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Preface

The 12th annual William H. Angoff Memorial Lecture was presented by Dr. Michael T. Kane, ETS’s 
Samuel J. Messick Chair in Test Validity and the former Director of Research at the National Confer-
ence of Bar Examiners. Dr. Kane argues that it is important for policymakers to recognize the impact 
of errors of measurement on test scores and on average scores for groups. He asserts that a clear 
understanding of the magnitude of errors of measurement can have at least two benefits: identifying 
where measurement procedures need to be improved, and improving policy decisions by reducing the 
tendency to interpret and act on score differences that may, in fact, be meaningless.

	 Dr. Kane grounds his argument in a discussion of the origins of errors of measurement, their 
role in conceptual frameworks and their control. He then discusses the relationship between defini-
tions of constructs (variables of interest) and our conception of errors of measurement. Understanding 
this relationship helps users of test scores decide whether a score difference should be interpreted as a  
difference in the construct being measured or should be attributed to error. 

	 Given the increasing reliance on assessments in high-stakes educational decisions, Dr. Kane’s 
cogent discussion is very timely.

	 The William H. Angoff Memorial Lecture Series was established in 1994 to honor the life and work 
of Bill Angoff, who died in January 1993. For more than 50 years, Dr. Angoff made major contributions 
to educational and psychological measurement and was deservedly recognized by the major societies 
in the field. In line with Dr. Angoff’s interests, this lecture series is devoted to relatively nontechnical 
discussions of important public interest issues related to educational measurement.

Ida Lawrence 
Senior Vice President 
ETS Research & Development 
January 2010
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Abstract

Errors of measurement arise because our observations are affected by many sources of variability, but 
our conceptual frameworks necessarily ignore much of this variability. Sources of variability that are 
not included in our models and descriptions of phenomena are treated as error or noise. A good theory 
of error supports the development of precise measurements, clearly defined constructs and sound pub-
lic policy. Narrowly defined constructs that do not generalize much beyond the observed performances 
do not involve many sources of error, but constructs that generalize observed scores over a broad range 
of conditions of observation (e.g., context, time, test tasks) necessarily involve many potential sources 
of error. We can have narrow constructs with small errors or more broadly defined constructs with 
larger errors. Some errors that are negligible for individuals can have a substantial impact on estimates 
of group performance, and therefore, can have serious consequences.
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Error is a delicate concept; for if we 
can call on it at will, or willfully, then 
it no longer explains anything or ac-
counts for anything. And if we can’t 
call on it when we need it, none of 
our theories ... will stand up. (Kyburg, 
1968, p. 140)

	 I am greatly honored to have been invited 
to participate in this lecture series in honor of Bill 
Angoff. I did not know him well, but I have ad-
mired his work for its acute sense of the questions 
that needed to be asked and for its insightful anal-
yses of basic measurement issues.

	 In this tradition and in memory of Dr. An-
goff, I intend to review some basic assumptions 
about errors of measurement. Dr. Angoff was very 
careful about his assumptions, and my discussion 
will try to follow in that tradition by examining 
how errors of measurement arise and how they 
are used. My presentation will focus on several 
closely related themes. 

	 First, I will talk about the origins of er-
rors of measurement, their role in our conceptual 
frameworks and their control. Without some sense 
of what to expect in a set of observations, there is 
no reason to assume that our observations contain 
any errors of measurement. It is only when scores 
that should agree do not agree, that the notion of 

errors of measurement gets called into play. Ironi-
cally perhaps, errors of measurement presuppose 
clearly defined measurement procedures and at 
least some rudimentary theory before they can 
even be recognized. 

	 Second, I will consider the relationship be-
tween how we define our constructs (the variables 
of interest) and our conception of errors of mea-
surement. Ultimately, we get to decide whether 
a score difference should be taken seriously as a 
difference in the construct of interest or should 
be attributed to error. Broadly defined constructs, 
which generalize over a wide range of conditions 
of observation, tend to have more errors than nar-
rowly defined constructs, which do not go much 
beyond the observations actually made.

	 Third, I will talk a bit about how errors of 
measurement function in various policy contexts. 
A clear recognition of the impact of errors on test 
scores and on average scores for groups can im-
prove policy decisions by encouraging a salutary 
sense of uncertainty. A good sense of the magni-
tude of errors of measurement at different levels of 
analysis can highlight sources of error that merit 
special attention because of their consequences, 
and can lessen the temptation to interpret and act 
on meaningless differences. 

Introduction
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    aradoxically, errors of measurement do not ex-
ist, but they are essential. As illustrated below, 
there is nothing about a single test score or a pair 
of scores that implies the presence of errors of 
measurement. However, if two scores are taken to 
be measures of the same variable for the same per-
son, we expect them to be equal, and if they are 
not equal, our data are inconsistent with our con-
ceptual framework. We can resolve this dilemma 
by assuming that one or both of the measurements 
contain errors. Errors of measurement play a vital 
role in quantitative analyses, by making it possible 
to model data without immediately running into 
inconsistencies.

The Need for Errors of Measurement

	 To take a simple example, suppose that we 
have made observations of the performance of 
four students, Alex, Beth, Chad and Dan, on some 
tasks (e.g., on a multiple-choice or performance 
test) and found that the four students got scores  
of 65, 77, 79 and 49, respectively. At this point, 
there is no reason to assume that these scores con-
tain any errors of measurement. They are what 
they are!

	 Assuming that no mistakes were made in 
observing the performances or in reporting the 
scores, we are justified in accepting the scores at 
face value as summaries of the observed perfor-
mances. That Alex got a score of 65, Beth got a 
score of 77, Chad got a score of 79 and Dan got 
a score of 49 can be considered facts. To ask 
about what the scores might have been if the four  

students had performed a different set of tasks or 
had performed the tasks on a different day or in  
a different context is to ask about hypothetical 
outcomes; in fact, the students performed those 
tasks on that day and in that context and got 
scores of 65, 77, 79 and 49. Similarly, it is a fact 
(or, if one wants to be very proper about it, a valid 
mathematical inference from the scores) that, on 
that occasion, Chad got a higher score than Beth, 
who got a higher score than Alex, who got a higher 
score than Dan. Taken as reports of events as they 
occurred, none of these scores contains any error. 
The students performed as they did, and they were 
correctly awarded the reported scores.

	 Now, suppose that on the next day, we  
obtain new observations of the same four students 
using the same procedures, and we find that Alex 
gets a score of 69, Beth gets a score of 80, Chad 
gets a score of 75 and Dan gets a score of 46. The 
scores are different on the two days and their  
order is a bit different, but there is nothing incon-
sistent in getting different scores on different days. 
These differences do not, in themselves, force us 
to introduce the notion of errors of measurement. 

	 In fact, we have a range of options for de-
scribing the changes in the scores from one day 
to another. First, we can interpret each student’s 
score for each day as characterizing that student’s 
performance on that day. The score is reported 
for each student on each day, and the scores can 
vary from student to student and day to day. In 
some cases we might expect the scores to change 
from day to day. For example, we might expect a  

Errors of Measurement and Their Control
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student’s level of skill in an activity to improve, 
over time, as a function of instruction and prac-
tice. If the scores were derived from measures of 
an attribute that is likely to change from day to day 
or week to week, we would be concerned about the 
sensitivity of our instrument if we did not see any 
changes in scores.

	 In some contexts, we might expect perfor-
mance to vary as a function of time, but not nec-
essarily to follow a particular trend. If we assume 
that the attribute is likely to change from one ob-
servation to the next, because of fluctuations in 
the attribute (e.g., attitudes, moods), changes in a 
person’s scores from day to day are likely to be in-
terpreted as changes in the attribute of interest.

	 However, in some cases, it may be reason-
able and desirable to assume that the scores for 
each person should be the same on the two days — 
that the attribute of interest is stable across days. 
For example, if we think of the two observations 
on each person as measurements of some general 
attribute, or construct, of the person that is not ex-
pected to change over time (at least over relatively 
short periods of time), then the attribute should 
be the same on the two days, and any changes in 
observed scores for a person from one day to the 
next do pose a problem. In this case, the variability 
in the observed scores for a person is inconsis-
tent with our expectations about the attribute of  

interest. Errors of measurement are introduced to 
eliminate this inconsistency.

	 Basically, we have two options. First, we 
can simply accept the fact that each person’s  
performance may vary across conditions of ob-
servation (occasions, tasks, context, etc.) and,  
perhaps, study how scores vary as a function of  
different kinds of conditions of observation (e.g., 
how the scores change over time). Second, we 
can assume that the attribute has a definite value  
for each person and treat the variation over con-
ditions of observation as due to random errors  
of measurement.1

	 Note that these two options involve dif-
ferent ways of interpreting scores and different 
ways of talking about the test scores. Under the 
first option, a student’s test score is interpreted as 
an evaluation of the student’s performance on the 
test under a certain set of conditions. We would 
interpret and report the results in terms of the per-
son’s performance on a particular set of tasks on a 
particular occasion, as administered in a particu-
lar context, and so on. Under the second option, 
a student’s test score would be interpreted as an 
estimate of a more general attribute of the person, 
and we would report the results in terms of the 
person’s estimated level of achievement on the at-
tribute of interest. In this case, we are generalizing 
over most conditions of observation. 

