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Abstract 

 The current study examines three regression models: OLS (ordinary least square) linear 

regression, Poisson regression, and negative binomial regression for analyzing count data. 

Simulation results show that the OLS regression model performed better than the others, 

since it did not produce more false statistically significant relationships than expected by 

chance at alpha levels 0.05 and 0.01. The Poisson regression model produced fewer Type I 

errors than expected at alpha levels 0.05 and 0.01. The negative binomial regression model 

produced more Type I errors at both 0.05 and 0.01 alpha levels, but it did not produce more 

incorrect statistically significant relationships than expected by chance as the sample sizes 

increased.   
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A Model Comparison for Count Data with a Positively Skewed Distribution with an 

Application to the Number of University Mathematics Courses Completed 

Introduction 

Student mathematics achievement has always been an important issue in education. 

Several reports (e.g., Kuenzi, Matthews, & Mangan, 2006; United States National Academies 

[USNA], 2007) have stressed that the well being of America and America’s competitive edge 

depend largely on science, technology, engineering and mathematics (STEM) education. 

USNA (2007) examined the K-12 STEM curriculum and concluded that the key to an 

innovative and technological society rests in STEM fields. Additionally, growing pressure 

from globalization has solidified the idea that to maintain a nation’s advantage depends not 

only on how well people educate their children but especially on how well people educate 

them in mathematics and science (Glenn, 2000).  

Data from the 2007 Trends in International Mathematics and Science Study (TIMSS) 

rank American fourth grade students in 11th place out of 36 nations and eighth grade students 

in 9th place out of 49 nations on their average mathematics score (Mullis, Martin, & Foy, 

2008). In science, the situation is very similar with TIMSS ranking American fourth grade 

students in 8th place out of 36 nations and eighth grade students in 11th place out of 49 nations 

on their average science score (Martin, Mullis, & Foy, 2008). In addition, in the 2006 

Program for International Student Assessment (PISA), fifteen-year-old American students’ 

mathematics scores ranked 32th out of 52 nations (Baldi, Jin, Skemer, Green, & Herget, 2007). 

This shows that if the United States wants to maintain its status as a world economic and 

technological leader and continue to compete with high student achievement Asian and the 

Organization for Economic Cooperation and Development (OECD) countries, it is imperative 

that STEM educators, researchers, and the government act to increase the international 

achievement ranking. However, this trend also reflected how students chose their majors in 
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higher education. The report, “Science, Technology, Engineering and Mathematics (STEM) 

Education Issues and Legislative Options” (Kuenzi et al., 2006) mentioned that 16.7 % of 

American bachelor degrees were conferred in STEM fields during 2002-2003. It also stated 

that the rate of Americans who have STEM to non-STEM degrees was one of the lowest rates 

around the world in 1997.  

In order to promote STEM education and recruit more students to choose STEM majors, 

one solution is to increase the number of students taking mathematics courses (Kuenzi, at el., 

2006). However, in reality, it seems that many American postsecondary students do not have 

a solid foundation in mathematics. Research (Parsad & Lewis, 2003) shows that 22% of all 

U.S. entering freshmen at degree-granting institutions take at least one remedial mathematics 

class. The definition of remedial mathematics courses was defined as mathematics courses for 

college-level students lacking those skills necessary to perform college-level work at the level 

required by the institution (Parsad & Lewis, 2003).  

 Therefore, the number of mathematics courses completed and the factors that influence 

course completion should be studied because of the role mathematics plays not only in STEM, 

but also in the nation’s economics and well-being.  

Much educational research has studied the relationship between various factors and 

student mathematics performance. The most commonly-used statistical models belong to the 

category of the “general linear model” (Kutner, Nachtsheim, Neter, & Li, 2005), such as 

simple linear regression analysis, multiple linear regression analysis, and analysis of variance 

(ANOVA). For instance, Stedman (1997) used simple linear regression to show the 

relationship between the correct numbers of items students answered in the Second 

International Mathematics Study exam and the percentage of materials covered in the average 

U.S. mathematics curriculum. House (2002) performed multiple linear regressions to assess 

the relationship between various instructional practices and mathematics achievement. 
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Chuansheng & Stevenson (1995) used ANOVAs to study the difference of Asian-American, 

Caucasian-American, and East Asian high school students’ mathematics achievement as well 

as students’ beliefs about efforts. Moreover, they used multiple regressions to identity the 

relationship of mathematics scores and variables that account for cultural differences among 

students. Yee and Eccles (1988) performed 2 (child sex) ×  3 (mathematics ability level) 

ANOVAs on students’ mathematics scores and parents’ beliefs and offered explanations.  

Path analysis and hierarchical linear modeling are other models used in studying 

mathematics performance. Parsons, Adler, and Kaczala (1982) used path analysis to draw 

paths among variables which are related to student mathematics performance. Lee, Croninger, 

and Smith (1997) used two-level hierarchal linear modeling to differentiate the variability 

from high schools instead of just analyzing students’ information as a single unit. 

However, in the examples mentioned above, the outcome variables are continuous (i.e., 

student’s mathematics score). Few articles analyze discrete count variables (i.e., the number 

of mathematics courses taken). How to use appropriate statistical models to analyze count 

data is a very substantial research topic in quantitative methodologies. General linear models 

may not be suitable for analyzing discrete count data.  

Yet, despite its violation of fundamental general linear models assumptions, linear 

regression analysis is still used in educational research for count data. Ayalon and Yogev 

(1997) used hierarchical linear modeling to estimate the relationship between students’ 

characteristics and course-taking in science and humanity areas separately, and the effects of 

school characteristics on these relationships. The dependent variable at the student level was 

the number of course-taking units in either science or humanities. However, the authors did 

not mention the distribution of the outcome variable, which was the number of course-taking 

units, and what kind of regression model they used to estimate parameters. According to the 

equation on pages 344-345 in their article, the models were 
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The level 1 model: 

ijijjijjijjjij rabilityethnicitygenderunitsN ++++= )()()()( 3210 ββββ  

The level 2 models: 

(11101 γγβ +=j sector jjjj vmalesize 11312 )(%)() +++ γγ  

(21202 γγβ +=j sector jjj vsize 222 )() ++γ  

(31303 γγβ +=j sector jjjj vymeanabilitsize 33332 )()() +++ γγ  

   It is likely that Ayalon and Yogev assumed that the distribution of the outcome is normal 

and continuous since they did not mention anything about the distribution of the outcome 

variable, the number of courses taken, which is likely to be positively-skewed distributed 

count data. Due to this misuse of the appropriate regression model, the conclusion drawn 

from their statistical analysis, which influences their estimated standard errors and inferential 

statistics, may not be valid.  

