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Abstract 

The nonequivalent groups with anchor test (NEAT) design involves missing data that are 

missing by design. Three popular equating methods that can be used with a NEAT design are the 

poststratification equating method, the chain equipercentile equating method, and the item-

response-theory observed-score-equating method. These three methods each make different 

assumptions about the missing data in the NEAT design. Though studies have compared the 

equating performance of the three methods under the NEAT design, none has examined the 

missing data assumptions and their implications for such comparisons. The missing data 

assumptions can affect equating studies because it is necessary to fill in the missing data or their 

distribution in some way in order to have a true, or criterion, equating function to compare the 

accuracy and bias of the different methods. If the missing data or their distribution are filled in 

using missing data assumptions that correspond to a given method, that may favor that method in 

any comparison with the others. This paper first describes the missing data assumptions of the 

three equating methods and then performs a fair comparison of the 3 methods using data from 3 

different operational tests. For each data set, we examine how the 3 equating methods perform 

when the missing data satisfy the assumptions made by only 1 of these equating methods. The 

chain equating method is somewhat more satisfactory overall than the other methods in our fair 

comparison of the methods; hence, we recommend that equating practitioners seriously consider 

the chain equating method when using the NEAT design. In addition, we conclude that the 

results from the different equating methods will tend to agree with each other when proper 

equating conditions are in place. Moreover, to uncover problems that might not reveal 

themselves otherwise, it is important for operational testing programs to apply multiple equating 

methods and study the differences among their results.  

Key words: Chain equating, poststratification equating, IRT observed-score equating, frequency 

estimation, raking, continuization 
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1. Introduction 

Among the various possible equating designs, the nonequivalent groups with anchor test 

(NEAT) design is widely used. The NEAT design is simultaneously one of the most flexible and 

one of the most complicated test-linking designs. In an application of the NEAT design, a new test 

(or test form) X is to be equated to an old test (or test form) Y, X is taken by a sample from 

population P, and Y is taken by a sample from a possibly very different population Q. In addition, 

an anchor test A is taken by both samples and allows one to study the difference in ability between 

P and Q. The pattern of data for the NEAT design is illustrated in the design table illustrated in 

Table 1. 

Among the different equating methods, we will consider two widely used nonlinear 

observed score equating methods for the NEAT design: poststratification equating (PSE) and chain 

equipercentile equating (CE). The method known as frequency estimation is a type of PSE method. 

We will also consider the item-response-theory observed-score equating (IRT OSE) method. The 

IRT OSE is an IRT-based method that is comparable to the PSE and CE methods and is based on a 

theoretical model for the observed and missing data. 

Research shows that the different equating methods may provide substantially different 

results under some conditions. Hence, it is important to compare these three equating methods and 

determine the most accurate one.  

Table 1 

The Design Table for the Nonequivalent Groups  

With Anchor Test (NEAT) Design 

 X A Y 

P    

Q    

Note. A -mark indicates that the test is given to a sample  

from the population to the left. X is not given to examinees  

from population Q while Y is not given to examinees from population P. 
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As Table 1 shows, the NEAT design involves missing data (i.e., data that are missing by 

design and not missing due to the various problems of individual respondents skipping questions 

or other types of testing realities). All data on X are missing in Q and all data on Y are missing in 

P. Each of the three equating methods considered here involves distinct assumptions about the data 

missing in the NEAT design. These missing data assumptions are not directly testable in practical 

equating situations. However, it is important to understand the missing data assumptions of the 

equating methods; we believe this understanding will improve the equating research and provide a 

better understanding of the methods. As we will show, each method will be optimal when its 

missing data assumptions are correct and will be less so when different assumptions are correct. 

Though studies have compared equating performance of the PSE and CE methods under the 

NEAT design, no study examines the missing data assumptions of all three methods and discusses 

their implications on the comparison between the methods. Our work follows Holland, von Davier, 

Sinharay and Han (2006) and Holland, Sinharay, von Davier, and Han (2008), who described the 

missing data assumptions of the PSE and CE methods.  

Several authors have given theoretical comparisons between two or more of these three 

methods. Harris and Kolen (1990) suggested that the PSE and the IRT OSE methods have superior 

theoretical underpinnings compared to the CE method while the latter method requires the least 

amount of computation. von Davier, Holland, and Thayer (2004a) provided some theoretical 

analyses of the PSE and CE methods and showed that they may both be interpreted as examples of 

OSE methods and that they can provide identical results under special conditions. 

Several studies have compared the PSE and CE methods using real and simulated data sets. 

Sinharay (2008) provided a summary of these studies. Marco, Petersen, and Stewart (1983) and 

Livingston, Dorans, and Wright (1990) compared the PSE and CE methods (and several others) 

using data from the SAT®-I examination. Harris and Kolen (1990) compared the PSE and CE 

methods using data from a certification test. Sinharay and Holland (2007) compared the PSE and 

CE methods for several simulated data sets and a data set from a licensure test. Wang, Lee, 

Brennan, and Kolen (2006) compared the PSE and CE methods for several simulated data sets. 

The studies found that the CE method performed better than the PSE method when the two 

examinee groups, P and Q, differed substantially on the anchor test whereas the PSE method 

performed better than the CE method when the two examinee groups did not differ much. No study 

known to us compared the IRT OSE method to the PSE and CE methods, though Kolen and 
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Brennan (2004) recommended the operational use of the IRT OSE method, and the computations 

for the IRT OSE method did not take long with modern computers.  

It can be argued that none of the above equating studies performed a complete and fair 

comparison of the PSE and CE methods. The theoretical comparisons do not suggest how the 

methods compare in a real testing environment. In the studies using real data sets, a lack of a clear 

criterion (or true equating function) for evaluating equating bias (or systematic error in equating) 

generally exists, as pointed out by Wang et al. (2006); a rare exception is the real data example in 

Sinharay and Holland (2007) where a clear criterion was present. The simulation studies by Wang 

et al. and Sinharay and Holland were well-designed and extensive, but both of these generated data 

using an IRT model and set up the criterion using an IRT procedure. It is possible that by 

generating data using an IRT model, they gave an undue advantage or disadvantage to one of the 

methods as expressed in the following quote from Wang et al.:  

…it is virtually impossible in a simulation to have a criterion that does not 

advantage/disadvantage one or more methods to some degree. In this particular simulation, it 

is possible that the criterion disadvantages the frequency estimation to some unknown extent. 

Specifically, there is nothing in the procedure used to establish the criterion that 

accommodates or reflects the assumption that, conditional on anchor test scores, Form X 

scores in the two populations are the same; similarly for Form Y scores. One could conceive 

of constructing the criterion in such a manner that these conditional distributions are indeed 

equal. If that were done, it seems reasonable to speculate that frequency estimation might 

have considerable less bias than exhibited in this study. (p. 15) 

The above literature review shows a need to examine the missing data assumptions of the 

different methods and to understand their implications for any comparison of the three methods. 

Hence, the first objective of our project was to clearly state the missing data assumptions of the 

three equating methods in comparable ways and use them to simulate the missing data in order to 

give a deeper understanding of their effect on the choice of an equating criterion. 

The literature review also shows a need to perform a fair comparison of the three methods. 

Our second goal was to perform such a comparison. To accomplish that, we filled in the missing 

data in different ways that reflected the missing data assumptions of each of the three methods.1 

When a particular missing data assumption held (that is, the missing data were filled in a way that 

reflected the missing data assumptions of a method), there was a corresponding criterion equating 
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function to which the three methods could be compared. Each method was shown to be optimal 

when its missing data assumptions held. In addition, the sensitivity of each method to the other 

missing data assumptions was also examined. This comparison constituted a study of the 

robustness of the method to missing data assumptions. The collection of these results provided us 

with a more complete comparison of the three methods than had been heretofore available.  

The rest of this paper is organized as follows: Section 2 provides some background 

information, especially the concept of the target population and the true equating function in the 

NEAT design—these ideas will be relevant for the later sections. In Section 3, we describe the 

missing data assumptions for each of the three equating methods and their implications for the true 

equating function. Section 4 outlines our procedure to provide a fair comparison among the three 

equating methods in anticipation of the next three sections. Sections 5 to 7 discuss three examples 

based on real data: two teachers’ licensing test examples and an admissions test example. Section 8 

provides discussion and conclusions. 

2. Background Information 

Target Population in Equating and the Missing Data Assumptions of the Nonequivalent Groups 

With Anchor Test (NEAT) Design 

We take the position that a given linking function may be interpreted as an OSE function if 

and only if (a) there is a specific target/synthetic population, T, on which the cumulative 

distribution functions (cdfs), FT(x) = P{X ≤ x | T} and GT(y) = P{Y ≤ y | T}, are defined and (b) 

these cdfs are such that the linking function in question has the equipercentile form, that is, it is 

equal to the function, 

y = GT
-1(FT(x)). (1) 

Without this interpretation of OSE methods, the various linking functions for the NEAT 

design are merely procedures that have some intuitive plausibility but no particular relationship to 

the OSE methods that had been developed for the simpler designs (e.g., the more transparent single 

group or equivalent groups designs) which do make use of (1), and where T is the obvious 

population from which the data are sampled. Thus, to implement our approach, we need to define 

an appropriate synthetic population for the NEAT design and to specify appropriate cdfs, FT(x) and 

GT(y), for X and Y so that (1) holds for the linking functions in question. 
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A basic problem with the NEAT design is that the two populations, P and Q, can, in 

principle, be very different. This difference makes the definition of the target population more 

complex than it is for the simpler designs. Braun and Holland (1982) defined the synthetic 

population as the weighted mixture, 

T = wP + (1 – w)Q. (2) 

They interpreted (2) as a prescription for computing moments and distributions of variables over T. 

Their prescription is to first compute the quantities on P and on Q separately and then to combine 

these results with the weights w and 1 – w. For example, to compute the mean of A over T, first 

compute the mean of A over P and Q separately, and then weight the two means by w and 1 – w, 

respectively, to get the mean over T, for example, 

E(A | T) = wE(A | P) + (1 – w)E(A | Q). (3) 

Similarly, probabilities for A over T are computed as 

P{A = a | T} = w P{A = a | P} + (1 – w) P{A = a | Q}. (4) 

The total sample is obtained as a special case of Braun and Holland’s (1982) synthetic 

population by choosing w as 

w = NP/(NP + NQ), (5) 

where NP and NQ denote the sample sizes from P and Q, respectively. Thus, the total sample,  

P + Q, is the synthetic population that weights P and Q proportionally to their sample sizes. We 

will use this choice of w in this paper. However, other choices of w might be of interest, for 

example w = 1 (equate on the new population, P) or w = 0 (equate on the old population, Q). For 

this reason, w is a parameter of the definition of any particular synthetic population, T.  

