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Abstract 

A general diagnostic model was used to specify and compare two multidimensional item-

response-theory (MIRT) models for longitudinal data: (a) a model that handles repeated 

measurements as multiple, correlated variables over time (Andersen, 1985) and (b) a model that 

assumes one common variable over time and additional orthogonal variables that quantify the 

change (Embretson, 1991). Using MIRT-model ability distributions that we allowed to vary 

across subpopulations defined by type of school, we also compared (a) a model with a single 

two-dimensional ability distribution to (b) extensions of the Andersen and Embretson 

approaches, assuming multiple populations. In addition, we specified a hierarchical-mixture 

distribution variant of the (Andersen and Embretson) MIRT models and compared it to all four 

of the above alternatives. These four types of models are growth-mixture models that allow for 

variation of the mixing proportions across clusters in a hierarchically organized sample. To 

illustrate the models presented in this paper, we applied the models to the PISA-I-Plus data for 

assessing learning and change across multiple subpopulations. The results indicate that (a) the 

Embretson-type model with multiple-group assumptions fits the data better than the other models 

investigated, and (b) the higher performing group shows larger improvement at Time Point 2 

than the lower performing group. 

Key words: Item response theory, growth models, multidimensional IRT, longitudinal models, 

diagnostic models, large scale assessments 
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Introduction 

Measurement of change in student performance between testing occasions is a central 

topic in educational research and assessment (Fischer, 1995). Most research on such 

measurement has been conducted using small-scale data collections in fields such as 

developmental, educational, clinical, and applied psychology. Change across occasions can be 

meaningfully measured by focusing on either the group (Andersen, 1985; Andrade & Tavares, 

2005; Fischer, 1973, 1976) or the individual (Embretson, 1991; Fischer, 1995). 

Measuring Group Differences in Growth 

Fischer (1973, 1976) proposed a linear logistic test model (LLTM) based on the 

dichotomous Rasch model (Rasch, 1980). The Rasch model assumes that the probability of a 

correct response by person v on item i can be written as 

exp( )( 1)
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in which vθ  is the person’s ability and iβ  is the item’s difficulty. The LLTM entails linear 

constraints across item parameters iβ  for the purpose of representing a structural relationship 

between the difficulties of different item sets (here: items given at different points in time). The 

LLTM can be used to model growth (Fischer, 1995; Glück & Spiel, 1997) by specifying linear 

constraints that represent time-point effects, group effects, and other item features. For a set of J 

items given at T time points in G treatment groups, a group-specific model for growth can be 

specified in the LLTM using 
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in which the effects from α1 to αJ are the baseline item difficulties, αJ+1 is the effect of Time 

Point 2, αJ+T-1 is the effect of time point T, αJ+T-1+1 is the effect of Group 2, and αJ+T-1+G-1 is the 

effect of Group G. This example assumes only main effects for base item difficulties, time 

points, and groups; Time Point 1 and Group 1 are the reference groups. A model with group-

specific time-point effects is also easily specified within this framework. Note that the LLTM 
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model for growth does not measure change at the individual level because the α effects do not 

depend on individuals. 

Wilson (1989) presented the Saltus model, which assumes student progression through 

developmental stages. As in the LLTM, in the Saltus model an additive constant that modifies 

item difficulty represents the effect of belonging to one of several developmental stages (Fischer, 

1973). However, the LLTM breaks item difficulties into known components, whereas the Saltus 

model does not assume that the student’s current stage is known. In the Saltus approach, the 

student’s current stage and the student’s ability measured within this stage are latent variables 

that must be inferred by using the model’s assumptions and plugging in the observed responses. 

Examinees are assigned an ability parameter θv and a class membership cv that represent their 

developmental stage. The classes (developmental stages) enter the model through stage 

parameters τck for subsets of items belonging to the same group (item type) and indexed with the 

same k(i) and same developmental stage c(i) of examinee i. The equation for the Saltus model is 
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The Saltus model can also be specified for polytomous items (Draney & Wilson, 2007; 

Wilson & Draney, 1997). It is a constrained version of the mixture-distribution Rasch model 

(Rost, 1990; von Davier & Rost, 1995). Like the LLTM, the Saltus model is an approach to 

structuring or constraining item difficulties. Unlike the LLTM, it includes a latent class variable 

that determines which structural parameter applies to the examinee, depending on his or her class 

membership c(j). Models whose population structure consists of an unobserved mixture of 

subpopulations can be used to model different trajectories of growth for different subpopulations. 