1 �A third possible alternative assumes that the attribute is a random variable with a distribution of values, rather than a simple attribute with a 
specific value (Lord & Novick, 1968). This option leads to essentially the same mathematical models for the random component in our mea-
surements, but employs a distinct conceptual framework with different assumptions about what is real. In Lord and Novick’s framework, the 
fluctuations in observed scores for a person reflect real changes, associated with sampling of different values from the distribution associated 
with the random variable being measured. Under the errors-of-measurement option, the value of the attribute is fixed, and fluctuations over 
repeated measurements on a person reflect error of measurement, or noise, in the measurements.
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	 This kind of generalization greatly simpli-
fies our conceptual frameworks, but it involves 
inferential risk. We are ignoring some of the  
variability in our data and effectively relegating 
this variability to the dustbin that we call errors 
of measurement. In practice, we tend to be quite 
pragmatic, applying the first approach to some 
conditions of observation, while treating the  
variability associated with most conditions of  
observation as errors of measurement. For ex-
ample, in measuring a third-grader’s height or  
reading level over the course of a year, we might 
treat day-to-day changes as errors of measure-
ment, but would generally treat month-to-month 
changes as real growth.

	 The choices that we make about what to 
treat as the variable of interest and what to attri-
bute to errors are not arbitrary. In interpreting the 
third-grader’s height and reading level, we tend to 
take changes over extended periods of time (weeks 
or months) as real changes, because our experi-
ence and our theories indicate that we should  
expect such changes. We treat variability over con-
texts (where the measurement is made) and over 
short periods of time (minutes to days) as errors 
of measurement, because we do not expect such 
changes to be substantial, and because they do not 
play a role in our conceptual framework. 

	 Nevertheless, this choice is optional; we 
could change our framework. There is nothing in 
the data, as such, that forces us to attribute any of 
these differences to errors of measurement. Rath-
er, it is a choice — a strategic choice. We introduce 
errors of measurement because we choose to work 

with constructs of some generality (attributes that 
are not restricted to a particular occasion, a par-
ticular location, a particular testing format or a 
particular set of tasks), and this requires that we 
generalize over various conditions of observa-
tion. The need for errors of measurement and for 
a theory of errors arises from the inconsistency 
between our assumption that the construct of in-
terest is invariant over conditions of observation 
(e.g., test forms, occasions) and observed scores, 
which do vary over the conditions of observation. 
To paraphrase Hamlet, there is more variability in 
our observations than is dreamt of in our theories.

	 Errors of measurement arise when we 
adopt a conceptual framework that presumes that 
the construct being measured is invariant over 
some conditions of observation. If we interpret 
our observations in terms of general attributes or 
constructs of persons that should not vary over 
certain conditions of observation, and the scores 
do vary over these conditions of observation,  
we need errors of measurement to resolve the  
discrepancies.

The Classical Test Theory Model

	 As indicated above, the inconsistencies — 
and hence the need for a theory of errors — arise 
only because of our stipulation that the value  
of the construct will be invariant over some con-
ditions of observation. Basically, the construct 
is constrained to have a fixed value for each per-
son, while the person’s observed scores fluctuate 
around the fixed value of the attribute because of 
random errors of measurement.
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	 The core stipulation of the classical test 
theory model can be represented as:

	 X 
po
 = T 

p
 + e 

po	
(1)

where Xpo is the observed score for person p on 
observation o; Tp is the true score for p; and epo 
is the error for p on o. As indicated by the nota-
tion, the true score depends on the person but not 
on the conditions of observation, while the error 
and the observed score depend on both the person 
and the specific observation. The error varies from  
observation to observation and from person to per-
son, and therefore the observed scores also vary 
from observation to observation and from person 
to person. 

	 The first two columns of Table 1 summa-
rize the observed scores for Alex, Beth, Chad and 
Dan discussed earlier. The classical model assumes 
that the observed scores include a true score that 
is invariant over repeated observations on each 
person and errors that vary from observation to 
observation.

Table 1 –  
Hypothetical Scores, True Scores and Errors

X1 X2 T e1 e2

Alex 65 69 67.0 -2.0 +2.0

Beth 77 80 78.5 -1.5 +1.5

Chad 79 71 75.0 +4.0 -4.0

Dan 49 46 47.5 +1.5 -1.5

	 The true scores of classical test theory are 
constructs. They are introduced, or constructed, 
to fulfill a role — to represent the fixed part of the 
observed score for each person. The value of this 
construct is stipulated to remain the same across 
repeated measurements. 

	 The values of the true-score construct are 
not fixed by the observations. We can, in principle, 
take the true score for each person to be whatever 
we want, but once we set the true score, the errors 
are determined by a variant of Equation 1:

	 e 
po
 = X 

po
 _ T 

p	
(2)

	 For Alex, for example, if we stipulate that 
the true score is 60, the errors would be 65 – 60 
= +5 and 69 – 60 = + 9. This does not seem like a 
particularly good choice because the value of 60 
chosen for the true score is not particularly close 
to the observed scores for Alex; therefore, the er-
rors are fairly large. For reasons to be discussed 
more fully later, we would like the errors to be as 
small as possible. 

	 A more plausible alternative would be to 
set the true score as close as possible to the two 
observed scores — say, halfway between them, as 
in the third column in Table 1. The errors are then 
symmetrical, with equal magnitudes but opposite 
signs, and the average error for each person is 
zero.

	 Setting the true score equal to the average, 
or mean, of the observations for each person has 
a number of advantages. The observed scores for 
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each person are then clustered around the true 
score for the person, and the average value of the 
errors for the person is 0. This option also has sev-
eral technical advantages.2

	 However, as stated, this option has a serious 
disadvantage. If we add another measurement for 
each of the four people, each person’s true score 
— defined as the average of their observed scores 
— is likely to change. However, the true score is 
not supposed to change, and it is especially not 
supposed to change just because we make another 
observation.

	 We can get around this problem by defin-
ing the true score for each person as the expected 
value over all possible observations for that person 
— that is, as the average over a potentially infi-
nite set of possible observed scores. This makes 
the true score an abstract quantity that cannot be 
observed directly, only estimated — but it makes 
for an invariant true score. The observed score for 
the person (based on a finite sample of observa-
tions) can be employed as our best estimate of the 
true score.3 The observed scores that are treated as 
estimates of the true scores can change if we add 
additional observations (e.g., average over a larger 
sample of tasks or raters), but the true score for 
each person does not change. 

	 Taking this approach, it is possible to stipu-
late that the construct represented by the true score 
is fixed for each person, but to account for the fact 
that repeated measurements on a person generally 
yield different values by assigning the observed 
variability to random errors of measurement. The 
errors of measurement are not mistakes. I am  
assuming that the measurement procedure was 
implemented correctly, and the results were  
recorded as they occurred. The errors of measure-
ment don’t exist in the data until we introduce 
them, but once introduced, they play a crucial 
role. They make it possible to describe phenom-
ena in terms of general constructs, without be-
ing immediately contradicted by the variability in  
observed scores. 

Standard Errors and Reliability Coefficients

	 Estimating errors and true scores is nec-
essarily a bit tricky, because neither true scores 
nor errors are directly observable. They are both  
constructs in the basic sense that we create them 
to serve our purposes.

	 In cases where it is possible to measure 
the same attribute of a person repeatedly without 
altering the value of the attribute for the person 
(e.g., measuring a person’s weight using a scale), 

2 �In particular, by choosing the average of the observed scores as the true score, we make the average of the squared values of the error as 
small as it can be, given the observed scores. As indicated later, the average squared error, or the error variance, is one commonly used index 
for the typical magnitude of the errors.

3 �A person’s true score will generally not correspond to a possible observed score. The true score is a construct that we can imagine, talk about 
and estimate, but we cannot observe it directly. We define it, or construct it, as the expected value over all possible observed scores, because 
this choice is conceptually useful.
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we can get a good estimate of the person’s true 
score by repeating the measurement a number 
of times (using different scales) and taking the 
average of the observed scores. The resulting 
average observed score is not equal to the true 
score, which is defined as the expected value (or 
average) over an infinite number of replications, but 
statistical sampling theory tells us that this average  
observed score can provide a pretty good estimate 
of the true score, with the precision of this estimate  
getting better as the number of observed scores 
over which the average is taken increases.

	 Given this estimate of the true score, we can 
estimate the error in any of the observed scores 
by subtracting the estimated true score from the 
observed score. Since the average value of the 
observed scores over the long term (i.e., over an 
infinite number of replications) is equal to the true 
score, the average value of the errors over the long 
term has to be zero, with about half of the errors 
being positive and half negative.