The prescription for computing moments and probabilities in (3) and (4) is 

straightforward when applied to A. However, when it is applied to X or Y, it requires finding 

values for the distributions of X or Y over populations for which they are always missing. That is, 

there is a need to specify distributions (or at least some moments) of X in Q and Y in P. 

Thus, the use of the synthetic population in (2) and the definition of observed score 

equating in (1) require attention to missing data assumptions that are often tacit and unstated 
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when a equating function is simply described as a procedure for finding the y-values that are 

equated to an x-value. The important feature of these missing data assumptions is that they allow 

the distributions or moments of X in Q and Y in P to be computed. These moments or 

distributions then allow the corresponding moments or distributions for X and for Y to be 

computed for any synthetic population given by (2) using (3) or (4) with X and Y replacing A. 

Once the distribution or moments of X and Y on T are available, the NEAT design effectively 

becomes a single group design over the specified synthetic population T, and the OSE methods 

defined by (1) may be used. 

The True Equating Functions for the Nonequivalent Groups With Anchors Test (NEAT) Design 

In equating studies, it is important to have a criterion to compare to the equating functions 

that are estimated from the data. We shall call the criterion the true equating function in this paper. 

It is usually the case that true is synonymous with population in the sample/population distinction 

(i.e., the true mean refers to the population mean as opposed to the sample mean). In equating 

studies it is rare to have a population in hand, because the data are samples that may be large but 

still exhibit the variability typical of such samples. This study is no exception, and we recognize 

that in using the term true equating function, we are glossing over the difference between a large 

sample and the population. However, for the NEAT design an added complexity is present. It is 

impossible to define a true equating function without regard to the assumptions that are made 

about the missing data. Each choice of missing data assumption leads to a possibly different true 

equating function. Other factors influence the proper choice of the true equating function for a 

given estimated equating function as well. We will discuss these below. 

What is the form, in general, of the true equating function for the NEAT design? First, 

observe that if the missing data of the NEAT design displayed in Table 1 were not missing, then 

any synthetic population, T = wP + (1 – w)Q, would simply be the single population formed by 

weighting the cases from P and Q appropriately. For example, if w were given by (5), then the 

resulting equating design is the single group design with P + Q as the population. The design table 

for the single group design is displayed in Table 2. 

The natural way to equate X to Y in this single group design is to form the two cdfs, FT(x) 

and GT(y), from the data for X and Y over T and then to use formula (1) to equate scores on X to 

those on Y. 
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Table 2 

The Design Table for the Single Group Design 

 

 

 

Note. A -mark indicates that the test is given  

to a sample from the population to the left.  

In view of this observation, we argue that an appropriate way to define the true equating 

function for the NEAT design involves the following three steps: 

1.   Make specific missing-data assumptions and use them to deduce the implied 

distributions of X in Q and Y in P, for example, the missing data marginals, 

P{X = x | Q} and P{Y = y | P}.  

2.    Combine the observed distributions of X in P and Y in Q with the implied missing data 

marginals from the previous step to derive the corresponding cdfs of X and Y on T as 

FT(x) = P{X ≤ x | T} = w P{X ≤ x | P} + (1 – w) P{X ≤ x | Q} and (6) 

GT(y) = P{Y ≤ y | T} = w P{Y ≤ y | P} + (1 – w) P{Y ≤ y | Q}. (7) 

3.   Compute the equipercentile equating function as y = GT
-1(FT(x)) using the cdfs obtained 

from (6) and (7). 

The result of Step 3 is the true equating function that corresponds to the missing data 

assumptions specified in Step 1 for the synthetic population T in Step 2. The missing data 

assumptions enter only through their implications for the missing data marginals. We used this 

missing data marginal approach to compute the various true equating functions in this study. 

This approach should be compared to an alternative true equating function calculation that 

may seem more natural to some readers. In this alternative, using the three equating methods, the 

missing data for each examinee are filled in so that everyone in both P and Q has an X, A, and Y 

score (two real scores and one imputed from the missing data assumptions). The two data sets are 

 X Y 

T   
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weighted appropriately and pooled to form T = wP + (1 – w)Q. The cdfs FT(x) and GT(y) are 

formed from it and the equipercentile equating function is computed using (1). We call this 

approach filling-in the missing data. We used both the missing data marginal approach and the 

filling-in the missing data approach in our data examples (to be discussed later), but found only 

small differences between the resulting true equating functions. Hence, for the most part, we report 

only the results using the missing data marginals method in our examples, but we show the results 

of both approaches in our first data example.  

Our approach of defining a true equating function for the NEAT design using the missing 

data marginals leaves open three important decisions. 

First, which missing data assumptions should be used to obtain the missing data marginals 

P{X = x | Q} and P{Y = y | P}? Different missing data assumptions will lead to different values for 

these probabilities and then to different true equating functions. 

Second, while the missing data assumptions will give us values for the missing data 

marginals, P{X = x | Q} and P{Y = y | P}, we also need values for the observed data marginals, 

P{X = x | P} and P{Y = y | Q} to use (6) and (7). How should the observed data for X in P and Y in 

Q be used to provide this information? 

Third, how should the cdfs, FT(x) and GT(y), which are used in equation (1) to produce the 

true equipercentile function, be calculated? 

Regarding the second question on the use of the observed data for X in P and Y in Q, we 

chose to presmooth, that is, fit a loglinear model (e.g., Holland & Thayer, 2000) to the observed 

frequencies. We used the presmoothed sample proportions as estimates of the population 

probabilities. 

Regarding the third question on the calculation of the cdfs FT(x) and GT(y), we used the 

traditional method of continuizing the discrete score distributions that linearly interpolates the 

discrete cdfs to obtain continuous cdfs (e.g., Kolen & Brennan, 2004).2  

Clarifying the role of the missing data assumptions, which was asked in the first question, 

is the least routine of the three and we address that in the next section.  

3. The Missing Data Assumptions for Poststratification Equating (PSE), Chain Equipercentile 

Equating (CE) and Item-Response-Theory Observed-Score Equating (IRT OSE) 

We provide a description of the missing data assumptions of the three equating methods 

below. We do this in two ways for each set of assumptions. First, in the missing data marginals 
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approach, we give expressions for the missing data marginals, P{X = x | Q} and P{Y = y | P}. 

Second, in the filling-in the missing data approach, we show how to fill in the missing data values 

for each examinee in the NEAT design so that the missing data assumptions for each of the 

methods—PSE, CE, or IRT OSE—are satisfied exactly. 

Strictly speaking, it is not necessary to fill in the missing data for each examinee in order to 

obtain the true equating function. All that is required are the values of the missing data marginals, 

P{X = x | Q} and P{Y = y | P}. However, filling in the missing data in a data set in different ways 

allows us to study how the different features of the data are affected by the different missing data 

assumptions. For example, do the different ways of filling in the missing data lead to significantly 

different correlations between the scores on X and those on A over the combined single population, 

T? This total-test to anchor-test correlation is known to influence the quality of an equating. 

Missing Data Assumptions of Poststratification Equating (PSE) 

The assumptions of the PSE method are that the conditional distributions of X and Y given 

A are the same in P and in Q. More formally, 

P{X = x | A = a, Q} = P{X = x | A = a, P} and 

 (8) 

P{Y = y | A = a, P} = P{Y = y | A = a, Q}. 

We first discuss how (8) can be used to specify the missing data marginals and then discuss 

how to create score triples by filling in the missing values in the NEAT design so that the PSE 

assumptions are satisfied. 

The Missing Data Marginals and the True Equating Function Implied by Poststratification 

Equating (PSE) 

To compute the missing data marginal P{X = x | Q} implied by the PSE assumptions, first 

use the (X, A) data from P to estimate the conditional distribution 

P{X = x | A = a, P} and then use the PSE assumption (8) to treat this as an estimate of P{X = x | A = 

a, Q}. Finally, use the standard formula for obtaining marginal probabilities from joint 

probabilities to obtain P{X = x | Q}, for example, 
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P{X = x | Q} = 
a
∑ P{X = x | A = a, P} P{A = a | Q}. (9) 

Similarly, to compute the missing data marginal P{Y = y | P} from the (Y, A) data from Q, apply 

the PSE assumption in (8) to get 

P{Y = y | P} = 
a
∑ P{Y = y | A = a, Q} P{A = a | P}. (10) 

Equations (9) and (10) are the key ingredients to the PSE method. 

To form the probability estimates needed to implement (9) and (10), we used bivariate 

presmoothing (Holland & Thayer, 2000). Denote these presmoothed bivariate distributions by 

pxa = P{X = x, A = a | P} and qya = P{Y = y, A = a | Q}, (11) 

and the implied presmoothed marginal distributions of A in P and Q by 

haP = P{A = a | P} and haQ = P{A = a | Q}. (12) 

The estimates of the conditional probabilities that are needed in (9) and (10) are given by the 

ratios: 

P{X = x | A = a, P} = pxa/haP and P{Y = y | A = a, Q} = qya/haQ. (13) 

Using (9), the missing data marginal for X is obtained by weighting pxa/haP by haQ and summing 

over a. The missing data marginal for Y is obtained in a similar way from qya/haQ weighted by haP.  

After the missing data marginals, P{X = x | Q} and P{Y = y | P}, are obtained, there are two 

ways of using them to obtain the cdfs, FT(x) and GT(y). The first, which we employ here, is to 

continuize the four discrete distributions, P{X = x | P}, P{X = x | Q}, P{Y = y | P}, and P{Y = y | 

Q}3 to form the four cdfs, FP(x), FQ(x), GP(y), and GQ(y). These four cdfs may then be combined 

as in (6) and (7) to form FT(x) and GT(y) which are then used in (1) to obtain the PSE true equating 

function. In all our calculations of equating functions we used the iterative Illinois method (e.g., 

Thisted, 1988, p. 171) to find the inverse required in (1). 

However, the kernel equating version of PSE (von Davier, Holland, & Thayer, 2004b) does 

the calculation of FT(x) and GT(y) in a slightly different way. They propose to first combine P{X = 

x | P} and P{X = x | Q} via the equation analogous to (4) to obtain P{X = x | T} and combine P{Y = 
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y | P} and P{Y = y | Q} to obtain P{Y = y | T}. Then, P{X = x | T} and P{Y = y | T} are continuized 

to get FT(x) and GT(y) and then (1) is applied to obtain the estimated equating function for PSE. 

We use this approach to compute the estimated equating function for the PSE method. It uses only 

two continuizations, while the one we used to compute the true equating functions required four. 

However, whether two continuizations were used or four mattered little for our data examples; as a 

result, for each data example, the true equating function under the PSE assumptions was virtually 

identical to the estimated equating function from the PSE method. 