Although some research (Davenport, Davison, Kuang, Ding, Kim, & Kwak, 1998; 

Davenport, Davison, Wu, Kim, Kuang, Kwak, & Chan, 2004) stated that the more important 

thing about students’ mathematics achievement is course difficulty instead of the number of 

courses completed, it is still worth studying statistical issues surrounding count data with 

positively-skewed distributions instead of being normally distributed, because of the issue of 

statistical conclusion validity which means the “validity of conclusions, or inferences, based 

on statistical tests of significant” (Pedhazur & Schmelkin, 1991, p.224). The statistical 

evidence of this research can further assist researchers who study count data related to the 

number of mathematics courses completed or similar topics.  
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Literature Review 

The regression model is a statistical method which shows the relationship between two 

or more quantitative variables. The intent is to learn if values of a dependent variable can be 

predicted from other independent variable(s) in a regression model. In addition, inferential 

statistics from the model parameters provide a way to evaluate the magnitude of each 

independent variable which can account for variation in the dependent variable when 

controlling for other independent variables. The linear regression model utilizing ordinary 

least squares (OLS) estimation is the most commonly used traditional regression model in the 

educational research field.   

However, count data with a positively-skewed distribution may not fit well in the OLS 

linear regression model. There are four reasons. First, the OLS linear regression model 

produces negative values, but count data are always larger than or equal to zero. In other 

words, OLS linear regression does not account for data being truncated at zero; thus, it could 

predict negative values which are meaningless (King, 1988; Sturman, 1999). Second, one of 

the assumptions for validating statistical tests from OLS linear regression is the normality of 

residuals. Count data with a positively-skewed distribution are unlikely to satisfy this 

assumption. Third, the validity of hypothesis tests in the OLS linear regression model 

depends on assumptions about the homogeneity of variance of residuals that are unlikely to 

be met in count data (Gardner, Mulvey, & Shaw, 1995). Fourth, OLS linear regression is 

mainly for continuous dependent variables, not discrete variables, like count data. Due to the 

reasons mentioned above, using OLS regression to analyze count data may lead to 

conclusions that do not make sense for the data, such as impossible mean predicted values, 

and incorrect standard errors for significance tests and p-values. 

Given these limitations of OLS linear regression for count data with a positively-skewed 

distribution, some research has suggested using rescaled categories (Gardner et al., 1995) or 
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transformations (Kutner et al., 2005), since they are commonly applied in education research. 

Moreover, these methods change the characteristics of count data to more closely match the 

assumptions of the traditional statistical methods. For instance, count data can be rescaled 

into a dichotomous variable, and analyzed using logistic regression or a similar technique 

suitable for binary variables. Another option is to rescale count data to a set of ordered 

categories, and then use these rescaled categories variables in an analysis, such as ANOVA. 

However, reducing counts to categories, such as changing a four rating-scale variable into a 

dichotomous variable, would squander some information, and may lead to diluted statistical 

power, defeating the purpose of the analysis (Gardner et al., 1995). As for data 

transformations, one of the disadvantages is that they may obscure the fundamental 

interconnections between variables. The other is that idiosyncratic transformations make it 

difficult to compare results across studies.   

Another way to analyze this type of count data with its nonnormality of residuals is to 

use more appropriate statistical methods. One option may be nonparametric (NPAR) 

statistical methods because nonparametric statistical methods have no distribution assumption 

(Blum & Fattu, 1954; Harwell, 1988). However, several nonparametric statistical methods 

rank the data, thus losing some information from the original values. Therefore, if the 

distribution of count data is known, parametric statistics models should be utilized. The 

nonlinear regression models are more appropriate statistical methods for the known 

distribution of count data.  

Nonlinear regression models are appropriate for count data because they use probability 

distributions for the dispersion of the dependent variable scores around the expected value for 

dependent variables which take on only nonnegative integer values (Kutner et al., 2005).  

Therefore, the alternative to rescaled categories, transformations, or NPAN is to adopt an 

appropriate nonlinear model. The “generalized linear models” (GLMs) are solutions for 
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modeling count data. GLMs do not assume a normally distributed response variable. The 

random component in GLMs is the dependent variable, which assumes a certain distribution. 

For example, the Poisson regression model and the negative binomial regression model could 

be used to model count data in different conditions.  

The Poisson regression model is utilized for count outcome, with large-count outcomes 

being rare events (Kutner et al., 2005). Moreover, the Poisson regression model is particularly 

attractive for modeling count data because the model has been extended into a regression 

framework, it has a simple structure, and it can be easily estimated (Lee, 1986). However, 

this simplicity is the result of some limiting assumptions: the variance should be equal to the 

mean of the response count data. Violations of this assumption may have substantial affects 

on the reliability and efficiency of the model coefficients (Sturman, 1999).  

In reality, the mean and the variance of a dependent variable in most educational data are 

not the same, such as the number of university mathematics courses completed. Instead, the 

variance of the model often exceeds the value of the mean, a phenomenon called 

overdispersion (Hilbe, 2007). Moreover, characteristics of count data may yield further 

violations of assumptions, which may produce flaws in the Possion regression model. For 

instance, mathematics achievement research may suggest that the number of university 

mathematics courses completed is a function of several factors, such as high school 

mathematics scores, the number of high school mathematics courses completed, ACT/SAT 

mathematics scores, and so on. It suggests that these individual characteristics cause or at 

least correlate with the number of mathematics courses completed. Therefore, the negative 

binomial regression may substitute for this situation because the negative binomial regression 

has an extra parameter which counts for the overdispersion (Hilbe, 2007).  

 The following subsections in the Literature Review consist of reviewing three regression 

models: the OLS linear regression model, the Poisson regression model, and the negative 
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binomial regression model. Further, the use of the Poisson regression model and the negative 

binomial regression model in academic research will be reviewed. In addition, simulation 

studies comparing the OLS linear regression model, the Poisson regression model, and the 

binomial regression model in other disciplines will be discussed. Finally, the research 

question of this study will be posed.  

Ordinary Least Squares Linear Regression 

 The formulation of linear regression models can be represented in the form of the 

general linear regression model, which directly follows the derivation from Kutner et al., 

(2005),  

                  ipipiii XXXY εββββ +++++= −− 1,122110 ....                   (1) 

where: 

 110 ,...,, −pβββ  are parameters 

 1,1 ,..., −pii XX  are known constants 

 iε  are independent, and follows ),0( 2σN  

 ni ,...,1=  

Since 0}{ =iE ε , the response function for regression model (2.1) is: 

              1122110 ....}{ −−++++= pp XXXYE ββββ                     (2) 

Least squares is the most commonly-used estimation in traditional linear regression 

because of its easy computation and the best linear unbiased estimator (BLUE) under the 

Gauss-Markov assumption (Puntanen & Styan, 1989). Therefore, it is commonly-used in 

estimation for linear regression models in educational research, and parameters estimated 

from the least squares estimation are unbiased and have minimum variance among all 

unbiased linear estimators (Kutner et al., 2005).  
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The least squares criterion is generalized as follows for the general linear regression 

model (1): 

   

2

1
1,1110 )...(∑

=
−−−−−−=

n

i
pipii XXYQ βββ                     (3)  

where the least squares estimators are those as a set ( 110 ,...,, −pβββ ) minimize Q . 