In such models, growth is a group-specific trajectory. 

Measuring Individual Differences in Growth 

The multidimensional Rasch model allows for the modeling of individual growth. Indeed, 

Andersen (1985) proposed that it be used for the repeated administration of the same items over 

time points. The following equation expresses Andersen’s model: 
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where jkθ  is the ability of person j at occasion k, and ib  is the difficulty of item i. Note that item 

difficulties remain constant across time points (occasions), but the ability associated with each 

occasion may differ. Thus, measurement occasions are represented by multiple ability variables 

that might be correlated. In Andersen’s model, abilities are specific to occasions; they do not 

quantify change but ability level at each occasion (Embretson, 1991). Therefore, deriving 

measures of change across occasions based on the model requires calculation of differences 

between occasion-specific abilities. 

Similarly to Andersen’s (1985) model, the model proposed by Andrade and Tavares 

(2005) describes latent ability changes within an item-response-theory (IRT) framework. It 

assumes known, fixed values of item parameters, and the latent ability structure describes the 

changes over occasions. This model can be written as 
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in which jkθ and ib are defined as in Equation 3, ia and ic are the discrimination and guessing 

parameters in traditional three-parameter logistic models (Lord & Novick, 1968), 

and ( , )kMVN μ Σ  is the k-dimensional, multivariate normal distribution with mean vector μ  and 

covariance matrix Σ . 

Embretson (1991) proposed a multidimensional Rasch model for learning and change 

(MRMLC) to provide parameters for individual differences in change. She postulated the 

involvement of M abilities in item responses within K occasions. Specifically, the MRMLC 

assumes that (a) on the first occasion (k = 1) only an initial ability is involved in the item 

responses and (b) on later occasions (k > 1), that ability plus k – 1 additional abilities are 

involved in the performance. Thus, the number of abilities increases at each time point 

(occasion). The MRMLC can be written as 
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in which jmθ and ib are defined as in Equation 3. 

Note that same items are repeated over occasions in Andersen’s (1985) model. In 

contrast, Embretson (1991) developed MRMLC for situations in which items are not repeated, to 

avoid well-known effects (e.g., practice effects and memory effects) of repeated item 

presentation and local dependency among item responses. Equation 5 indicates that in such 

situations, for an item i observed at time k, the abilities up to time k are involved. Therefore, an 

item observed at time k measures k abilities, including initial ability ( 1jθ ) and k – 1 time-point-

specific abilities ( 2 ,...,j jkθ θ ), termed “modifiabilities” in Embretson’s model. The change 

between condition k – 1 and k equals the kth modifiability ( jkθ ). Using the partial credit model 

(PCM), Fischer (2001) extended MRMLC to polytomous items (Masters, 1982). 

Measuring Change in Multiple Populations 

Change may follow different trajectories in different subpopulations. Individual schools 

pace their curricula differently, and different types of schools may have dramatically different 

curricula. Even within seemingly homogeneous groups of learners, different trajectories may 

emerge, based on differences between students regarding how they acquire knowledge. Wilson’s 

(1989) Saltus model addresses these different growth rates in different populations (Draney & 

Wilson, 2007; Wilson & Draney, 1997), multidimensional IRT (MIRT) models address them in 

multiple groups (Xu & von Davier, 2006), and growth-curve models address them in an IRT 

mixture (Meiser, Hein-Eggers, Rompe, & Rudinger, 1995; Rijmen, de Boeck, & Maas, 2005). 

In this study, we specified the Andersen (1985) and Embretson (1991) approaches using a 

framework of general latent-variable modeling. We used von Davier’s (2005) general diagnostic 

model (GDM) to implement these approaches with extensions that allow for (a) the use of more-

general IRT measurement models and (b) more-complex population structures. 