Filling in the Missing Data in Poststratification Equating (PSE) Score Triples 

The following approach may be used to create score triples (X, A, Y) that satisfy the PSE 

assumptions. For each (X, A) pair from P, take the A score and draw a random Y value from the 

presmoothed conditional distribution of Y given that A value from the Q sample, P{Y = y | A = a, 

Q} = qya/haQ. The result is an (X, A, Y) score triple for each examinee in P that satisfies the PSE 

assumptions where X and A are the observed data and Y is a filled-in missing data value under the 

PSE missing data assumptions. Similarly, use the same techniques to fill in an X-value to obtain a 

score triple for each examinee in Q.  

Note that, by construction, this method makes the distribution of Y conditionally 

independent of X given A in both P and Q.  

Once the score triples are created, the design table is now filled in with X, Y, and A scores 

for every examinee in P and Q. These filled-in data may be used as described in Section 2 to 

compute the true equating function for PSE. It is also possible to study features of the filled-in 

values and their relations to the observed data. 

The Missing Data Assumptions of Chained Equipercentile Equating (CE) 

The assumptions of CE do not directly involve the discrete score distributions in the way 

that the assumptions of PSE do. Rather, they may be viewed as assumptions about two 

equipercentile functions similar to those in (1). For our purposes, the CE missing data assumptions 

are that the equipercentile functions equating X to A are the same in P and Q; the same is true for 

the equipercentile links from A to Y in P and Q. 

So far we have used F for the cdf of X, G for the cdf of Y and now we use H for the cdf of 

A, with appropriate subscripts to indicate the populations to which the cdfs refer. We assume that 
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all the discrete distributions have been continuized so that all the relevant cdfs are continuous and 

strictly increasing. 

The assumption that the equipercentile link from X to A is the same in P and Q may be 

formalized as 

HQ
-1(FQ(x)) = HP

-1(FP(x)). (14) 

Similarly, the assumption that the equipercentile link from A to Y is the same for P and Q is 

formalized as 

GQ
-1(HQ(a)) = GP

-1(HP(a)). (15) 

Because (14) and (15) involve the cdfs of the missing data, for example, FQ(x), and GP(y), they 

qualify as missing data assumptions, and we now explore them further. 

The Missing Data Marginals and the True Equating Function Implied by Chained Equipercentile 

Equating (CE) 

Solving for FQ(x) in (14) yields 

FQ(x) = HQ(HP
-1(FP(x))). (16) 

This equation connects the cdf of the missing data to the cdfs of data that are observed. Equation 

(16) is the CE missing data assumption for X and A. The expression for FQ(x) in (16) is a 

continuous cdf. We interpret it as the continuized cdf of the discrete missing data marginal for X in 

Q. Thus, in the case of CE we obtain the continuization of the missing data marginal directly rather 

than the missing data marginal itself. We may then combine FQ(x) with FP(x), the continuized cdf 

obtained from the observed distribution of X in P, to obtain 

FT(x) = wFP(x) + (1 – w)FQ(x). (17) 

In a similar way we may solve (15) to obtain the continuization of the missing data 

marginal of Y in P as 

GP(y) = HP(HQ
-1(GQ(y))). (18) 

Similarly, we may then compute GT(y) from GP(y) and GQ(y) to obtain 
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GT(y)= wGP(y) + (1 – w)GQ(y). (19) 

The true equating function is obtained by applying (1) to FT and GT from (17) and (19). 

The usual form of the estimated CE equipercentile function is given by the following chain 

of cdfs and their inverses (e.g., von Davier et al., 2004b, p. 37), 

GQ
-1(HQ(HP

-1(FP(x)))). (20) 

In (20), HP
-1(FP(x)) is the X to A link on P and GQ

-1(HQ(a)) is the A to Y link on Q and the CE 

equipercentile function consists of the functional composition of these two links. The question 

naturally arises as to whether the equipercentile function we have specified in Section 2 as the true 

equating function for CE agrees with formula (20). Under the CE missing data assumptions, it 

does, and this result is summarized in Theorem 1, below. 

Theorem 1: If FQ(x) = HQ(HP
-1(FP(x))) and GP(y) = HP(HQ

-1(GQ(y))), that is, if the CE missing 

data assumptions hold, then for any target population of the form T = wP + (1 – w)Q and FT(x) 

and GT(x) defined in (17) and (19), the following equation holds, 

GT
-1(FT(x)) = GQ

-1(HQ(HP
-1(FP(x))). 

Because the right-hand side above is the usual form of the estimated CE equipercentile function 

(i.e., equation 20), Theorem 1 shows that the true equating function obtained from the CE missing 

data assumptions exactly equals the estimated CE equipercentile function. The proof of Theorem 1 

is left to Appendix B. The results from our real data examples are coherent with Theorem 1. 

Filling in the Missing Data in the Chained Equipercentile Equating (CE) Score Triples 

The score pairs (X, A) in P may be augmented to score triples (X, A, Y) that satisfy the CE 

assumptions. The idea is to find a conditional distribution, P*{Y = y | A = a, P}, that reflects the CE 

assumptions and then, for each examinee in P, to use the value of A to draw a Y-value from this 

conditional distribution to form a score triple (X, A, Y). This way is similar our suggestion for 

simulating score triples that satisfy the PSE missing data assumptions, but the CE case requires a 

more complicated approach to find the appropriate conditional distributions. We describe the 

process in several steps. 
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1.   Form the presmoothed marginal discrete distributions for X in P, A in P, A in Q and Y 

in Q by summing the rows and columns of {pxa} and {qya} defined in (11) and denote 

these marginals respectively as {fxP}, {haP}, {haQ}, and {gyQ}. 

2.   Continuize these four discrete distributions to obtain the continuous cdfs, FP(x), HP(a), 

HQ(a), and GQ(y). Up to this point, everything is part of computing the CE 

equipercentile function. Now we use the missing data marginals implied by the CE 

method to get to the missing data. 

3.   Compute the missing data cdfs, FQ(x) = HQ(HP
-1(FP(x))) and GP(y) = 

HP(HQ
-1(GQ(y))), as in (16) and (18). 

4.   Discretize FQ(x) to obtain a version of the discrete missing data marginal that would 

continuize to the cdf FQ(x). We propose using a method described in Holland et al. 

(2008, 2006). They suggested defining the half-score points as xj* = (xj + xj+1)/2, for j = 

1 to J – 1, and then defining the discrete missing data marginal of X in Q as 

P{X = xj | Q} = FQ(xj*) − FQ(xj-1*), for j = 2, 3, …, J – 1,  

 (21) 

P{X = x1 | Q} = FQ(x1*), and P{X = xJ | Q} = 1 – FQ(xJ-1*). 

Equation (21) implies that all values of x in an interval bracketed by the half-score points xj-1* and 

xj* are rounded to the raw score xj with appropriate adjustments for plus and minus infinity. This 

method is a very natural way to discretize FQ(x). GP(y) is discretized in a similar way. These 

discretized distributions are the CE missing data marginals,  

fxQ = P{X = x | Q} and gyP = P{Y = y | P}, (22) 

for X in Q and Y in P. 

The discrete distributions in (22) are compatible with the CE assumptions in the sense that 

if we continuize them we will get cdfs that are either very close to or identical to FQ(x) and GP(y) 

given in (16) and (18). These missing data marginals therefore reflect the CE assumptions in a very 

specific way. 
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5.   Use raking (also called iterative proportional fitting or the Deming-Stephan method), 

described in Bishop, Fienberg, & Holland (1975), to transform the presmoothed joint 

distribution {pxa} so that it has the missing data marginal of X in Q, {fxQ}, from (22) as 

its X-marginal, and the marginal of A in Q, {haQ}, from (12) as its A-marginal. The 

process of raking is described in Appendix A. 

Call the result of this raking 

kxaQ = P{X = x, A = a | Q}. (23) 

The point of the raking is to create a joint distribution for (X, A) that has the marginal 

distributions of X and A in Q but the odds ratios or cross-product ratios (that measure the 

association/correlation between X and A) of the presmoothed joint distribution of (X, A) in P.  

6. Form the desired conditional distribution by forming the appropriate ratios, 

P*{X = x | A = a, Q} = kxaQ / haQ. (24) 

Similarly, rake {qya} using {gyP} from (22) and {haP} from (12). Call the result of this raking 

kyaP = P{Y = y, A = a | P}. (25) 

The result of the second raking is a joint distribution that has the marginal distributions 

{gyP} and {haP} that are appropriate for P and has the cross-product ratios of the presmoothed joint 

distribution of (Y, A) in Q. From this joint distribution form the desired conditional distribution by 

P*{Y = y | A = a, P} = kyaP / haP. (26) 

Note that because of the raking procedure, the A marginals formed from the bivariate 

distributions in (23) and (25) are the appropriate divisors so that the results in (24) and (26) are 

bona fide conditional probabilities. We used the symbol P* in (24) and (26) to emphasize that 

these conditional distributions need not be the same as those used in PSE. 

For each A value for a score pair (Y, A) in Q, use P* in (24) to draw a random X value and 

thereby form a score triple (X, A, Y) for examinees in Q. Analogously, draw a random Y value from 

(26) to form score triples for examinees in P. Note that, as in the case of the PSE triples, by 

construction, X and Y are conditionally independent given A, in both P and Q. 
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Missing Data Assumptions of Item-Response-Theory Observed-Score Equating (IRT OSE) 

The missing data assumptions of IRT OSE include the assumption that the IRT model is 

adequate for the observed data in addition to the specific missing data assumptions indicated 

below. We used the two-parameter logistic (2PL) model throughout our analyses. Holland (1990) 

showed that enough information is present to estimate at most two parameters per item in 

applications of IRT, and Haberman (2006) demonstrated that the 2PL model describes real test 

data as well as the three-parameter logistic (3PL) model. In addition to providing another source of 

missing data assumptions, the IRT model also serves as a form of presmoothing for all the relevant 

discrete distributions and is an alternative to fitting loglinear models to the score distributions. 

The Item Response Theory (IRT) Model 

The discussion for IRT OSE uses with test scores X, Y, and so on, but it is important to 

remember that estimation of the IRT model requires item level data. 

The item response functions may be summed appropriately to determine the score response 

functions, PX(x |θ, βXP), PY(y |θ, βYQ), PA(a |θ, βAP), and PA(a |θ, βAQ), which are defined by 

PX(x |θ, βXP) = P{X = x | θ, P}, PY(y |θ, βYQ) = P{Y = y | θ, Q}, 

 (27) 

PA(a |θ, βAP) = P{A = a | θ, P}, and PA(a |θ, βAQ) = P{A = a | θ, Q}. 

To compute the score response functions, for example, P{X = x | θ, P}, from the item response 

functions, we use the recursive formula of Lord and Wingersky (1984). The parameters such as 

βXP in (27) are the vectors of relevant item parameters for the items in each score. 