The OLS regression model gives a generally satisfactory approximation for most 

regression applications. However, because of the positively-skewed distribution of count data, 

it contradicts the assumptions of commonly employed statistical methods such as OLS 

(Sturman, 1999). This is “because for count data, the absolute values of the residuals almost 

always correlate positively with the predictors, the estimated standard errors of the regression 

coefficients are smaller than their true value. Thus, the t-values associated with the regression 

coefficients are likely to be inflated (Sturman, 1999, p. 418).” In other words, tests from OLS 

estimation are likely to be inefficient, and estimates of standard errors inconsistent for count 

data. 

Poisson Regression 

Poisson regression is a nonlinear statistical model, and it is the best known model for 

modeling count data with a Poisson distribution. GLMs have two primary features. First, for 

some dependent variables iμ , the probability distribution of iy  given iμ  is a member of 

the exponential family. For the Poisson regression model, this distribution is the Poisson 

distribution. Second, there is a “link function” which is a transformation )(⋅g that linearizes 

the expected value of iy . That is, ∑=
j

ijji xg βμ )( , where ∑
j

ijj xβ is a linear combination 

of the predictors.  

As Kutner et al. (2005) stated, the Poisson regression model can be expressed as 

follows: 

     )exp(),( 'ββμμ iii XX ==                         (4) 



Models for Count Data 12 

 

In Kutner et al. (2005), β'iX  is equivalent to the expression of ∑=
j

ijji xβμ in 

Gardner et al. (1995). iμ  are the dependent mean for the i th case, and they are assumed to 

be a function of the set of independent variables iX . In other words, ),( βμ iX is the value 

of the predictor variables for case i  from the function that relates the mean dependent iμ  

to iX . β  are the values of the regression coefficients.  

 The explanation for the formula (4) is that a one-unit change in the predictor 

variable iX multiplies the expected values by a factor of )exp( jβ , and a one-unit decrease 

divides the expected incidents by the same amount (Gardner et al., 1995). In other words, 

“Poisson models are typically used to either summarize predicted counts based on a set of 

explanatory predictors, or are used for interpretation of exponentiated estimated slopes, 

indicating the expected change or difference in the incidence rate ratio of the outcome based 

on changes in one or more explanatory predictors” (Hilbe, 2007, p.43).  

The Poisson probability density function below directly follows the derivation DeGroot 

& Schervish (2002),  

  !
)(

x
exf

xλλ
λ−

=  for ,...2,1,0=x                        (5) 

                             = 0 otherwise. 

where:  

• x  is a random variable with a discrete distribution, and it is supposed to be a 

nonnegative integer.  

• λ  is a mean under the probability function of X  following the Poisson probability 

function. 

However, serious issues in using Poisson regression when modeling count data arise. 

The Poisson regression model uses a one-parameter model to describe the distribution of the 

dependent variable because it assumes that the variance is a function of the mean. This may 
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be too strict for most data, particularly in designs where observations may not be drawn in 

strictly independent trials, such as spatial or time autocorrelation (Hilbe, 2007). Furthermore, 

“overdispersion” frequently happens when Poisson regression is used for modeling count 

data. The definition of the overdispersion is that the variance of the model exceeds the value 

of the mean (Hilbe, 2007). Overdispersion is caused by positive correlation between 

responses or by an excess variation between response probabilities or counts. According to 

Hilbe (2007), overdispersion occurs when:  

  (a) the model omits important explanatory predictors;  

  (b) the data include outliers; 

  (c) the model fails to include a sufficient number of interaction terms;  

  (d) a predictor needs to be transformed to another scale; or when 

  (e) the assumed linear relationship between the response and the link  

         function and predictors is mistaken, i.e., the link is misspecified (p.52).   

In contrast to overdispersion, if the response variance is smaller than the mean, it is 

called “underdispersion.” And if the response variance is equal to the mean, it is called 

“equidispersion” (Hoffman, 2004). Some researchers (Gardner et al., 1995; Hoffman, 2004) 

stated that if the response variance is not equal to the mean, the estimates in the Poisson 

regression model are inefficient. Moreover, the Poisson regression model may produce biased 

estimates of its variance terms and lead to inappropriate inferences about the regression, since 

overdispersion may cause standard errors of the estimates to be underestimated (Hilbe, 2007). 

Sturman’s (1999) simulation study showed that when count response data were in the 

overdispersion condition, the estimates of standard errors from the Poisson regression model 

seemed to be less than their true value, which leads to inflated t coefficient and Type I errors. 

If overdispersion happens, its consequences for parameter estimates in the Poisson regression 

models are like the problem of heteroscedasticity in linear models (Gardner et al., 1995; 
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Sturman, 1999).  

 Obviously, when the response count variables do not have equal mean and variance, 

modeling these kinds of positively-skewed variables has limitations as described above. 

Unless extremely restrictive assumptions are met, the Poisson model produces incorrect 

estimates of its variance terms and misleading inferences about the regression. Although 

regression parameters are consistently estimated, standard errors are biased downwards 

leading to the rejection of too many false null hypotheses (Caudill & Mixon, 1995). 

Therefore, it is important to consider alternative regression models. 

Negative Binomial Regression  

The negative binomial regression model is more flexible than the Poisson model and is 

frequently used to study count data with overdispersion (Hilbe, 2007; Hoffman, 2004). In fact, 

the negative binomial regression model is in many ways equivalent to the Poisson regression 

model because the negative binomial model could be viewed as a Poisson-gamma mixture 

model (Hilbe, 2007). However, the difference is that the negative binomial regression model 

has a free dispersion parameter. In other words, the Poisson regression model can be 

considered as a negative binomial regression model with an ancillary or heterogeneity 

parameter value of zero (Hilbe, 2007). In the negative binomial regression model, a random 

term reflecting unexplained between-subject differences is included (Gardner et al., 1995), 

that is, the negative binomial regression adds an overdispersion parameter to estimate the 

possible deviation of the variance from the expected value under Poisson regression. 

Therefore, using the negative binomial regression to model count data with a Poisson 

distribution has the consequence of generating more conservative estimates of standard errors 

and may modify parameter estimates (Hilbe, 2007).  

The negative binomial probability density function below directly follows the derivation 

from Hilbe (2007),  
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where:  

• Γ  is the gamma function. 

• λ  is the mean of the negative binomial distribution. 

• v  is the dispersion parameter. 

• y  is the dependent variable. 

The Use of Poisson Regression and Negative Binomial Regression in Other Disciplines 

and Educational Research 

The Poisson regression model and the negative binomial regression model have been 

introduced to many academic disciplines where they have been utilized to analyze count data 

with positive skew. For instance, in the field of history, researchers have examined how to use 

these more appropriate regression models in analyzing factors that influenced number of 

white mob violent acts against African Americans in the American South (Beck & Tolnay, 

1995). In the field of politics, researchers (King, 1989) have demonstrated the power of these 

regression models for observed international relations event count data. In the field of 

economics, researchers have studied the relationship between the number of patents applied 

for and received by companies, as well as research and development expenditures (Hausman, 

Hall, & Griliches, 1984). Poisson regression and the negative binomial regression have been 

used in the field of psychology as well where researchers studied the number of violent 

incidents happening in a community (Gardner, et al., 1995). And in business, researchers 

have used Poisson regression and the negative binomial regression to study factors that affect 

absenteeism (Sturman, 1999).  