The GDM allowed a multidimensional generalization of (a) the two-parameter logistic 

(2PL) model and (b) the generalized partial credit model (GPCM; Muraki, 1992), rather than the 
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Rasch model. The 2PL model and GPCM enable estimation of multiple slope parameters for 

items assumed to be multidimensional. In the case of simple-structure models such as those 

found in large-scale surveys, multidimensional GDMs can be used to simultaneously estimate 

the different IRT scales and the multidimensional ability distribution. 

The GDM also allowed the use of multiple-group (Xu & von Davier, 2006) and mixture-

distribution versions of IRT and MIRT models (von Davier & Rost, 2006). Multiple-group 

extensions of IRT (Bock & Zimowski, 1997) should be used whenever a sample is drawn from a 

population that comprises multiple subpopulations. In survey assessments, students often are 

sampled from composite populations in which subpopulations are defined by variables such as 

geographical region, socioeconomic status, curriculum, instructional track, or type of school. 

Within the framework of applying the GDM to longitudinal data, the probability of a 

response depends on item-difficulty and occasion-specific parameters. By representing the latter 

in a design matrix, we were able to specify the Andersen (1985) approach, the Embretson (1991) 

approach, and our adaptations and generalizations (described below) within one framework. 

Group differences in skills distribution may exist. Therefore, to allow for differences in 

proficiency distributions and in amount of change across student groups, we used a single-group 

Andersen-Embretson type of model for change as well as other Andersen-Embretson approaches 

to represent multiple populations. 

The multiple-population approach requires the introduction of an additional variable, the 

indicator function for the group membership variable, represented by 1c[g(j)], where g(j) denotes 

the group membership of student j. If c=g(j), let 1c[g(j)]=1; otherwise let 1c[g(j)]=0. If the 

group membership g(j) is unknown, probabilities of group membership πc(j)=P(c|X) may be 

used instead and the multiple-population GDM becomes a discrete mixture-distribution GDM 

(von Davier & Rost, 2006; von Davier & Yamamoto, 2007). The general model for measuring 

change in the GDM for multiple observed populations or indirectly observed mixture 

components can be written as 

1
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Different groups may be needed to represent differences in initial proficiency distributions and 

differences in the amount of change over time. A data set may contain students from different 

school types, as in the case of the actual sample data below. Each of these school types is 

characterized by potentially different (a) distributions of initial proficiency and (b) levels of 

change in proficiency, because schools differ in terms of curriculum and the proficiency level of 

students entering these schools. That implies that a model must be able to account for these 

potential differences. We used (a) multiple-group models in which the school of student j 

determined the student’s membership in one school-type group as well as (b) hierarchical-

mixture models in which membership in populations with different growth rates and potentially 

different initial-ability distributions was not determined by an observed variable but was inferred 

from observed patterns of student responses and from students’ school (cluster) membership. 

The most complex approach used in this study was a hierarchical extension of a 

longitudinal IRT model. This approach is based on the hierarchical GDM (von Davier, 2007) and 

assumes that students within schools fall into one of several proficiency distributions with 

school-specific proportions. It takes the hierarchical structure into account based on the 

identification of schools as clusters, and it attributes existing between-school differences to a 

mixture of students from several different proficiency distributions being present in each cluster. 

This model, the hierarchical GDM, extends the hierarchical latent-class model (Vermunt, 

2003) and allows clusters to vary in the proportions of mixture components (different ability 

distributions) represented in each class. This hierarchical approach allows for (a) differences 

between classes of proficiency distributions and (b) within-class variance of proficiencies. It 

attributes cluster-level variation to between-school differences in proportions of students 

belonging to the several proficiency distributions. For example, in one school 80% of students 

may fall into a class with high average ability and high gain, and the other 20% may fall into a 

class with low average ability and moderate gain. In another school, 50% of students may fall 

into a high-average, high-gain class, and the other 50% may fall into a low-average, moderate-

gain class. The hierarchical GDM simultaneously estimates (a) these school-based cluster 

proportions, (b) the class-specific profiles, and (c) the item parameters, which are assumed to be 

the same across the latent classes defined by different ability and gain distributions.  
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Table 1 shows the succession of model variants that we estimated and their main 

assumptions about the population structure. We estimated the model variants for longitudinal 

IRT models of both the Andersen (1985) and Embretson (1991) type. 