The subscripts P and Q in (27) indicate that the β-parameters might differ in P and Q, that 

is, in general, they might show differential item functioning (DIF). The only items for which the 

presence of DIF can be tested are those in A, which have item responses for both populations. An 

important assumption for the NEAT design is that the A items do not show DIF. Hence, for the rest 

of our discussion we will assume that 

βAP = βAQ = βA. (28) 
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Thus, the missing data assumptions for IRT OSE are that the items in X and Y (in addition 

to those in A) do not exhibit DIF across P and Q, so that the score response functions for X or Y 

given θ are the same for P and Q. To indicate this, henceforth, we will drop the subscripts P and Q 

in (27) as we did in (28). 

In addition to item response functions, the IRT model for X, Y, and A requires θ 

distributions for both P and Q. Because these populations can be different in the NEAT design, 

these θ distributions should be allowed to be different in the estimation process. Denote the 

densities of these two θ distributions by kP(θ) and kQ(θ). For many problems, it is satisfactory to 

assume that kP(θ) and kQ(θ) are both Gaussian with possibly different means and variances, that is 

kP(θ) = φ(θ) and kQ(θ) = (1/σ)φ((θ – μ)/σ), (29) 

where φ denotes the standard normal density function. The usual location/scale indeterminacy of 

IRT forces one of the Gaussians densities to have mean zero and variance one. We assumed 

Gaussian ability distributions in our work. 

Proper estimation of the IRT model for the NEAT design includes estimation of μ and σ in 

(29) as well as the item parameters, βX, βY, and βA in (27). To estimate the parameters of the 2PL 

model, we used a separate calibration (using marginal maximum likelihood) of the model for X 

and A in P and for A and Y in Q, assuming the standard normal θ distribution for each. We then 

used the Stocking-Lord method (see, e.g., Kolen & Brennan, 2004) to convert the 2PL model item 

parameter estimates for P and Q to the same scale and to obtain the corresponding estimates of μ 

and σ in (29). 

Assuming that a satisfactory IRT model has been estimated for the NEAT design and the 

parameters have been converted to the same scale, any synthetic population of the form in (2) is 

handled by simply using the same weights for the two θ distributions, such as, 

kT(θ) = w kP(θ) + (1 – w) kQ(θ). (30) 

In standard IRT OSE, the densities defined in (29) and (30) are used to integrate out θ in the 

conditional distributions in (27) to form the marginal distributions of X and Y over T. For example, 
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P{X = x | T} = ∫PX(x |θ, βX) kT(θ)dθ, and 

 (31) 

P{Y = y | T} = ∫PY(y |θ, βY) kT(θ)dθ. 

The Missing Data Marginals and the True Equating Function for Item-Response-Theory 

Observed-Score Equating (IRT OSE) 

By the same reasoning that leads to (31), the missing data marginals for IRT OSE are 

P{X = x | Q} = ∫PX(x |θ, βX) kQ(θ)dθ, and 

 (32) 

P{Y = y | P} = ∫PY(y |θ, βY) kP(θ)dθ. 

We used the Gauss-Hermite quadrature method to compute the above integrals. Because the 

quantities in the integral in (32) are all smooth functions, the resulting values for the IRT OSE 

missing data marginals are a form of presmoothing the raw score distributions and do not exhibit 

the noisy extra variability of raw frequencies. 

After the missing data marginals, P{X = x | Q} and P{Y = y | P}, are obtained as described 

above, they are continuized, then FT(x) and GT(y) are computed using (6) and (7), and the true 

equating function is obtained using (1). 

Note that the computation of the IRT OSE estimated equating function proceeds in a 

similar manner to that for the IRT OSE true equating function by first continuizing the discrete 

distributions obtained in (31) to compute FT(x) and GT(y) and then by applying (1). Thus, the 

computation of the IRT OSE estimated equating function involves two continuizations whereas the 

computation of the IRT OSE true equating function requires four. We found negligible differences 

between the IRT OSE estimated equating function and IRT OSE true equating function in all three 

of the data examples discussed later.  

Filling in the Missing Data in the Item-Response-Theory Observed-Score Equating (IRT OSE) 

Score Triples 

The IRT model can be used to estimate the conditional distribution of Y given A 

and X over the population P as 



19 

P{Y = y | X = x, A = a, P} = ∫PY(y |θ, βY) k(θ  |X = x, A = a, P) dθ, (33) 

where the conditional density of θ given X and A over P,  k(θ  |X = x, A = a, P), 

is equal to  

PX(x |θ, βX) PA(a |θ, βA) kP(θ)/[∫PX(x |τ, βX) PA(a |τ, βA) kP(τ)dτ], (34) 

if  A is an external anchor and is equal to 

PX’(x’ |θ, βX) PA(a |θ, βA) kP(θ)/[∫PX’(x’ |τ, βX) PA(a |τ, βA) kP(τ)dτ], (35) 

if A is an internal anchor, where X=X’+A (that is, X can be partitioned into X’ and A). 

We computed the discrete conditional distribution in (33) by using Gauss-Hermite 

quadrature to perform the integration with respect to θ . To fill in the Y values to form a score 

triple for X, A, and Y in P, we made a random Y draw from the conditional distribution in (33) for 

each observed (X, A) pair in the data. 

The same method may be applied to fill in X in (X, A, Y) for the Q sample. The conditional 

distribution of X given Y and A over Q is given by 

P{X = x | Y = y , A = a, Q} =  ∫PX(x |θ, βX) k(θ  |Y = y, A = a, Q) dθ, (36) 

where the conditional density of θ given Y and A over Q, k(θ  |Y= y, A = a, Q), is equal to 

PY(y |θ, βY) PA(a |θ, βA)kQ(θ)/[∫PY(y |τ, βY) PA(a |τ, βA) kQ(τ)dτ], (37) 

if A is an external anchor, and is equal to  

PY’(y’ |θ, βY) PA(a |θ, βA)kQ(θ)/[∫PY’(y’ |τ, βY) PA(a |τ, βA) kQ(τ)dτ], (38) 

if A is an internal anchor, where Y=Y’+A. 

Note that unlike either the PSE or CE cases described above, for the IRT OSE filled-in 

missing data, X and Y need not be conditionally independent given A over P or Q. This is because 

both X and A can influence the probability of Y in P and both Y and A can influence the probability 

of X in Q. It is possible to use a method similar to that described above but that uses only A to fill 
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in the missing data under the IRT model. This method will make X and Y conditionally 

independent given A, however, it does not make full use of the IRT model. 

4. Our Measures of Robustness Against Missing Data Assumptions 

We apply our analysis of the missing data assumptions for PSE, CE, and IRT OSE to three 

different data sets from operational tests using the NEAT design in the next three sections. Here 

we outline our analysis strategies, pulling together the ideas described in the previous sections. 

One of our goals was to show how the missing data assumptions for a method lead to a true 

equating function that favors one of the methods and not the others. Any true equating function is 

virtually identical to the estimated equating function obtained using the same method and different 

from the estimated equating functions obtained using the other two methods. An equating method 

is robust against the other missing data assumptions if it performs reasonably well under various 

plausible missing data assumptions. 

To help express the idea of robustness, for each of our three data sets, we give a table with 

three rows and three or four columns. The rows correspond to the three estimated equating 

functions—CE, PSE, or IRT OSE—while the first three columns correspond to the three missing 

data assumptions that lead to different true equating functions. The first two of our data sets are 

very special because the data that are usually missing in the NEAT design are not missing in these 

data sets. For these two cases the table has a fourth column (real data) that corresponds to the true 

equating function obtained using the real data as follows: 

• We formed the bivariate distribution of X and Y over P + Q and presmoothed it using 

appropriate loglinear models.  

• We continuized the resulting marginal distributions of X and Y to obtain FT and GT.  

• Finally, FT and GT were combined as in (1) to obtain the true equating function for the 

real data case. 

The cells of these tables contain various measures of the differences between the estimated 

equating function for that row and the true equating function for that column. Table 3 gives a 

schematic representation of these tables of differences. 
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Table 3 

A Schematic Display of the Comparisons of the Estimated Equating Functions and the True 

Equating Functions Used in the Examples Sections  

The assumptions behind the true equating function The estimated 

equating function CE PSE IRT OSE Real data 

CE X X X X 

PSE X X X X 

IRT OSE X X X X 

Note. Each cell contains five discrepancy measures denoted by X. CE = chain equipercentile 

equating, IRT OSE = item-response-theory observed-score equating, PSE = poststratification 

equating. 

To form the tables illustrated by Table 3, we first used the data to calculate the estimated 

equating function for the three methods. We then calculated the true equating function that 

corresponded to each set of missing data assumptions (or the real data when these are available). 

The true equating function under each set of missing data assumptions was computed in two 

different ways based on the choice of the use of missing data marginals versus the use of the filled-

in missing data to compute the true equating function.  

Finally, we formed the differences between each estimated equating function and each true 

equating function. This resulted in either 9 or 12 sets of differences between the estimated and true 

equating functions that correspond to the cells of Table 3. The smaller the magnitude of the 

differences, the better the performance of the equating method is under the given missing data 

assumptions. To give numerical summaries of these function differences, we computed four 

discrepancy measures for each situation. These are as follows: (a) the root mean squared 

differences (RMSD) = 2( )i i i
i

e Tω −∑ , where iω denotes the weight and is proportional to the 

frequency of an X-score in the combined population P+Q when data on X in Q are available, or 

just in P when such data are not available, and ie  and iT  respectively denote the estimated and true 

equating functions at score-point i; (b) same as (a) but summed over only the lowest 25% of the 

examinees (i.e., those with X-scores below the 25th percentile of the frequency distribution of X); 
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(c) same as (a) but summed over only the middle 50% of the examinees (i.e., those with X-scores 

between the 25th and the 75th percentiles of the frequency distribution of X); and (d) same as (a) 

but summed over only the highest 25% of the examinees. In each cell of the tables that Table 3 

illustrates, the four measures appear vertically in the above order. 

These four discrepancy measures provided different types of information regarding the 

robustness of the three methods under the various missing data assumptions. We expected some of 

the methods to be more sensitive to the assumptions than the others.  

In addition, we investigated how the filled-in data differed across the sets of missing data 

assumptions. This included an examination of the distributions of the filled-in missing data values, 

as summarized by their mean, standard deviation, skewness coefficient, kurtosis coefficient, and 

the 2.5th, 50th and 97.5th percentiles, as well as their correlations with the anchor test and the 

other tests across P or Q. 

Note that all our data examples involve external anchors. However, our methodology also 

applies to internal anchors, which will be investigated in future. 

5. Example 1: The First Pseudo-Test 

The original data for this example came from one form of a licensing test for prospective 

teachers. The test form included 119 multiple-choice items, about equally divided among four 

content areas—language arts, mathematics, social studies, and science. The original form had been 

used at two test administrations, and the two examinee populations played the role of P and Q in 

our analysis.  

The item responses from the original test were used to construct two pseudo-tests, X and Y. 

