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Abstract 

This report makes recommendations for the development of middle-school assessment in 

mathematics, based on a synthesis of scientific findings in cognitive psychology and 

mathematics education. The focus is on background research, rather than test specifications 

or example tasks. Readers interested in early development and pilot efforts associated with 

the Cognitively Based Assessment of, for, and as Learning (CBAL) project in mathematics 

(for which this review helped provide a theoretical foundation) should consult Graf, Harris, 

Marquez, Fife, and Redman (2009).The organization of the report is motivated by the 

evidence-centered design (ECD) approach to assessment developed by Mislevy and 

colleagues (e.g., see Mislevy, Steinberg, & Almond, 2003). The first section consists of a 

broad literature review that characterizes mathematical competency with respect to both 

content and process. Subsequent sections discuss: how to model mathematical competency at 

the middle school level, the kinds of evidence that reflect the level of student competency 

and support future learning, and how to design tasks that elicit the target evidence. 

Key words: Mathematics assessment, mathematics cognition, mathematical competency, 

mathematics task design 
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Guiding Assumptions 

The purpose of this report is to make recommendations for the development of 

middle-school assessment in mathematics, based on a synthesis of scientific findings in 

cognitive psychology and mathematics education. The focus is on background research, 

rather than test specifications or example tasks. Readers interested in early development and 

pilot efforts associated with the Cognitively Based Assessment of, for, and as Learning 

(CBAL) project in mathematics (for which this review helped provide a theoretical 

foundation) should consult Graf, Harris, Marquez, Fife, and Redman (2009). 

The first section consists of a broad literature review that characterizes mathematical 

competency with respect to both content and process. The following issues are discussed: 

what is important for students to learn, what students have difficulty learning, and how 

learning (especially in areas of difficulty) may be facilitated. The focus on learning is 

deliberate, since the ultimate goal for assessment should be not only to measure competency 

but to encourage improvement. The first section is an attempt at what is referred to as the 

domain analysis stage of evidence-centered design (ECD), a principled approach to 

assessment design developed by Mislevy and colleagues (e.g., Mislevy, Steinberg, & 

Almond, 2003). Domain analysis includes the background information needed for the 

development of an evidence-centered design conceptual assessment framework, or CAF. 

The CAF consists of three components: a student model, evidence models, and task 

models (see Mislevy, Steinberg, & Almond, 2003). For each component of the CAF, there is 

a corresponding section in this document. Section two presents the first draft of a 

competency model for middle-school mathematics assessment. 

Section three provides recommendations and considerations pertaining to the 

development of evidence models. The competency model can be applied to either formative 

assessment or accountability assessment, since both may share a common conceptual base. 

For example, in the CBAL project (see Bennett & Gitomer, 2009) the formative and 

accountability assessment components share a common competency model, and both 

components include tasks that are designed to be learning events as well as assessment items. 

That is, many of the CBAL tasks are extended and have real-world settings that require 

complex responses. These tasks usually require at least several responses, and some provide 

opportunities for simulation-based interactions. The CBAL accountability and formative 
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components also differ in a number of important respects, and these differences will guide 

how the evidence models for each are developed. 

First, they serve different goals. One purpose of the CBAL accountability component 

is to satisfy the requirements of no child left behind, while providing an alternative to a 

single, end-of-year assessment. In contrast, the purpose of the CBAL formative component is 

to provide information to teachers so they can guide instruction on a daily basis, or during the 

course of a lesson. The evidence from the accountability component may be used for 

formative purposes, but evidence from the formative component may never be used for 

accountability purposes. As weaknesses in student understanding are identified from the 

CBAL accountability results, they may be used to inform the development of the formative 

component, so that the formative materials directly address areas of student difficulty. 

Second, the administration modes for the two systems are very different. Assessments 

developed for the CBAL accountability system will be administered at multiple time points 

across the year, as periodic accountability assessments (PAAs). Each PAA will last 

approximately one class period. In contrast, administration of the formative component will 

be much more flexible—teachers will use tasks as they see fit. 

Third, although there may be many similarities in the tasks and responses from the 

two assessment systems, the evidence accumulation procedures may differ substantially. For 

example, evidence from successive PAAs will be accumulated across time points to establish 

a composite of each student’s performance by the end of the year.1 Evidence from formative 

assessments, however, may be used to informally assess progress between PAA 

administrations. The third section of this document concerns issues related to the 

development of evidence models, and the kinds of evidence that are most important for each 

of the two assessment systems. 

The fourth section outlines task design principles we should follow, as well as 

requisite features for the tasks. As mentioned earlier, many of the CBAL tasks are extended 

and include complex response types. Other CBAL tasks are more concise, consisting of a 

relatively short stem and one or two prompts. While only the extended tasks include 

simulations or require interactions, either kind of task may require a student to provide one or 

more of the following: (a) a numeric answer, (b) an expression or equation, (c) a graph, (d) a 

selection of an option or set of options, or (e) a text response. These design features are 
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intended to elicit richer evidence of student understanding, but they are also intended to help 

students learn as they work through the tasks. 

Mathematical Competency: Characterizing Foundations 

At the most general level, competency in mathematics is characterized both in terms 

of content (what mathematics students should know) and process (how students should go 

about doing and understanding mathematics). This distinction is reflected in the organization 

of the document Principles and Standards for School Mathematics (National Council of 

Teachers of Mathematics [NCTM], 2000), which includes both content standards and 

process standards for students of mathematics in K-12. The standards are grounded in 

research and have a long history of development and revision (the original version, 

Curriculum and Evaluation Standards for School Mathematics, was released in 1989). 

The content standards include (a) numbers and operations, (b) algebra, (c) geometry 

and measurement, and (d) data analysis and probability; the process standards include (a) 

problem solving, (b) reasoning and proof, (c) communication, (d) connections, and (e) 

representation. All of these standards are central to the study and practice of mathematics, 

and all have been the subject of research (though different sources use different terminology, 

and some areas have been much more heavily researched than others). The purpose of this 

section is to summarize cognitive psychology and mathematics education research findings 

on both the content and process aspects of mathematical competency. 

Core Content 

Mathematics curricula vary with respect to the coverage of topics, the sequence in 

which the topics are taught, and the extent to which mathematics instruction is integrated 

with instruction in other content areas. Nevertheless, there are common elements that are 

fundamental to any mathematics curriculum at a given level. This is in part a result of the 

standards-based reform movement, but it is also implicit in the nature of mathematics as a 

domain: while there have been trends (and heated debates) over the years regarding which 

topics should be emphasized, there are certain essential building blocks that students must 

master before they can meaningfully explore other topics. 

Topics in mathematics can be located on branches of a tree (e.g., Hale, 2002). Note 

that the analogy is made to a botanical tree, not a mathematical tree, which has a precise 
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definition. The height of a topic on a tree is an indication of its complexity, and its 

connections with lower branches indicate how the topic subsumes other more basic topics. 

For example, Hale’s tree representation includes more than 20 mathematical topics. Logic, 

set theory, and number systems occupy locations on the trunk, and algebra, geometry, and 

analysis each occupy primary branches. Calculus and statistics are located at higher points on 

the tree, but they are on branches that connect to the topics below. The term arithmetic is less 

often used than it once was—the term numbers and operations is used in the NCTM 

standards (NCTM, 2000), and the term number properties and operations is used in the 

National Assessment of Educational Progress (NAEP) mathematics framework (National 

Assessment Governing Board, 2007). These classifications include arithmetic, but also refer 

to knowledge of number systems and the conceptual understanding of number concepts. 

The tree can be used as a representation to show how mathematical topics are 

interconnected and build on each other. Needless to say, there is not perfect agreement 

among content experts about how topics are interrelated, and in the course of their work 

mathematicians sometimes discover new connections among branches that were previously 

considered unrelated, but there is general agreement that numbers and operations, algebra, 

geometry, measurement, and probability and data analysis are all fundamental topics for K-

12 students to learn. These topics are reflected in both the NCTM content standards and the 

NAEP mathematics assessment framework, as well as in many state standards. 

Numbers and Operations 

In the report Adding It Up: Helping Children Learn Mathematics, The Mathematics 

Learning Committee from the National Research Council (Kilpatrick, Swafford, & Findell, 

2001) summarized a large body of research on mathematics learning in grades K-8 and made 

recommendations for improving student performance. The committee was charged with 

focusing on essential skills that were central to continued development of mathematics 

proficiency in K-8. The committee members recognized that they could not focus on all of 

the important content areas, so they chose to focus on the concept of number. They provided 

two strong arguments for this focus: other areas of mathematics build on the concept of 

number (it inhabits the “trunk” of the mathematical tree), and student learning in this area has 

been well researched. Number concepts are strongly emphasized in the early and middle 

grades; there is a shift to algebra later on. In the NAEP 2005 mathematics framework 
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(National Assessment Governing Board, 2005), 40%, 20%, and 10% of the items assess 

number properties and operations at grades 4, 8, and 12, respectively. The concept of number 

includes the study of negative numbers, rational numbers, and proportional reasoning, all of 

which traditionally pose difficulty for students. It also includes emphasis on approximation 

and evaluating the reasonableness of results, a keystone in most mathematics standards. As 

cited in Adding It Up (Kilpatrick et al., 2001), Carpenter, Corbitt, Kepner, Lindquist, and 

Reys found that 55% of 13-year-olds selected either 19 or 21 as the correct response to the 

following NAEP assessment item: . These responses reflect a lack of understanding 

about how to add fractions (19 is the sum of the numerators; 21 is the sum of the 

denominators), but they also suggest that students did not evaluate them for reasonableness 

(the answer must be less than two). 

Most modern versions of national and state mathematics standards emphasize the 

importance of evaluating the reasonableness of results, and this is part of understanding the 

concept of number. For example, if a student is asked to calculate the length of a physical 

object and obtains a negative result, he or she should recognize that either an error has been 

made or that the problem has been constructed incorrectly. Students are expected to be able 

to approximate, and to have a sense of quantity and magnitude (sometimes called number 

sense). Tasks that measure proficiency with approximation may explicitly direct the student 

to approximate, or, approximation may be used as a supporting strategy (for example, as in 

the NAEP item above). 

Working with rational numbers can be particularly difficult because they occur in a 

number of different forms, each with different notations and different interpretations. 

Students must appreciate the meaning of fractions, decimal fractions, and percents and be 

comfortable converting among them. When finding the sum of two fractions with different 

denominators, many students will add the corresponding numerators and denominators, 

bypassing the step of finding a common denominator (Siegler, 2003). Silver (as cited in 

Siegler, 2003) found that adults taking community college mathematics courses make the 

same error. It has been suggested that errors like this may occur because students have 

difficulty perceiving a fraction as a single quantity, operating on it instead as if it were two 

distinct numbers (Kilpatrick et al., 2001, p. 235). 

712
13 8 ?+ =
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Resnick et al. (as cited in Siegler, 2003) found that students sometimes judge that 

decimal fractions with more digits are always larger than decimal fractions with fewer digits. 

This too has been interpreted as a possible result of students’ experiences from working with 

whole numbers, where a number that has more digits is also larger. This suggests that while 

an understanding of the whole number system is certainly a prerequisite for learning about 

rational numbers, it can also interfere with the learning of rational numbers. 

Understanding the concept of a ratio and how to operate with ratios is already 

difficult; interpreting a proportion (which is an equality between ratios) additionally requires 

an understanding of the notion of equivalence, which many students lack (e.g., Kieran, 

1992). Using additive operations inappropriately in multiplicative contexts is a very common 

error among students; in proportional reasoning, this error is often referred to as the incorrect 

addition strategy (Hart, 1984). This misunderstanding is pervasive and crosses mathematical 

content areas (e.g., Karplus, Pulos, & Stage, 1983; Noelting, 1980; Vergnaud, 1983). A 

student might apply it in a strictly numeric context (e.g., ) or in a geometric context. 