Table 1 

Different Complexity Levels of Population Models Used as Extensions of the Embretson- and 

Andersen-Type Longitudinal Item-Response-Theory Models 

Type of population model Assumption about schools and types of schools 

Single-group  All schools and types of schools have the same ability distribution 

and gain. 

Multiple-group Each type of school has a potentially different distribution of student 

proficiencies and gain. 

Mixture Different profiles of student proficiencies and gain (e.g., fast learners 

and slow learners) exist independently of schools and types of 

schools. 

Hierarchical-mixture Different profiles of student proficiencies and gain exist, and 

different schools have different prevalences for each profile (e.g., 

some schools have a larger proportion of fast learners than others). 

Of the four types of population model, we estimated all but the mixture model for both 

the Andersen (1985) and the Embretson (1991) approach because there was no reason to assume 

that the different profiles of proficiency and gain were equally distributed across schools. As 

previously noted, Andersen and Embretson originally developed their models as extensions of 

the Rasch model. We considered it necessary to evaluate the appropriateness of the Rasch 

model’s assumption of constant discrimination across items. Therefore, we estimated all 

approaches in two versions: (a) as a Rasch-model/PCM extension with constant slope parameter 

across items and (b) as a 2PL GPCM extension that allowed us to assess whether different items 

should receive different discrimination parameters. We compared results (a) between the two 

versions (Rasch versus 2PL), (b) across the Andersen and Embretson models, and (c) between 

the three population-model variants. We compared the six models (three population models, each 
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in two longitudinal IRT approaches) separate for the Rasch and the 2PL version in terms of 

model-data fit based on a longitudinal data set collected as part of a study conducted in 

conjunction with an international survey of student skills. 

Data and Analysis 

Data Description 

Through its Programme for International Student Assessment (PISA), the Organisation 

for Economic Co-operation and Development (OECD) conducts annual international surveys of 

15-year-olds to assess their academic skills. Since the first surveys began in 2000, the number of 

participating countries and the surveys’ impact has increased. In Germany the 2003 assessment 

(OECD, 2003, 2004) was expanded to address several additional research questions, including 

student gains in proficiency over a school year (Prenzel, Carstensen, Schöps, & Maurischat, 

2006). In addition to including a sample of 15-year-old students for international comparisons, 

the survey included a sample of ninth graders who were reassessed in 2004 in a study called 

PISA-I-Plus. This paper focuses on an longitudinal analysis of these students’ “mathematical 

literacy” performance. Items for math literacy were developed in accordance with PISA’s 

framework and the Grade 10 math curriculum. The 2003 assessment used 77 items; the 2004 

assessment used the same items plus 22 more. 

The sample used in this study is representative of ninth graders in Germany and 

includes all types of schools. Our study included all students promoted from Grade 9 to 

Grade 10. We also tried to find students who had moved to a different school, whenever 

possible, so we could include their data. The sample of students tested at both times is not 

representative for 10th grade students. Therefore, all results refer to our sample of students. 

Table 2 gives the number of schools, classrooms, and students in each assessment. Our 

analyses were based on a sample of 6,020 students, from 152 schools, tested in both 2003 

and 2004. The sampling design of PISA-I-Plus is a two-stage cluster: schools were selected 

in the first stage of the sampling process, and students within schools were selected in the 

second stage. 

Previous PISA surveys, as well as other assessments, have shown that school types are 

the main sources of between-cluster school differences. Germany’s educational system places 

students into high, medium, and low academic tracks and, in some states, additional integrative 

schools with more-heterogeneous student populations. As a result, different types of schools 
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considerably differ in students’ average proficiency. Our analysis took this fact into account by 

incorporating multiple-group models that reflect the differences. 

The data were collected in the PISA study using a test-booklet design of four 30-minute 

blocks from different domains and a questionnaire administered after the test. In 2003, 13 

different booklets were used, and in 2004, 6 different booklets were used. Test questions were 

multiple-choice or required a short constructed response. All item responses were dichotomously 

scored. The PISA-I-Plus data set included items repeated over time as well as items unique to 

different time points. We computed our analyses using the same survey weights for data from 

both assessments. 