A pseudo-test consisted of a subset of the test items from the original 119-item test, and the score 

on the pseudo-test for an examinee was found from the responses of that examinee to the items in 

the pseudo-test. The pseudo-tests X and Y each contained 44 items, 11 items from each of the four 

content areas. Tests X and Y had no items in common and were made parallel in content. A set of 

24 items (6 from each content area) were selected to be representative of the original test and to 

serve as the external anchor, A. This anchor had no items in common with either X or Y. The mean 

percent correct on the anchor test approximately equaled that for the 119-item original test. Further 

details on the construction of these pseudo-tests can be found in Holland et al. (2008).  



23 

Table 4 

Statistics for the Scores on the Total and Pseudo-Tests for P, Q, and P + Q for the First  

Pseudo-Test Example 

Original 
119-items test 

X 
44 items 

Y 
44 items 

A 
24 items 

Test 
population N 

Mean 
(SDs) APC Mean 

(SDs) APC Mean 
(SDs) APC Mean 

(SDs) APC 

P 6,168 
82.3 

(16.0) .69 
35.1 
(5.7) .80 

26.6 
(6.7) .60 

16.0 
(4.2) .67 

Q 4,237 
86.2 

(14.2) .72 
36.4 
(4.8) .83 

28.0 
(6.3) .64 

17.0 
(3.9) .71 

P + Q 0,405 
83.9 

(15.4) .70 
35.6 
(5.4) .81 

27.2 
(6.6) .62 

16.4 
(4.1) .68 

Note. APC = average proportions correct. 

Table 4 gives the sample sizes, means, SDs, and average proportion correct for the scores on 

X, Y, and A for the examinees in P, Q, and the combined group. X was constructed to be considerably 

easier than Y. For example, on Q, the mean score for X is larger than the mean score for Y by 133% 

of the SD of Y. In addition, Q is more able than P with a mean A score that is approximately a 

quarter of a P + Q-SD higher than P. The correlation between X and A is 0.78 and 0.74 respectively 

in P and Q. The correlation between Y and A is 0.79 and 0.76 respectively in P and Q. 

These pseudo-tests were designed to produce an equating problem for which solutions 

would be nonlinear and for which the different equating methods would be expected to give 

different results. The large difference in difficulty between X and Y ensured that the equating 

functions would be nonlinear and the relatively large difference in the test performance of P and Q 

was supposed to ensure that CE and PSE would produce different results. These choices were 

made to provide a sharp comparison between the equating methods. 

Because all the examinees in P and Q took all the 119 items on the original test, all of the 

examinees in P and Q has scores for X, Y, and A. In order to mimic the structure of the NEAT 
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design, we pretended that scores on X were not available for the examinees in Q and that scores on 

Y were not available for the examinees in P.  

We computed the true equating functions for these data under the CE, PSE, and IRT OSE 

missing data assumptions as described in Section 3. In addition, because the data that are usually 

missing in the NEAT design are, in fact, available for the pseudo-test data, we computed a fourth 

true equating function using the real data. One way of viewing the pseudo-test data for X in Q 

and Y in P is as a fourth way of filling in the missing data, using real data rather than one of the 

missing data assumptions. 

Figure 1 compares the estimated equating functions with the true equating functions 

when the missing data marginal approach was used to compute the true equating function. In 

figures like Figure 1, we truncate the range on the horizontal axis to lie between the 1st and 99th 

percentiles of the distribution of X. 

Each panel in Figure 1 shows the bias, that is, the differences, between the estimated 

equating functions from the CE, PSE, and IRT OSE methods and one of the true equating 

functions (mentioned in the title of the panel). For example, the top left panel shows the bias for 

the CE, PSE, and IRT OSE methods when the true equating function is obtained under the CE 

assumptions. Note that the bias curve for the CE method in this panel is the horizontal zero-line 

because the bias for CE with the CE true equating function is 0 at all score points by Theorem 1. 

Figure 1 shows that each equating method has essentially no bias when the true equating function 

is computed using the missing data assumptions of that method. 

The results were very similar when the filled-in missing data values were used instead of the 

missing data marginals to compute the true equating functions—the results are shown in Figure 2.  

The dotted vertical lines in the four panels of Figures 1 and 2 mark five percentiles (5th, 

25th, 50th, 75th, and 95th) of the distribution of the X scores in the full population P + Q. Figures 

1 and 2 show that, in this example, the bias for each method is never very large, ranging only up to 

one-half of a raw score point above the 25th percentile. It also shows that the CE and IRT OSE 

methods are quite similar to each other, especially between the 5th and 95th quantiles. The fourth 

panels of Figures 1 and 2 show how close each estimated equating function is to the true equating 

function found using the real data. 
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Figure 1. Bias (differences between the estimated equating functions and the true equating 

function) for the first pseudo-test example when the missing data marginals are used to 

compute the true equating function.  

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Figure 2. Bias (differences between the estimated equating functions and the true equating 

function) for the first pseudo-test example when simulating the missing data values method is 

used to compute the true equating function. The horizontal line of long dashes denotes a 

difference of zero. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Table 5 contains the four discrepancy measures, described in Section 4, comparing the 

estimated and true equating functions for each cell illustrated in Table 3. Note that entries are 

effectively zero when the true and estimated equating functions are computed using the same 

method. 

Table 5 

Summary of the Differences Between the Estimated and True Equating Functions for the Three 

Equating Methods for the First Pseudo-Test Example 

Assumptions behind the true equating 
function  

Estimated 
equating 
function 

RMSD 

CE PSE IRT OSE Real 
data 

Sum 

CE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0 
0 
0 
0 

0.40 
0.26 
0.30 
0.04 

0.31 
0.28 
0.11 
0.09 

0.20 
0.08 
0.17 
0.07 

0.91 
0.62 
0.58 
0.20 

PSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.40 
0.26 
0.30 
0.04 

0 
0 
0 
0 

0.52 
0.46 
0.21 
0.12 

0.32 
0.23 
0.21 
0.04 

1.24 
0.95 
0.72 
0.20 

IRT OSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.31 
0.28 
0.11 
0.09 

0.52 
0.46 
0.21 
0.12 

0 
0 
0 
0 

0.35 
0.29 
0.13 
0.16 

1.18 
1.03 
0.45 
0.37 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating, RMSD = root mean squared difference. 

To focus on the question of the robustness of the three equating methods across the several 

choices of true equating function, Table 5 shows the sum of the RMSD values across the four 

columns for each method. The entries in each cell of Table 5 represent RMSD values for different 

ranges of the X score distribution and give different views of the robustness of each equating 

method. For the entire score range, the ordered (low to high) RMSD sums are CE = 0.91, IRT OSE 

= 1.18, and PSE = 1.24. For the lower 25% of the score range, the ordered sums are CE = 0.62, 

PSE = 0.95, and IRT OSE = 1.03. For the middle 50% of the score range, the ordered sums are 
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IRT OSE = 0.45, CE = 0.58, and PSE = 0.72. For the upper 25% of the score range, the ordered 

sums are CE = 0.20, PSE = 0.20, and IRT OSE = 0.37. 

Table 5 suggests that the CE method is the most robust among the three methods with 

respect to overall RMSD and the RMSD restricted to the lowest scoring and highest scoring 

examinees. The IRT OSE method is the most robust for the middle 50% of the score range and is 

the least robust for the lowest and highest scoring examinees. For this data set, the PSE method 

appears to be the least robust of the three methods; at best PSE ties with CE only for the highest 

scoring examinees.  

Next we will compare the filled-in missing data for the three sets of missing data 

assumptions to the scores that are actually observed for X in Q and for Y in P. Table 6 displays a 

variety of summary statistics to facilitate this comparison. 

Table 6 

Summary Statistics for the Real Data and the Filled-In Missing Data for X in Q and Y in P for 

the First Pseudo-Test Example 

Source of 
filled-in 
data 

Mean 
(SD) Skew Kurt 2.5th  

% ile Median 97.5th 
% ile 

Correl 
with A 

Correl 
of X 

and Y 

Y in P 

Real data 26.6 (6.7) -0.10 -0.55 14 27 39 0.79 0.79 

CE 26.4 (6.7) -0.12 -0.51 13 26 39 0.79 0.61 

PSE 26.8 (6.5) -0.16 -0.52 14 27 38 0.77 0.60 

IRT OSE 26.4 (6.7) -0.24 -0.45 13 27 38 0.79 0.80 

X in Q 
Real data 36.4 (4.8) -1.09 1.54 25 37 43 0.74 0.76 

CE 36.4 (5.0) -1.16 1.54 24 38 43 0.75 0.57 

PSE 36.2 (5.1) -1.08 1.18 23 37 43 0.76 0.57 

IRT OSE 36.5 (4.9) -1.04 1.15 24 37 43 0.75 0.77 

Note. Skew = skewness coefficient, Kurt = kurtosis coefficient, Correl = correlation, % ile = 

percentile, CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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As shown in Table 6, all three missing data assumptions produce distributions of filled-in 

missing data values that are very similar to each other and to the real data. This similarity extends 

to means, SDs, skewness, kurtosis, the 2.5th, 50th, and 97.5th percentiles and to the correlation of 

the filled in values with A. The mean and SD of the CE and IRT OSE method are slightly closer, 

compared to the PSE method, to those for the real data. However, the small differences between 

the three methods actually reflect real differences rather than random noise. To assess this, we 

reran the program that filled in the missing data with a different random seed. The results were 

practically the same as the ones reported in Table 6. This stability is due to the large samples 

involved and to the fact that the sampling is conditional (i.e., stratified) on A rather than being 

purely random. When we applied the paired t-test to the difference between the real data values for 

each examinee and the filled-in missing data values for that examinee, all of the differences in the 

means were statistically significant at less than 0.005 level with the exception of CE for X in Q, 

which had a p-value of 0.48.  

As another check on the stability of the small differences we saw between the equating 

methods, we computed the standard error of equating difference (SEED) as described in von 

Davier et al. (2004b) for the difference between CE and PSE using the Gaussian kernel method of 

continuization. The difference was well outside of the 2 SEED band for most of the score range 

indicating that, while small, the differences between CE and PSE, at least, were not due to random 

sample fluctuations. Still, what is striking about Table 6 is the similarity between the missing data 

distributions and those of the real data. 

One important feature in Table 6 is that the IRT OSE filled-in missing data values are 

much better at reproducing the correlation between X and Y than the filled-in values from CE or 

PSE (see last column of Table 6). In fact, both in P and in Q, these correlations are much smaller 

for PSE and CE than they are for either the real data or the IRT OSE filled-in missing data. This 

feature is a direct outcome of conditioning on X and A in (33) and on Y and A in (35) for IRT OSE, 

whereas for CE and PSE, the conditioning is only on A. It is interesting that even with this 

advantage, IRT OSE does not agree with the real data any more than the other methods. In 

particular, CE does as well as IRT OSE or better at reproducing the summary statistics of the real 

data in Table 6. The slight superiority of CE at reproducing the real data was also shown in a 

different analysis of these same data in Holland et al. (2008). 
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6. Example 2: The Second Pseudo-Test 

The pseudo-tests in this example were constructed in a similar way to the first example, 

using data from two administrations of a different form of the same testing program involved in 

our first example; these data were used in Puhan, Moses, Grant, and McHale (2008). This form 

had 120 multiple-choice items. Two pseudo-tests, X and Y, both 48 items long, and an external 

anchor A, 24 items long, were created from the original test. As before, this anchor had no items in 

common with either X or Y. Table 7 summarizes the data. 