For example, suppose a student is given a right triangle with sides of lengths 3, 4, and 5 units 

and a similar triangle where the shortest side is of length 9 units. When asked for the lengths 

of the other two sides of the similar triangle, a student who uses the incorrect addition 

strategy will respond that the other two sides are lengths 10 and 11 units. Apparently many 

students have difficulty in making the leap from additive to multiplicative models. In general, 

reasoning about ratios and proportions may be difficult because it involves reasoning about 

relationships between quantities. Many eighth-graders and adults had difficulty with ratio and 

proportion tasks that require reasoning rather than computation (Lesh & Lamon, 1992, p. 29), 

suggesting that understanding ratios and proportions (beyond performing basic computations 

with them) is a conceptual leap that is not necessarily made by adulthood. 

In sum, a strong case can be made for focusing on the concept of number and number 

systems as a foundational content area. It occupies the “trunk” of the mathematical tree and is 

well represented in the curriculum in the early and middle grades. Rational numbers, 

negative numbers, and proportional reasoning are all well-researched and encompassed by 

this content area. 

  

32
7 8=
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Pre-Algebra and Algebra 

Traditionally, Algebra 1 is most often taught in the ninth grade, but in many places 

there is a push to teach it earlier, in eighth grade. Algebra is emphasized later in the 

curriculum than numbers and operations, though the two topics overlap. Algebra can be 

taught as a single course in a single grade or as a strand that is addressed across grades, and it 

can be integrated to a greater or lesser extent with other content areas like geometry 

(National Research Council, 2000, p. 145). In the NAEP 2005 mathematics framework 

(National Assessment Governing Board, 2005), algebra is assessed by 15%, 30%, and 35% 

of the items in grades 4, 8, and 12, respectively. There are algebra standards across grades in 

the NCTM standards as well, beginning with the K-2 grade band (NCTM, 2000). This is 

more consistent with the view that students should learn algebra, or at least algebra concepts, 

over a long period of time. Competency in algebra comprises at least two main components: 

algebraic manipulation and algebraic representation. Problem solving typically involves use 

of both components of competency, and each is necessary for understanding algebraic 

concepts. While the committee that prepared the Adding It Up report selected the concept of 

number as a content focus, the RAND mathematics study panel (RAND Mathematics Study 

Panel & Ball, 2003) recommended that algebra should be the first content area to receive 

focus, for many of the same reasons: algebra is foundational, and without a solid 

understanding of it, most mathematics courses that are more advanced are inaccessible. 

Algebraic manipulation. Tasks that assess facility with algebraic manipulation often 

provide the student with an algebraic expression or equation and ask the student to operate on 

it (for example, the student may be asked to simplify an expression or to solve for a variable 

in an equation). Such tasks are sometimes entirely procedural, but conceptual understanding 

often facilitates their solution. For example, consider the following hypothetical item: 

If 3 – 9x = 4, find 3x – 1. 

This item can be solved by first solving for x and then finding the quantity 3x – 1. But 

because this involves a lot of computation, it is more time-consuming and increases the 

chance for error. Alternatively, if the student recognizes that 3 – 9x = – 3(3x – 1), the item 

can be solved quickly by dividing 4 by −3. So in this case the solution to an apparently 

procedural item is greatly facilitated by insight. Insight (or perhaps schema recognition) is 
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also involved in finding the roots of a “disguised” quadratic equation (an equation that is not 

quadratic with respect to its original variable, but that may be expressed in quadratic form 

when an appropriate substitution is made), or in making an appropriate substitution to 

evaluate an integral. 

It is probably apparent from this discussion that what an item assesses depends on 

how it is solved. I will not discuss this point at length here (this is reserved for the section on 

strategies), but it demonstrates that conceptual insight can facilitate the solution of tasks that 

appear to be primarily procedural. Similarly, while procedural errors sometimes demonstrate 

only a lack of procedural knowledge, they may demonstrate gaps in conceptual 

understanding. The relationship between conceptual understanding and procedural fluency 

was emphasized in Adding It Up (Kilpatrick et al., 2001). The following excerpt from Harel 

(as cited by Kaput, 1999, pp. 140-141) illustrates how errors in a primarily procedural task 

may reflect conceptual misunderstanding: 

The high school student in this example was attempting to solve the inequality 
(x − 1)2 > 1) . When asked to explain how she arrived at x > 1, she responded that 

“The solution to the equation (x − 1)(x − 1) = 0 is x = 1, x = 1.” She then crossed out 

the three equality signs and above each wrote an inequality sign >, noting that “x is 

greater than 1.” When she was then asked to solve (x − 1) (x − 1) = 3, she wrote:  

“(x − 1) = 3, (x − 1) = 3.” 

Harel observed that the student was apparently attending to the surface features of the 

problem, which are extremely similar to the surface features present in a quadratic equation. 

She then followed the procedure for finding the roots of a quadratic equation, without 

attending to the meaning of the inequality. In the last example, the student again attended to 

surface features, apparently not realizing that (x − 1) (x − 1) = 3 does not imply one of the 

two factors must equal 3. 

Errors like the ones above are possible to make in haste and, no doubt, are sometimes 

due to a transient slip. Protocol studies where students have been interviewed, however, 

suggest that many such errors are due to real misunderstanding. Lee and Wheeler (1989) 

presented students with several algebraic statements and asked them to determine whether a 

given statement was definitely true, possibly true, or never true—students were also asked to 

justify the response. One of these statements was as follows: 



 

9 

(a2 + b2)3 = a6 + b6 (Lee & Wheeler, 1989, p. 42) 

Half of the 10th-grade students queried believed this statement was true; the 

following was among the justifications that were provided: 

This statement is definitely true. There are several laws in dealing with exponents. 

And the one that applies here is you multiply the number (outside the bracket) with 

those exponents inside the bracket. You don’t add them like you normally do. If you 

had an example like  you add them so you get  but the brackets tell us to 

multiply. (Lee & Wheeler, 1989, p. 42) 

While some students responded with “it’s a rule” as their justification, a number of 

them provided explanations similar to that above. This example suggests that algebraic errors 

are not always the result of a transient slip. Note, however, that this does not imply that 

misunderstanding about a concept always results in the same error or even in an error at all. 

Students have been observed to apply a large number of algebra mal-rules, or incorrect rules, 

in solving algebraic manipulation items (e.g., Payne & Squibb, 1990; Resnick, Cauzinille-

Marmeche, & Mathieu, 1987; Sleeman, 1984). These are idiosyncratically applied and their 

incidence seems to vary across populations; however, manipulations where parentheses are 

involved do appear to consistently pose difficulty. 

Algebraic representation. Algebraic representation is concerned with constructing 

models that describe situations in mathematical terms. This definition is broader than what 

was traditionally referred to as algebraic representation, which usually meant representing a 

word problem in symbolic form, but it is also more consistent with current mathematics 

standards. As a result of standards-based reform, mathematical proficiency is now 

characterized much more broadly in terms of what students should be able to do in 

mathematics (see Schoenfeld, 2006, for a discussion). The expansion in requirements is most 

evident in terms of expectations for students’ fluency with alternate representations, or 

models. Models often include any of the following: expressions, equations, diagrams, tables, 

or graphs. Lesh and Lamon (1992) argued that model representation is essential to capturing 

large amounts of information in concise, operable form. Algebra, and the study of functions 

in particular, lends itself to the use of alternate models, and this is reflected in mathematics 

standards. The following quote (NCTM, 2000, p. 38) suggests that while facility with 

2 3a a+ 5a
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alternate representations is expected, using alternate representations may also help students 

learn the concept of function more completely: 

Many college students understand the notion of function only as a rule or formula 

such as “given n, find 2n for n = 0, 1, 2, and 3” (Vinner & Dreyfus, 1989). By the 

middle grades, students should be able to understand the relationships among tables, 

graphs, and symbols and to judge the advantages and disadvantages of each way of 

representing relationships for particular purposes. As they work with multiple 

representations of functions—including numeric, graphic, and symbolic—they will 

develop a more comprehensive understanding of functions (see Leinhardt, Zaslavsky, 

& Stein, 1990; Moschkovich, Schoenfeld, & Arcavi, 1993; NRC, 1998). 

In other words, working with tasks that require the use of multiple representations may play a 

formative role in algebra instruction. 

Translating statements to algebraic expressions has a long history of causing 

difficulty for students. The famous “Students and Professors” statement (Clement, Lochhead, 

& Monk, 1981, p. 288; Clement, Lochhead, & Soloway, 1979, Table 1) is as follows: 

Write an equation using the variables S and P to represent the following statement: 

“There are six times as many students as professors at this University.” Use S for the 

number of students and P for the number of professors.  

Among college students, a common incorrect response to this item is “6S = P” (this is 

known as the variable reversal error). In a study of 150 engineering students, 37% of 150 

freshman engineers responded incorrectly to this item; two thirds of the incorrect responses 

were incorrect due to the variable reversal error (Clement, Lochhead, & Monk, 1981). The 

error rate for nonscience majors was higher; the statement was translated incorrectly by 57% 

of 47 nonscience majors. These error rates are pretty typical of the rates in replicated studies. 

In the context of studies on arithmetic word problems, Lewis and Mayer (1987) 

distinguished between items with consistent language versus items with inconsistent 

language. Items that use consistent language suggest operations that are consistent with the 

correct representation; items that use inconsistent language suggest operations that are 

inconsistent with the correct representation. Although the students and professors statement 

is not an arithmetic item, it uses inconsistent language and is much more difficult than 
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algebraic translation items that use consistent language (e.g., Graf, Bassok, Hunt, & 

Minstrell, 2004). 

Making the Connection Between Numbers and Algebra 

So far in the discussion of content, I have described arguments for focusing on 

numbers and operations on the one hand, and arguments for focusing on algebra on the other. 

Topics in mathematics are connected, however, and these connections deserve attention in 

the context of assessment, as well as in the context of instruction. But there is evidence that 

students do not perceive the connections between mathematical topics, particularly where 

connections between arithmetic and algebra are concerned. 

Lee and Wheeler (1989) presented 10th-grade students with two types of tasks. One set 

of tasks consisted of algebraic statements, and each student had to explain whether one of the 

statements was definitely true, possibly true, or never true (one of these statements, (a2 + b2)3 = 

a6 + b6, was discussed in the preceding section). Lee and Wheeler noted that although it could 

be shown through the use of numeric counterexamples that none of the statements were always 

true, only 10 out of 268 students made an attempt to substitute numbers into a statement. 

Students who justified (a2 + b2)3  = a6 + b6 as adhering to a rule were asked to substitute values 

into the equation. Some of the students were not surprised by the resulting contradiction, and 

when asked about it, suggested that they wouldn’t necessarily have expected algebra and 

arithmetic to produce consistent results. 

Lee and Wheeler (1989) designed another set of tasks to suggest numeric 

representations—variables were not used. One of these tasks was as follows: 

A girl multiples a number by 5 and then adds 12. She then subtracts her starting number 

and divides the result by 4. She notices that the answer she gets is 3 more than the 

number she started with. She says, “I think that would happen, whatever number I 

started with.” Is she right? Explain carefully why your answer is right. (p. 47) 

Although the tasks in this set could be justified using algebra, the majority of students 

provided demonstrations by using a finite set of numeric examples—which is insufficient. 

For the question above, algebraic approaches were particularly rare: only 9 out of 118 

students attempted an algebraic justification. Lee and Wheeler (1989) interpreted their 

findings to suggest that, for many students, arithmetic and algebra are dissociated branches of 



 

12 

mathematics characterized by distinct sets of procedures. Borchert (2003) found that even 

among college students, there is a “dissociation” between arithmetic and algebra. 

A similar finding is described in the work of Resnick et al. (1987). In a set of 

interviews, they asked children between the ages of 11 and 14 to determine whether or not 

pairs of expressions were equivalent. Each expression pair was shown first with variables, 

and then with numbers. They observed that the children used one of three strategies for 

judging equivalence. Resnick et al. referred to these alternate strategies as calculation, rule-

based evaluation, and approximate evaluation. Calculation involved calculating the value of 

each expression (by substituting numbers if necessary) to determine whether there was a 

match. Rule-based evaluation involved applying algebraic rules to determine equivalence 

(sometimes these were rules the children had been taught, other times they were incorrect 

rules the children had invented). Approximate evaluation was a form of analysis in which the 

children did not consider the specific quantities involved; rather, they considered whether 

one expression was greater than, less than, or equal to the other expression. Resnick et al. 

noted that: 

For the most part, these different strategies functioned as ‘islands of knowledge’ (cf. 