Compared with other disciplines, however, Poisson regression and the negative binomial 

regression seem to be rarely used in educational research even when outcome variables are 
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count data with a positive skewed distribution. This may be because it seems little attention is 

paid to examining count data. None of the educational research articles found by the author 

used Poisson regression, and only two educational research articles found by the author used 

the negative binomial regression model: Goyette’s study (1999) and Cole’s study (2006). Yet, 

even while it is a positive sign to see the negative binomial regression model being used, the 

statistical analyses approaches may be challenged.  

In Goyette’s study, the negative binomial regression was utilized to model the number of 

applications of Asian American and White high school students for college. One of Goyette’s 

reasons for using the binomial regression model in this study was that the negative binomial 

regression model is appropriate for the specification of the count dependent variables which 

were defined as a number of repeatable events within a certain, fixed interval. The second 

reason, as Goyette described, “I favor the negative binomial model over a simple Poisson 

model because the Poisson model is based on the assumption that the mean of college 

application equals its variance (p.26).” It is valuable that Goyette mentioned the difference 

between the Poisson model and the negative binomial model, and the reason why Goyette 

used the negative binomial regression model. However, Goyette did not provide the values of 

the mean and the variance of the number of the student applications in this study clearly, For 

instance, whether the variance is larger than the mean, or the mean is larger than the variance. 

Therefore, the results from the way Goyette used the negative binomial regression may not be 

valid.  

On the other hand, Cole’s study (2006) utilized negative binomial regression to analyze 

the number of ethnocentric courses provided in tribal, black, and mainstream colleges and 

universities. This article did an excellent job to explain the factors, such as the total number 

of courses, undergraduate enrollment, year, and school locations, which affect the number of 

ethnocentric courses offered, as well as interpreting the coefficient of variables from the 
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negative binomial regression model. However, the researcher did not mention any reason for 

using the negative binomial regression model; for instance, there are no descriptive statistics 

for the number of ethnocentric courses offered, such as the mean, variance, skewness, and 

kurtosis. Without this basic statistical information, it is hard to decide whether the negative 

binomial regression works better than other regressions in this situation.  

Although these two articles did not provide enough statistical information for readers to 

decide if the negative binomial regression was more appropriate, the way they utilized the 

negative binomial regression for analyzing count data provides a valuable example for 

educational researchers who analyze count data. Therefore, there is a need for researchers to 

examine when the OLS regression model, the Poisson regression model, and the negative 

binomial regression model could be better used in different conditions, such as with different 

means, variances, and sample sizes.  

The Simulation Studies of OLS Regression, Poisson Regression, and Negative Binomial 

Regression  

Two simulation studies in other disciplines have investigated the behavior of OLS 

regression, Poisson regression, and negative binomial regression for analyzing count data in 

different conditions. One is King’s article (1988); he used sample size as the condition for 

comparing the OLS regression model and the Poisson regression model. The other is 

Sturman’s research (1999); he used different distributions of the dependent variable, sample 

size, and distributions of the independent variables as the different conditions.  

King (1988) compared the differences of the OLS regression model and the Poisson 

regression model for political science event count data. He commented that the OLS 

regression model, which is the most common model applied in political science, produces 

misspecification, inefficiency, bias, inconsistency, and insufficiency for modeling the count 

data. Therefore, he proposed the Poisson regression for modeling political event count data. 
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King conducted a Monte Carlo study with 12 different sample sizes (n=10, 20, 30, 40, 50, 

100, 150, 200, 500, 750, 1000, and 2000), and simulated data from a Poisson distribution 

with parameter βθ Xi = . β  and X  were arbitrarily chosen. A (3×1) β  vector was 

chosen to include 0.21 =β , 4.02 =β , and 0.33 −=β . His results showed that OLS regression 

produced more errors than the Poisson regression for all sample sizes. Most importantly, 

when the sample size increased, the number of OLS errors increased. Some researchers may 

still prefer to transform count data with a positively-skewed distribution using a logarithmic 

transformation to make the distribution of this count data approximately normal. King also 

commented that “if one must use the logged OLS (LOLS) model, collecting fewer 

observations might yield better results. (p.853)” In order words, the LOLS model may work 

for small sample size count data with a Poisson distribution. However, King mentioned that 

increases in sample size of this kind of count data produce increases in the variance of the 

count data. This would cause overdispersion for the transformed count data, so the LOLS 

model provided more Type I errors than the Poisson regression model. Therefore, the Poisson 

regression model still appears to be a better choice for analyzing count data with a Poisson 

distribution.  

Similarly, Sturman (1999) compared eight models for analyzing positively skewed count 

data, the number of incidents of absenteeism in the field of business. The eight models were 

OLS, OLS with a transformed dependent variable, Tobit, Poisson, overdispersed Poisson, 

negative binomial, ordinal logistic, and ordinal probit. Sturman calculated the frequency with 

which each model incorrectly identified a statistically significant relationship from each 

simulated data set. In order to ensure generalizability, the author simulated five distributions 

for predicting absenteeism count data from previous articles about absenteeism. These 

distributions had varying degrees of skewness and kurtosis. Sturman’s simulation estimated 

the likelihood of producing Type I errors under the influences of regression model type, 
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distribution of the dependent variable, sample size, and distribution of the independent 

variables. Sturman’s results showed that OLS regression does not produce more false 

positives than expected by chance. The Poisson regression model yielded too many false 

statistically significant relationships. Sturman’s study also showed that the negative binomial 

model produced fewer false positives. In other words, the negative binomial can serve as a 

conservative check of the results because it is likely to better match the characteristics of the 

data. Sturman also used MANOVA to examine whether the characteristics of the simulation 

study influence the number of Type I errors. He concluded that four factors, the regression 

model, distribution of the dependent variable, sample size, and distribution of the 

independent variables, all impacted the likelihood of Type I errors.  

Both simulation studies provided empirical statistical results that showed differences 

between OLS regression and Poisson regression. However, their conclusions are not 

consistent. King (1988) stated that Poisson regression produced lower Type I error rates for 

all kinds of sample sizes for Poisson count data. On the other hand, Sturman (1999) 

concluded that Poisson regression tended to produce higher Type I error rates in different 

conditions, including distribution of the dependent variable, sample size, and distribution of 

the independent variables. Since Sturman did not provide detailed Type I error rates for 

individual conditions, the contradictions between the two articles may come from two major 

differences. One is that the count data in King’s article followed a Poisson distribution, but 

the count data in Sturman’s article were positively-skewed instead of following an entirely 

Poisson distribution. The other is that there were many variables which caused different 

conditions in Sturman’s article, but the different conditions in King’s article varied only by 

sample size. Beyond the OLS regression and the Poisson regression, Sturman also examined 

the negative binomial regression model, and concluded that the negative binomial was a 

better model for analyzing positively-skewed distributed count data. 
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After examining these two simulation studies, it is still not clear which regression model 

is more appropriate for analyzing count data like the number of university mathematics 

courses completed. Therefore, this study will investigate the conditions under which model 

could be better used for count data with a positively-skewed distribution under different 

sample size conditions.  