This example is less extreme than the one in Section 5. While the pseudo-tests differ 

substantially in difficulty with X being harder than Y, the difference is not as large as in the 

previous section. For example, on Q, the mean score on X is smaller than the mean score on Y by 

nearly 43% of the SD of Y. Similarly, Q is more able than P with a mean A score that is higher than 

P by only 14% of the SD of P + Q. Nevertheless, these differences were expected to be large 

enough to make the equating functions have a significant nonlinear component and to cause CE 

and PSE to differ. The correlation between X and A is 0.74 and 0.73 respectively in P and Q. The 

correlation between Y and A is 0.72 and 0.71 respectively in P and Q. 

We used the data in this example in exactly the same way as we did for the first pseudo-test 

example. Figure 3, which is similar to Figure 1, compares the estimated equating functions with 

the true equating functions obtained using the missing data marginals approach.  

Table 7 

Statistics for the Scores on the Pseudo-Tests on P, Q, and P + Q, for the Second Pseudo-Test 

Example 

X  
48 items  

Y 
48 items 

A 
24 items 

Test 
population N 

Means 
(SDs) 

AVP Means 
(SDs) 

AVP Means 
(SDs) 

AVP 

P 6,469 
29.4 
(6.7) .61 

32.2 
(6.4) .67 

15.3 
(3.5) .64 

Q 6,580 
30.8 
(6.3) .64 

33.4 
(6.0) .70 

15.8 
(3.4) .66 

P + Q 13,049 
30.1 
(6.5) .63 

32.8 
(6.2) .68 

15.5 
(3.5) .65 

Note. AVP = average proportions correct. 
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Figure 3. Bias (differences between the estimated equating functions and the true equating 

function) for the second pseudo-test example when the missing data marginals are used to 

compute the true equating function. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Figure 3 demonstrates that the estimated and true equating methods do not differ very 

much, rarely exceeding half of a raw score point above the 25th percentile. It also shows that the 

CE and IRT OSE methods perform similarly and are closer to the real data true equating function 

than is the PSE method between the 5th and 95th percentiles of the X score distribution. 

Table 8, similar to Table 5, shows the summary measures of the discrepancies between the 

estimated and true equating functions. 

To focus on the question of the overall robustness of the three equating methods, we again 

summed the RMSD values across the four columns for each method. For the entire score range, the 

ordered RMSD sums are IRT OSE = 0.96, CE = 0.97, and PSE = 1.47. For the lower 25% of the 

score range, the ordered sums are CE = 0.66, IRT OSE = 0.66, and PSE = 0.99. For the middle 

50% of the score range, the ordered sums are IRT OSE = 0.68, CE = 0.68, and PSE = 1.08. For the 

upper 25% of the score range, the ordered sums are IRT OSE = 0.06, CE = 0.09, and PSE = 0.11. 

Table 8 

Summary of the Differences Between the Estimated and True Equating Functions for the Three 

Equating Methods for the Second Pseudo-Test Example 

The assumptions behind the true equating 
function  

Estimated 
equating 
function 

RMSD 

CE PSE IRT OSE Real data 

Sum 

CE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0 
0 
0 
0 

0.32 
0.25 
0.20 
0.04 

0.20 
0.16 
0.11 
0.02 

0.45 
0.25 
0.37 
0.03 

0.97 
0.66 
0.68 
0.09 

PSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.32 
0.25 
0.20 
0.04 

0 
0 
0 
0 

0.42 
0.28 
0.31 
0.03 

0.73 
0.46 
0.57 
0.04 

1.47 
0.99 
1.08 
0.11 

IRT OSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.20 
0.16 
0.11 
0.02 

0.42 
0.28 
0.31 
0.03 

0 
0 
0 
0 

0.34 
0.22 
0.26 
0.01 

0.96 
0.66 
0.68 
0.06 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating, RMSD = root mean squared difference. 
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In Table 8, both the IRT OSE method and the CE method are the most robust with respect 

to the RMSD measures. The PSE is the least robust among the three methods. This result is partly 

due to its poor performance for the real data set. The bottom right panel in Figure 3 shows that the 

bias of the PSE method is more than that of the other two methods, especially below the 75th 

percentile of the total score range.  

In Table 9, we compare the distributions of the filled-in missing data values with the real 

data for X in Q and for Y in P.  

Table 9 

Summary Statistics for the Real Data and the Filled-In Missing Data for X in Q and Y in P for 

the Second Pseudo-Test Example 

Source 
of filled-
in data 

Mean 
(SD) Skew Kurt 2.5th  

% ile Median 97.5th  
% ile 

Correl 
with A 

Correl 
of X and 

Y 
Y in P 

Real data 
32.2 
(6.4) -0.29 -0.40 19 33 43 0.72 0.81 

CE 
32.4 
(6.2) -0.37 -0.30 19 33 43 0.73 0.54 

PSE 
32.8 
(6.1) -0.40 -0.24 20 33 43 0.72 0.53 

IRT OSE 
32.5 
(6.3) -0.40 -0.21 19 33 43 0.73 0.81 

X in Q 

Real data 
30.8 
(6.3) -0.19 -0.44 18 31 42 0.73 0.79 

CE 
30.5 
(6.5) -0.10 -0.53 18 31 42 0.74 0.53 

PSE 
30.1 
(6.6) -0.04 -0.61 18 30 42 0.73 0.52 

IRT OSE 
30.5 
(6.4) -0.28 -0.36 17 31 41 0.72 0.80 

Note. Skew = skewness coefficient, Kurt = kurtosis coefficient, Correl = correlation, % ile = 

percentile, CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Table 9 again shows that all three missing data assumptions reproduce the distribution of 

the real data about equally well. Again, some small differences exist, but the means, SDs, 

skewness, kurtosis, and the three percentiles of the filled-in missing data values are remarkably 

close to the values for the real data values. The means and SDs of CE and IRT OSE are a bit 

closer to the real data values than those of the PSE, but the differences are small. Again, IRT 

OSE is better at reproducing the correlation between X and Y than the other two methods for the 

reasons mentioned in Section 5. 

7. Example 3: The Admissions Test 

The data in Table 10 are from the verbal measure of a large admissions testing program 

that uses the NEAT design in its operational equating process. The data were collected from two 

test forms, a new form X that we equated to an old form Y. Both test forms had 78 multiple-choice 

items divided among three item types. X and Y were designed to be parallel and similar in 

difficulty. Unlike the two previous examples, there were no real data for X in Q or for Y in P. A 

35-item, multiple-choice, external anchor test, A, was also included. Table 10 summarizes the data. 

Unlike the two previous examples, no direct way tells which of these test forms was harder 

and by how much. This information emerged from the results of the test equatings. We see in 

Table 10 that X is slightly harder than Y. Population P is less able than Q. The average A score in P 

is one fourth of the SD of P + Q below that in Q. The correlation between X and A in P is 0.90, and 

the correlation between Y and A in Q is 0.91. 

Table 10 

Statistics for the Scores on the New and Old Tests and the Anchor Test on P and Q for the 

Admissions Test Example 

X 
78 items 

Y 
78 items 

A 
35 items 

Test 
population N 

Mean 
(SD) 

AVP Mean 
(SD) 

AVP Mean 
(SD) 

AVP 

P   5,226 
41.4 

(15.0) .53 - - 
18.7 
(7.3) .53 

Q 11,297 - 
45.7 

(14.7) 0.59 
20.5 
(7.1) .59 

P + Q 16,523 - - 
19.9 
(7.2) .57 

Note. AVP = average proportion correct. 
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Figure 4 compares the estimated and true equating functions under the three sets of missing 

data assumptions when the missing data marginals were used to compute the true equating 

functions. 

 

Figure 4. Bias (differences between the estimated equating functions and the true equating 

function) for the admissions test example when the missing data marginals are used to 

compute the true equating function. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Figure 4 shows that, in this example, equating functions for CE and PSE are more similar 

to each other and differ from the IRT OSE function. Moreover, in this example, the differences 

between IRT OSE and the other two methods exceed one raw score point in important regions of 

the score range. Because we have no real data for comparison, it is unclear whether this indicates 

that PSE and CE are wrong or that IRT OSE is wrong. Nonetheless, this worst case has produced 

differences that are only at the edge of concern for a real testing program. 

Table 11 (which is similar to Tables 5 and 8 but which does not have a column for real 

data) shows the RMSD measures. For the entire score range, the ordered RMSD sums are CE = 

1.22, PSE = 1.31, and IRT OSE = 1.63. For the lower 25% of the score range, the ordered sums are 

PSE = 0.45, IRT OSE = 0.54, and CE = 0.69. For the middle 50% of the score range, the ordered 

sums are CE = 0.90, PSE = 1.08, and IRT OSE = 1.36. For the upper 25% of the score range, the 

ordered sums are CE = 0.43, PSE = 0.47, and IRT OSE = 0.64. 

Table 11 

Summary of the Differences Between the Estimated and True Equating Functions for the 

Three Equating Methods for the Admissions Test Example 

RMSD The assumptions behind the true equating 
function  

The 
estimated 
equating 
function 

 CE PSE IRT OSE 

Sum 

CE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0 
0 
0 
0 

0.45 
0.30 
0.31 
0.13 

0.77 
0.39 
0.59 
0.30 

1.22 
0.69 
0.90 
0.43 

PSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.45 
0.30 
0.31 
0.13 

0 
0 
0 
0 

0.86 
0.15 
0.77 
0.34 

0.31 
0.45 
1.08 
0.47 

IRT OSE 

Entire range 
Lower 25% 
Middle 50% 
Upper 25% 

0.77 
0.39 
0.59 
0.30 

0.86 
0.15 
0.77 
0.34 

0 
0 
0 
0 

1.63 
0.54 
1.36 
0.64 

Note. The four values in each cell denote the RMSDs for the entire range, for lower 25%, for 

middle 50%, and for upper 25%. CE = chain equipercentile equating, IRT OSE = item-response-

theory observed-score equating, PSE = poststratification equating, RMSD = root mean squared 

difference. 
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In Table 11, in terms of the RMSD values, CE and PSE show the most robustness but differ 

as to where along the score range they show this. The CE method is the most robust with respect to 

the overall RMSD, middle 50% of the examinees, and the highest scoring 25% of the examinees; 

the PSE method is the least robust with respect to the lowest scoring 25% of the examinees. The 

IRT method shows the least robustness in this example.  