Table 2 

Number of Schools, Classrooms, and Students in the Study Sample  

 2003 assessment 2004 assessment 

Type of school by 
instructional track 

Schools Classrooms Students Schools Classrooms Students 

Lower secondary track 
(Hauptschule) 43 81 1,348 — — — 

Lower and intermediate 
secondary track 
(Realschule) 

23 46   932 22 33   653 

Intermediate secondary 
track 51 101 2,535 50 98 2,199 

Integrative school 
(Gesamtschule) 20 39   743 19 28   504 

Higher secondary track 
(Gymnasium) 61 120 3,001 61 116 2,664 

Total 198 387 8,559 152 275 6,020 

Note. A Hauptschule (literally “general school”) is basically a vocational school for Grades 5 

through 9 or 10, a Realschule is a school for students ages 10–11 to 16–17, a Gesamtschule is a 

comprehensive school for students ages 11–16+, and a Gymnasium is a college-preparatory school.  
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Analysis Plan 

We chose the models developed by Andersen (1985) and Embretson (1991) as the basis 

for our analysis of the PISA-I-Plus math data used in this study. By including items repeated 

over time, we were able to apply models that use these items as the anchor set; we therefore 

could link scales over time points. items unique to different time points. Although there were 77 

items in common across the two time points, each student was administered only a small number 

of these common items over time. 

The PISA-I-Plus math data share some features with data for which Andersen (1985) and 

Embretson (1991) developed their models. As previously mentioned, Andersen developed his 

model for situations in which the same items are repeatedly administered over time, whereas 

Embretson developed her model for situations in which different item sets are administered on 

different occasions. However, by using a partial balanced incomplete block (pBIB) design 

(sometimes referred to as a “multi-matrix design”), and by assuming that item characteristics 

stay the same over time points, we can achieve a link between Time Points 1 and 2 that is based 

on 77 items out of a total of 99. Therefore, neither model as originally specified is completely 

appropriate for data collected with a pBIB. 

However, in large-scale survey assessments, the focus is on group-level differences 

in skills between subgroups of interest, not in change at the level of the individual. We used 

aggregates of change based on groups of students so that the effects of potential individual 

biases would be greatly reduced by cancellation effects when reporting group-level 

proficiency distributions and measures of change. 

As indicated above, an Andersen-type model can be used within a GDM framework (von 

Davier, 2005). In the Andersen approach, items that appear at different time points (occasions) 

are assumed to represent different dimensions. Also, items repeatedly administered across time 

points are assumed to have the same item parameters and therefore act as linking items across 

measurement occasions. This constraint enables construction of a common scale for comparisons 

between the two dimensions defined by Time Points 1 and 2. Table 3 shows the structure of the 

Andersen-type model within a GDM framework. 
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Table 3 

Andersen-Type Model Within a General Diagnostic Model (GDM) Framework 

Items First dimension Second dimension 

Items unique to Time Point 1 X  

Items unique to Time Point 2  X 

Items common to both time points X X 

We also applied a GDM framework to the Embretson-type model. Within such a 

framework, the entire set of items from both time points is specified to measure a single main 

dimension. The items that reappear at Time Point 2 are specified to measure a second dimension 

that is assumed to be uncorrelated with the main dimension. With regard to parameters that refer 

to the main dimension, items common to both time points are assumed to have the same item-

parameter values across the two time points. Table 4 shows the structure of the Embretson-type 

model under the linkage design within a GDM framework. 

Table 4 

Embretson-Type Model Within a General Diagnostic Model (GDM) Framework 

Items First dimension Second dimension 

Items unique to Time Point 1 X  

Items unique to Time Point 2 X X 

Items common to both time points X X 

As mentioned before, the PISA-I-Plus situation differs from those for which Embretson 

(1991) developed her model. First, whereas Embretson’s data set did not contain common items 

over time, the PISA-I-Plus data set contains a large proportion of common items. Second, 

whereas Embretson’s MRMLC allows correlations between dimensions, the application shown 

in Table 4 assumes no correlations between the two dimensions. Third, our analysis entails a 

multidimensional generalization of the 2PL GPCM (Muraki, 1992) in addition to the Rasch 

versions of the above model variants. The Rasch model served as the basis for Embretson’s 

model. In our study, the average score on the second dimension accounts for differences in 

change over time. 
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To reflect the fact that a relatively large proportion of the items were presented at two 

time points, we incorporated various constraints on item parameters. In the Andersen (1985) 

approach, all items that were presented on both occasions were assumed to have the same item 

parameters. In the Embretson (1991) approach, the repeated items received the same item 

difficulty, and the same discrimination parameter on the main dimension, as the first occurrence 

of that item. The second discrimination parameter is unique to the second occasion; it 

consequently is an unconstrained parameter in our extension of Embretson’s model. 