Research Question 

This study seeks to examine the Type I error rates for three models: OLS regression, 

Poisson regression, and negative binomial regression models for different sample sizes.  

 

Methodology 

Research Design 

This study used a Monte Carlo simulation to evaluate which of the regression models 

was the most appropriate for different sample size conditions based on the Type I error rate. 

The Monte Carlo study employed a fully-crossed, factorial design with two independent 

variables: sample size and regression. The sample size contained seven conditions: 20, 40, 80, 

100, 250, 500, and 2500. The three regression models, OLS, Poisson, and negative binomial, 

served as a within-subjects factor.  

For Type I error calculation, the parameter values for 1β  and 2β were set as zero. In 

order to create a good model of a sampling distribution, the number of replications was set at 

10,000 for each sample size condition. The dependent variable was the Type I error rate over 

the two parameters. The descriptive statistics for the estimated correlations were computed. 

  In general, this Monte Carlo simulation explored the extent to which regression model 

is more likely to provide expected Type I error rates for simulated count data under different 

sample sizes.  

The parameters and correlation relationships among variables for this study were from 
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Minnesota Mathematics Assessment Project (MNMAP) supported by the National Science 

Foundation under NSF0627986. This dataset included 4414 students who graduated from 

Minnesota high schools and enrolled at the University of Minnesota in Fall, 2002 or Fall, 

2003 (Harwell, Post, Cutler, Anderson, Maeda, Wu, & Hyesook, 2006). The data consisted of 

student background variables as well as cumulative mathematics courses completed. The 

descriptive statistics of the number of university mathematics courses completed is shown in 

Table 1, and the distribution is positively-skewed (see Figure 1). The reason may be that 

students who complete more mathematics courses major in STEM fields; on the other hand, 

students who are in the humanity, business, or social science fields take fewer STEM courses. 

The descriptive statistics of the number of university mathematics courses completed is listed 

in Table 1.  

 

 
 

 Statistic Std. Error 

Mean 2.2008 0.02422 

Variance 2.432  

Std. Deviation 1.55942  

Median 2  

Skewness 1.875 0.038 

Kurtosis 6.661 0.076 

Minimum 0  

Maximum 14  

Figure 1 The distribution of the 
number of university mathematics 
courses completed in the MNMAP 
dataset 

Table 1
The Descriptive Statistics of the Number of 
University Mathematics Courses Completed in 
the MNMAP dataset 

Moreover, the histogram for the residuals of the number of university mathematics 

courses completed from the regression model (Figure 2) with ACT mathematics and high 

school mathematics GPA as predictors, the P-P plot (Figure 3) and the Scatter Plot (Figure 4) 
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suggest that the assumption of normality and homoscedasticity are violated. In the histogram 

of residuals, it is positively-skewed instead of normally distributed. In the P-P plot of the 

regression standardized residual, most dots do not fall on the straight line. In the scatter plot, 

the residual points are spread unevenly throughout the range of the predicted values, and 

there appears to be a pattern to the residual plot. Based on the residual plot, the straight line 

does not appear to be a reasonable model. It can be said that there is more scatter above the 

0-line than below, and an increasing, positive trend can be seen.  

 

Figure 2 The histogram of residuals of the 
number of university mathematics courses 
completed in the MNMAP dataset 

Figure 3 The normal P-P Plot of the 
regression standardized residual of number of 
university mathematics courses completed in 
the MNMAP dataset

 

 
Figure 4 The scatterplot of the number of college mathematics courses completed in 
the MNMAP dataset 
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Data Simulation & Analyses 

Three variables in this study were simulated based on MNMAP data: ACT mathematics 

score, high school (HS) mathematics GPA, and error term for each case. The ACT 

mathematics and high school mathematics GPA variables were created based on specific 

skewness and kurtosis. On the other hand, the distribution for the error term was tend to 

simulate as a Poisson distribution (more details are described later). 

Data in different conditions were generated with the SAS System ("The SAS System for 

Windows 9.0," 2003). First, the two independent variables, ACT mathematics and high 

school mathematics GPA, were not normally distributed according to the real values in the 

MNMAP dataset. In order to simulate multivariate non-normal data, a method from 

Fleishman (1978) was applied in this study. The Fleishman transformation function is as 

follows: 

                           
32 dXcXbXaY +++=                           (7) 

Vale & Maurelli (1983) stated that Fleishman’s method provides “an advantage over the other 

procedures because it can easily be extended to generate multivariate random numbers with 

specified intercorrelations and univariate means, variances, skews, and kurtoses” (p.465). The 

intercorrelation coefficients and descriptive statistics for the three variables were from the 

MNMAP data listed in Table 2 and Table 3.  

 

Table 2 

Correlation Coefficients Matrix Between Three Variables  
  Total number of 

university 
mathematics 

courses 

ACT mathematics 
 

HS mathematics 
GPA 

Total number of 
university 

mathematics 
courses  

Pearson Correlation 

N 

1 

4144 

0.178* 

4105 

0.108* 

3827 

 
ACT mathematics 

Pearson Correlation 

N 

0.178* 

4105 

1 

4105 

0.492* 

3790 
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HS mathematics 
GPA 

Pearson Correlation 

N 

0.108* 

3827 

0.492* 

3790 

1 

3827 

* indicates p < .05 

 

Table 3 

Descriptive Statistics for the Three Variables 

 Mean Std. Skewness Kurtosis 

Total number of university 

mathematics courses 

2.200 1.559 1.875 6.661 

ACT mathematics  24.650 4.959 -0.150 -0.624 

HS mathematics GPA 3.357 0.643 -1.056 0.648 

 

The correlation between the independent variables representing ACT mathematics and 

the HS mathematics GPA in this simulation study was set to 0.492, which comes from the 

MNMAP data. However, since the distributions of the ACT mathematics and the HS 

mathematics GPA were not normal, the intermediate correlation ( ρ ) between the two 

variables was calculated by using Vale and Maurelli’s (1983) method: 

     )6()2()933( 21
3

21
2

2121212112 ddccddbddbbbR ρρρ +++++=           (8) 

Using SAS syntax from Fan & Fan (2005), the intermediate correlation coefficient was 

calculated as 0.53947.  