Lawler 1981), communicating very little with each other. This meant that children 

rarely used knowledge of one type to constrain or justify judgments of another type. 

On the other hand, one of the strategies would sometimes intrude on another to 

produce errors. (p. 179) 

Again, this suggests that many students do not perceive a connection between 

arithmetic calculation and the application of algebraic rules. More than that, it suggests that 

partial knowledge of the two systems can create conflicts during execution. In one example 

from Resnick et al. (1987), a student correctly removed the parentheses from the expression 

14 – (9 + 3) to yield  14 – 9 – 3, but then subtracted 6 from 14 to yield 8. In other words, the 

student calculated 14 – (9 – 3), even though the parentheses were already removed (p.180). 

Resnick et al.’s interpretation was that in this case the arithmetic error was due to a 

misapplication, or intrusion, of a formal rule for algebraic manipulation. 

Greeno et al. (1986) noted differences in the cognitive demands between arithmetic 

and algebra, and suggested that these differences might partially account for beginning 

students’ fragmentary knowledge of algebra. They made the following observation: 
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When we considered the cognitive requirements of elementary algebra problems, we 

realized that they have a fundamentally different structure from that of almost all the 

tasks students learn to perform in arithmetic. In arithmetic, almost all problems involve 

evaluating symbolic expressions, but in algebra, most problems involve transforming 

symbolic expressions into equivalent expressions. The operators and goals for 

transformation tasks differ significantly from those of evaluation tasks. (p. 34) 

Obviously arithmetic and algebra share much in common, including operators and relations. 

But as pointed out in the quote above, the goals for arithmetic and algebra are usually quite 

different—arithmetic tends to involve evaluation while algebra tends to involve 

transformation. From a cognitive perspective, these goals are very different—the latter is 

somewhat more “open-ended” in the sense that transformations tend to be less prescribed 

than evaluations. 

Even though students often do not spontaneously perceive the relationship between 

arithmetic and algebra, they can be encouraged to do so. When the appropriate scaffolding is 

provided, arithmetic and algebra can be mutually supportive rather than conflicting. There 

are several approaches that can help students make the connection, and all of them involve 

leveraging their familiarity and facility with arithmetic. For example, in spite of their 

difficulties with translating inconsistent relational statements, college students generally have 

no difficulty solving arithmetic problems such as the following: “There are 3450 students. If 

there are 6 times as many students as professors, how many professors are there?”—

proportion correct was 0.92 (Martin & Bassok, 2005). Borchert (2000) found that giving 

students such an arithmetic problem prior to translating an inconsistent relational statement 

improved performance. Similarly, Bernardo and Okagaki (1994) found that providing 

students with either symbolic information (e.g., a reminder about the definition of a variable, 

and that it can assume different values) or arithmetic problem context prior to the translation 

task improved their performance on translating inconsistent statements to equations. 

Koedinger and Anderson (1998) found that students who solved arithmetic problems 

prior to formulating a corresponding algebraic expression showed greater pretest to posttest 

gains on a test consisting of both arithmetic and expression items than students who 

formulated an algebraic expression prior to solving corresponding arithmetic problems. 



 

14 

Finally, Wollman (1983) found that students improved performance with constructing 

equations when they checked them by substituting the variables with numeric values. 

In combination, these results suggest that (a) students do not spontaneously make the 

connection between variables and values, and (b) reminding students about the relationship 

between values and variables can improve performance. It should be noted, though, that these 

attempts can be short-lived. Rosnick and Clement (1980) found that even though students 

could learn to generate equations correctly, they often lacked conceptual understanding of 

their equations. Replicating earlier results, Graf, Bassok et al. (2004) found that students who 

answered a related word problem and explained the solution prior to translating an 

inconsistent statement to an algebraic equation had much higher equation performance 

relative to a control group. On a transfer test, however, students who had solved word 

problems did not do any better at translating inconsistent statements to equations than 

students from the control group. However, the interventions in Rosnick and Clement and 

Graf et al. were both short in duration; it is reasonable that an error as pervasive as the 

variable reversal error would have to be remediated over the long term. 

The preceding discussion suggests that encouraging students to perceive the 

correspondence between arithmetic and algebra may be an effective instructional approach, 

especially if students can learn to do it spontaneously. Resnick et al. (1987) made the case for 

relating formal algebra to concrete situations. They found that some students can create 

stories that support their understanding of algebraic rules but that other students struggle with 

this task. But they argued that students’ skill with relating formal rules and situations should 

be developed, because understanding the links between algebraic rules and situations is 

necessary in order to represent new situations as mathematical models. Also, they argued that 

if students understand how algebraic rules and situations interact, algebraic knowledge and 

situational knowledge can be mutually reinforcing, since both provide information directly 

relevant to problem solving. 

Kieran (as cited in Kieran, 1992) designed exercises to enhance students’ 

understanding of algebraic equations and equivalence. She first gave students practice with 

constructing what she referred to as arithmetic identities (sometimes referred to as number 

sentences, these are equations with numbers and no variables). Students practiced these until 

they could construct identities using multiple operators on each side of the equals sign. She 
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then gradually introduced the notion of variables by covering numbers in the identities, 

Eventually, numbers were replaced with boxes, and finally letters. This kind of approach 

makes sense, because students can leverage their earlier knowledge of numbers in helping 

them to understand algebra. Kieran’s approach involves designing arithmetic tasks that are 

something like algebra tasks. Using the terminology from the quote from Greeno et al. 

(1986), some of these arithmetic tasks were designed to encourage transformation as well as 

evaluation, providing a link to algebra but in the familiar domain of arithmetic. This is the 

approach taken in the Algebridge series developed by ETS and the College Board. 

Earlier it was mentioned that a more modern interpretation of algebra proficiency 

involves flexibility with using multiple representations. In this interpretation, knowing how 

to translate a relational statement to an algebraic equation is not sufficient. A student should 

also be able to represent the situation in a table or a graph. The student might also be asked to 

draw pictures (using different icons to represent students and professors, for example). 

Geometry and Measurement 

It has been argued that geometric and measurement models provide students with a 

way to represent and visualize problems in other areas of mathematics and in real life 

(NCTM, 2000). Arrays can be used to help students develop what is referred to as the area 

model of multiplication (Kilpatrick et al., 2001, p. 74). Students can use manipulatives to 

demonstrate that the product of 5 linear units times 6 linear units is 30 square units. This 

representation can also be extended to algebra. In the NCTM Principles and Standards, it is 

shown how the area model may be used to help students visualize the binomial expansion,  

(a + b)2  = a2 + 2ab + b2 (NCTM, 2000, p. 238). Similarly, the Cartesian coordinate system 

can be used to solve problems in algebra; students can solve a system of two equations 

graphically by plotting the two lines and finding the intersection point. 

Because geometry allows students to reason with a minimum of symbols, it often 

provides their first exposure to mathematical argument and proof. For example, Bastable and 

Schifter (as cited in Kaput, 1999) found that students in a third-grade class were able to use 

the area model of multiplication (described above) to demonstrate that whole numbers are 

commutative under multiplication. The students did this by showing that any m by n array 

could be rotated 90 degrees to produce an n by m array. At the middle-school level, students 

can use geometric constructions to prove the Pythagorean theorem. There are a number of 
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interesting proofs by dissection for the Pythagorean theorem (Weisstein, 2006); these could 

be explored through the use of cutouts as concrete manipulatives. Many Web sites also offer 

online manipulatives for students to explore. For example, the National Library of Virtual 

Manipulatives provides two puzzles for students to explore the Pythagorean theorem 

(National Library of Virtual Manipulatives, 1999). Tools like Geometer’s Sketchpad also 

allow students to learn about geometric relationships in an exploratory fashion. 

Tatsuoka, Corter, and Tatsuoka (2004) and Birenbaum, Tatsuoka, and Yamada (2004) 

used the rule space method to develop attribute profiles for 20 different countries, based on 

performance data from the 1999 Third International Mathematics and Science Study–Repeat 

(TIMSS-R) mathematics items. Among the findings they noted was that, relative to other 

countries, U.S. students had particular difficulty with geometry (the associated mastery 

probability for the geometry attribute was low). A principal components analysis showed that 

geometry, logical reasoning, proportional reasoning, and higher order thinking skills all 

loaded on the same component. Tatsuoka et al. speculated that this might not be 

coincidence—since geometry is sometimes used to introduce proof, perhaps students with 

experience in geometry might also develop their higher order thinking skills. They also found 

it surprising that while higher order thinking skills were highly correlated with geometry 

skill, they were not highly correlated with algebra skill. They suggested that it might actually 

be better to teach mathematical thinking skills through geometry than algebra (p. 920). 

The suggestion made by Tatsuoka et al. (2004) that geometry might be better than 

algebra for supporting the development of mathematical thinking is tentative. First, the 

conclusions drawn may only be considered with respect to the particular algebra and 

geometry items used in the TIMSS-R. Nevertheless, it is an interesting finding and the 

efficacy of using geometry to cultivate students’ higher order thinking skills would be a 

valuable future line of research. The finding that proportional reasoning and geometry skill 

were correlated is also interesting—students use proportional reasoning when working with 

similar figures, and the incorrect addition strategy discussed earlier has been found to be 

more common in geometric contexts (Kaput & West, 1994). 

Measurement is also important for students to master because of its close connections 

with science and everyday life (NCTM, 2000). As they learn measurement, students also 
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develop an understanding of unit and scale, which affords another way of thinking about 

proportional reasoning. 

Probability, Statistics, and Data Analysis 

Much of what we know about the way people reason in statistics comes from the 

judgment and decision-making literature and began with the classic work of Kahneman and 

Tversky. When making predictions, people often behave in accordance with the 

representativeness heuristic and disregard issues such as sample size, base rate information, 

the regression principle, and some logical rules (Kahneman & Tversky, 1972, 1973, 1982; 

Tversky & Kahneman, 1971). In general, people tend to predict the likelihood of an event 

based on perceived similarities between the sample and the population (Tversky & 

Kahneman). In one example from Tversky and Kahneman, participants were asked to 

consider two hospitals; at one hospital, 45 babies are born each day, and at the other hospital, 

15 babies are born each day. When asked which hospital reports more days on which more 

than 60% of the babies are born male (assuming that 50% of babies in the population are 

boys), most participants responded that both hospitals report an equal number of such days; 

in other words, they neglected the sample size in making their response. Disregard for sample 

size is pervasive, and even experts with a high level of statistical training sometimes fail to 

consider it (Tversky & Kahneman). 

Another example of people’s susceptibility to the representativeness heuristic involves 

the conjunction effect (Kahneman & Tversky, 1982). In this study, participants were given a 

description of Linda, who had been a philosophy major concerned with human rights issues. 

Participants were then asked to judge whether it was more likely that Linda was a bank teller or 

a feminist bank teller. Out of a large sample of undergraduates without statistical training, 86% 

responded that it was more likely that Linda was a feminist bank teller. 

While Kahneman and Tversky have focused on errors in statistical reasoning, others 

have focused on examples of rational statistical reasoning and on how statistical reasoning 

can be instructed (Fong, Krantz, & Nisbett, 1993; Lehman, Lempert, & Nisbett, 1993; 

Nisbett, Fong, Lehman, & Cheng, 1993; Nisbett, Krantz, Jepson, & Kunda, 1993). Nisbett, 

Krantz, et al. argued that people do reason statistically under certain conditions and the three 

factors that influence their reasoning include: “…clarity of the sample space and sampling 
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process, recognition of the role of chance in producing events, and cultural prescriptions to 

think statistically…” (p. 27). 

For example, Nisbett, Krantz, et al. (1993) found that students do take sample size 

into consideration when they have reason to believe that the population is heterogeneous, but 

not when they have reason to believe that it is homogeneous. Their point was that when the 

population is believed to be homogeneous, operating according to the representativeness 

heuristic is reasonable thinking rather than fallacious reasoning. Further, even though experts 

sometimes do not apply statistical reasoning, statistical reasoning is amenable to instruction. 