	 These errors are viewed as random 
fluctuations, or noise, and therefore the magnitude 
of any particular error is not of great interest in 
itself. Furthermore, since we can’t estimate the 
error in an observation until we have a good 
estimate of the true score, the estimated error 
for any particular observation is not helpful in 
estimating the true score. 

	 Nevertheless, we would like to have some 
indication of the typical magnitude of the error as 
an indication of how good our estimate of the true 
score is. If the variability in the observed scores 

around their mean observed score for a person is 
large, at least some of the errors of measurement 
in the observed scores have to be large, and any 
given observed score does not provide a good  
estimate of the true score for the person. If the 
variability around the mean is small, we have 
evidence to indicate that the random errors are not 
very large and that any observed score provides a 
good estimate of the true score. 

	 The standard deviation is an index repre-
senting the spread in a set of scores. If the scores 
are clustered tightly around their average value, 
the standard deviation will be small, and if the 
scores are spread out, the standard deviation will 
be large. With several separate observed scores for 
a person (e.g., scores obtained on different occa-
sions or on different sets of tasks), the standard 
deviation of the observed scores for the person 
can be used to estimate the “typical” value of the  
error for the observed scores on the person, and 
this statistical index is referred to as the standard 
error of measurement, or the standard error, for the 
observed scores. If a person’s scores are clustered 
tightly around the person’s average score, the stan-
dard error of measurement will be small, but if the 
person’s scores are spread out, the errors must be 
large and the standard error of measurement will 
be large.

	 This more or less direct estimation of the 
standard error of measurement works well if 
it is possible to obtain a fairly large number of 
independent observations on the same person.
This approach has been used extensively in 
evaluating physical measurements, where the 
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act of measurement does not change the object, 
and the object (especially if inanimate) does not 
mind being measured. Things are different in the 
social sciences and in education; people tend to 
be less tolerant of being measured repeatedly, and 
they tend to change over repeated measurements, 
because of practice and learning, boredom, fatigue 
and so on. We have therefore developed a range of 
statistical models for estimating standard errors 
of measurement without having a large number of 
separate observed scores for each person.

	 For many of these alternative approaches 
(e.g., those involving reliability coefficients), we 
get two independent measurements on a large 
number of persons, and we use all of this data 
to estimate the average standard error of mea-
surement for the persons. Even though people  
generally do not like taking tests, it is often possi-
ble to get two separate measurements of the same 
kind on a large number of people (e.g., by having 
them take two different forms of the same test, or 
by having them take the same test on two occa-
sions, or by generating separate scores from two 
halves of the test). We try to design these reliability 
studies so that the first testing will not have much, 
if any, impact on the results of the second testing. 

	 Once we have two more-or-less indepen-
dent measures of the same attribute using the 

same measurement procedure, we can estimate 
a reliability coefficient for the test.4 If the two 
scores for each person are relatively close to each 
other (i.e., the within-person differences are small  
compared to the between-person differences), the 
reliability coefficient will be close to 1.0, its maxi-
mum possible value. If the two scores for each person 
tend to be very different, the reliability coefficient 
will be close to 0.0. Using the basic assumptions of 
classical test theory, it is possible to demonstrate 
that the reliability coefficient is directly related to 
the proportion of the observed-score variability 
that is attributable to true-score variability, and 
then to derive an estimate of the average standard 
error of measurement for the measurement pro-
cedure in the population. So, with only two scores 
for each person, we can get a fairly good estimate 
for the typical standard error of measurement for 
the people taking the test. These procedures do 
not provide separate estimates of each person’s  
standard error, but they do provide us with a  
general sense of how large the errors tend to be.

	 Standard errors can serve many purposes, 
but their main use is to provide an indication of 
how big the errors of measurement are likely to 
be, thereby providing an indication of how much 
confidence we can have in our estimate of the true 
value of the variable. In this vein, the observed score 

4 �In classical test theory, the reliability coefficient is typically estimated by computing the correlation over persons between the two sets of 
scores. Correlations are statistical indices designed to reflect the degree to which the relationship between the two sets of scores is linear. Cor-
relation coefficients can have values between -1 and +1, but in the context of reliability studies in which the two measures (e.g., the same test 
given on two occasions or two forms of the same test) are very similar, correlations tend to have values between 0 and +1, with a correlation 
of +1 indicating a perfect linear relationship, and a correlation of 0 indicating no systematic relationship. In addition, in reliability studies, 
the two sets of scores are likely to have similar average scores and standard deviations, and as a result, a high reliability will indicate that the 
two scores for each person will tend to have similar values.
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for each person can be reported with a confidence 
interval. Assuming that the test yields reliable 
results, the observed score is likely to be close to 
the true score, but it will not generally equal the 
true score. Using statistical sampling theory and 
the estimated standard errors, it is possible to 
construct a confidence interval around each score, 
such that the interval has some fixed probability 
of including the true score. For example, 95% 
confidence intervals would be expected to include 
the corresponding true score about 95% of the 
time. If the standard errors are relatively small, 
the confidence intervals will be relatively narrow, 
and our conclusions about the true score for each 
person can be relatively precise. So, we generally 
want the standard errors to be as small as possible.

Random and Systematic Errors

	 The errors in classical test theory are essen-
tially unpredictable fluctuations, or random noise. 
By definition, they are expected to have a mean of 
0 and to be uncorrelated with each other and with 
all other variables. I will refer to such errors as 
random errors. 

	 In contrast, systematic errors are constant 
across some set of scores (e.g., all scores for a 
particular person or occasion or test form) and 
are therefore potentially predictable. The classic 

example of a systematic error is a miscalibrated 
bathroom scale — say, one that weighs 2 pounds 
too heavy. These systematic calibration errors do 
not have a mean of zero, but rather always have 
a value of +2, and therefore have a mean of +2. 
Random errors tend to cancel out in the long run. 
Systematic errors do not generally cancel out over 
the long run.

	 In some ways, random errors are easier to 
deal with and less serious than systematic errors, 
because random errors are generally easy to de-
tect and estimate, and as discussed below, they can 
usually be controlled to some extent. As discussed 
earlier, they can be estimated by obtaining repeat-
ed observations on persons and examining the 
variability in these observations for each person, 
or by getting two measurements on each person 
and estimating a reliability coefficient, and thence 
the average standard error of measurement. Since 
random errors tend to cancel out, we can generally 
decrease their magnitude by averaging over more 
observations and, in principle, we can make the 
standard error as small as we want by making the 
sample of observations large enough.5 Of course, 
the rub here is that additional observations gener-
ally involve additional time and additional costs, 
and therefore adding enough observations to get 
the error down to where we might want it may not 
be practical.

5 �The random fluctuations associated with errors of measurement tend to cancel out if we average over several observed scores (or over several 
observations within a test) to get a combined observed-score estimate of the true score. Statistical sampling theory indicates that the stan-
dard error of measurement for the average over a sample of scores will be given by the standard error for a single score divided by the square 
root of the number of scores used to compute the average. So, as the number of independent observed scores included in the estimate of the 
true score increases, the standard error for the estimate gradually decreases, and the estimate of the true score gets more precise. 
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	 In some cases, systematic errors are  
easier to deal with than random errors. If we  
know what the systematic errors are (e.g., that the 
scale weighs 2 pounds too heavy), we can simply 
correct for the difference (i.e., subtract 2 pounds 
from the observed weight). This is essentially what 
is done when we calibrate an instrument: We ad-
just the scale to eliminate any systematic errors 
that are detected. In this vein, equating models 
are used to correct for differences in the statisti-
cal properties of standardized test forms (Angoff, 
1971, 1987; Holland & Dorans, 2006; Kolen & 
Brennan, 2004, Livingston, 2004, von Davier, Hol-
land, & Thayer, 2004). 

	 However, in other cases, we may have rea-
son to suspect that a systematic error exists, but 
not know its magnitude, or even its direction, and 
in these cases, we cannot remove it by adjusting 
the scores. If systematic errors cannot be removed, 
they tend to be more troublesome than random er-
rors of the same magnitude, because they do not 
cancel out in the long run.

Controlling Random Errors of Measurement

	 Sources of random errors can be controlled 
in two ways. First, the errors can be controlled to 
some extent by standardizing the measurement 
procedures. For example, the criteria used to rate 
performances can be specified in some detail, and 
the raters can be trained to use these procedures 
in a consistent and systematic way, thus reducing 
the random variation in scores associated with 
differences among raters. Similarly, the tasks 

to be performed and the testing conditions can 
be standardized, so that extraneous factors that 
might have an impact on the performances are 
eliminated, or at least minimized. For example, 
if we find that there is a lot of variability in 
performance over tasks, we can consistently use 
the same kind of task, and in some cases, we can 
assign the same tasks (e.g., same questions) to 
everyone. 