Table 12, which is similar to Tables 6 and 9 but does not have a column for the real data, 

displays the summary measures of the distributions of the filled-in missing data values for the three 

sets of missing data assumptions.  

Table 12 

Summary Statistics for the Real Data and the Filled-In Missing Data for X in Q and Y in P for 

the Admission Test Example 

Source of 
the filled-

in data 

Mean 
(SD) Skew Kurt 2.5th  

% ile Median 97.5th 
% ile 

Correl 
with A 

Correl of 
X and Y 

Y in P 

CE 
42.0 

(15.0) 0.06 -0.79 15 42 70 0.91 0.82 

PSE 
42.3 

(15.0) 0.04 -0.81 15 42 70 0.91 0.81 

IRT OSE 
41.8 

(15.0) 0.10 -0.75 15 41 70 0.91 0.94 
X in Q 

CE 
45.2 

(14.7) -0.06 -0.74 18 45 71 0.90 0.82 

PSE 
44.7 

(14.8) -0.07 -0.71 16 45 71 0.90 0.81 

IRT OSE 
45.3 

(14.6) -0.20 -0.71 17 46 70 0.91 0.94 

Note. Skew = skewness coefficient, Kurt = kurtosis coefficient, Correl = correlation, % ile = 

percentile, CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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8. Discussion, Conclusions, and Recommendations 

Discussion 

The similarities and differences among the three examples are worth summarizing. 

First, in all three examples, the tests to be equated, X and Y, are parallel in content and 

numbers of items. The anchor tests are also similar in content to the tests to be equated and have 

difficulty levels that are between those of X and Y. In these examples, the test-anchor-test 

correlations are all above 0.70, sometimes quite substantially. These examples are, therefore, all 

cases in which test equating is likely to be successful.  

Second, in all three cases, large A score differences appear between P and Q (the difference 

in means lies between 14% to 25% of an SD). This condition usually ensures that CE and PSE will 

produce different results.  

Third, the difference in test difficulty between X and Y varies considerably over the three 

examples (from 133% to 43% to 7% of a Q-SD difference). A large difficulty difference usually 

ensures the need for a nonlinear equating function; a linear equating function might be acceptable 

when the test differences in difficulty are small. 

To show the effect of test difficulty differences on equating functions, Figures 5 to 7 plot 

the estimated equating functions for the three examples. The functions in Figures 5 and 6 exhibit a 

definite curvilinearity, while Figure 7 shows that the relationships are nearly linear. In Figures 5 

and 6, we plotted the 45-degree line that would be the equating function if the two tests were 

equally difficult. The 45-degree line was in the middle of the graphs of the equating functions in 

Figure 7 and was omitted. 

Fourth, the three examples have different test and anchor-test lengths (44 and 24, 48 and 

24, and 78 and 35, respectively).  

Fifth, the three examples also differ with respect to the relative samples sizes from P and 

Q. This difference means that the choice of w that applies when P and Q are pooled to form P + 

Q differs in the three cases. In Example 1, w = 6168/10405 = 0.59. In Example 2, w = 

6469/13049 = 0.50. In Example 3, w = 5226/16523 = 0.32. Previous research suggests that the 

choice of w has no influence on the results of CE and only a minor influence on the results of 

PSE. Hence, w probably has little influence on IRT OSE, but this supposition has yet to be 

established. In our opinion, the fact that w varies in these examples has little consequence for the 

differences that we see in the results. 
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Figure 5. The three estimated equating functions for the first pseudo-test example. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 

 

Figure 6. The three estimated equating functions for the second pseudo-test example. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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Figure 7. The three estimated equating functions for the admissions test example. 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 

Thus, the three examples cover a range of situations that (a) are all plausible circumstances 

where test equating is likely to be successful and (b) are expected to vary from linear to nonlinear 

equating functions. Moreover, they ought to show differences among the three equating methods. 

An examination of the three tables of bias and RMSD values, Tables 5, 8, and 11, do not show one 

of the methods consistently dominating the other two in terms of their robustness against the 

various missing data assumptions we used. To get a simple summary of how each equating method 

fared across the three examples, we examined the three missing data assumption columns of 

Tables 5, 8, and 11 (CE, PSE, and IRT OSE) separately from the real data columns in Tables 5 and 

8. To simplify the numbers for each method, we ranked its bias or RMSD values compared to the 

other two methods separately for each missing data assumption. For its own missing data 

assumption, a method got a rank of 0 (because the estimated equating function and the true 

equating function are the same for any method). For any other assumption, a method got a rank of 

1 or 2 depending on whether the value for the method was the smaller or larger of the two nonzero 

values. For example, in Table 5 (the first pseudo-test) under the CE assumption, the overall RMSD 
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is 0 for the CE method, 0.31 for the IRT OSE method, and 0.40 for the PSE method. Thus, under 

the CE assumption, the rank for the overall RMSD of CE is 0, the rank for the overall RMSD of 

IRT OSE is 1, and the rank for the overall RMSD of PSE is 2. The complete set of these ranks is 

displayed in the three panels of Table 13 (the zero ranks are omitted). 

Table 13 

The Ranks of the Root Mean Squared Difference (RMSD) Measures in Tables 3, 6, and 9 

Organized by Equating Method, Example, and Missing Data Assumptions 

 First example Second example Third example 

Assumptions CE PSE IRT CE PSE IRT CE PSE IRT 

CE method 
Overall RMSD  1 1  1 1  1 1 
RMSD for < 25% ile  1 1  1 1  2 2 
RMSD for 25-75% ile  2 1  1 1  1 1 
RMSD for > 75% ile  1 1  2 1  1 1 

PSE method 
Overall RMSD 2  2 2  2 1  2 
RMSD for < 25% ile 1  2 2  2 1  1 
RMSD for 25-75% ile 2  2 2  2 1  2 
RMSD for > 75% ile 1  2 2  2 1  2 

IRT OSE method 
Overall RMSD 1 2  1 2  2 2  
RMSD for < 25% ile 2 2  1 2  2 1  
RMSD for 25-75% ile 1 1  1 2  2 2  
RMSD for > 75% ile 2 2  1 1  2 2  

Note. % ile = percentile, CE = chain equipercentile equating, IRT OSE = item-response-theory 

observed-score equating, PSE = poststratification equating. 

In Table 13, the more times 1 appears in a panel, the greater the robustness of the 

corresponding method (i.e., the smaller it deviates from the true equating function for the sets of 

missing data assumptions that do not favor it). Each panel in Table 13 has 24 nonzero entries. For 

CE there are twenty 1s and four 2s. For PSE there are eight 1s and sixteen 2s. For IRT OSE there 
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are nine 1s and fifteen 2s. From this perspective, CE appears to exhibit more robustness than the 

other two methods across the three sets of missing data assumptions, and PSE exhibits less 

robustness than the other two methods; IRT OSE performs in between. 

For the two pseudo-test examples, a table similar to Table 13 can be made for the RMSD 

values under the real data columns of Tables 5 and 8. Table 14 gives the rankings (now 1, 2, or 3) 

of the three values for CE, PSE, and IRT OSE for each measure and the two examples. 

Table 14 

The Ranks of the Root Mean Squared Difference (RMSD) Measures for the Real Data Columns 

of Tables 3 and 6 Organized by Equating Method and Example 

Equating method CE PSE IRT OSE 
 First 

example 
Second 
example 

First 
example 

Second 
example 

First 
example 

Second 
example 

Overall RMSD 1 2 2 3 3 1 
RMSD for < 25% ile 1 2 3 3 2 1 
RMSD for 25-75% ile 2 2 3 3 1 1 
RMSD for > 75% ile 2 2 1 3 3 1 

Note. % ile = percentile, CE = chain equipercentile equating, IRT OSE = item-response-theory 

observed-score equating, PSE = poststratification equating. 

In Table 14, an equating method with smaller ranks is more able than one with higher ranks 

to reproduce the true equating function that corresponds to the real data. To get a quantitative 

comparison, we summed the ranks for each equating method in Table 14. The sums are 14 for CE, 

21 for PSE, and 13 for IRT. In the second example, the IRT OSE method did the best according to 

all four of our measures; this explains its success in this quantitative comparison. The IRT OSE 

and CE methods do noticeably better than PSE in this comparison.  

Putting the results of Tables 13 and 14 together, we see that the CE method appears to have 

an edge over the other two methods with respect to robustness to the several plausible missing data 

assumptions. In particular, the PSE and the IRT OSE methods do not appear to do consistently as 

well with respect to this criterion. 

What is quite clear in these examples, however, is how similar the three methods are even 

in circumstances (i.e., large differences between P and Q) where we thought that they would be 
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substantially different. This leads us to consider a comparison of Tables 6, 9, and 12. The striking 

observation is how the various missing data assumptions lead to very similar distributions of the 

missing data, and how closely these all agree with the real data when these are available. 

Apparently, the very tiny differences seen across the missing data assumptions in these three tables 

are the sources of the final small differences in the resulting equating functions. 

How do the filled-in missing data values and the real data relate to each other? From Tables 

6, 9, and 12, we see that the marginal distributions are very close, but probably different enough to 

result in the small differences that are observed in the equating functions. What about the 

correlations between the filled-in missing data values and the real data? These correlations are 

given in Table 15. 

Table 15 

Correlations Between the Filled-In Missing Data Values for the Various Missing Data 

Assumptions and the Real Data for the Three Examples  

 Y in P X in Q 
 Real 

data 
CE PSE IRT 

OSE 
Real 
data 

CE PSE IRT 
OSE 

First pseudo-test example 
Real data - 0.61 0.62 0.72 - 0.57 0.56 0.68 
CE - - 0.61 0.62 - - 0.59 0.57 
PSE - - - 0.62 - - - 0.58 

Second pseudo-test example 
Real data - 0.53 0.52 0.69 - 0.54 0.52 0.68 
CE - - 0.53 0.54 - - 0.54 0.54 
PSE - - - 0.52 - - - 0.53 

Admissions test example 
CE - - 0.53 0.54 - - 0.54 0.54 
PSE - - - 0.52 - - - 0.53 

Note. CE = chain equipercentile equating, IRT OSE = item-response-theory observed-score 

equating, PSE = poststratification equating. 
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The correlations between the filled-in missing data for CE, PSE, and IRT OSE are very 

similar for the second and third example, ranging from 0.52 to 0.54. The corresponding 

correlations for the first example are slightly higher, ranging from 0.57 to 0.62. In the first two 

examples, the correlations of the real data with the filled-in missing data values from IRT OSE are 

higher (0.68 to 0.72) than the other correlations (0.52 to 0.62) due in large measure to the extra 

conditioning that goes into the simulation of the IRT OSE values. It is remarkable that this higher 

correlation does not translate into a consistently more accurate or robust equatings using the IRT 

OSE method. 