 Second, the error terms were also simulated with Fleishman’s (1978) transformation 

function (7), described above. The mean of the number of mathematics courses completed 

over semesters in the MNMAP dataset was 2.2. Therefore, the mean and variance of the error 

term were set to 2.2. According to the skewness and kurtosis of a Poisson distribution 

described above in the equations 2.16 and 2.17, the skewness and kurtosis were set as 0.674 

and 0.455. Further, in order to calculate the Type I error rate, the correlations between the 

error term and the ACT mathematics and between the error term and the HS mathematics 

GPA were each set to zero. Therefore, in this study, the known parameters of the distributions 
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are shown in Table 4. In addition, the desired correlation matrix is shown in Table 5.  

 

Table 4 

The Desired Parameters for the Three Distributions Simulated  

 Mean Std. Skewness Kurtosis 

Error term 2.200 1.483 0.674 0.455 

ACT mathematics  24.650 4.959 -0.150 -0.624 

HS mathematics GPA 3.357 0.643 -1.056 0.648 

 

Table 5 

The Desired Correlation between Three Simulated Variables  

 Error term ACT mathematics HS mathematics GPA

Error term 1 0 0 

ACT mathematics  0 1 0.492 

HS mathematics GPA 0 0.492 1 

 

The estimated parameters and correlations based on 1,000,000 samples are shown in 

Table 6 and Table 7 below. The values in Table 6 indicate the estimated parameters were 

close to the known parameters. In addition, the correlations in Table 7 were also very close to 

the known correlations. Based on the correlation test formula (9) below, the simulated 

correlation between X1 and X2 is not statistically significant, since the t-value is -0.346 

( p =0.492, and r =0.49117).  

                    )2/()]1)(1[( 22 −−−

−
=

npr

prt                         (9) 

Figure 7 shows the distribution of the simulated error term. However, based on these 

1,000,000 simulated samples, there were 39,759 error terms lower than zero. The percentage 

is 0.0398. Due to the characteristics of the Poisson and the negative binomial regression 

model, if the value of the dependent variable is below zero, then the regression cannot be 
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defined. Therefore, in this study, two ways were used to solve this situation (some dependent 

variable values lower than zero). One is to add 1 to every value of the dependent variable 

since the minimum original simulated error term is -0.616. Therefore, only the mean of the 

error term would be changed, and the variance, skewness, and kurtosis were still the same. 

Figure 8 shows the distribution of the simulated adjusted error term. The second way is that 

when the error term was below zero, it would be truncated as zero. The descriptive estimated 

parameters for the adjusted error term and truncated error term are also listed in Table 6, and 

correlations between other variables are listed in Table 7. Figure 9 shows the distribution of 

the simulated truncated error term.  

 

Table 6 

The Estimated Parameters for the Three Distributions Based on 1,000,000 Samples  

 Mean Std. Skewness Kurtosis Minimum Maximum

ACT mathematics  24.650 4.962 -0.150 -0.624 11.707 34.838 

HS mathematics GPA 3.356 0.644 -1.055 0.652 -2.676 4.064 

Error term 2.200 1.484 0.674 0.455 -0.616 12.100 

Error term plus one 3.200 1.484 0.674 0.455 0.384 13.100 

Truncated error term 2.210 1.468 0.728 0.471 0 12.100 

 

Table 7 

The Estimated Correlation between Three Simulated Variables  
 ACT 

mathematics 
HS 

mathematics 
GPA 

Error term Error term 
plus one 

Truncated 
error term 

ACT mathematics  1.00000  0.49117 0.00078 0.00078 0.00076 

HS mathematics GPA 0.49117 1.00000 0.00015 0.00015 0.00012 

Error term 0.00078 0.00015 1.00000 1.00000 0.99927 

Error term plus one 0.00078 0.00015 1.00000 1.00000 0.99927 

Truncated error term 0.00076 0.00012 0.99927 0.99927 1.00000 
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Mean =2.20, SD=1.484, N=1,000,000 Mean =3.20, SD=1.484, N=1,000,000  Mean =2.21, SD=1.464, N=1,000,000 

Figure 7 The histogram of 
the simulated error term 

Figure 8 The histogram of 
the simulated adjusted 
error term 

Figure 9 The histogram of 
the simulated truncated 
error term

 

After simulating datasets under different sample size conditions, OLS regression, 

Poisson regression, and negative binomial regression, were used to estimate parameters for 

each regression result. Further, Type I error rates were calculated. In this study, Type I error 

rates at two nominal levels were estimated: 0.05 and 0.01. Since the null hypothesis is true, 

the estimated Type I error rate should equal 0.05 and 0.01 within sampling error, respectively. 

Type I error rate inflation was said to exist when the proportion of the rejection exceeded the 

upper and the lower limit of the criterion interval of  

                            N
)1(96.1 ααα −

±                             (10) 

Therefore, due to the 10,000 sample size, the criterion interval for the Type I error rate at 0.05 

level is (0.045728 to 0.054271), and at 0.01 level is (0.008049 to 0.01195).  

 In this paper, the OLS regression model is estimated with PROC REG in the SAS 

system. PROC REG uses ordinary least squares, and the default link function is the identity 

link because it assumes that the relationship between the dependent variable and the 

independent variables is linear. On the other hand, PROC GENMOD was used for the 

Poisson regression model and the negative binomial regression model. The estimation in SAS 

GENMOD for the two models uses maximum likelihood estimation (MLE), and the link 
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function is log link. MLE is a preferred method of parameter estimation in statistics, 

particularly in non-linear modeling with non-normal data. MLE has four optimal properties in 

estimation: sufficiency (complete information about the parameter of interest contained in its 

MLE estimator), consistency (true parameter value that generated the data recovered 

asymptotically), efficiency (lowest-possible variance of parameter estimates achieved 

asymptotically), and parameterization invariance (same MLE solution obtained independent 

of the parameterization used) (Myung, 2003). Moreover, the log link function keeps the 

outcome variable from the fitted model positive. In the SAS output, a scale parameter has 

been included, even though the degree of freedom is zero for the scale parameter in Poisson 

regression. The difference in PROC GENMOD for Poisson regression and negative binomial 

regression is that negative binomial regression relaxes the assumption about equality of the 

mean and the variance in Poisson regression. This is because the scale parameter for all GLM 

count models is defined as one, and does not enter into the estimation process. PROC 

GENMOD allows the specification of a scale parameter to fit overdispersed Poisson 

distribution. SCALE indicates the value of the overdisperison scale parameter used in 

adjusting output statistics. PROC GENMOD allows the specification of a dispersion 

parameter to fit binomial distributions. Dispersion is the estimate of the log of the dispersion 

parameter. If dispersion is greater than zero the response variable is over-dispersed. If 

dispersion is less than zero the response variable is under-dispersed. And if the log of the 

dispersion parameter equals zero, the model reduces to the simpler Poisson model. In contrast 

to Hoffman’s (2004) view that the negative binomial is not a true generalized linear model, 

Hilbe (2007) argued that negative binomial regression does have GLM status when it is a 

member of the single-parameter exponential family of distributions. Therefore, SAS 

GENMOD is appropriate for use in negative binomial regression.  