Fong et al. (1993) found that students gave statistically based responses more frequently and 

of better quality when they were instructed in both formal rules and given examples. Lehman 

et al. (1993) found that graduate students in psychology and medicine showed improved 

statistical reasoning after two years of graduate school, while students in law and chemistry 

did not (the GRE® and/or Law School Admission Test scores for the different disciplines 

were comparable). 

Although the work described thus far has focused on undergraduates’ difficulties with 

statistical reasoning, it is likely that they could be addressed earlier in instruction. Statistical 

reasoning in particular lends itself to simulation activities. 

So far in this discussion we have focused on statistical reasoning, but data 

interpretation, analysis, and display deserve equal attention. Lehrer and Schauble (2000) 

examined how young children developed and revised data models. In general, they observed 

that children’s data displays were initially not very informative but evolved to be more 

meaningful through iterative rounds of guided class discussion and subsequent modification 

of the display. For example, one teacher asked her first-grade students the question: “How do 

we wake up in the morning?” Each child wrote a response on a sticky note which was stuck 

to a large poster. After the teacher observed that the display was not easy to read, the children 

grouped the sticky notes into labeled columns (i.e., Alarm Clock, Mom/Dad, Radio). Further 

revisions (suggested by the children, with guidance from the teacher) included: organizing 

the groups into rows instead of columns; creating a grid of equally sized boxes, with one 

sticky note placed in each box; and numbering the columns. The end result was the 

equivalent of a horizontal bar graph. 
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In another exercise from Lehrer and Schauble (2000), each student in a class of third 

graders was asked to record the number of objects recycled each week for a month in his or 

her home. The number of objects for each week from each student was written on a sticky 

note, and the sticky notes were placed on a board. Students were then asked to organize the 

sticky notes so that they could show the number of recycled objects in a given week. As part 

of this exercise, students developed distributions based on different groupings, as well as 

different measures of central tendency. These examples from Lehrer and Schauble illustrate 

that, with appropriate guidance, young children can begin to think about how to organize, 

structure, and display data. This certainly implies that more could be done with data 

organization and display in the middle grades as well. Data organization and display is 

another area that lends itself particularly well to computer-based exploration. For example, 

TinkerPlots is a software tool designed to allow students in grades 4-8 to visualize and 

explore data. 

Summary 

In this section, research findings with implications for instruction and assessment 

were described, in each of the central mathematical content areas. Mathematical content 

areas are interconnected rather than distinct, and for this reason can be represented as 

branches on a tree. The preceding discussion included some examples of how the different 

branches connect when applied to real mathematics problems. We could safely choose any of 

the above content areas as a starting point and make meaningful progress in designing a 

cognitively based assessment system. We could choose numbers and operations because it is 

arguably the most foundational and has a long history of research behind it. We could focus 

on algebra because it formalizes mathematical argument, is heavily emphasized in the 

mathematics curriculum, and affords opportunities for working with multiple models and 

representations. We could target geometry and measurement for almost the opposite reason: 

it has been underemphasized in the U.S. curriculum and U.S. students are having particular 

difficulty with it as reflected by the TIMSS-R results, and it can be used as part of a more 

informal introduction to proof. Finally, probably in response to workplace demands, statistics 

and data analysis have recently received greater emphasis in the standards and in the 

curriculum, so a meaningful contribution could be made here as well. 
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All of these content areas are important, and since all are addressed by state 

standards, all need to be represented in any accountability assessment that is developed. Also, 

since the different content areas are interconnected, we should not include one or two content 

areas to the exclusion of the others. It is more a question of where to focus. In the middle 

grades, numbers and operations are central early on, with an increasing emphasis on algebra 

as students advance towards eighth grade. As discussed earlier, many students do not 

perceive a relationship between arithmetic and algebra. The literature discussed spans the 

middle grades through college, and it appears that a general problem at all of these levels is 

that students have difficulty grasping relationships between numbers and operations and 

algebra, and that algebraic transformations may be perceived as a set of arbitrary procedures 

to be memorized. It may be that misunderstandings about algebra that begin in the middle 

grades will persist through high school and college if they are not addressed. There is 

evidence, however, that students can leverage their knowledge of number to improve their 

understanding of algebra. This was the rationale behind the development of Algebridge, 

developed by ETS and the College Board. 

For our initial efforts, I recommend that we focus on the link between numbers and 

operations and algebra, but not to the exclusion of the other content areas. For example, 

Vennebush, Marquez, and Larsen (2005) presented a number of tasks that are primarily 

identified with other content areas (for example, geometry or data analysis) that lend 

themselves to algebraic thinking. They also demonstrated how tasks from other content areas 

may be modified to assess algebra to a greater extent. The assessments we develop should 

encourage students to recognize and use alternate representations (including expressions, 

words, graphs, diagrams, and tables) and to understand the relationships between numbers 

and algebra, as well as other content areas. The focus I am proposing is broader than 

traditionally conceived notions of arithmetic and algebra, but is more consistent with the 

thinking behind current standards. The importance of representation to current practice in 

mathematics assessment is described further in the Key Processes section. 

Key Processes 

While the earlier section focused on the content that is central to K-12 mathematics, 

this section focuses on what it means to do mathematics. Hoffman and Steen (as cited in 

Schoenfeld, 1994) describe mathematics as a science of patterns. Consistent with the 
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mathematics as a science of patterns view, Lesh and Lamon (1992) provided the following 

definitions for pure and applied mathematics: 

• Doing “pure” mathematics means investigating patterns for their own sake, by 

constructing them and transforming them in structurally interesting ways, and by 

studying their structural properties. 

• Doing “applied” mathematics means using patterns as models (or structural 

metaphors, or quantitative structures) to describe, explain, predict, or control other 

systems—with refinements, extensions, and adaptations being made to these 

models when necessary. (p. 25) 

Schoenfeld (1994) emphasized the empirical aspect of the science as patterns 

definition and used it as a springboard to discuss the experimental quality of engaging in 

mathematics. Among the points he made were that doing mathematics means collaborating 

with members of a larger community, and that while mathematical results may be concise 

and elegant, the process of getting to results is not preordained and may involve many 

detours along the way. 

These perspectives on doing mathematics are reflected in the current Principles and 

Standards (NCTM, 2000). As mentioned earlier, there are five process standards, as follows: 

(a) problem solving, (b) reasoning and proof, (c) communication, (d) connections, and (e) 

representation. These are the skills that a student is expected to develop over the course of 

mathematics instruction. NCTM (2000) defines problem solving as “…engaging in a task for 

which the solution method is not known in advance” (p. 52). This is a broad definition, but 

the term problem solving is sometimes used more specifically to refer to solving word 

problems—in this review, the broader definition is assumed. Reasoning and proof refer to the 

logical processes that are used to develop arguments in mathematics, and communication 

refers to the expectation that students will develop the capacity to explain and justify their 

mathematical arguments to others, in speech and in writing. It is expected that their 

explanations should be clearly articulated and increasingly formal. The connections standard 

specifies the expectation that students will perceive links between related mathematical ideas. 

From our earlier discussion, it should be clear that the links are there, but perceiving them is 

an effortful process. A cognitive interpretation of the connections standard is that it requires 

students to perceive relationships so that they can adapt strategies and transfer their learning 
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in the solution of novel tasks. To meet the representation standard, students are expected to 

use mathematical representations (e.g., graphs, symbols, diagrams) to convey and model 

mathematical concepts; they are also expected to translate among equivalent representations. 

Five interwoven strands of mathematical proficiency are discussed in Adding It Up 

(Kilpatrick et al., 2001). They also address process, but while the NCTM process standards 

focus on activities, these focus on general capabilities and include: (a) conceptual 

understanding, (b) procedural fluency, (c) strategic competence, (d) adaptive reasoning, and 

(e) productive disposition. The first two strands are probably familiar and are also 

highlighted in the NAEP 1990-2003 mathematics framework. 

Conceptual understanding requires that a student appreciate the significance of 

mathematical principles and recognize how to apply them in various contexts. Procedural 

fluency requires that a student be facile and efficient with mathematical computations and 

algorithms. Although it is useful to distinguish between these two strands of proficiency, the 

following point from Adding It Up (Kilpatrick et al., 2001) is important to emphasize: 

although some tasks may primarily focus on either conceptual understanding or procedural 

fluency, the strands are most often applied in combination, and are mutually reinforcing—

developing procedural fluency can enhance conceptual understanding, and conceptual 

understanding can lead to greater accuracy and efficiency in the execution of procedures. 

There is sometimes the perception that procedural fluency and conceptual understanding 

compete for coverage in the classroom, each at the expense of the other, but “. . . pitting skill 

against understanding creates a false dichotomy” (p. 122). Sfard (1991) made this point in 

her framework for how mathematical ideas develop. Her premise was that mathematical 

notions can be interpreted both operationally (as processes) and structurally (as objects). She 

argued that operational and structural interpretations are complementary rather than 

conflicting, and in fact constitute a duality rather than a dichotomy (p. 9). 

Strategic competence refers to the degree to which a student has cultivated successful 

habits for solving problems in mathematics (Kilpatrick et al., 2001, pp. 124-129). This 

includes how well students can interpret a problem, how well they can represent it, and how 

well they can execute a plan to find an answer. Mayer (1983) used the term strategic 

knowledge and defined it as follows: “Strategic knowledge–techniques for how to use the 

various types of available knowledge in solving a given problem, such as setting subgoals” 
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(p. 354). Adaptive reasoning is used to modify procedures, justify their execution, and verify 

results (Kilpatrick et al., pp. 129-130). Sometimes in the course of solving a problem, the 

student will arrive at an impasse, because a particular strategy is not yielding progress 

towards the ultimate goal. On other occasions, the student may generate a contradiction or 

unexpected result, suggesting that the selected strategy is in error. In these situations, a 

student must adapt his or her reasoning to continue making progress or to correct an error. 

Finally, productive disposition refers to a student’s belief that mathematics is a worthwhile 

and meaningful enterprise, and that mathematical problems are solved through diligent 

application of effort and concentration. 

In the remainder of this section, I discuss three processes that are central to 

mathematical competency: problem solving, modeling and representation, and argument and 

justification. Although the NCTM process strands and the strands of proficiency from Adding 

It Up are all important, they do overlap to a substantial degree—the relationships among the 

different characterizations of competency are included in the following discussion. Also, it is 

not clear that all of them (e.g., productive disposition) are possible or appropriate to measure 

in isolation as part of a mathematics assessment, although a productive disposition is 

certainly a requirement for solving a difficult problem successfully. For these reasons, the 

review is structured with respect to these three processes. Note that as with the NCTM 

standards, the focus is on activities, since in the design of an assessment this leads naturally 

to the development of tasks. 

Problem Solving 

In his classic book, How to Solve It: A New Aspect of Mathematical Method, Polya 

(1957) described four phases for principled problem solving. The first phase is to understand 

the problem—this includes identifying the given information and specifying the unknowns in 

the problem. The second phase is to formulate a plan for solving the problem. During this 

phase, the student should attempt to draw on prior knowledge. If the student knows how to 

solve a similar problem, he or she may apply the insights and methods used to solve that 

problem to the new problem. In the third phase, the student executes the plan developed in 

the second phase. Polya argued that it is especially important that the student justify and 

check each step during this phase. The fourth and final phase involves reflecting on the 

solution. This includes verifying the result and consolidating what has been learned so that it 
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can be generalized to the solutions of new problems. Polya’s phases were not intended to 

characterize the way most students solve problems—rather, they were intended to provide 

pedagogical support, so that students could solve problems more successfully. 

Polya’s phases for problem solving have stood the test of time in mathematics 

pedagogy and are reflected in modern mathematics standards, as well as more recent research 

in cognitive psychology and mathematics education (Nickerson, Perkins, & Smith, 1985). 

Analogical reasoning, schema theory, and metacognition are all embodied in Polya’s phases. 