	 Standardization does have some limitations; 
in particular, it can introduce systematic errors 
(by fixing conditions of observation) as it reduces 
the random error. For example, if some students 
tend to do better on some kinds of tasks than 
on other kinds of tasks in the same content area 
(e.g., objective items vs. essays), standardizing 
the measurement procedure to one kind of task 
(e.g., objective items or essays) may give some 
students an advantage (positive systematic error) 
or a disadvantage (negative systematic error). As 
in many aspects of testing, we have a tradeoff. If 
we can get a large reduction in random error with 
the possibility of some small added systematic 
error, standardization is likely to be a good option. 
Standardization tends to play a large role in 
developing measurement procedures that yield 
precise results.

	 The second way to control random errors 
is to increase the number of observations that 
are sampled for each person. If we form a score 
by averaging over a sample of observations (e.g., 
responses to 100 multiple-choice questions, or 
performances on three occasions), the standard 
error in this mean score will be equal to the standard 
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error for a single observation divided by the square 
root of the number of observations. So it is generally 
a great advantage in controlling random errors to 
have a large sample of observations. The systematic 
relationship between the standard error and the 
number of observations is a major reason for the 
relatively high reliabilities and the relatively small 
standard errors of measurement associated with 
objective test formats (e.g., multiple choice, short 
answer), in which it is relatively easy to administer 
a large number of questions in a few hours. For 
performance tests or essay tests, it typically takes 
much longer to administer each task; therefore, 
the number of independently scored tasks is 
necessarily limited by the time constraints.

Controlling Systematic Errors

	 It may be possible to correct for some sys-
tematic errors by identifying the source of the  
error and eliminating, or at least minimizing it. In 
some cases, this is easy to do. For example, if a test 
with a fixed time limit starts late, it can be allowed 
to run late so that the students have the specified 
time to complete the test. 

	 In other cases, the problem may be diffi-
cult to fix. The argument for accommodations on 
standardized tests for students with disabilities is 
essentially an argument for removing a source of 
systematic error. The student with a disability is 
seen as being at a disadvantage in taking the test 

because of the disability. For example, students 
with visual disabilities that slow their reading 
would be at a serious disadvantage on a timed test, 
and therefore their scores would be lower (a nega-
tive systematic error) than the scores would be if 
the students did not have the visual disabilities. 
To correct for this source of error, a student could 
be given extra time to complete the examination. 
However, such disabilities tend to vary in severity, 
and therefore, it is hard to determine how much 
extra time to give each student in order to correct 
for the impact of the disability without overcor-
recting.

	 In cases where it is not possible to physi-
cally remove the source of systematic error or to 
make adjustments that correct for its effect, it 
may be possible to correct for the systematic error  
statistically. In standardized testing programs, 
different forms of the test are made as simi-
lar as possible in content and difficulty, but the  
specific items are necessarily different (for security  
reasons), and therefore, there will be some differ-
ences in difficulty. As a result of these differences 
in difficulty, the students taking the easier forms 
would tend to have an advantage, and the students  
taking the harder forms would tend to suffer a 
disadvantage, if nothing were done to correct for 
these differences. In practice, equating models are 
used to adjust, or equate, the score scales for the 
different forms to make them more or less equiva-
lent (Angoff, 1971; Holland & Dorans, 2006). 
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Multiple Sources of Error 

	 Classical test theory assumes that we have 
a single, undifferentiated source of random error. 
In many cases, it is possible to identify different 
kinds of conditions over which observed scores 
might vary. For example, if we are considering a 
general attribute of persons (e.g., literacy in some 
language), we might expect the attribute to be rea-
sonably stable across time, across social and phys-
ical contexts, across language tasks, across raters 
(or observers), and so on. The actual observations 
are likely to vary along all of these dimensions, but 
the observed variability may be more dramatic 
over some dimensions than over others. For exam-
ple, in a reading test, a person might handle some 
texts (those covering familiar content) better than 
other texts (those involving unfamiliar content 
and vocabulary), but show relatively consistent 
performance over contexts or raters.

	 To account for different possible sources 
of error in a measurement procedure, Cronbach 
and his associates (Cronbach, Gleser, Nanda, & 
Rajaratnam, 1972) introduced a theory of errors, 
called generalizability theory or G theory, that allows 
for multiple sources of error. G theory extends 
classical test theory in several directions and, in 
particular, it employs sophisticated statistical 
models to provide estimates of the variability 
(variance components) associated with different 
sources of measurement error. G theory allows for 
the possibility that the attribute to be measured 
may be stipulated to be invariant along several 
dimensions (facets in G theory). Within G theory, 

the magnitudes of different sources of error can 
be estimated and combined (linearly) into a single 
overall standard error. This is not the place to 
discuss the details of this theory (see Brennan, 
2001, for a good introduction), but I do want to 
make two points about how the random errors 
of measurement combine to form a single overall 
standard error of measurement. 

	 First, combining different sources of error 
into a single estimate of error can be complicated. 
I will focus on the simple case of combining two 
random errors, e1 and e2. As discussed earlier, 
random errors are evaluated in terms of their 
standard deviations, or standard errors (SEs). As 
it happens, SEs are not additive, but the squares 
of the SEs (i.e., error variances) are additive. To 
get the total SE for two random errors, we square 
their SEs, add them together, and take the square 
root of this sum: 

SE = √ (SE1)2 + (SE2)2.

If the standard errors are the same — say, SE1 = 1 
and SE2 = 1 — the total standard error would be:

SE = √ (1)2 + (1)2 = √2 = 1.41.

The addition of a second error of the same size to 
the first error increases the overall standard error 
by 41%. 

	 Second, if the two errors being combined 
are very different in magnitude, it turns out that 
the smaller error has very little impact. For example, 
if SE1 = 5 and SE2 = 1, the total standard error is:

SE = √ (5)2 + (1)2 = √26 = 5.10.
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The second error, which is one-fifth (or 20%) the 
size of the first error, increases the overall stan-
dard error by about 2%. Pushing this a bit further, 
if SE1 = 10 and SE2 = 1, the overall standard error 
is given by:

SE = √ (10)2 + (1)2 = √101 = 10.05.

	 In this case, the second error, which is one-
tenth (or 10%) the size of the first error, increases 
the overall error by only about a half of 1%. The 
point is that with multiple sources of random er-
ror, the larger errors have a disproportionate im-
pact on the overall error, and it is the larger er-
rors that need to be controlled. Smaller errors (i.e., 
those that are one-fifth the size of the larger errors 
or less) generally can be ignored.

Error/Tolerance

	 As noted earlier, smaller standard errors are 
generally better than larger standard errors, and 
therefore, a lot of effort is devoted to controlling 
various sources of error by standardizing the 
measurement procedures and by identifying and 
controlling the most serious sources of error. 
However, many of the strategies for controlling 
errors of measurement (e.g., increasing the 
number of observations) require a lot of time, 
effort and expense, and therefore it is desirable 
to have criteria for deciding when the errors of 
measurement are effectively under control, or 
small enough.

	 In norm-referenced contexts, where the 
goal is to differentiate among the different levels 

of true scores for the persons in some population, 
the magnitudes of the errors are evaluated rela-
tive to the magnitudes of the true-score variability 
in the population. The index used to evaluate the 
magnitude of the errors relative to the magnitudes 
of the true-score variability for norm-referenced 
interpretations is the reliability coefficient (or 
generalizability coefficient). If the standard error 
of measurement is much larger than the standard 
deviation of the true scores in the population of 
interest, the reliability will be close to zero. If the 
standard error is much smaller than the standard 
deviation of the true scores, the reliability will 
be close to one. If the standard error is about the 
same as the standard deviation of the true scores, 
the reliability will be about 0.5. Generalizability 
coefficients typically follow the same pattern. 

	 In the norm-referenced context, magnitudes 
of the differences between true scores define the 
tolerance for error. More generally, scores can be 
said to be precise enough if their standard errors are 
small compared to some reasonable tolerance for 
error in the situation under consideration (Kane, 
1996). For example, in a licensure or certification 
context in which the goal is to determine whether 
each candidate’s true score is above some fixed 
cut score (or passing score), the tolerance for 
error might be defined by the magnitude of the 
difference between a person’s true score on the test 
and the cut score. 

	 Basically, the criteria for determining 
whether the errors are small enough are defined 
in terms of the requirements of the particular 
interpretations and decisions that are to be based 
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on the test scores. If the errors are large enough 
that they distort the proposed interpretation of 
the scores or undermine the effectiveness of the 
decision procedures based on the scores, they 
constitute a serious problem, and if they do not 
interfere with the interpretations and decisions, 

they are not very serious. When asked how long 
a man’s legs should be, Abraham Lincoln is 
reported to have said that they should be long 
enough to reach the floor; the errors should be 
small enough not to cause misinterpretations or 
misclassifications.
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          s indicated earlier, the conceptualization 
of our constructs has a major impact on what 
gets counted as error, and therefore, on the over-
all magnitude of the standard error. Conversely, 
the magnitudes of various sources of error can 
have an impact on how we choose to define our  
constructs. If a very general interpretation for 
the construct, involving generalization over a 
very large domain of observations with many di-
mensions (or facets), leads to unacceptably large  
errors, we may choose to narrow the interpretation.