We applied three approaches when modeling the proficiency distributions’ dependence 

on type of school. As a baseline, we assumed no differences between schools leads to models 

with one common proficiency distribution. This baseline model was compared to a multiple-

group version of the Andersen and Embretson models, where the groups represent potentially 

different proficiency distributions (over time) for each of the school types. The item parameters, 

however, are assumed to be the same across school types, so that the measurement model is the 

same, while the population distributions might be different for different school types. These 

models are then compared to a mixture distribution longitudinal IRT model. The last model in 

the comparisons is an approach that takes the hierarchical structure into account.  

Results 

Model Fit 

For comparison, we conducted our analysis under both a single-group and a multiple-

group assumption. Under the former assumption, all students are assumed to come from a single 

population with the same ability distribution. Under the latter assumption, students from different 

groups are assumed to come from different populations with potentially different ability 

distributions. For the data set used in this study, the groups are defined by (a) school types or (b) 

latent class derived from school types. In the multiple-group analysis, we set the item parameters 

to be equal across groups. Therefore, we did not consider possible differential item functioning. 

We conducted two sets of analysis, one using 2PL GPCM variants (Table 5) and the other 

using the Rasch model (Table 6). Each set included six types of analysis: (a) Andersen single-

group, (b) Andersen school-type, (c) Andersen hierarchical-mixture, (d) Embretson single-group, 

(e) Embretson school-type, and (f) Embretson hierarchical-mixture. Tables 5 and 6 show the 

goodness-of-fit index, in the form of the Akaike information criterion (AIC; Akaike, 1974), and 

the log likelihood for each model. 
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Table 5 

Two-Parameter Logistic/Generalized Partial Credit Models: Akaike Information Criterion 

(AIC) and Log Likelihood 

Model 

Number of 

parameters AIC Log likelihood AIC per response

Andersen     

Single-group 213 308,525.93 –154,049.97 0.5324 

Multiple school type 244 30,6637.17 –153,074.58 0.5284 

Hierarchical-mixture 224 306,805.36 –153,178.68 0.5295 

Embretson     

Single-group 319 307,281.50 –153,321.75 0.5295 

Multiple school-type 324 305,348.21 –152,350.11 0.5262 

Hierarchical-mixture 326 305,540.05 –152,444.02 0.5276 

Table 6 

Rasch-Type Models: Akaike Information Criterion (AIC) and Log Likelihood 

Model 

Number of 

parameters AIC Log likelihood 

AIC per 

response 

Andersen     

Single-group 121 310,884.51 –155,321.26 0.5357 

Multiple school type 143 308,863.21 –154,288.61 0.5322 

Hierarchical-mixture 123 309,038.75 –154,396.37 0.5330 

Embretson     

Single-group 127 310,930.45 –155,338.23 0.5358 

Multiple school type 128 308,935.25 –154339.62 0.5328 

Hierarchical-mixture 130 309,111.00 –154,425.50 0.5331 
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Of the models shown in Table 5, the Embretson-type model with multiple-groups has the 

smallest AIC and the largest log likelihood. Also, it shows a slightly better fit in terms of AIC 

and log likelihood than the Embretson-type hierarchical-mixture model (with school type as the 

clustering variable).  

A comparison of the data in Tables 5 and 6 shows that the Rasch-type models have worse 

fit than their 2PL GPCM counterparts. Although Table 5 shows that the Andersen-type 2PL 

GPCM has worse fit than the Embretson-type 2PL GPCM in terms of AIC and log likelihood, 

Table 6 shows the opposite for the corresponding Rasch models. By using the 2PL GPCM as the 

basis for analysis, we improved the model fit and changed the order of preference of the 

Andersen and Embretson models. The worst-fitting 2PL GPCM (Table 5) outperforms the best-

fitting Rasch model (Table 6). 

