus, as discussed further below, we converted these ICCs into gain score 
units.   
 
To supplement the evidence from existing studies, we also analyzed student-level data from five 
Mathematica evaluations. Each evaluation included a geographically diverse but purposively selected set 
of schools that were willing to participate in the study. Two evaluations—the evaluations of Teach for 
America (Decker et al. 2004) and alternative teacher certification (Constantine et al. 2009)—are 
particularly suited for estimating ICCs, because students were randomly assigned to teachers within 
schools. The remaining three evaluations—covering early elementary math curricula (Agodini et al. 
2009), education technology products (Dynarski et al. 2007), and supplemental reading comprehension 
interventions (James-Burdumy et al. 2009)—used schools’ usual assignment procedures for placing 
students into classrooms. 
 
The primary purpose of most of the reviewed studies was to obtain estimates of teacher value-added (that 
is, estimates of jkτ ). Thus, these studies typically reported only a subset of the ICCs required for our 
empirical analysis. However, additional ICCs could sometimes be calculated using other information 
reported by the studies. Furthermore, the combination of ICCs across studies formed a solid basis for 
obtaining realistic estimates for our simulations.  
 
The reviewed studies used two basic statistical approaches to calculate estimates of jkτ  and associated 
ICCs (or combinations of ICCs). First, Nye et al. (2004) and McCaffrey et al. (2009) used standard 
maximum likelihood methods to directly estimate the variance components, an approach that we also 
used to analyze the data from the Mathematica evaluations. More commonly, the studies indirectly 
estimated variance components using estimates of jkτ , as discussed next.  

 

                                                      
5 See Aaronson et al. (2007) for a recent large-scale study of variation in teacher value-added within high 

schools. 

6 That is, many studies report a variance component of the gain score model in (1a) through (1d) as a ratio 
relative to the total variance in posttest scores. We will refer to these ratios as ICCs even if the numerators and 
denominators pertain to different units. In any case, all denominators are eventually converted to gain score units. 

Appendix B    B-1 



 

B-2  Appendix B 

Table B.1: Empirical Estimates of ICC Values Derivable Without Outside Information, by Study 

     
Outcome 
Variable 
(Posttest 
or Gain 
Score) 

Variance of Indicated Terms as a Ratio to  
Total Variance of Outcome Variable 

Study Subject Grades ψ  ψ θ+  θ  θ ω+  ω  
Previous Studies 
Nye et al. (2004) Math 3 Posttest 0.048 0.123 
Nye et al. (2004) Reading 3 Posttest 0.019 0.074 
Rockoff (2004) Math K-6 Posttest 0.011 
Rockoff (2004) Reading K-6 Posttest 0.009 
Hanushek et al. (2005) Math 4-8 Gain Score 0.012 0.033 0.021 
Rivkin et al. (2005) Math 4-7 Gain Score 0.013 
Rivkin et al. (2005) Reading 4-7 Gain Score 0.009 
Goldhaber and Hansen 
(2008) Math 5 Posttest 0.033 0.015 
Goldhaber and Hansen 
(2008) Reading 5 Posttest 0.007 0.005 
Kane et al. (2008) Math 4-5 Posttest 0.017 
Kane et al. (2008) Reading 4-5 Posttest 0.010 
Kane and Staiger 
(2008) Math 2-5 Posttest 0.005 0.053 0.048 0.032 
Kane and Staiger 
(2008) English  2-5 Posttest 0.003 0.034 0.031 0.029 
Koedel and Betts 
(2009) Math 4 Posttest 0.058 
McCaffrey et al. (2009) Math 4-5 Posttest 0.022 0.018 
Rothstein (2010) Math 5 Posttest 0.023 
Rothstein (2010) Reading 5 Posttest 0.012 
Data From Mathematica Evaluations 
Teach for America Reading 1-5 Gain Score 0.008 
Teach for America Math 1-5 Gain Score 0.041 
Teacher Certification Reading K-5 Gain Score 0.042 
Teacher Certification Math K-5 Gain Score 0.019 
Math Curricula Math 1 Gain Score 0.095 
Education Technology: 
Grade 1 Reading 1 Gain Score 0.075 
Education Technology: 
Grade 4 Reading 4 Gain Score 0.025 
Reading 
Comprehension Reading 5 Gain Score 0.033 

 
Source:  Authors’ tabulations from the indicated studies and datasets. 



 

 
Estimating 2

θσ , 2 2( )ψ θσ σ+ , and 2
ψσ   

Hanushek et al. (2005), Kane et al. (2008), and Kane and Staiger (2008) obtained estimates of 2 2( )ψ θσ σ+  

or 2
θσ  using the relation that . . '( ,tjk t jkCov g g ) —the covariance between two separate estimates of jkτ  

from different time periods—equals 2 2( )ψ θσ σ+  for models that do not include school effects, and 2
θσ  for 

models that do include school effects. Because Hanushek et al. (2005) and Kane and Staiger (2008) 
reported separate estimates for 2 2( )ψ θσ σ+  and 2

θσ , we obtained estimates of 2
ψσ  through subtraction. 

This “covariance” method was also used to obtain estimates of 2 2( )ψ θσ σ+  using reported results in 
Goldhaber and Hansen (2008). 