	 In testing, each set of observations (re-
sponses to test tasks) for a person is evaluated 
against some criteria (i.e., a scoring rule), yield-
ing an observed score for the person, and the ob-
served score is typically interpreted as an estimate 
of the expected score over a domain of possible 
observations associated with the construct. The 
interpretation depends on the specification of the 
domain, which may be defined broadly or narrowly. 
Typically, even the more narrowly defined domains  
include many different tasks, many different  
scorers, many different contexts and possibly  
many different occasions. The constructs so defined 
represent dispositions, or tendencies, to perform in 
certain ways over samples of tasks, scorers, situa-
tions and occasions drawn from the domain. 

	 The inference from a particular observed 
score, based on a sample of observations to a con-
clusion about a general disposition, is an inductive 
inference from the sample to the domain of ob-
servations from which the sample is drawn. Such 
inductive inferences always involve risk, or uncer-
tainty, and we have to decide how much risk we 

want to take and how much uncertainty we are 
willing to tolerate.

	 In generalizing over certain dimensions 
(e.g., tasks, occasions, contexts), we are purposely 
simplifying our model of reality to make it more 
amenable to concise description and analysis. In-
stead of interpreting performance task by task, 
rater by rater, occasion by occasion, and context 
by context, we make general statements about 
overall performance across tasks, occasions and/
or contexts. For example, instead of interpreting 
a person’s score on a reading test as a report of 
the person’s performance on a specific set of tasks 
(answering questions about certain short read-
ing passages) on a particular day, in a particular 
classroom, we interpret the score as a measure of 
the person’s reading ability, or their level of liter-
acy. This construct — reading ability — is defined 
in terms of expected performance over a variety 
of tasks, over an extended period of time, over a 
range of contexts, etc. Reading ability is a broadly 
defined disposition.

	 These dispositional constructs are, in a 
sense, mini-theories. Once the numerical value 
of the construct is estimated on some scale, this 
estimate can be used to predict how the student 
might perform on a different set of observations 
from the domain. A dispositional interpretation is 
much richer than a simple report of the observed 
score based on the observed performances. It is 
generally more useful to be able to draw conclu-
sions about a student’s reading ability, conceived 
broadly, than to simply report the results of par-
ticular observations.

A

The Role of Errors in Defining Variables/Constructs



18 19

	 The richer interpretation inherent in dis-
positional constructs rests on certain law-like  
assumptions, invariance assumptions, which claim 
that a person’s performance, and therefore his or 
her test scores, would not vary much over sam-
ples of observations from the domain defining the  
disposition. As indicated earlier, the invariance  
assumptions hold by definition for the construct. 
By taking the construct to be the expected value (or 
average) over a domain of possible observations, 
we ensure that its value is not tied to any particu-
lar sample of observations from the domain. 

	 However, the observed scores based on 
samples of observations from the domain can cer-
tainly vary from sample to sample, and the extent 
to which these observed scores satisfy the invari-
ance assumptions is an empirical question, which 
is answered by evaluating how much variability is 
seen in a person’s observed scores across differ-
ent samples from the domain. The world is almost 
always more complicated than our conceptual 
frameworks, and as a result, at best, the invari-
ance assumptions hold only approximately for the 
observed scores. The extent to which the observed 
scores are invariant over samples from the domain 
can be determined by comparing scores based on 
different samples of tasks (e.g., in generalizability 
or reliability studies).

	 The choice about how widely to generalize 
conclusions based on test scores involves a 
decision about how to define the attribute being 
measured and how to talk about values of the 
attribute. If we assume invariance over some 
conditions of observation (e.g., occasions), we do 

not have to mention those conditions in reporting 
the results, but if we do not intend to generalize 
over a condition of observation (e.g., time), 
we should mention it explicitly or implicitly in 
discussing the results. We can talk about measures 
of trait variables (e.g., height, aptitude), which 
are assumed invariant over extended periods of 
time, without specifying a particular occasion or 
situation; in fact, it would generally seem odd to 
specify a particular occasion or situation for a 
trait variable (e.g., to say that John’s aptitude was 
low at lunch yesterday). However, when we talk 
about state variables, which are not assumed to 
be invariant over occasions, it would generally 
be appropriate to specify a particular occasion or 
situation (e.g., John was in a good mood at lunch 
yesterday).

	 If the construct interpretation assumes 
invariance over a number of dimensions, the total 
standard error will involve the joint contribution 
of the errors associated with the different kinds of 
conditions of observation (e.g., tasks, occasions, 
raters, contexts) that are included in the domain. 
If we interpret a score in terms of a construct that 
is assumed to be invariant over a dimension, then 
variability in observed scores over that dimension 
is taken to be error, but if we don’t build invariance 
over a dimension into the construct definition, 
then variability over that dimension is simply 
variability over the dimension. 

	 As indicated in the last section, it is possible 
to reduce errors of measurement by improving 
procedures (e.g., better training for raters) and by 
sampling the domain more thoroughly, particularly 



20 21

by employing larger samples from the facets that 
contribute most to the overall standard error. 
However, all else being equal, the more broadly the 
construct is defined, the more error components 
will be included and the larger the overall error 
will be, and larger errors lead to more tentative 
and less dependable inferences (i.e., estimates 
with broad confidence intervals) about the true 
value of the dispositional construct. Therefore,  
we prefer that the overall standard error be 
relatively small.

	 This choice of how broadly to define 
a dispositional construct involves a tradeoff 
between the generality of the construct and the 
accuracy with which we can estimate it. A broadly 
defined construct is potentially more useful than 
a narrowly defined construct, but in general, the 
estimates of broadly defined constructs are more 
error prone than the estimates of narrowly defined 
constructs.
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    t is very appealing to use scores on standard-
ized tests as the basis for high-stakes decisions. 
These data can be relatively easy and cheap to col-
lect and to interpret. A high score is better than a 
low score, and if we have a cut score specifying the 
criterion for adequacy, it is easy to decide whether 
the performance is adequate: If the score is at or 
above the cut score, the performance is adequate. 
In evaluating a school, it is certainly more conve-
nient to consider a single average test score or the 
percentage of students above some cut score than 
to have a team of qualified examiners conduct a 
site visit and report their findings in an extended 
narrative.

	 Standardized, objective measurement 
procedures offer the promise of accurate and 
fair assessment as the basis for accurate and 
fair decisions, and in most cases, it is arguable 
that they deliver on this promise. They tend to 
have technical properties that are better than 
the alternatives, such as interviews, GPAs and 
other data in academic records, and evaluations 
of student portfolios. In particular, it is generally 
possible to estimate the random errors and at 
least some of the systematic errors associated 
with standardized tests, and therefore, to control 
for these errors to some extent. This kind of error 
analysis and control is not generally possible for 
unstandardized procedures because, by definition, 
they keep changing in various ways.

	 But convenience, economy and technical 
quality are not necessarily the main advantages 
associated with the use of standardized test scores 
to make high-stakes decisions. Rather, a good case 

can be made that it is the “objectivity” of objective 
tests that accounts for much of their appeal to  
decision makers (Porter, 1995).

	 Of particular importance in high-stakes 
decision making, the use of objective procedures 
makes it more likely that the decisions will be free 
of overt bias. In highly standardized testing proce-
dures (e.g., multiple-choice tests), the assessment  
procedures are essentially the same for everyone, 
the scoring is automatic, and the analyses and  
reporting are done by staff who never see or inter-
act with the test takers. As a result, standardized 
assessment procedures can promote both fairness 
and the appearance of fairness. Theodore Porter 
(1995) suggested that our trust in objective quan-
titative measures has its roots in a rejection of  
inequality in favor of democracy: 

This is why a faith in objectivity tends 
to be associated with political de-
mocracy, or at least with systems in 
which bureaucratic actors are highly 
vulnerable to outsiders.… Scientific 
objectivity thus provides an answer to 
a moral demand for impartiality and 
fairness. Quantification is a way of 
making decisions without seeming to 
decide. (Porter, 1995, p. 8)

The same general regard for consistency in the 
treatment of individuals is enshrined in our legal 
system as procedural due process.

	 At their best, test-based decision pro-
cedures tend to promote both fairness and the  
appearance of fairness, but — not surprisingly — 

I

Errors of Measurement in Public Policy
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their effectiveness can be diminished by errors of 
measurement. In this section, I will examine some 
of the roles played by errors of measurement when 
tests are used to implement public policy.

Certification Testing

	 A major high-stakes application of testing 
in our society is in certifying qualifications for 
some activity or profession. Licensure examina-
tions, ranging from the test required for a driver’s 
license to the multi-day examinations required for 
licensure in a profession (e.g., medicine, law) have 
important consequences for the applicants tak-
ing the test, and for the public, who rely on these 
programs to provide some assurance of a licensed 
person’s basic competence in the relevant activity 
(Shimberg, 1981).