The reason for the superior performance of the 2PL GPCM may be that some, but not all, 

of the tasks readministered at Time Point 2 may be affected by the growth of student skills 

modeled using the second dimension. If that is the case, some items that show reasonable 

discrimination parameters for Dimension 1 (overall proficiency) may lack a significant loading 

on Dimension 2 (in the Embretson approach, change). If so, those items would be poorly 

represented by the Rasch-type approach, in which all items receive the same discrimination 

parameter (in multidimensional approaches, one per dimension). 

Latent Growth Measure 

By design, the Embretson model describes a base ability for each person by defining the 

main dimension to involve all items across time. Also, the items at Time Point 2 are related to 

the second dimension. However, because this dimension measures only change in ability over 

time, it has inherently lower reliability than the first (main) dimension; therefore, it is not useful 

for reporting amount of change for individual students. In contrast, measures of group-level 

distributions can reliably indicate average growth even if individual measures are noisy due to 

considerable measurement error (Mislevy, 1991). In the Embretson model, growth at the group 

level can be identified by the group mean and standard deviation in the growth dimension 

(Dimension 2), as shown in Table 7. To determine the scale used in the multiple-group IRT 

model, we constrained the main dimension to a mean of zero and a standard deviation of 1.0 for 

medium-level schools. 
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Table 7 

Mean and Standard Deviation of Multiple Groups Under the Embretson-Type Two-Parameter 

Logistic/Generalized Partial Credit Model 

  Main dimension Change at Time 2 

Model  

type 

School  

type Mean s.e. SD s.e. Mean s.e. SD s.e. 

Low –0.482 0.10 0.950 0.04 0.864 0.09 1.009 0.11 

Medium –0.005 0.07 0.981 0.03 0.926 0.08 1.144 0.12 

Integrative –0.627 0.18 1.139 0.09 0.555 0.11 0.878 0.11 

Multiple-

groups 

High 1.069 0.05 0.945 0.02 1.011 0.05 0.939 0.06 

Class 1 1.042 0.910 1.012 0.935 Hierarchical-

mixture Class 2 –0.417 0.940 0.764 0.995 

Note. s.e. = standard error. 

The students in the high-track school are high-performing in the main dimension, and 

they show the largest improvement at Time Point 2 (Table 7). The students in the integrative 

school are lowest performing in the main dimension; they also show the least improvement at 

Time Point 2. The students at the medium and integrative schools show similar improvement at 

Time Point 2. 

In our analysis we used the hierarchical-mixture IRT version of the Embretson model 

with two mixture components (latent IRT classes). The resulting, somewhat different means of 

these two components show that students are divided into two groups: (a) low-performing with 

moderate growth between Time Points 1 and 2 and (b) high-performing with larger growth 

between Time Points 1 and 2. Notice that the variances of the two mixture components are 

similar at the same time point. 

For the Andersen model, the difference between Dimensions 1 and 2 can be viewed as a 

measure of growth over time because the common items are constrained to have equal 

parameters across time. Table 8 shows the average growth measures under an Andersen-type 

2PL GPCM with school type as the grouping variable. 
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Table 8 

Mean and Standard Deviation of Multiple Groups Under the Andersen-Type Two-Parameter 

Logistic/Generalized Partial Credit Model 

  Dimension 1 Dimension 2 Change 

Model 

type 

School 

type Mean s.e. SD s.e. Mean s.e. SD s.e.  s.e. 