 



Models for Count Data 29 

 

Results 

  The purpose of this study was to assess whether these three models: OLS, Poisson, and 

negative binomial regression, preserved the appropriate Type I error rate, which is the 

probability of rejecting the null hypothesis when it is true. The results from the two methods 

used to modify less-than-zero dependent variable values will be discussed below separately.  

Adjusted Error Term Results (Adding 1 to Each Value) 

Tables 8 and 9 show the Type I error rates for the three regression models at =α  0.05 

and 0.01 for the ACT mathematics scores (X1), and Tables 10 and 11 show the Type I error 

rate at alpha level equal to 0.05 and 0.01 for high school mathematics GPA (X2). To identify 

the estimated Type I error rates that differed from the nominal alpha level, the criterion 

interval given in equation 10 was used. If the estimated Type I error rate was beyond the 

criterion interval, then an asterisk was included with the results.     

 At =α 0.05, OLS regression only produced more statistically significant relationships 

than expected by chance in the 500 sample size condition for X1 estimation. Poisson 

regression produced fewer Type I errors than expected by chance in all seven sample sizes in 

both two independent variables. On the other hand, negative binomial regression yielded 

more Type I errors when the sample sizes were 20, 40, and 2500 for X1, and when the sample 

sizes were 20 and 40 for X2.  

 For =α 0.01, OLS regression produced more Type I errors when the sample sizes were 

100 and 500 for X2. Poisson regression still produced much fewer Type I errors in all seven 

sample sizes for both X1 and X2. Negative binomial regression yielded more Type I errors 

when the sample sizes were 20, 40, and 80 for X1, and when the sample sizes were 20, 40, 80, 

and 100 for X2. 

  Table 12 and 13 show the average Type I error rates of X1 and X2 for the three 

regressions at alpha are equal to 0.05 and 0.01. OLS regression seemed to have stable Type I 
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error rates across different sizes. Poisson regression produced fewer Type I errors than 

expected by chance. Negative binomial regression yielded more Type I errors than expected 

by chance when the sample size was small, but it seemed to perform well in controlling Type 

I error rates when the sample size became larger.   

 
Table 8  
Type I Error Rates for the Three Regressions at Alpha = 0.05 Level for X1 (ACT mathematics) 

 20 40 80 100 250 500 2500 

OLS regression 0.0518 0.0513 0.0486 0.0495 0.0498 0.0550** 0.0474 

Poisson regression 0.0166** 0.0178** 0.0186** 0.0191** 0.0192** 0.0193** 0.0166** 

Negative Binomial 
regression 0.0727** 0.0656** 0.0507 0.0508 0.0464 0.0505 0.0414** 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 9  
Type I Error Rates for the Three Regressions at Alpha = 0.01 level for X1 (ACT mathematics) 

 20 40 80 100 250 500 2500 

OLS regression 0.0095 0.0093 0.0108 0.0105 0.0116 0.0104 0.0102 

Poisson regression 0.0020** 0.0013** 0.0022** 0.0023** 0.0016** 0.0027** 0.0019** 

Negative Binomial 
regression 0.0193** 0.0160** 0.0123** 0.0113 0.0098 0.0095 0.0082 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 
 
Table 10  
Type I Error Rates for the Three Regressions at Alpha = 0.05 level for X2 (HS mathematics GPA) 

 20 40 80 100 250 500 2500 

OLS regression 0.0512 0.0527 0.0502 0.0505 0.0501 0.0531 0.0534 

Poisson regression 0.0177** 0.0183** 0.0181** 0.0190** 0.0207** 0.0192** 0.0197** 

Negative Binomial 
regression 0.0701** 0.0632** 0.0527 0.0512 0.0458 0.0476 0.0473 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 
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Table 11  
Type I Error Rates for the Three Regressions at Alpha = 0.01 level for X2 (HS mathematics GPA) 

 20 40 80 100 250 500 2500 

OLS regression 0.0108 0.0099 0.0102 0.0127** 0.0112 0.0123** 0.0103 

Poisson regression 0.0015** 0.0017** 0.0023** 0.0025** 0.0017** 0.0021** 0.0016** 

Negative Binomial 
regression 0.0202** 0.0147** 0.0112** 0.0132** 0.0102 0.0110 0.0081 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 12  
The Average Type I Error Rates for the Three Regressions at Alpha = 0.05 level 

 20 40 80 100 250 500 2500 

OLS regression 0.0515 0.0520 0.494 0.0500 0.0500 0.0541 0.0504 

Poisson regression 0.0172 0.0181 0.0184 0.0191 0.0200 0.0193 0.0182 

Negative Binomial 
regression 0.0714 0.0644 0.0517 0.0510 0.0461 0.0491 0.0444 

 

Table 13  
The Average Type I Error Rates for the Three Regressions at Alpha = 0.01 level 

 20 40 80 100 250 500 2500 

OLS regression 0.0102 0.0096 0.0105 0.0116 0.0114 0.0114 0.0103 

Poisson regression 0.0018 0.0015 0.0023 0.0024 0.0017 0.0024 0.0018 

Negative Binomial 
regression 0.0198 0.0154 0.0118 0.0123 0.0100 0.0103 0.0082 

 

Truncated Error Term Results 

Tables 14 and 15 show the Type I error rates for the three regressions at =α  0.05 and 

0.01 for X1, and Tables 16 and 17 show the Type I error rates for =α 0.05 and 0.01 for X2.  

For =α 0.05, OLS regression produced Type I error rates consistent with chance for all 

seven sample size conditions. In contrast, for X1 using Poisson regression, three out of seven 

estimated Type I error rates were outside of the criterion interval (sample sizes of 20, 40, and 
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2500). For X2 using Poisson regression, two out of the seven Type I error rates were outside 

of the criterion interval (40 and 2500). Poisson regression did not yield statistically 

significant relationships in the less extreme sample sizes (e.g., 80~500). On the other hand, 

for X1 in the negative binomial regression, five out of seven Type I error rates were outside 

of the criterion interval (sample sizes of 20, 40, 80, 100 and 500). For X2 using the negative 

binomial regression, six out of seven Type I error rates were out of the criterion interval (20, 

40, 80, 100, 250 and 500). Only with the largest sample size of 2500 did negative binomial 

regression produce a Type I error rate consistent with chance. However, Poisson and negative 

binomial regression produced different kinds of statistically significant relationships. Poisson 

regression produced lower Type I error rates, but negative binomial regression produced 

higher.  

 For =α 0.01, OLS and Poisson regression did not produce more statistically significant 

relationships than expected by chance under the seven sample size conditions. On the other 

hand, negative binomial regression still produced more Type I error rates in six out of the 

seven sample sizes for both independent variables.  

 Table 18 and 19 show the average Type I error rates of X1 and X2 for the three 

regressions for =α 0.05 and 0.01. OLS regression seemed to have stable Type I error rates 

across different sample sizes. Poisson regression sometimes produced fewer Type I errors 

than expected, and negative binomial regression yielded more Type I errors than expected by 

chance. 