	 In licensure testing and in many other high-
stakes testing contexts, errors of measurement play 
a critical role in test development and in evaluat-
ing the testing program. The standard errors also 
may play a role in defining the score scales and in 
setting the passing scores. However, the standard 
error for an individual candidate’s score is gener-
ally ignored in making a decision about licensure 
for the candidate. Errors of measurement are 
not explicitly included in the decision rules used 
to award or withhold a license. Once the testing 
procedures are developed and the passing score is 
specified, the decisions are more or less automat-
ic. If a candidate’s observed score is at or above the 
passing score, the candidate passes; otherwise, the 
candidate fails.

	 In a sense, we have two distinct models or 
views of test scores operating at different stages in 
the operation. In developing the testing program, 
measurement models generally play a major role, 
and the test scores are viewed as fallible estimates 
of constructs or true scores. In using the resulting 
test score to decide whether to certify a particular 
candidate, the candidate’s score is generally treat-
ed as a factual summary of the candidate’s perfor-
mance on a particular test date, and errors of mea-
surement are not considered. An assertion that the 
candidate might have done better or worse on a 
different day, or at a different test site, or on a dif-
ferent form of the test, would be discounted as an 
irrelevant, contrary-to-fact conjecture.

	 Candidates for professional licensure (or 
for a driver’s license) typically “sit for an exam,” 
and candidates with scores at or above the pass-
ing score pass, and those with scores below the 
passing score fail. It is a simple rule, and is based, 
as they say, on a bright line. If a candidate has a 
score near the passing score, a measurement theo-
rist might be tempted to suggest that the issue is 
in doubt because, given the potential error of mea-
surement, a reasonable confidence interval for the 
candidate’s true score (i.e., the candidate’s typical 
level of performance) includes the passing score.

	 In such circumstances, we could suspend 
judgment about candidates with scores just above 
or below the passing score and collect more in-
formation in order to get a better estimate of the 
candidate’s true score, defined as their expected 
(or average) score over all possible replications of 
the measurement procedure (e.g., by employing 
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two-stage testing or some other kind of adaptive 
testing). However, most licensure and certification 
programs employ a single one-stage design: candi-
dates with observed scores at or above the passing 
score pass, and candidates with observed scores 
below the passing score fail. 

	 In most high-stakes testing programs, esti-
mates of different kinds of random and systematic 
error are used to evaluate the technical character-
istics of the testing procedure and, where possible, 
to improve the process by identifying aspects of 
the tests or the procedures that can be improved. 
For example, if the test scores are found to be un-
reliable, the testing procedures may be tightened, 
or the number of responses that are sampled may 
be increased. If it is found that the grading of re-
sponses for essays or performance tasks is not 
very consistent, the graders might be given more 
explicit grading guidelines, or more training, or 
more careful monitoring and retraining. 

	 However, in making decisions about indi-
vidual candidates, a more matter-of-fact attitude 
is adopted, and the assumption that the observed 
score is a fallible measure of some true score, 
which is at the core of test theory, is not allowed 
to soften or blur the bright line. In most legal and 
administrative contexts, the focus is on what oc-
curred, not on what might have occurred in a hy-
pothetical replication of the testing procedure. So, 
if there were no mistakes made in either adminis-
tering or scoring a test, there is, in this sense, no 
error. This is not the standard psychometric view, 
but it is a very reasonable point of view. As noted 

earlier, observations are what they are. Concerns 
about what the results would be if the testing pro-
cedure were replicated (once or an infinite number 
of times) are what are called contrary-to-fact con-
ditionals, and in implementing the decision rules 
in most high-stakes testing contexts, contrary-to-
fact conditionals are not considered. 

No Child Left Behind

	 Under the No Child Left Behind (NCLB) Act 
(2002), student scores on state tests in core content 
areas (basically, reading and mathematics) are ad-
ministered each year to essentially all students in 
the states in grades 3 to 8, and in science at some 
grade levels. The results are to be used to evalu-
ate schools and, in particular, to hold the schools 
accountable for their students’ achievement. This 
use of test scores to promote school accountabil-
ity and student achievement is relatively new to 
educational measurement. We have evolved from 
a view of tests as measurement instruments (Cure-
ton, 1951), to a recognition that testing programs 
can have an impact on educational outcomes 
(Crooks, 1988; Moss, 1998), and now to the use of 
test scores as engines of educational accountabil-
ity (NCLB). 

	 Each state specifies the required content 
in the core subjects for its students and develops 
tests based on these specifications. The state tests 
focus on the core content areas of mathemat-
ics and reading, and even in these areas they do 
not cover everything in the state content outlines. 
So, as measures of school effectiveness, the state 



24 25

tests are limited. At best, they measure student 
achievement on a subset of the desired outcomes 
of schooling.

	 Under NCLB, student scores on the state 
tests are transformed to achievement levels, 
developed to reflect four different levels of 
performance (e.g., below basic, basic, proficient, 
and advanced). The four achievement levels are 
defined by three cut scores on the score scale for 
the test (for the basic, proficient and advanced 
levels). All students with scores below the cut score 
for the basic level are classified as being below 
basic, students with scores between the basic cut 
score and the proficient cut score are considered 
to be at the basic level, and so on. The goal is to 
define state standards for performance in the core 
content areas and to encourage all students to 
reach a predefined level of achievement (i.e., the 
proficient level). The reduction of the test scores 
to a few achievement levels involves some loss of 
information, but is intended to make the results 
more easily interpretable.

	 The achievement-level classifications are 
aggregated over students in each school and each 
grade to yield the percentage of students at each 
achievement level in each grade within the school 
(and within various subgroups at each grade 
level), and the schools are evaluated in terms of 
the percentages of their students at or above the 
proficient level. Schools that fail to achieve certain 
increases in the percentages of students at or 
above the proficient level (i.e., that fail to make 
adequate yearly progress) are labeled as needing 
improvement. If a school fails to meet the targets 

for improvement over several years, it is subject to 
sanctions.

	 A distinguishing feature of test-based 
accountability programs is their focus on achieving 
certain goals, and not on the measurement of any 
particular attributes. This is particularly true of 
the NCLB legislation. The provisions of this act 
include mandates on when testing is to occur 
(grades 3 through 8), which students are tested 
(requirements on participation rates for various 
groups), and consequences for schools that fail to 
achieve adequate yearly progress, but the act defers 
to the individual states’ standards on the content 
and format of the tests and on the definition of the 
achievement levels (Linn, 1997). 

	 The avowed purpose of the NCLB legislation 
is to promote accountability for schools and 
thereby to promote student learning. The rhetoric 
supporting the program is particularly emphatic 
about promoting the achievement of at-risk, low-
performing students. These are the students most 
likely to be left behind and it is the mandate of the 
program that they not be left behind. 

	 This focus on measurable outcomes and 
accountability has given rise to a need for accurate 
measurements of student outcomes. If we are 
going to hold a school accountable (and possibly 
impose serious sanctions) for failing to meet some 
benchmark (e.g., adequate yearly progress in the 
percentage of students achieving the proficient 
level, which is supposed to reach 100% by 2014), 
we need some dependable way of determining 
whether the benchmark has been reached, and 
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an appropriate theory of errors makes it possible 
to evaluate the dependability of the results of the 
testing program.

	 The NCLB accountability system is prone 
to a number of potential sources of systematic 
and random errors, which could undermine 
the effectiveness of the program. Some of the 
more significant systematic errors arise from 
the fact that the results are used to hold schools 
accountable for their students’ achievement, and 
the results (i.e., the percentages of students in 
each grade level and in each subgroup who are 
at or above the proficient level) are interpreted as 
indicators of the effectiveness of the school. Under 
this interpretation, any factor that influences the 
student outcomes that is not under the control of 
the school is a potential source of systematic error. 
To the extent that students come to school with 
different levels of preparation and have different 
opportunities to learn outside of school, some 
of the differences in student outcomes are not 
attributable to school effectiveness. As a result, 
any systematic differences among schools in the 
degree to which their students benefit from, or 
are hampered by, outside influences on learning 
(e.g., because of the location of the school and the 
populations served) would introduce systematic 
errors into the estimates of school effectiveness. 

	 The accountability system itself may intro-
duce a number of sources of systematic error into 
the indicators of school effectiveness by introduc-
ing perverse incentives. As mentioned earlier, the 
state tests that are used to generate the scores on 
which the school-level indicators are based do not 

cover all of the desired outcomes of education, 
and to the extent that some schools focus on the 
content that is tested, at the expense of nontested 
content, the percentages of students at or above 
the proficient level can be inflated. In addition, the 
school-level results will be skewed if some schools 
fail to test many low-scoring students; to address 
this issue, NCLB includes participation rules.

	 Less obviously, perhaps, the measures 
of school effectiveness used in NCLB tend to 
be subject to large random errors. The shift 
from individual student scores to school-based 
percentages at or above the proficient level shifts 
the focus from individual students to schools. In 
considering the standard errors associated with 
test scores for individual students, the common 
sources of error that are likely to be considered are 
the sampling of test tasks, occasions, contexts and, 
if the responses have to be evaluated by a rater, the 
sampling of raters. Each of these potential sources 
of error will generate some random error and may, 
in addition, introduce some systematic errors (e.g., 
some raters being more severe than others). 