Problem solving is sometimes distinguished apart from conceptual understanding and 

procedural fluency, but this too is an artificial separation, at least if problem solving is 

approached in a planful way. Successful execution of Polya’s phases requires the use of all five 

strands of mathematical proficiency as described in Adding It Up (Kilpatrick et al., 2001). 

Polya’s first phase, which involves understanding the problem and framing it in 

mathematical terms, is a difficult phase for many students, partly due to misconceptions 

about the nature of mathematics. According to Schoenfeld (1994), “Many if not most 

students see mathematics word problems simply as cover stories that give rise to 

computations” (p. 57). Fuson, Kalchman, and Bransford (as cited in Donovan & Bransford, 

2005) described a number of common student preconceptions about mathematics. Number 

one on the list is “Mathematics is about learning to compute” (p. 220). It is a common 

phenomenon for students to bypass Polya’s first stage entirely and rush directly into 

computation. Doing so can result in negative consequences, however, including inefficient 

strategies or responses that do not address the question. This is not to say that computation is 

not important to mathematics—it is essential. But ideally the student should try to understand 

a problem before attempting computation. So Polya’s first phase requires conceptual 

understanding. One of my mathematics professors appreciated the importance of this first 

phase and encouraged students to engage in it by first asking if the question was clear. He 

would then call on a student to state the goal of the problem in his or her own words. 

Depending on whether or not the question was clearly phrased, discussion among members 

of the class would ensue. Only when he was convinced that the students in the class had fully 

understood the nature of the question, the given information, and the unknowns, would he 

proceed to the next phase. 
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During Polya’s second phase, the student should attempt to draw on prior knowledge. 

This often involves selecting a similar problem, which can be retrieved from memory, or 

located as a worked example from notes or a textbook. Alternatively, if a number of similar 

problems have been solved before, the student may have constructed an appropriate problem-

solving schema (Marshall, 1995a), in which case the student may refer to his or schema, 

rather than a particular problem. Unlike retrieving a particular problem or referring to a 

worked example, retrieving a schema may not be a deliberate, wholly conscious process. 

This phase is designed to support transfer and requires conceptual understanding, strategic 

competence, and adaptive reasoning. Holyoak and Thagard (1995) argued that transfer is 

likely to occur when a student successfully makes an analogy between the source analog and 

the target analog. According to Holyoak and Thagard, there are four steps in the use of 

analogy: (a) selection, (b) mapping, (c) evaluation, and (d) learning. Interpreted in this 

framework, Polya’s second phase involves the first three steps of analogy use. During the 

selection stage, the solver identifies a candidate source analog (in this case, a related math 

problem). During the mapping stage, the solver determines the nature of the relationships 

between the source analog and the target analog (in this case, the math problem at hand). 

During the evaluation stage, the solver assesses whether or not the analogy is suitable. Even 

if a suitable source analog has been selected, the solution from the source analog may need to 

be adapted before it can be applied to the target analog. 

Since Polya’s third phase involves execution, it draws heavily on both strategic 

competence and procedural fluency. It also requires justification and verification, however, 

so adaptive reasoning is also used. It could be that if the student gets stuck during this phase, 

he or she has to reconsider which familiar problem has been selected, or, has to modify how 

the solution has been adapted to the target problem. The third phase involves the evaluation 

step from Holyoak and Thagard’s (1995) framework. 

In Polya’s final phase, the student reflects on the solution. This includes verifying the 

result and consolidating the information so that it may be generalized to new problems, both 

of which require conceptual understanding and adaptive reasoning. This constitutes learning, 

the fourth step in the use of analogy. Polya’s final phase can also be interpreted with respect 

to schema theory. If all has gone according to plan, and the problem has been solved 

correctly, the student will hopefully use it to enhance an existing schema or to develop a new 
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schema. Since powerful schemas are the hallmark of expertise, Polya’s fourth phase is 

critical to the development of expertise in mathematics. 

There is no doubt that diligent application of Polya’s four phases of mathematical 

problem solving requires productive disposition, the fifth strand of proficiency from Adding 

It Up (Kilpatrick et al., 2001). Fortunately, the process is iterative and provides opportunities 

for self-correction: If a student is not careful in formulating the question in the first phase, he 

or she may still recover during the third phase, where each of the solution steps must be 

justified and verified. If a contradiction is encountered, the student will hopefully revisit the 

solution method, or even reread the problem to make sure it has been understood. 

Following this fairly lengthy discussion of the components of mathematical problem 

solving, it is worth asking the question whether these are just useful constructs for describing 

how experts usually solve mathematics problems or whether they are actually distinct skills 

that, when taught to students, result in improved performance and increased transfer. For 

example, Kyllonen and Christal (1990) found that quantitative reasoning and working 

memory are highly correlated. Tirre and Pena (1993) designed a study to explore how well 

quantitative reasoning was explained by word problem solution skills and general cognitive 

abilities. They defined structural models for word problem solution skills and for general 

cognitive abilities. The word problem solution model had word problem identification (PI), 

word problem decomposition and sequencing (DS), and word problem translation (PT) 

components. The general cognitive abilities model had working memory (WM), verbal 

comprehension (VC), and reasoning (R) components. There were two quantitative reasoning 

variables: arithmetic reasoning (AR) and math knowledge (MK). 

Tirre and Pena (1993) explored how well quantitative reasoning was fit by each of the 

structural models, how the structural models related to each other, and which components 

uniquely accounted for quantitative reasoning performance. They found that the word 

problem solving components did account for quantitative reasoning performance in addition 

to what was explained by general cognitive abilities. PT, PI, and DS all had a role beyond 

general cognitive abilities in predicting AR. Also, PT was not related to any of the general 

cognitive abilities. Of the word problem solving components, only PI had a role beyond 

general cognitive abilities in predicting MK. Their results suggest that quantitative reasoning 
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skills tap something more than general cognitive abilities, even though general cognitive 

abilities are related to quantitative reasoning performance. 

Modeling and Representation 

Sigel (1999) gave the following definition for representation: “In sum, a 

representation refers to instances that are equivalent in meaning and in class membership, but 

different in mode of expression” (p. 4). The word representation may be used to refer to 

either an internal or external construct. It may also be used to describe the act of developing 

such a construct. All of these interpretations are included in the definition given in the 

Principles and Standards (NCTM, 2000). 

Gitomer and Steinberg (1999) argued that domain considerations should inform what 

kinds of representations are appropriate to use in the context of a particular assessment. 

Alternate representations have been present in mathematics assessments for a long time, but 

they have not always had such explicit focus. The heightened focus is probably in response to 

the research that suggests students have difficulty moving between representations. By 

definition, a student understands a concept more completely when he or she can recognize or 

produce an equivalent representation. A mathematics assessment that is designed in 

accordance with modern standards should encourage a student to develop flexibility with 

recognizing and using alternate representations while assessing his or her proficiency at 

doing so. 

In their 1992 chapter, Lesh and Lamon noted that traditional content by process 

matrices of standards had been criticized, and that it would be important to develop standards 

consistent with cognitive objectives (Greeno’s term, as cited by Lesh & Lamon). Their 

proposed solution for responding to this criticism was to define cognitive objectives that 

include working with models as an explicit goal, and they noted that the 1989 NCTM process 

standards corresponded very well to cognitive objectives related to working with models. 

According to Lesh and Lamon (p. 26): 

Mathematical models are complete functioning systems, which consist of: (i) 

elements (for example, quantities, ratios of quantities, shapes, coordinates), (ii) 

relationships among elements within the system, (iii) operations or transformations 
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on elements in the system, and (iv) patterns that govern the behavior of the relations, 

operations, and transformations. 

The Principles and Standards (NCTM, 2000) highlight the importance of models (the 

word model or a variant of it appears in the document 302 times, usually in the sense 

described by Lesh & Lamon). Also, the terms model and representation are highly related 

(and are sometimes used interchangeably), and representation is a distinct process standard. 

The term representation is more general, and as noted by Sigel (1999), it remains to be 

discovered whether it is meaningful to consider representational competence in general or 

whether it is strictly domain specific. 

Lesh and Lamon (1992) outlined six cognitive objectives related to working with 

models. We will consider the first three here, as follows:2  

• Students should use models to interpret real-life situations 

• Students should think about underlying models 

• Students should explore similarities and differences among alternative 

representation systems associated with a given model (p. 32) 

The first objective pertains to model construction, which is subsumed by the 

representation standard. This objective is concerned with describing a real-life situation in 

mathematical terms (the model), so that it may be operated on. The second objective is 

largely concerned with evaluating the model (examining assumptions, assessing fit, and so 

forth). The third objective emphasizes flexibility with alternate representations, which is 

strongly emphasized in the standards, particularly where algebra is concerned. Consider the 

following quote from the Principles and Standards in the context of discussing linear 

equations: 

In the middle grades, students often begin with tables of numerical data to examine a 

pattern underlying a linear function, but they should also learn to represent those data 

in the form of a graph or equation when they wish to characterize the generalized 

linear relationship. Students should also become flexible in recognizing equivalent 

forms of linear equations and expressions. This flexibility can emerge as students 

gain experience with multiple ways of representing a contextualized problem. 

(NCTM, 2000, p. 282) 
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The earlier quote about representing functions (in the algebra section), makes a 

similar point about the importance of representation. Flexibility in the use of representations 

may enhance learning as well. Goldin (1998, p. 158) argued that learning mathematical 

concepts via multiple representations may have long-term memory benefits, both from a 

retention and a savings perspective, because an idea that has been encoded in multiple 

formats is easier to recall or to relearn. 

The work described earlier by Lehrer and Schauble (2000) focused on modeling in 

mathematics in science. The examples they described illustrate how students improve their 

models over several iterations—through class discussion, the models (Lehrer and Schauble 

refer to the physical instantiations of the models as inscriptions) are reformulated and 

revised. An important characteristic of this work is that the students had multiple 

opportunities to discuss and revise their inscriptions, and to compare alternative inscriptions. 

This is what mathematicians and scientists do in practice. It is often argued that assessment 

tasks should reflect realistic content and that this is necessary, but probably not sufficient. 

There should be forms of assessment that incorporate realistic forms of practice (or that are 

seamlessly integrated with it). 

Argument and Justification 

Mathematical argument and justification has close connections with several of the 

NCTM process standards and the proficiency strands from Adding it Up. It is probably most 

closely connected with the reasoning and proof process strand from the NCTM Principles 

and Standards. Recent conceptualizations of mathematical reasoning extend beyond formal 

proof (NCTM, 2000; Kilpatrick et al., 2001) and include the following: 

• Providing examples which satisfy a statement 

• Providing counterexamples 

• Proposing conjectures 

• Deductive argument (including forms of proof) 

• Evaluating reasonableness of results, plausibility 

• Checking an answer via substitution 

• Estimation and approximation 
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• Real-world knowledge 

• Justification/explanation of a solution procedure 

These component skills constitute forms of mathematical argument. It should be 

noted that the term argument has a different interpretation in mathematics than in other 

domains, since mathematical argument has its foundation in logic, and “opinions” should be 

interpreted as conjectures to be evaluated. It has been observed that an empirical approach to 

mathematical argument has pedagogical appeal (Schoenfeld, 1994). Developing conjectures 

based on examples is an important skill to develop. Successful use of an empirical approach 

involves understanding how examples may be used, since demonstrating through the use of 

examples is not always sufficient (e.g., Epp, 2003; Weber, 2003). Attempting to “prove” the 

truth of a statement through the use of an insufficient set of supporting examples is a 

common error, as evident in the earlier discussion of the Lee and Wheeler (1989) study. 

Michener (1978) developed a classification scheme for examples with respect to their 

role in teaching and learning. Among the types of examples included were “start-up” 

examples (to facilitate understanding), and counterexamples, in addition to more standard 

kinds of examples. Understanding the different types of examples may help students to 

consider counterexamples as well as supporting examples, and to construct more sound 

mathematical arguments. Asking students to justify a correct response is a common task, but 

having them also explain why incorrect answers are incorrect may be even better (Stigler & 

Perry, as cited in Siegler, 2003). 