Conclusions and Recommendations for Future Research 

In this study, we showed ways to fill in the missing data of the NEAT design so that the 

estimated equating function obtained by any one of the three equating methods would appear to be 

nearly equal to the true equating function. This illustrates an aspect of the statement in Wang et al. 

(2006) that “it is virtually impossible in a simulation to have a criterion that does not 

advantage/disadvantage one or more methods to some degree” (p. 15). Simulating data from an 

IRT model in an equating study can bias the results so that IRT OSE will tend to agree with an 

IRT-based true equating function. Our results suggest that CE will tend to be the second best in an 

IRT-based simulation. Examination of the IRT OSE columns of Tables 5, 8, and 11 shows that 

PSE has a smaller discrepancy measure in only one case, the RMSD value for the lower 25% of 

examinees in the third example (Table 11). However, our results show that there are many ways to 

fill in the missing data of the NEAT design beyond those of an IRT model, and we believe that 

they should all become part of the tool kit for equating studies. Hence, this paper promises to have 

a significant impact on future studies comparing different equating methods. 

We found that the two choices of defining the true equating function, the missing data 

marginals approach and the filling-in the missing data values approach, give nearly the same 

results, at least in the types of examples we considered. 

Another finding is the respectable performance of the IRT OSE method. It performs better 

than the two other methods when the true equating function is obtained under the real data 

assumption in the second example and does not perform too much worse than the other two 

methods in the other cases. Thus, our research partially responds to the appeal in Kolen and 

Brennan (2004) to perform more research studies involving the IRT OSE method and shows that 
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the method is indeed worthy of further attention by practitioners, especially in testing programs 

that use an IRT model to report scores. 

The results show a relatively close agreement between the three observed score equating 

methods. While several factors varied in this study, the three methods agreed much more than they 

disagreed. The small exception to this is the somewhat larger difference showed by IRT OSE from 

the other two methods for the third example. 

To understand why the methods agree so well, we believe that one important factor across 

the examples cannot be overemphasized: In all examples, test equating was expected to be 

successful. The tests we equated were very similar in content and identical in test length (and 

therefore similar in reliability); the anchor tests were sufficiently reliable (similar to X and Y and 

highly correlated with them). The differences in test difficulty across the three examples, while 

leading to nonlinear equating functions, did not seem to matter very much as far as the equating 

methods we studied were concerned. The only factor in these examples that usually leads to 

inaccurate equating was that P and Q are definitely different in every case. 

As indicated above, we believe that the three equating methods agree so well—and what 

differences they have are so small across the three examples—because it makes sense to equate X 

and Y in these examples. While it is generally true that we should expect the largest differences 

between CE and PSE (and possibly IRT OSE) when P and Q differ in ability, this expectation does 

not mean that these differences will be so large as to make the final choice of an equating method 

problematic. Generally, in cases where it makes sense to equate X and Y, they will agree well 

enough for practical purposes. Had X and Y differed substantially in content or in reliability or had 

otherwise violated the Five Requirements of Test Equating as discussed in Holland and Dorans 

(2006, pp. 215–216),4 then we probably would have seen larger differences among the three 

equating methods. A suggestion for future research in this area then is to create pseudo-tests or 

find real test data examples where equating or test linking can be performed between tests that 

violate the assumptions of similar content and reliability or when the anchor tests are less reliable 

or less similar to the tests to be equated. Our research here indicates that without such departures 

from ideal equating circumstances, little chance exists of seeing important differences between the 

types of observed score equating methods studied here. 

What about the robustness of the three methods to the missing data assumptions that are 

made? Here we are fairly confident that the CE method is a little bit more satisfactory than the 
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other two methods. This finding is just another in a long line of findings that show that CE 

methods for the NEAT design are sound and of practical value even though they appear to lack the 

more elegant theoretical support that characterizes PSE and IRT OSE methods. Finally, we should 

restate our surprise at finding that, while the IRT OSE methods of filling in the missing data of the 

NEAT design are the most strongly correlated with the real data when that is available, this 

correlation does not appear to give IRT OSE any particular advantage over the other two methods 

in the three examples of this study. Perhaps it will pay off when the equating situation is less 

satisfactory than those in our three examples. This topic is one for future research. 

In view of our research, what advice can we give to those who need to equate tests using 

the NEAT design? First of all, this work shows, using a new criterion—robustness against 

variations in missing data assumptions—that the simple CE methods hold up well. While the CE 

method has been regarded as having “shortcomings” (Kolen & Brennan, 2004, p. 146), a large 

body of evidence now shows that, whatever its shortcomings, it works well in a variety of 

circumstances. We would encourage practitioners to consider using CE methods for the NEAT 

design and not to shy away from them because they appear to be too simple to be right.  

More generally, our research shows that regardless of which of the three equating methods 

is used by practitioners for the NEAT design, the methods will tend to agree with each other when 

the proper conditions for equating are in place (the proper conditions for equating with anchor tests 

are summarized in, for example, Holland & Dorans, 2006, pp. 215–216). This agreement will hold 

even when the tests differ quite widely in difficulty or the two groups differ markedly on the 

anchor test. Looking at the agreement we found, large discrepancies among the results of CE, PSE, 

and IRT OSE, is possibly a sign that a problem needs further examination. In other words, it is a 

good idea to calculate more that one type of equating function for important tests in order to 

uncover problems that might not reveal themselves otherwise.  

In Uncommon Measures, Feuer, Holland, Green, Bertenthal, and Hemphill (1999) 

explained to the U.S. Congress why attempts to link scores on tests that differ in content and 

reliability (and possibly in other things as well) will generally result in unsatisfactory linkages that 

do not stand up across different testing populations and across time. Our research shows that when 

attempts to link scores on tests are carried out under favorable circumstances, they will be 

successful in the sense that different equating methods will give similar results even when the tests 

are very different in difficulty and when the populations arising in the NEAT design differ by up to 
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one-quarter of an SD  on the anchor test. Feuer et al. (1999) were hampered by the lack of 

extensive research and examples to show in detail what problems would arise when test equating 

was attempted in unsatisfactory situations. Their findings depended to a great extent on 

professional judgment rather than on a large array of scientific equating studies. We believe that 

research that extends the present set of examples to less satisfactory test equating situations would 

bolster the conclusions of Feuer et al. and clarify the degree to which test linking becomes 

problematic under less than ideal test-linking circumstances. 
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Notes 
 

1 There are approaches for filling in the missing data that do not reflect the missing data of these 

methods (Liou & Chen, 1995). 

2 We also used the kernel smoothing method (KSM; von Davier et al., 2004b), but it produced 

nearly identical results as the traditional linear interpolation method. So we do not report results 

for the KSM. 

3 Note that we computed P{X = x | P} and P{Y = y | Q} from the presmoothed observed bivariate 

distributions, as described earlier. 

4 The five requirements are (a) equal construct, (b) equal reliability, (c) symmetry, (d) equity, and 

(e) population invariance.  
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Appendix A 

Raking  

Raking is an iterative algorithm that produces a discrete bivariate distribution that has the 

association (as measured by the adjacent cross-product ratios) of one bivariate discrete 

distribution and the marginal distributions of two other target marginal distributions from 

different sources. In the application used here to produce {kxaQ} in (23), the discrete bivariate 

distribution is the presmoothed joint distribution of X and A over P, {pxa}; the two target 

marginal distributions are the discretized missing data marginal of X in Q, {fxQ}, from (22), and 

the presmoothed marginal of A in Q, {haQ}. The result, {kxaQ}, is an estimate of the (unobserved) 

joint distribution of X and A in Q. In the original application of raking, the two discrete marginal 

distributions came from a census of a population for which the joint distribution was not 

available, and the joint distribution of the two variables was known from a sample whose 

marginals may have differed substantially from the population values. Raking was developed to 

combine these two sources of information in a consistent way. Raking is related to maximum 

likelihood estimation of hierarchical loglinear models for multiway contingency tables. 

The raking algorithm consists of alternating row and column multiplications of the entries 

in the joint distribution in such a way that the result converges to a joint distribution that has the 

two target marginal distributions. For example, begin with the rows, then take each row in turn 

and multiply each entry in the row by the ratio of the target marginal value for that row to the 

current total for that row; the row totals of the adjusted data agree with the target marginal for the 

row variable. The column totals of the adjusted data, however, may not agree with the target 

marginal for the column variable. Thus, the next step, taking each column in turn, is to multiply 

each entry in a column by the ratio of the target marginal for the column variable to the current 

column total for that column. Now the column totals of the adjusted data agree with the target 

marginal for that variable, but the new row totals may no longer match their target marginals. 

The process iterates, alternating between the rows and the columns, and agreement on both rows 

and columns is usually achieved after a few iterations. The result is a joint distribution that has 

the target marginals for both variables. In addition, because the steps in the iterations involve 

only row and column multiplications, the cross-product ratios for the adjacent two-by-two tables 

within the larger joint distribution will be unchanged from the original joint distribution. In this 

sense, the final result is a joint distribution that preserves the cross-product association or 
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dependence structure of the original joint distribution, but it now has the desired target marginal 

distributions. 

In our example, to obtain an estimate of the (unobserved) joint distribution of X and A in 

Q, the raking algorithm will iterate through the following steps (assume that the lowest and 

highest possible X scores are lX and hX, respectively, and lA and hA for the A scores): 

1.   For ( , )X Xx l h∈ , compute, for ( , )A Aa l h∈ , 
*

xap = xap xQ

xa
a

f
p∑

.  

2.   For ( , )A Aa l h∈ , compute, for ( , )X Xx l h∈ , 
**

xap =
*

xap
*

aQ

xa
x

h
p∑

. 

3.   Reset xap =
**

xap  and continue until convergence. 

See Bishop et al. (1975) for further discussion of raking, which is called iterative 

proportional fitting there. 
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Appendix B 

Proof of Theorem 1 

By definition, FT(x) = wFP(x) + (1 – w)FQ(x), so substitute FQ(x) = HQ(HP
-1(FP(x))) from (16) to 

obtain 

FT(x) = wFP(x) + (1 – w)HQ(HP
-1(FP(x))) 

= wHP(HP
-1(FP(x))) + (1 – w)HQ(HP

-1(FP(x))) 

= (wHP + (1 – w)HQ)(HP
-1(FP(x))). (B1) 

Equation (B1) follows from the distributive property of function composition. Furthermore, by 

definition, HT(x) = wHP(x) + (1 – w)HQ(x), so that combining the above we have 

FT(x) = HT(HP
-1(FP(x))). (B2) 

In a similar way we may show that 

GT(y) = HT(HQ
-1(GQ(y))) (B2) 

or 

GT
-1(p) = GQ

-1(HQ(HT
-1(p))) (B3) 

so that 

GT
-1(FT(x)) = GQ

-1(HQ(HT
-1(HT(HP

-1(FP(x)))))) = GQ
-1(HQ(HP

-1(FP(x)))), 

as was to be proved. 