	 In developing standardized testing pro-
grams, all of these common sources of error are 
likely to be controlled in some way. The variability 
associated with the sampling of test items can be 
controlled through careful item development, by 
basing scores on many items and, if appropriate, 
by employing statistical equating. The variability 
associated with occasions is addressed by giving 
the tests to all students at about the same time. 
The variability associated with contexts is ad-
dressed by administering the tests to all students 
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in a fairly standard, neutral way. Rater variability 
is controlled by developing clear rating criteria 
and by training the raters to be consistent in their 
evaluations. It is not possible to eliminate any of 
these sources of error completely, but for stan-
dardized testing programs, it is generally possible 
to control them reasonably well.

	 However, in using test scores to hold 
schools accountable, it is the overall performance 
of the students in the school (in particular, the 
percentages of students at each grade level, in 
each content area, and in various subgroups that 
achieve the proficient level on the state tests) that 
is the variable of interest. For this purpose, the 
variability in performance from one student to 
another has to be considered a source of error, and 
this source of error is likely to be large, both for the 
average scores for the students in various groups 
at various grade levels and for the percentages of 
students at or above the proficient level (Brennan, 
Yin, & Kane, 2003). 

	 Standardized tests are not typically de-
signed to control the variability across students, 
because the tests are designed to measure differ-
ences in student achievement. In fact, traditional 
test development procedures are designed to maxi-
mize the variability associated with student differ-
ences, while minimizing the variability associated 
with the sampling of test tasks, occasions, contexts 
and raters (if appropriate).

	 It is obviously not feasible to control this 
source of error by controlling which students go to 
each school. Assuming that the goal is to evaluate 

the educational effectiveness of the schools, it 
would, from an experimental-design point of 
view, be desirable to randomly assign students 
to schools, but this is clearly not practical. It is 
also probably not desirable from an educational 
or social point of view. So we are stuck with 
potentially large random and systematic errors in 
evaluating schools under the current NCLB model.

	 The value-added models that have been 
proposed as improvements on the current NCLB 
model are designed to statistically adjust for the 
differences in the student populations in differ-
ent schools. These models hold some promise for 
controlling the main source of error in the current 
NCLB program, but the value-added models face 
some formidable technical problems.

	 Test scores can be blunt instruments for  
accountability purposes, and they are likely to 
be especially blunt if we don’t pay attention to  
controlling the larger sources of random and  
systematic errors.

Errors, Social Consequences and Validity 

	 The consequences of test use have always 
been an important consideration in evaluating 
testing programs, but the emphasis has generally 
been on immediate consequences for the person 
taking the test or the institution using the test 
score to make a decision. For example, place-
ment tests and admissions tests are evaluated in 
terms of how successful placed/admitted students 
are in their educational program. In general, de-
cision procedures are evaluated in terms of their  
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outcomes and their consequences (i.e., positive 
and negative), and we have a long tradition of 
evaluating intended outcomes/consequences (e.g., 
in placement testing, admission and employment 
testing).

	 A major theme in Samuel Messick’s 
(1988, 1989, 1994, 1998) writings was the claim 
that the larger social consequences of testing 
programs have a role in evaluating (or validating) 
these programs. In part because this view ran 
counter to the traditional view of measurement 
as a neutral, objective, scientific enterprise, and 
partially because of the perceived difficulty in 
sorting out social consequences, the role of social 
consequences in evaluating testing programs has 
been a matter of some controversy (Linn, 1997; 
Popham, 1997; Shepard, 1997). 

	 The Standards for Educational and Psy-
chological Testing define validity as “the degree 
to which evidence and theory support the inter-
pretation of test scores entailed by proposed uses 
of tests” (American Educational Research Asso-
ciation, American Psychological Association, & 
National Council on Measurement in Education 
[AERA, APA, & NCME], 1999, p. 9). A proposed 
test-score interpretation or use is said to be valid if 
it can be shown to be plausible, using appropriate 
theory and evidence. A central concern in valida-
tion is the potential impact of various sources of 
error, systematic and random. If any source of er-
ror is found to be large enough to undermine the 
proposed interpretation or use, the interpretation/
use is considered invalid. 

	 It seems clear that social consequences 
should have some role in evaluating testing 
programs, if only in the negative sense that we 
expect all decision procedures to avoid serious 
negative consequences, but it is less clear what 
that role should be. In particular, there is some 
debate about whether social consequences should 
be considered under the heading of validity, or 
should be excluded from the criteria for evaluating 
the quality of testing program and relegated to a 
separate sphere of policy analysis (Popham, 1997). 

	 Messick (1989) suggested that validation 
would include, “an appraisal of the social 
consequences of testing” (p. 88), but seemed to 
see negative consequences as counting against the 
validity of a testing program only if the negative 
consequences could be attributed to some source 
of error in the test:

… it is not that the adverse social con-
sequences of test use render the use 
invalid but, rather, that adverse social 
consequences should not be attribut-
able to any source of test invalidity 
such as construct-irrelevant variance. 
If the adverse social consequences 
are empirically traceable to sources 
of test invalidity, then the validity 
of the test use is jeopardized. If the  
social consequences cannot be so 
traced … then the validity of the test 
use is not overturned. Adverse social 
consequences associated with valid 
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test interpretation and use may impli-
cate the attributes validly assessed, to 
be sure, as they function under the ex-
isting social conditions of the applied 
setting, but they are not in themselves 
indicative of invalidity. (Messick, 1989,  
pp. 88-89)

The 1999 edition of the Standards (AERA, APA, & 
NCME, 1999) incorporated this view of the role of 
social consequences in validity: “Thus, evidence 
about consequences may be directly relevant to 
validity when it can be traced to a source of in-
validity such as construct underrepresentation or 
construct-irrelevant components” (p. 16). It also 
stated, “Evidence about consequences that cannot 
be so traced — that in fact reflects valid differences 
in performance  — is crucial in informing public 
decisions, but falls outside of the technical pur-
view of validity” (p. 16). 

	 This position seemed strange to me, because 
it seemed to say that adverse consequences could 
invalidate a proposed use of test scores, but only if 
the proposed interpretation/use had already been 
invalidated or, at least, could be invalidated in 
some other way. Although Messick was criticized 
for giving social consequences too much of a role 
in validity, in fact the role seemed so mild as to 
be almost nonexistent. It seemed that adverse 
consequences could only invalidate a test use if the 
proposed interpretation/use of the test scores were 
already invalid. 

	 One way to resolve this paradox (i.e.,that 
consequences have an important role in validation, 

but only if the test-score interpretation is invalid) 
is to treat the discovery of negative social 
consequences as an impetus to critically evaluate 
the assumptions built into the interpretation and 
use of the scores. For example, in the past, the 
perceived need for physical strength in the work 
of police officers and firefighters led to height 
and weight requirements for these jobs. The 
measures of height and weight were presumably 
valid as measures of height and weight, but 
their relationship to job performance was more 
questionable (Jackson, 1994). The fact that these 
requirements had adverse impact on protected 
groups (particularly women) led to a more critical 
evaluation of their assumed relationship to job 
performance, and because their relationship to 
job performance had not been demonstrated, they 
were rejected by the courts (Campion, 1983). The 
height and weight requirements were replaced 
by measures of the ability to perform activities 
(e.g., carrying an adult down a ladder) involved in 
the work requirements of firefighters and police 
(Jackson). 

	 An alternative analysis of the role of social 
consequences in validation makes use of some of 
the points developed earlier about combining dif-
ferent sources of error. Evaluations of validity do 
not yield a yes or no answer. Test scores always con-
tain errors, both random and systematic. In this 
sense, interpretations/uses are never completely 
valid. In the example given above, the measures of 
height and weight were accepted for many years 
as rough indicators of strength, and in samples of 
reasonably fit applicants, height and weight would 
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probably be positively correlated with strength. 
However, height and weight are pretty rough in-
dicators of strength; some short, slight people are 
more capable of performing physically demand-
ing tasks than some taller, heavier people. These 
discrepancies constitute systematic errors in inter-
preting height and weight as indicators of strength 
for individuals, but these systematic errors were 
not seen as major problems until they were found 
to have adverse impact on protected groups.

	 In comparisons between groups, the ran-
dom errors tend to wash out because of the large 
sample sizes used to compute group means. Sys-
tematic errors that are specific to individuals and 
not related to group membership also tend to av-
erage out. However, systematic errors linked to 
group membership will not wash out of the group 
means. Because women tend to be shorter and 
lighter, on average, than men, the errors associated 
with using height and weight to estimate strength 
tended to exclude most women from getting jobs 
as police or firefighters.