 
 

Estimating 2
ωσ  and 2 2( )θ ωσ σ+   

Some studies reported sampling error variances of estimated jkτ  values averaged across all teachers for a 

single year (or by year). These error variances provided approximate annual estimates of . 

Because the total variance of 

2( / )nεσ
ˆ jkτ  in a single year is 2 2 2 2

.( ) ( /tjkr g nψ θ ω εσ σ σ σ= + + + )Va , estimates of 
2
ωσ  (or 2 2( )θ ωσ σ+ ) can be obtained using  reported estimates of .( )tjkVar g , , 2( / )nεσ 2

ψσ , and 2
θσ . For 

example, Goldhaber and Hansen (2008) and Kane and Staiger (2008) reported all four variance 
components needed to obtain 2

ωσ through subtraction. Koedel and Betts (2009) and Rothstein (2010) used 

a similar approach to estimate 2 2( )θ ωσ σ+  using data from a single year. 
 
 
Aggregating Estimates Across Studies 
 
For most studies, the ICCs in Appendix Table B.1 pertain to test scores measured in levels rather than in 
gains. Thus, in these cases, we converted the ICCs into gain score units by dividing the original ICCs by 
0.484, our average estimate for the ratio of the variance of total gain scores to the variance of total 
posttest scores across all students in the Mathematica study samples.  
 
Appendix Table B.2 shows, for each study, ICC estimates for ψρ , θρ , ωρ , and 

(1 )ε ψ θ ωρ ρ ρ ρ= − − − , where we imputed missing ICCs using information from other studies. The 
imputation procedure identified two sets of studies that contained information commonly missing from 
other studies: (1) studies that provided separate estimates of ψρ  and θρ  (Hanushek et al. 2005; Kane and 

Staiger 2008); and (2) studies in which an estimate of ωρ  was provided or could be directly inferred 
(Goldhaber and Hansen 2008; Kane and Staiger 2008; McCaffrey et al. 2009). From the first set of 
studies, we calculated the average value of /( )θ ψ θρ ρ ρ+ , which we labeled *

1R , and from the second 

set of studies, we calculated the average value of /( )ω ψ θ ωρ ρ ρ ρ+ + , which we labeled  *
2R . For each 

study with missing ICCs, we then used *
1R , *

2R , or both to impute missing information. For example, if 

ωρ was the only missing ICC, we used *
2R  for the imputations. Similarly, if ψρ  was the only missing 

ICC, we used *
1R  for the imputations. This imputation procedure assumes that the ratios between ICCs 
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are similar across studies, and it yields more robust results than if missing ICCs had been directly imputed 
using averages from other studies.  
 
The resulting average ICCs presented in the final row of Appendix Table B.2 are the benchmark ICCs 
that were used in the simulations. 
 

Table B.2: Estimates of ICC Values Derived from Study-Reported Estimates and Imputation from 
Outside Information, by Study 

    ICC Estimates for the HLM Model in (1a)-(1d) in Text 

Study Subject 

Schools          
( ψρ ) 

Teachers        
( θρ ) 

Classrooms       
( ωρ ) 

Students          
( ερ ) 

Previous Studies           
Nye et al. (2004) Math 0.099 0.114 0.140 0.647 
Nye et al. (2004) Reading 0.039 0.077 0.076 0.808 
Rockoff et al. (2004) Math 0.005 0.019 0.016 0.960 
Rockoff et al. (2004) Reading 0.004 0.016 0.013 0.967 
Hanushek et al. (2005) Math 0.012 0.021 0.022 0.945 
Rivkin et al. (2005) Math 0.003 0.013 0.010 0.974 
Rivkin et al. (2005) Reading 0.002 0.009 0.007 0.982 

Goldhaber and Hansen 
(2008) Math 0.013 0.056 0.030 0.900 

Goldhaber and Hansen 
(2008) Reading 0.003 0.012 0.010 0.976 
Kane et al. (2008) Math 0.007 0.028 0.023 0.942 
Kane et al. (2008) Reading 0.004 0.017 0.014 0.966 
Kane and Staiger (2008) Math 0.011 0.099 0.065 0.824 
Kane and Staiger (2008) English 0.007 0.063 0.060 0.870 
Koedel and Betts (2009) Math 0.015 0.066 0.053 0.866 
McCaffrey et al. (2009) Math 0.009 0.037 0.037 0.918 
Rothstein (2010) Math 0.006 0.026 0.021 0.948 
Rothstein (2010) Reading 0.003 0.014 0.011 0.972 

Data from Mathematica Evaluations 
Teach for America Reading 0.001 0.005 0.004 0.990 
Teach for America Math 0.005 0.022 0.018 0.954 
Teacher Certification Reading 0.005 0.023 0.019 0.953 
Teacher Certification Math 0.002 0.010 0.009 0.979 
Math Curricula Math 0.012 0.053 0.043 0.892 
Education Technology: 
Grade 1 Reading 0.010 0.041 0.034 0.916 
Education Technology: 
Grade 4 Reading 0.003 0.014 0.011 0.971 
Reading Comprehension Reading 0.004 0.018 0.015 0.963 

Average   0.011 0.035 0.030 0.923 
 
Note: See the text for methods and assumptions. 
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