Mathematical argument and justification are also closely tied to the NCTM 

communication and connections process strands. Mathematical argument is the central part 

of mathematical communication—often, what one is communicating in mathematics is some 

form of argument, at least as argument has been broadly defined here. A student who 

communicates an effective argument not only presents it accurately, but explains it clearly, 

with attention to the target audience. In a mathematical argument, accuracy and clarity are 

often inseparable, and it may be impossible to interpret the accuracy of an argument that is 

not clearly explained. This is not to suggest that mathematical arguments must be lengthy in 

order to be clear—some of the best arguments are also the most concise. 

There is also a close connection between representation and mathematical argument. 

In order to construct a sound mathematical argument, a student must identify an effective 
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representation. As suggested from the Lee and Wheeler (1989) study, sometimes the most 

effective representation to support or refute a statement is different from the representation in 

which the statement is given. In making a mathematical argument, students may also draw on 

a number of different representations, particularly in arguments that require multiple steps. 

Summary 

In this section, key processes central to mathematics learning were described, 

including problem solving, representation, and mathematical argument and justification. 

Although they have been discussed in separate sections, these processes are highly 

interrelated. For example, students must identify appropriate representations in order to solve 

a problem or develop an argument. Where problem solving is concerned, a goal for 

assessment should be to help students develop a systematic approach for identifying and 

organizing relevant information, and to encourage the development of gradually more 

general methods of solution. Mathematics assessments should also encourage students to 

identify appropriate representations and to use them flexibly in developing clear and accurate 

mathematical arguments. 

First Draft of Competency Models for Middle-School Mathematics 

A Model of Competency With Respect to Mathematics Content 

The earlier portion of this document characterized core content and key processes in 

mathematical competency, with the goal of informing development for cognitively based 

assessments for middle-school mathematics. At this point, we are ready to consider how to 

draft a model for middle-school mathematics content and process competency; we consider 

content first. The K-12 mathematics curriculum spans a great deal of content, and it is a 

concern to many educators that the coverage is too broad and lacks sufficient depth. In an 

attempt to respond to this, the NCTM released the Curriculum Focal Points for 

Prekindergarten Through Grade 8 Mathematics (2006). This document highlights core 

mathematics content by grade. In each grade, there are three central content areas, or focal 

points. The document also specifies two kinds of connections to the focal points within each 

grade: (a) connections from focal points in other grades, and (b) connections from less 

central content, within the same grade. Thus the curriculum focal points assume a model of 

student acquisition. 
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The first draft of the competency model for content is based on the NCTM curriculum 

focal points. Figure 1 is a graphical interpretation of the focal points (and the connections to 

them) for grades 6-8. Text descriptions of the focal points and connections to them are given 

on pages 18-20 of the focal points document. The graphic in Figure 1 does not provide the 

same level of detail that is provided in the text descriptions; its purpose is to make the focal 

points and connections to them visually apparent at a high level. 

The graphic in Figure 1 is divided into three columns, with grade 6 on the left, grade 

7 in the middle, and grade 8 on the right. The focal points are shown in the boxes with solid 

red borders. The text in these boxes is from the description headings given in the NCTM 

Curriculum Focal Points (2006), though headings are shortened to save space. Connections 

to the focal points are represented by the boxes with dashed borders; the original text 

descriptions are quite lengthy, and there are no description headings, so these are paraphrased 

from the original document. 

Each focal point and connection is identified with at least one content strand from the 

NCTM standards (NCTM, 2000); this is shown in each box and abbreviated as follows: 

numbers and operations (N&O), algebra (A), measurement & geometry (M&G), and data 

analysis and probability (DA&P). Measurement and geometry were consolidated, because for 

grades 6-8, focal points or connections to them identified by M&G were related to both 

content strands, with the exception of one case. The boxes are color coded in accordance 

with the corresponding content strands. Cyan, magenta, and yellow are used for algebra, 

numbers and operations, and measurement and geometry, respectively. White is used for data 

analysis and probability. Focal points or connections that draw on multiple strands are filled 

with mixtures of these colors. 

The arrows represent relationships between focal points, and between connections and 

focal points, as inferred from the document. Note that the arrows always lead to a focal point 

(they only lead away from focal points when leading to other focal points). These arrows, of 

course, do not represent all connections among content areas, but are designed to highlight how 

connections are related to focal points, and how focal points are related to each other. 

The two types of connections discussed earlier are evident from Figure 1. First, 

consider connections across content but within grades. For example, in grade 6, Finding 

areas and volumes (measurement and geometry) is not a focal point. But it is a context in 
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which students Write, interpret, and use mathematical expressions and equations (algebra), 

which is a focal point. In general, within-grade connections to a focal point represent 

alternate contexts in which the focal point may be addressed. Next, consider the across-grade 

connections, which tend to be cumulative. For example, Understanding and application of 

proportionality . . . is preceded by Connecting ratio and rate. Since a proportion is an 

equivalence between ratios, students must understand the concept of ratio before 

understanding the concept of proportion. 

 

Figure 1. Graphical interpretation of the Curriculum Focal Points for Prekindergarten 

Through Grade 8 Mathematics (NCTM, 2006, pp. 18-20). 

A couple of other features of Figure 1 are worth noting. First, of the nine focal points 

represented in grades 6-8, six involve algebra; five involve numbers and operations; three 

involve measurement and geometry; and one involves data analysis and probability. This 
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would tend to support the idea of focusing on algebra and numbers and operations, and the 

connections between them, in the middle grades. As mentioned earlier, however, these areas 

should not be given emphasis to the exclusion of other important content. Second, note that 

proportional reasoning is a “strongly connected” focal point that corresponds to several 

content strands. It is linked both within and across grades. As discussed earlier, it is also an 

area that has traditionally posed difficulty for students. 

A Model of Competency With Respect to Mathematics Process 

Three processes were discussed in the section on mathematics competency: problem 

solving, representation, and mathematical argument and justification. While it is widely 

used, the term problem solving is extremely broad and has many different interpretations. 

Sometimes it refers to the process of solving word problems. Sometimes it is used much 

more generally and refers to almost any aspect of dealing with a mathematical problem, 

including representing the situation, planning the steps, executing the procedures, verifying 

the result, and so on. For this reason, it may not be very meaningful to develop a competency 

model for problem solving, at least not without breaking it down. 

Figure 2 shows a draft model for process competency in mathematical argument and 

justification (top) and representation (below). Since the development and use of these two 

processes is concomitant, it seemed reasonable to put them on a common timeline. First, 

consider the development of mathematical argument and justification. It is assumed that 

students first learn to provide examples that support an argument. This is not to suggest that 

positive examples are always easier to find, just that they are easier to reason about. Next, 

students may learn to identify falsifying cases and counterexamples; this would be followed 

by informal methods of direct proof, and finally by a variety of formal proof methods. This 

proposed sequence of stages is very loose, and it is expected that there would be significant 

interactions with task type. For example, some false statements may have counterexamples 

that are difficult to identify, and some true statements may be very straightforward to verify 

directly. Similarly, although students may be more comfortable using simple language to 

make mathematical observations early on, developing an extended verbal argument is more 

demanding than producing a simple chart or table. The sequence proposed in this model 

reflects conjecture and needs to be investigated in further research. 
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Figure 2. Draft competency model of mathematics process. 

Next consider the development of supporting representations, shown in the lower 

portion of Figure 2. In a review of the influence of cognitive psychology on mathematics 

education, English and Halford (1995) summarized some of the work of Jerome Bruner and 

Zoltan Dienes. Bruner and Dienes suggested that children’s skill with using representations 

develops from the more concrete to the more abstract. As cited in English and Halford, 

Bruner suggested that representational skills develop in three stages: enactive, iconic, and 

symbolic, and Dienes proposed that children begin by using concrete materials and progress 

to more abstract representations such as pictures and eventually graphs and symbols. This 

progression, from the more concrete to the more abstract, is reflected in Figure 2. 

Note that there is an implied difference in the time span between Figures 1 and 2. 

Figure 1 focuses on the middle grades, whereas Figure 2 spans development from early 

childhood through high school. This partly reflects that content learning is largely curriculum 

driven, and what content is covered at each grade level is more highly specified than which 

processes occur at each grade level. The scope of Figure 2 could be restricted to cover only 

middle school, but since process development is necessarily loose, the model would probably 

be less meaningful. 

The models discussed in this section constitute an initial attempt to represent the 

Curriculum Focal Points and findings from the research literature in graphical form. They are 
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discussed here primarily to describe the rationale that led to the design of the current model 

of mathematical competency that is used for CBAL mathematics task development. This 

model is still evolving, but is presented and discussed at length in Graf, Harris, Marquez, 

Fife, and Redman (2009). 

Describing and Quantifying Evidence of Mathematical Proficiency 

As mentioned at the outset, it is anticipated that both an accountability assessment 

system and a formative assessment system might share a common model of mathematical 

competency. The evidence models may differ substantially between these two types of 

assessment systems, however, since they will be used in different contexts and will have 

different applications. 

The discussion of evidence is organized into four main sections: developmental 

progressions, strategies, bugs and misconceptions, and the role of the situative perspective. 

Research in each of these areas that is relevant to the question of evidence is summarized. 

Although the focus of each of the four sections is different, they interact to a high degree. As 

their mathematical thinking develops, students use different strategies. The use of particular 

strategies can lead to different kinds of bugs, and misconceptions can influence the choice of 

strategy. Similarly, many strategies and misconceptions are situation-specific. 

Developmental Progressions 

Although they span different time frames, both the content and process competency 

models imply a developmental progression. Particularly where formative assessment is 

concerned, it is important to consider prerequisite competencies for the material under study, 

as well as what the student should be able to do at the next stage. The Sfard (1991) work 

discussed earlier posits a general model for the development of mathematical ideas. Sfard 

argued that operational (process-based) conceptions generally precede structural (object-

based) conceptions, both in the historical development of mathematical ideas and within an 

individual learner. Sfard’s view is expressed in the following quote: 

Of the two kinds of mathematical definitions, the structural descriptions seem to be 

more abstract. Indeed, in order to speak about mathematical objects, we must be 

able to deal with products of some processes without bothering about the processes 

themselves. In the case of functions and sets (in their modern sense) we are even 
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compelled to ignore the very question of their constructivity. It seems, therefore, 

that the structural approach should be regarded as the more advanced stage of 

concept development. In other words, we have good reasons to expect that in the 

process of concept formation, operational conceptions would precede the 

structural. Different kinds of evidence will be brought in this article to show that 

this statement is basically true whether historical development or individual 

learning is concerned. (p. 10) 

One of the examples discussed by Sfard (1991) concerned the development of the 

function concept. According to Sfard, early conceptions of function were closely tied to 

algebraic representations that emphasized the role of variables. A later definition from Euler 

(as cited in Sfard, p. 15) did not mention variables, but emphasized the notion of 

dependency—that is, that one quantity changes with respect to another. Sfard considered 

these early definitions operational because they were expressed in terms of processes applied 

to variables or quantities that resulted in other variables or quantities. Eventually these 

definitions were subsumed by Bourbaki’s definition, which Sfard considered structural, 

because it describes the function concept with respect to a set of ordered pairs rather than 

with respect to an operational process. 

Sfard (1991) suggested that there are three stages in the development of a 

mathematical concept: (a) interiorization, (b) condensation, and (c) reification. During 

interiorization, the learner becomes familiar with operational processes and computations. In 

condensation, the learner begins to consolidate operational steps, and the focus shifts from 

the details of a procedure to its result. Finally, during reification, the learner begins to use the 

concept as a structural object that can itself be applied to the interiorization of new concepts. 

The Sfard framework may be applied to the developmental progression for any mathematical 

concept, but, of course, research specific to the concept must inform its developmental 

progression as well. 

Progressions of mathematical understanding for infants and very young children are 

relatively well understood (see Siegler, 2003, for a review). This may be partly because very 

early mathematical concepts develop prior to any formal instruction. The development of 

student strategies and schemas for solving arithmetic word problems has also been 

extensively investigated (Briars & Larkin, 1984; Carpenter & Moser, 1984; Morales, Shute, 
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& Pellegrino, 1985; Riley, Greeno, & Heller, 1983). As students learn more advanced 

material, their experiences with mathematics learning and instruction vary to a greater extent. 