	 Systematic errors that are small enough 
relative to the random errors that they can be 
ignored for individuals may have important 
consequences for groups. For example, suppose 
that we have a random error of 10 points on some 
scale, and a systematic error of 1 point. The random 
error is 10 times larger than the systematic error, 

and therefore, in interpreting individual scores, 
the systematic error can be largely ignored. As 
noted earlier, a random error of 1 combined with 
a random error of 10 increases the overall error to 
about 10.05, an increase of half of 1%; combining a 
systematic error of 1 with a random error of 10 will 
have a similar effect, leading to an overall error of 
about 10.05. On the individual level, the systematic 
error has very little impact, and therefore, can be 
ignored at this level.

	 However, if the systematic error has a dif-
ferential impact on the scores of different groups, 
we may arrive at a very different conclusion about 
group-level performance. If the systematic error 
produces a difference of 1 point between the aver-
age scores for the two groups, this difference will 
be essentially independent of the sizes of the sam-
ples from the two groups. However, the random 
errors in the group means will tend to wash out 
as the sample sizes for the two groups increase. 
At the group level, the systematic errors may be 
as large as or larger than the random error, and 
therefore, the relatively small systematic error that 
is inconsequential on the individual level may be 
quite consequential on the group level.6 

	 Under this interpretation, the role of con-
sequences proposed by Messick and the Standards 
does have teeth. Small systematic errors that are 
related to group membership may be negligible 

6 �The importance of these group differences in average scores can be magnified by the fact that in some cases, even modest differences in group 
means can lead to substantial difference in acceptance rates or pass rates, or percentages at specific achievement levels. For example, if the 
cut score is near the average score for a group, many individuals will have scores around the cut score, and even a small shift in the distribu-
tions of scores (or in the cut score) can make a relatively large difference in the percentage below the cut score.
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compared to the random errors and, therefore, be 
ignored in evaluating the validity of the test scores 
at the individual level. In estimating group means, 
however, the random errors (and some systematic 
errors) will tend to cancel out; therefore, system-
atic errors that are related to group characteristics 
will have a large impact relative to the random er-
rors. At the individual level, the random errors tend 

to dominate, but at the group level, any systematic 
 errors that are related to group membership tend 
to dominate and to be much more noticeable than 
they are at the individual level. So an evaluation of 
social consequences can add a major dimension 
to validation by identifying systematic errors that 
might otherwise go unnoticed. 
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	  eality is complicated, but our models of 
reality tend to be relatively simple, involving a 
few factors that are thought to have a substantial  
impact on the outcomes of interest. In order to 
avoid being overwhelmed by detail, we limit the 
number of variables to which we attend. In the so-
cial sciences and education, we generally focus on 
variability across persons. Variability over some 
other dimensions (e.g., changes over time, differ-
ences in task difficulty, the impact of context) also 
may be explicitly modeled, but it is hard to analyze 
variability over more than two or three dimen-
sions at the same time. We smooth over the gaps 
between our simple models and a complex reality 
by introducing the concept of errors of measure-
ment, and we relegate most potential sources of 
variability to that other category that we call error. 

Errors of Measurement and Their Control	

	 Errors of measurement make it possible 
to interpret test scores in a fairly general way, but 
as is usually the case, there is no free lunch. The 
adoption of a theory of error forces us to add a 
penumbra of uncertainty in the form of standard 
errors to our estimates of the construct, and the 
more sources of variability that we relegate to er-
ror, the larger the overall uncertainty. An increase 
in uncertainty is seen as an acceptable price for 
greater generality in the interpretation of test 
scores, as long as the range of uncertainty does 
not get too large — that is, as long as the errors 
are small enough that they do not interfere with 

the interpretation or use of the test scores. If the 
errors are large compared to the differences of 
interest, they are too large. For traditional norm-
referenced tests, the interpretation is focused on 
differences among persons, and therefore, if the 
errors are small compared to the variability in the 
true scores for persons, the errors are considered 
small enough. 

	 More generally, for errors to play their 
intended role effectively, they have to be small 
compared to the score differences that determine 
the outcomes of the decisions to be made (e.g., for 
licensure examinations, the difference between 
a person’s score and the passing score). If the 
errors of measurement are large compared to the 
tolerance for error, they need to be reduced by 
controlling the largest sources of error. 

	 In order to effectively control the over-
all error, including the random and systematic 
components, it is particularly important to con-
trol the larger sources of error. If a source of  
error (systematic or random) is small compared to 
the dominant sources of error for a measurement 
procedure (e.g., less than one-fifth of the larger 
error), it can generally be ignored. However, sys-
tematic errors that are inconsequential at the in-
dividual level because they are small compared to 
the random errors in student scores may have seri-
ous consequences at the group level, particularly 
if they have disproportionate impact on racial/ 
ethnic groups (or other protected groups).

R

Concluding Remarks
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The Role of Errors in Defining  
Variables/Constructs

	 We decide how we describe reality. 
By assigning the variability associated with 
certain dimensions (e.g., contexts) to errors of 
measurement, we implicitly adopt invariance 
assumptions, which claim that the student’s 
true score on the construct of interest (but not 
the observed scores) does not vary over these 
dimensions (e.g., contexts). The construct of 
interest is taken to be invariant over the dimension, 
and the observed variability associated with the 
dimension is taken to be random noise in the 
estimates of the construct. 

	 We want our constructs to be general, 
and therefore we assume invariance over many 
dimensions; as a result, the observed scores involve 
many sources of error. At the cost of admitting some 
uncertainty, we gain generality in the inferences 
made from test scores. Instead of saying that a 
student got a high score on a certain multiple-
choice geography test on a certain date in a certain 
class, and so on, we say that the student has high 
achievement in geography. The first statement is 
very specific, and assuming that no procedural 
mistakes were made in administering the test and 
scoring the results, it is essentially certain; the 
second statement is more general and useful, but it 
takes a lot of invariance assumptions for granted, 
and is therefore more uncertain. The invariance 
assumptions typically do not hold exactly, with 
discrepancies accounted for by the errors of  
measurement. 

	 We can define our constructs narrowly in 
terms of the kinds of observations used to generate 
the observed scores (e.g., in terms of performance 
on questions about reading passages under certain 
conditions). Under this interpretation, we can be 
quite confident about the accuracy of our very 
limited conclusions. Alternately, we can define the 
construct more broadly (e.g., in terms of literacy, 
or reading ability). The more broadly defined 
constructs tend to be more useful, but they also 
involve more inferential risk and uncertainty.

Errors of Measurement in Public Policy

	 The use of test scores to make high-stakes 
decisions has many advantages. Standardized 
tests can often provide more accurate and precise 
assessments than alternative methods (e.g., inter-
views, academic records, supervisor evaluations), 
but it is their objectivity that may be particularly 
appealing to decision makers. 

	 Standardized procedures promote both 
fairness and the appearance of fairness. They can 
provide efficient and relatively accurate measures 
of variables that are relevant to the decision with-
out relying on any subjective judgments. As noted 
earlier, they can help us to make high-stakes deci-
sions “without seeming to decide” (Porter, 1995, p. 8).

	 However, policymakers tend to give short 
shrift to errors of measurement, systematic and 
random. This is not surprising because most  
policymakers do not know a lot about measure-
ment theory or about errors of measurement, 
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and in many cases, the errors do not make much 
difference at the policy level. Most of the effort 
given to identifying, estimating and controlling 
errors of measurement occurs during test devel-
opment, and assuming that the errors are not so 
large as to interfere with the intended interpreta-
tion and use of the test scores, they do not need 
to be given much explicit attention at the policy 
level. The decisions are based on the actual per-
formance of candidates, as reflected in their ob-
served scores, without entertaining hypotheses 
about what the scores might have been under  
other circumstances.

	 In cases where the test results are used 
to hold institutions accountable, as in estimates 
of group means and under the NCLB legislation, 
the errors of measurement tend to be dominated 
by the variability in student scores within the 
institutions being evaluated. In classical test 
theory, the variability associated with differences 
across persons is taken as true-score variability, 
and tests are designed to maximize this variability. 
However, in estimating group means (e.g., in order 
to monitor changes in average scores over time, or 
to examine differences across racial/ethnic groups) 
variability across samples of students counts as 
error. In estimating the overall effectiveness of 

schools under the NCLB program, the percentages 
of students in various groups achieving the 
proficient achievement level is the bottom line, 
and the random and systematic errors associated 
with student variability tend to be substantial and 
to constitute a major threat to the effectiveness of 
the accountability program. 

	 More generally, in evaluating programs 
and policies, consequences play a major role, 
and in cases where testing programs have 
social consequences, it would be reasonable to 
evaluate the programs in terms of these social 
consequences. However, it also seems reasonable 
that negative social consequences count against 
the validity of test use only if the interpretation 
underlying the test use is already invalid. As 
indicated earlier, this paradox can be resolved 
by recognizing that systematic errors that are 
negligible at the individual level may be relatively 
large at the group level. A systematic error that is 
too small to invalidate a proposed interpretation at 
the individual level can invalidate a corresponding 
interpretation at the group level.

	 As Kyburg (1968, p. 140) pointed out, “er-
ror is a delicate concept,” but analyzed carefully, it 
has a lot to tell us.
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