 
Table 14  
Type I Error Rates for the Three Regressions at Alpha = 0.05 Level for X1 (ACT mathematics) 

 20 40 80 100 250 500 2500 

OLS regression 0.0505 0.0485 0.0537 0.0508 0.0497 0.0485 0.0472 

Poisson regression 0.0438** 0.0457** 0.0508 0.0478 0.0478 0.0438** 0.0437** 
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Negative Binomial 
regression 0.0704** 0.0664** 0.0630** 0.0559** 0.0513 0.0704** 0.0473 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 15  
Type I Error Rates for the Three Regressions at Alpha = 0.01 level for X2 (HS mathematics GPA) 

 20 40 80 100 250 500 2500 

OLS regression 0.0116 0.0095 0.0116 0.0098 0.0111 0.0095 0.0110 

Poisson regression 0.0085 0.0084 0.0097 0.0091 0.0091 0.0085 0.0106 

Negative Binomial 
regression 0.0240** 0.0180** 0.0138** 0.0129** 0.0130** 0.0240** 0.0111 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 16  
Type I Error Rates for the Three Regressions at Alpha = 0.01 level for X1 (ACT mathematics) 

 20 40 80 100 250 500 2500 

OLS regression 0.0118 0.0091 0.0110 0.0098 0.0111 0.0091 0.0093 

Poisson regression 0.0112 0.0092 0.0113 0.0098 0.0098 0.0112 0.0086 

Negative Binomial 
regression 0.0233** 0.0169** 0.0149** 0.0131** 0.0120** 0.0233** 0.0093 

** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 17  
Type I Error Rates for the Three Regressions at Alpha = 0.05 level for X2 (HS mathematics GPA) 

 20 40 80 100 250 500 2500 

OLS regression 0.0532 0.0463 0.0536 0.0490 0.0537 0.0463 0.0478 

Poisson regression 0.0465 0.0421** 0.0509 0.0470 0.0470 0.0465 0.0449** 

Negative Binomial 
regression 0.0786** 0.0661** 0.0624** 0.0563** 0.0568** 0.0786** 0.0480 

 ** The estimated Type I error rate is beyond the criterion interval of Type I error rate 

 
Table 18  
The Average Type I Error Rates for the Three Regressions at Alpha = 0.05 level 

 20 40 80 100 250 500 2500 
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OLS regression 0.0519 0.0474 0.0537 0.0499 0.0517 0.0474 0.0475 

Poisson regression 0.0452 0.0439 0.0509 0.0474 0.0474 0.0452 0.0443 

Negative Binomial 
regression 0.0745 0.0663 0.0627 0.0561 0.0541 0.0745 0.0477 

 

Table 19  
The Average Type I Error Rates for the Three Regressions at Alpha = 0.01 level 

 20 40 80 100 250 500 2500 

OLS regression 0.0117 0.0093 0.0113 0.0098 0.0111 0.0093 0.0097 

Poisson regression 0.0099 0.0088 0.0105 0.0095 0.0095 0.0099 0.0096 

Negative Binomial 
regression 0.0237 0.0175 0.0144 0.0100 0.0125 0.0137 0.0102 

 

In summary, in the adjusted error term results, OLS regression generally seemed to 

perform to control Type I error rates well. Negative binomial regression controlled the Type I 

error rate well when the sample size was large, but did not perform well when the sample size 

was small. Poisson regression seemed to be too conservative because it produces less 

statistically significant relationships than expected by chance in all sample size conditions. In 

the truncated error term results, OLS regression performed better than both Poisson and 

negative binomial regression. Poisson regression tended to produce less Type I errors than 

expected at the 0.05 level, whereas the negative binomial regression tended to yield more 

Type I errors than expected at both 0.05 and 0.01.  

 

 

Discussion 

Three regression models have been proposed for the analysis of count data. These 

methods have been described in the context of modeling the number of university 

mathematics courses completed, where a large proportion of students took few mathematics 
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courses, and a small number of students completed a high number of mathematics courses.  

The results indicate that OLS regression performs better than Poisson and the negative 

binomial regression because OLS regression does not produce more or less false statistically 

significant relationships than expected theoretically. On the other hand, Poisson regression 

produced too few false statistically significant relationships, and negative binomial regression 

only controlled the Type I error rate when the sample size was quite large. However, if there 

are too many zeros in the dependent variable, negative binomial regression may produce too 

many false statistically significant relationships. In other words, the difference between 

Poisson regression and the negative binomial regression is that Poisson regression is more 

conservative because it produces fewer statistically significant relationships than expected by 

chance. On the other hand, the negative binomial regression is more liberal because it 

produces more statistically significant relationships than expected by chance.  

The results in this study are partially consistent with Struman’s (1999) results that OLS 

regression does not produce more false positives than expected by chance. However, the 

differences between the current study and Struman’s study are that in this study, the Poisson 

regression model produced fewer false statistically significant relationships, and the negative 

binomial model produced more false statistically significant relationships than expected by 

chance, which are the opposite of Sturman’s results. There are many differences which may 

influence results between the two studies, such as the distributions of independent variables, 

distributions of dependent variables, sample size, and so on, and it is difficult to pinpoint the 

exact reasons for the discrepancies.  

Limitations & Future Research 

 The present study has several limitations. First, this study used Fleishman’ (1978) 

transformation function to simulate the distribution of the error terms as a Poisson 

distribution. However, some values were negative in this case, and these were truncated to 
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zero. Although the skewness and kurtosis of the truncated simulated error terms were close to 

the simulated error terms according to the characteristics of the Poisson distribution, 

approximately 4% of the error terms were set to zero. Therefore, the left side of the truncated 

simulation error term distribution was not like a Poisson distribution. 

 Second, in this study, the mean and the variance of the error term were set the same. 

However, in real situations, this assumption is rarely met. Therefore, the distribution of the 

error term could be featured as over-dispersion or under-dispersion in future simulation 

studies.  

 Third, the present study attempted to model a set of variables that are typically used in 

mathematics educational research to understand the performance of OLS, Poisson, and 

negative binomial regression under different sample size conditions. Reseachers (Hutchinson 

& Bandalos, 1997) commented that results of Monte Carlo studies would be very useful if the 

conditions studied were encountered in practice. Therefore, in this study, the values for 

different between-factor conditions and the intercorrelation coefficients matrix were 

generated by using the variables in the MNMAP data to make the generated data realistic. 

However, only two independent variables were used in this study. In order to increase the 

generalizability, more parameters and more correlations should be studied.  

Finally, there are other regression models for modeling count outcomes, such as 

over-dispersed Poisson, zero-inflated Poisson, zero-inflated negative binomial, and so on. For 

instance, for the second analysis in this study, about 4% of the data were zero, so they are 

called zero inflated data. The zero-dispersed Poisson or zero-inflated negative binomial 

model may be alternative ways to model the data. Therefore, when educational researchers 

look for a statistical model to fit their count data such as the number of university 

mathematics courses completed, they should use a more appropriate model in their situations.  
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