Also, as the material becomes more complex, there are more solution strategies that may be 

brought to bear on any particular problem, so measures of performance become increasingly 

complex as well. By necessity, studies of how mathematical skill develops at the later stages 

are more specific to a particular content area or even to a particular task type. 

Noelting (1980) investigated the development of students’ understanding of 

proportional reasoning comparison problems. This work is an excellent example of how to 

coordinate measurement and task design, so that the results may be interpreted with respect 

to a developmental model. The child was shown two pitchers. Then, in each pitcher, the 

experimenter mixed some number of glasses of water and some number of glasses of orange 

juice. The task was for the child to decide which pitcher would taste more strongly of orange 

juice. Noelting used the notation (a,b) to represent the mixture in a pitcher, where a is the 

number of glasses of orange juice, and b is the number of glasses of water. A number of 

different ratio comparison tasks were systematically developed. Tasks as simple as (a,0) 

versus (0,b) (in one mixture only orange juice is present, in the other mixture, only water is 

present), and as complicated as (3,5) versus (5,8) were included, as were tasks intermediate 

in difficulty. For example, (3,4) versus (2,1) was such an intermediate pair. 

Noelting (1980) organized the tasks into seven stages according to difficulty, and 

characterized the tasks at each stage with respect to their cognitive demands. For example, to 

solve an (a,0) versus (0,b) task, only “identification of elements” (Table 5, p.231) is required. 

The (3,4) versus (2,1) task is characterized by “an inverse relation between terms in the 

ordered pairs” (Table 5, p. 231). Note that neither of these tasks requires a formal approach 

such as finding common denominators, but that the (3,5) versus (5,8) task is not easily solved 

using such a weak method. Noelting observed that students who could solve tasks at higher 

stages were generally older, and he interpreted this observation with respect to a Piagetian 

framework. He performed a confirmatory factor analysis and extracted six factors instead of 

seven, but found that the correspondence between the proposed seven stages and the 

extracted factors was quite good. 

Modern views on developmental progressions recognize that skills and competencies 

are not necessarily associated with a particular age band (at least past a certain age), and I 
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will take that perspective here. There have been several attempts to identify “progress maps” 

or “prerequisite maps” in accordance with developmental progressions in mathematics, a few 

of which will be discussed here. 

Project 2061 (American Association for the Advancement of Science [AAAS], 2001) 

has developed the Atlas of Science Literacy, which includes a set of “conceptual strand 

maps” for different topics in science and mathematics. There are maps for both process 

strands and content strands, and each map shows the relationships among the proposed skills 

and concepts in each map. Volume 1 includes maps on mathematical processes, 

mathematical models, graphic representation, symbolic representation, ratios and 

proportionality, and describing change. A sample map for ratios and proportionality can be 

accessed from http://www.project2061.org/publications/atlas/sample/9_3_RP.htm. 

Volume 2 of the Atlas of Science Literacy and draft maps are available from 

http://www.project2061.org/publications/atlas/sample/toc2.htm. According to the Web site, 

the new volume includes maps on mathematical applications, shapes, and reasoning. The 

Atlas of Science Literacy maps have a cognitive research basis, but these appear to have been 

developed primarily for pedagogical purposes rather than for formal assessment. 

In an effort to realign achievement tests to a new elementary school curriculum 

adopted in the Philippines, the Center for Educational Measurement developed a set of 

progress maps for mathematics (Angeles, Sampang, & Moseros, 2006). The progress maps 

cover grades 1-6, and the manuscript provides the progress map developed for fractions as an 

example. A distinguishing feature of this progress map is that interrelationships among 

content area skills are represented both vertically within each grade level and horizontally 

across grade levels—it is similar to the NCTM curriculum focal points in this respect, 

although the skills are described at a finer grain size. The progress map was developed by a 

mathematics curriculum expert, in accordance with test specifications, and was reviewed by 

other mathematics experts in an initial validation effort. The paper also includes examples of 

lessons that were developed to address each skill represented in the progress map. A 

longitudinal study to validate the sequence of skills in the progress map is planned. 

Falmagne, Cosyn, Doignon, and Thiéry (2006) described the use of knowledge spaces 

theory as it is applied to the ALEKS adaptive assessment system for mathematics. ALEKS 

relies on large precedent maps (for example, there is one for algebra) that specify prerequisite 
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relationships among different problem types. Any minimum set of precedent problem types 

that imply mastery of another problem type is referred to as a knowledge space. Knowledge 

spaces are built by asking experts to determine whether a student could solve a particular 

problem, given that he or she was unable to solve some other combination of problems. The 

system adapts by giving the student problem types from the “outer fringe” (immediately 

beyond the likely knowledge state) when the student is doing well, and retreating to problem 

types from the “inner fringe” (just below the likely knowledge state) when the student is 

having difficulty. Once the likelihood distribution for a student’s knowledge state reaches 

some minimum entropy, the system estimates the final knowledge state, administers a final 

problem, and stops. ALEKS’ knowledge structures are validated by comparison against 

actual student response data. According to the paper, ALEKS is highly accurate—the 

correlation between responses as predicted by the final knowledge state and the observed 

responses is between .7 and .8. 

It would be interesting to explore task difficulty factors from a developmental 

perspective (I. Bejar, personal communication, April 21, 2009). In other words, it is likely 

that different task features influence difficulty in different ways at different stages of 

development. One way we can begin to build a developmental framework is to investigate 

which task features influence difficulty across grade levels.  

Strategies 

Implicit in the earlier discussion about alternate representations and the development 

of mathematical problem solving and reasoning is the assumption that students may use 

alternate strategies in solving mathematics problems. This poses a challenge for assessment 

development, because different solution strategies may reveal very different kinds of 

evidence. Although it is not based on middle-school content, an example from Schoenfeld 

(1987) illustrates how this can happen. He presented students with the task of finding an 

integral. It was intended as a warm-up task, because the integral can be found using a simple 

substitution method (Schoenfeld estimated that applying this strategy should take students 

about 2 minutes). What he observed, though, was that a number of students solved the same 

task using either a partial-fractions method or a trigonometric substitution. He noted that 

while both of these methods require greater knowledge of mathematics, they take much more 

time to complete. His point was that metacognitive monitoring and strategy selection is 
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important to develop in mathematics problem solving. While it is valuable for students to try 

alternative solution methods, ideally they should also develop skill with recognizing efficient 

solutions. 

From an assessment perspective, strategy by task interactions pose challenges for 

both task design and scoring. One way to assess use of a particular strategy is to constrain the 

task in order to encourage the student to solve it in a particular way. This defeats the purpose, 

however, if part of the goal is to assess a student’s strategic planning and whether or not he 

or she makes a judicious strategy selection. Another approach is to systematically design a 

set of tasks such that different tasks require different levels of strategic sophistication. This is 

the approach that Noelting (1980) used in his work on proportional reasoning comparison 

problems. This approach is helpful for identifying stages in strategic development. For 

complex tasks that can be solved using many different methods, however, more research is 

needed on how to help students compare alternate strategies in order to select one that is 

efficient. 

Strategy by task interactions may be difficult to accommodate on the scoring side as 

well. For example, a student might earn points for selecting an efficient strategy or for 

choosing a strategy that reflects a high level of mathematical understanding. It may not be 

appropriate to combine these points into a composite score—but they can’t be considered 

entirely separately either. For example, it may be useful to know that a student’s strategies 

tend to reflect a high level of mathematical knowledge, even if the student tends to apply 

inefficient strategies. But the student who always selects the most efficient strategy (that may 

also require a lower level of mathematical knowledge) may have a high level of 

mathematical knowledge that is not in evidence. One possible way to resolve this is to design 

some tasks that primarily assess strategic efficiency and other tasks that primarily assess 

mathematical knowledge. 

Mayer, Larkin, and Kadane (1984) described an experiment that explored the 

influence of representation, or task format, on strategy. They developed isomorphic pairs of 

single-variable algebra problems: one member of the pair in equation format and the other 

member of the pair in word problem format. In earlier work, they observed that students used 

two strategies for solving such problems, which they referred to as the reduce strategy and 

the isolate strategy. Students who used the reduce strategy initially focused on simplifying 
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expressions on either side of the equation; students who used the isolate strategy initially 

focused on moving the variables to one side of the equation and the numbers to the other. 

The isolate strategy is more complicated, because it is not always possible to immediately 

isolate a variable without first doing some simplification—resulting in what Mayer et al. 

referred to as goal stacking. 

Each equation (or word problem) was decomposed into problem states (where each 

state corresponded to a particular stage on a possible route to solution). Students solved the 

problems working forward from each of the possible states. Each strategy type implied 

different sequences of actions, which in turn predicted different patterns of response times 

across problem states. Based on the fit between the strategy predictors and the observed 

response times, Mayer et al. (1984) concluded that students appeared to use the reduce 

strategy to solve word problems and a more complicated goal-stacking strategy to solve 

equation problems. 

Proportional reasoning is another area where researchers have identified many 

alternative solution strategies. In solving missing value proportional reasoning problems, 

Vergnaud (1983) observed that students prefer to apply scalar strategies rather than 

functional strategies. Use of a scalar strategy involved noticing the transformation within one 

measure space and applying it to the other measure space. For example, consider this 

problem: “If 3 yards of ribbon cost 15 cents, how many cents do 9 yards of ribbon cost?” 

Here, yards of ribbon define one measure space and cents define the other. Students generally 

prefer to note that 9 yards equals 3 times 3 yards, so the cost must be 3 times 15 cents, or 45 

cents. This is a scalar strategy. But the problem may also be readily solved by working across 

measure spaces—since 15 is 5 times 3, the cost for 9 yards must be 5 times 9, or 45 cents. 

Kaput and West (1994) also identified a number of different strategies for solving 

proportional reasoning problems, including build-up processes and the unit factor approach. 

Build-up processes include strategies such as coordinated double-skip counting (Kaput & 

West). For example, if 3 yards cost 15 cents, then 6 yards cost 30 cents, and 9 yards cost 45 

cents. In this example, the unit factor approach involves finding the price per unit (5 

cents/yard) and multiplying by the number of units (9 yards) to yield the result, 45 cents. 

Across areas in mathematics, multiple solution methods are possible, and different 

strategies reveal different evidence with respect to both mathematical content and process 
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knowledge. To complicate matters further, the format in which a task is presented can 

influence which strategies are preferred. Also, strategies are not necessarily pure 

instantiations of a particular approach; they may consist of hybrid solutions and false starts. 

Hall, Kibler, Wenger, and Truxaw (1989) developed a classification scheme for strategic 

episodes in the solution of common algebra word problems. The strategic episodes identified 

in this scheme were not necessarily mutually exclusive; a student might draw on several of 

them during the course of solving a problem. Some of the strategic episodes were related to 

understanding and representing the information given in the problem, others were related to 

alternative correct approaches, and still others were related to different types of errors. Such a 

classification scheme is useful because lengthy solutions can be coded and compared with 

respect to their constituent strategic episodes. 

It is probably clear from the preceding discussion that strategy by task interactions are 

important to consider for the purpose of interpreting evidence and must be attended to in the 

design of sound assessments. It is probably also clear that strategy analysis in mathematics is 

both labor-intensive and content-specific. It is probably not feasible to identify each different 

strategy for each type of task for each topic in middle-school mathematics. Nor would 

information at this level of detail necessarily be useful to report to stakeholders. It may be 

possible to consolidate information about strategies at a high level. The question is whether it 

is possible to do this accurately without first conducting the fine-grained, detailed analysis. 

Stevens and Thadani (2006) described an approach for categorizing different 

strategies students used as they solved problems from the Hazmat problem set. Hazmat 

consists of problems in which there has been a toxic spill, and the student’s task is to identify 

what substance has been spilled by selecting a variety of tests. There are multiple routes to 

solution. Not all are correct, and those that are correct are not all efficient—for example, 

students may conduct more tests than necessary. Stevens and Thadani used an artificial 

neural network to identify strategies based on the relative frequencies with which different 

tests were selected. Similar strategies were clustered into a small number of states (in this 

case, five states). They then used hidden Markov models to estimate transition probabilities 

among the five states. They noted that while this approach is very useful for research, the 

models are different for each problem set, and teachers need strategy information 

summarized at a higher level. So performances were categorized with respect to both 
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strategic efficiency and outcome, as follows: high efficiency, low outcomes; low efficiency, 

low outcomes; high efficiency, high outcomes; and low efficiency, high outcomes. This sort 

of approach could provide teachers with high level information about students’ strategies and 

how they might be modified. 