Low –0.531 0.09 0.958 0.04 0.025 0.13 1.017 0.05 0.556 0.07 

Medium 0.001 0.07 0.968 0.03 0.474 0.07 1.073 0.03 0.473 0.03 

Integrative –0.713 0.17 1.107 0.11 -0.256 0.20 1.246 0.08 0.457 0.07 

Multiple-

groups 

High 1.078 0.05 1.012 0.02 1.552 0.05 0.934 0.02 0.474 0.02 

Class 1 –0.466 0.917 0.001 1.046 0.467 Hierarchical-

mixture Class 2 1.080 0.971 1.557 0.903 0.477 

Note that the direction of growth is consistent between the Embretson and Andersen 

models, but the ranking of school types by average growth is not. For example, under the 

Andersen model, low-track schools show the largest growth, whereas under the Embretson 

model, high-track schools do. Recall that the Embretson model fits the data better than the 

Andersen model. Also, the Embretson model specified as a 2PL-based MIRT model estimates a 

separate growth-discrimination parameter for all items assessed at Time Point 2. In contrast, the 

discrimination parameters on the first (stability) dimension are constrained to be the same over 

time, much as the Andersen model is constrained in terms of parameters of items assessed at 

both time points. 

These results lead us to conjecture that the Embretson model’s larger number of 

parameters results in improved fit. An inspection of the resulting parameters reveals that the way 

the Embretson model is specified allows some items to receive parameters close to zero for the 

loadings on the change dimension, whereas other slope parameters quantify how much the 

conditional-response probabilities of the items assessed at Time Point 2 depend on the second 

(growth) dimension in our model. Figure 1 shows the empirical distribution of slopes for the first 

(main) and second (change) dimensions. 
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Figure 1. Slope parameters for Dimensions 1 and 2 based on estimates of slope parameters 

obtained with the Embretson-type two-parameter-logistic, generalized-partial-credit, 

hierarchical-growth mixture model. 

Most of the slope estimated for the second (growth) dimension falls between 0.0 and 0.5, 

indicating that some items do not load on the dimension unique to Time Point 2. In contrast, 

most of the slope estimated for the main dimension (across Time Points 1 and 2) falls between 

0.5 and 1.5. Given that the variances of the ability estimates for both dimensions are of 

comparable size, it appears that the change dimension specific to Time Point 2 does not affect all 

items measured at that time point. In other words, for items with a slope close to zero on 

Dimension 2, the main ability estimate across the two time points suffices to fit the response 

behavior observed in this study. 
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Discussion 

In this study, we analyzed a longitudinal data set using two models to measure change 

within the context of IRT: (a) the Andersen model, with a unique dimension per testing occasion, 

and (b) the Embretson model, which assumes an overall dimension across testing occasions, 

starting with the first, and additional change dimensions unique to subsequent occasions. We 

extended both models via the GDM framework (von Davier, 2005) for multiple populations (Xu 

& von Davier, 2006). The results on model data fit indicated that the Embretson-type 2PL model, 

extended to a multiple-group MIRT model to account for variance between school types, fits the 

data best. Therefore, this paper’s main findings are based on this model. They are supported by 

corresponding findings that we estimated from other models. 

The Embretson model’s fit to the data indicates that an overall dimension that cuts across 

time points, when used with a specific dimension that quantifies change, appropriately describes 

the observed student performance. This conclusion is supported by the finding that fitting the 

Andersen model (which assumes a unique dimension per time point) results in two highly 

correlated abilities. Specifically, the ability distributions estimated for each type of school show 

correlations above 0.8. The change-dimension average, estimated with the multiple-group 

Embretson-type GDM, students in all types of schools grow but students in lower performing 

school-types grow somewhat more slowly than those in higher performing school types. The 

type of school with the highest average proficiency also shows the highest average growth. 

In the Embretson approach, the change dimension is specific to Time Point 2 and is 

designed to detect systematic differences in response behavior that cannot be explained by the 

overall ability variable. Items that carry substantive loading are most sensitive to change over 

time. Results presented in Figure 1 indicate that, for the PISA-I-Plus data, a number of items 

show this resistance to growth. These items may cover topics that were not taught during the 

year or that were taught before the first assessment. 

This paper presented analytical tools that allow stakeholders and policymakers to 

quantify changes in different groups assessed in longitudinal large-scale surveys. At the same 

time, the multiple-group Embretson-type GDM involves a design matrix and parameters that can 

be constrained to be the same across groups (as in the example presented here) or specific to the 

groups assessed so that the items that are more sensitive to growth can be identified. Future 
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assessment cycles can target specific areas of the proficiency domain that are of interest in 

assessing change in proficiency over time. 
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