Bugs and Misconceptions 

Bejar (1984) distinguished between diagnostic assessment that involves deficit 

measurement and diagnostic assessment that involves error analysis. This section is 

concerned with the latter, where errors are defined as bugs and misconceptions. First, to 

distinguish the two: a bug is a procedural lapse and may be just a slip but, as discussed 

earlier, it may also indicate conceptual misunderstanding. Bugs (and their diagnostic 

limitations) have been thoroughly explored in some mathematical areas, in particular, basic 

arithmetic (e.g., Brown & Burton, 1978; Van Lehn, 1983) and solving linear equations (e.g., 

Payne & Squibb, 1990; Sleeman, 1984). Facet-based instruction, or FBI (Hunt & Minstrell, 

1994; Minstrell, 2001), organizes diagnostic physics items around student misconceptions, or 

facets. The items are deliberately constructed to assess the prevalence of facets in different 

contexts. 

The research on bugs and misconceptions suggests that there are a number of bugs 

and misconceptions that occur with very high frequency. Some of them have been discussed 

earlier in this document. In proportional reasoning, for example, the “incorrect addition 

strategy” (Hart, 1984) reflects a misconception about the nature of proportional relationships. 

This misconception is pervasive and observed across contexts. The variable reversal error 

discussed earlier is also very common among college students (Clement, Lochhead, & Monk, 

1981). This error appears not to be a mere slip, since pointing it out or even remediating it 

does not appear to resolve the problem, at least not in the short term (Graf, Bassok, Hunt, & 

Minstrell, 2004; Rosnick & Clement, 1980). The protocols from Lee and Wheeler (1989) 

suggest that some students do not readily perceive the connection between arithmetic and 

algebra and will produce explicit justifications for incorrect procedures. Other common bugs 

include inappropriate cancellation (Lee & Wheeler), inappropriate application of cross-

multiplication (for example, when adding two fractions—see Kaput, 1999), and difficulty in 

operating on expressions with parentheses (Lee & Wheeler; Payne & Squibb, 1990; Sleeman, 
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1984). While many of the errors may be due to slips, many are likely due to an incomplete 

understanding of the system. 

Even though there are certain bugs or misconceptions that occur with reasonable 

frequency, a particular student does not necessarily adhere strongly to a particular 

misconception or naïve theory, and students use different mal rules, or incorrect rules, even 

on similar items (Payne & Squibb, 1990). Madhyastha, Hunt, Kraus, and Minstrell (2006) 

investigated the “coherence” of student response patterns on items dealing with forces and 

motion. Coherence refers to how consistently students respond in accordance with the same 

facet, or misconception, across similar items. They made several interesting observations. 

First, there were a number of prevalent misconceptions. Nevertheless, on a pre-assessment, 

only 35% of students showed coherent patterns of responses, suggesting the large majority 

were not operating in accordance with a particular theory. Following instruction, on a post-

assessment, 44% of students showed coherent (though not necessarily correct) patterns of 

responding. Coherence improved with instruction, but the majority was still not responding 

in accordance with a coherent pattern. Madhyastha et al. also observed that coherent patterns 

of responding appeared to be correlated with math ability. They interpreted this to mean that 

there may be a relationship between coherence and sophistication in reasoning about the 

material. Similarly, in a study investigating students’ patterns of responding to algebra items, 

Payne and Squibb (1990) observed that while students generally respond with inconsistent 

patterns of algebra mal rules, it is easier to diagnose students with greater levels of algebra 

skill. 

When misconceptions are diagnosed for a particular student, there is an implicit 

assumption that the student is responding in accordance with an idea. But these results 

suggest that students do not necessarily respond consistently, perhaps particularly when they 

are not comfortable with the material. These results have implications for how evidence is 

accumulated. For misconceptions that are common, it is probably worthwhile to target the 

misconception at the class level, since chances are good that some proportion of students will 

apply it at one time or another. But it also suggests that we should not attempt to diagnose 

individuals on the basis of their responses to only one or two questions. If a student responds 

consistently with a popular misconception, then it is appropriate to diagnose at the individual 

level. A generic diagnosis could still be provided at the individual level for inconsistent 
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patterns of responding—perhaps the most appropriate course of action would be to refer the 

student to the teacher for additional help. 

Recall the example presented earlier from Harel (as cited in Kaput, 1999), where the 

problem solver responded to superficial characteristics of the task while trying to solve an 

inequality. To characterize all of the different possible superficial configurations in order to 

build an exhaustive model of bugs and misconceptions would be a formidable task. By 

focusing on the improvement of students’ foundational skills, it is possible that some of these 

bugs and misconceptions will disappear, as students develop a deeper understanding of the 

system in which they are operating. 

In a discussion about student misconceptions, Wiliam (2007) pointed out that while 

incorrect responses can reveal important evidence, what is most important is that the correct 

response is interpretable. If it is possible to obtain the correct answer without understanding, 

then the item does not provide sufficient evidence for student understanding. In assessment 

contexts with high-stakes outcomes, items that may be answered correctly through use of 

construct-irrelevant strategies often manifest as poorly discriminating during pretesting and 

are subsequently eliminated. Note though that even an item that discriminates well does not 

necessarily assess deep understanding—that is accomplished through careful attention to task 

design, which will be discussed later in the document. The issue to note here is that an 

argument can be made that while a lot of research has focused on the nature of bugs and 

misconceptions, less attention has been directed to the interpretability of correct responses, 

and this may actually be the most important place to focus our attention. 

In sum, it is recommended that we track and remediate the most common 

misconceptions, though not at the individual level, unless there is clear evidence for a 

consistent pattern of responding that we can identify. Bugs and misconceptions can suggest 

weaknesses in foundational skills. As noted by Wiliam (2007), however, attention to the 

interpretability of correct responses is most important, so it is not advisable to focus on bugs 

and misconceptions to the exclusion of this consideration. A potential focus for future 

research is to determine whether it is more effective to remediate by developing foundational 

skills or by explicitly addressing bugs and misconceptions. 
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The Role of the Situative Perspective in Mathematics Assessment 

During the 1990s, there was a spirited debate between researchers who argued that 

learning theory should be approached from a cognitive perspective (e.g., Anderson, Reder, & 

Simon, 1996; Anderson, Reder, & Simon, 1997) versus researchers who argued that a 

situative perspective was also important (e.g., Greeno, 1997). The cognitive perspective is 

focused on how a learner infers meaning, represents information, and solves problems, while 

the situative perspective is focused on how learning practices are cultivated in the context of 

the surrounding environment. In quantitative domains, research from the cognitive 

perspective has focused on identifying solution strategies of individual problem solvers, 

identifying components of knowledge and skill and how these components are organized into 

schemas, studying the role of prior knowledge and misconceptions, identifying features of 

tasks that influence difficulty and solution strategy, and developing interventions targeted 

towards improving individual learning. 

Research in quantitative domains from the situative perspective has focused on how 

environmental experiences interact with performance, how skilled practice develops in a 

community setting, and the importance of task authenticity. Shute and Psotka (1996, pp. 585-

586) discussed the implications of the two perspectives for the design of an intelligent 

tutoring system. Similarly, the two perspectives have implications for the design of 

mathematics assessment. The individual studies discussed to this point have focused on 

research from the cognitive perspective. In this section, research studies in quantitative 

domains from the situative perspective are described. 

Since the 1990s, there has been a shift from contrasting the cognitive and situative 

perspectives to highlighting their common goals: 

A more complete cognitive theory will include more specific explanations of 

differences between learning environments, considered as effects of different 

contexts, and a more complete situative theory will include more specific 

explanations of individual students’ proficiencies and understandings, considered as 

their participation in interactions with each other and with material and socially 

constructed conceptual systems. (Anderson, Greeno, Reder, & Simon, 2000, p. 12) 

Both [cognitive and situative] perspectives imply that assessment practices need to 

move beyond the focus on individual skills and discrete bit of knowledge that 
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characterizes the earlier associative and behavioral perspectives. They must expand to 

encompass issues involving the organization and processing of knowledge, including 

participatory practices that support knowing and understanding and the embedding of 

knowledge in social contexts. (Pellegrino, Chudowsky, & Glaser, 2001, p. 65, 

brackets added) 

In other words, although the cognitive and situative viewpoints emphasize different 

aspects of learning, they are not mutually exclusive. Where assessment development is 

concerned, the cognitive and situative perspectives ideally should play complementary roles. 

Schliemann and Nunes (1990) examined how fishermen in Brazil solved missing-

value proportion problems. The fishermen use proportional reasoning to evaluate how the 

price they command for caught fish compares to the price at which prepared fish is selling on 

the market. Only two of the fishermen in their sample had schooling through seventh grade, 

when procedures for solving proportions are typically taught. In Brazil, students are 

instructed to solve missing-value proportion problems by applying the Rule of Three: , 

where a, b, and c are replaced by the known quantities in the problem, and x represents the 

unknown quantity. Students are then shown how to cross-multiply and solve to find x. Even 

though most of the fishermen had not had formal instruction on how to solve proportions, 

they were able to solve proportion problems effectively (including transfer problems that 

differ from the kinds of problems they solve in the marketplace) by using the scalar strategy 

discussed earlier. In a subsequent interview with students who had received formal 

instruction, Schliemann and Nunes again found that use of the Rule of Three algorithm was 

uncommon. 

As part of the Concepts in Secondary Mathematics and Science (CSMS) project, 

student work on ratio and proportion problems was examined for frequent strategies and 

errors. Although the Rule of Three is a commonly taught algorithm in British schools, only 

20 of 2,257 student papers used the Rule of Three approach (Hart, 1984). Schliemann and 

Nunes (1990) concluded that proportional reasoning does not have to be formally instructed 

in order to be learned, and that in fact the standard procedure taught in school may conflict 

with students’ preferences for how to solve such problems. One of the tenets of the situative 

perspective is that rather than trying to replace students’ intuitive (and often correct) ideas 

=
a c
b x
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about how to solve problems with more abstract and inscrutable procedures, instruction 

should build on students’ existing understanding. This is not to say that formal and efficient 

solution procedures should not be taught—only that they should be connected to what 

students already understand from informal experiences. 

Carraher, Carraher, and Schliemann (1985) posed mathematics problems to children 

between the ages of 9 and 15 who were working as street vendors in Brazil. The children 

were first asked mathematical problems as part of an informal interview, in the context of the 

children’s working environment. The children were asked questions about purchases (e.g., 

how much will some number of units of a particular item cost). Following the interviews, 

children participated in a formal test that consisted of numeric computations and word 

problems. The formal test was customized for each child—it included only problems that 

used the same numbers as problems that the child had solved correctly during the informal 

interview. 

Carraher et al. (1985) found that performance on situated problems (whether 

problems from the informal interviews or word problems from the formal test) was much 

higher than performance on the numeric computation problems. This is somewhat striking 

when it is considered that the interview computations were performed mentally, while during 

the formal test children had access to paper and pencil. Carraher et al. also noticed that the 

children used school-based procedures on the formal test to a greater extent than in the 

interviews, where they relied more on intuitive methods. They concluded that the standard 

approach of teaching formal mathematical methods prior to introducing contextualized 

problems (such as word problems) should be reconsidered. 

Lave, Murtaugh, and de la Rocha (1984) compared shoppers’ performance with 

solving arithmetic problems in the supermarket to their performance on a formal paper-and-

pencil test of arithmetic. They found that performance on problem solving in the supermarket 

was 98% correct, while performance on the written arithmetic test was only 58% correct. But 

they noted that while shoppers’ final solutions in the supermarket tended to be correct, their 

problem-solving behavior had a characteristic form: they tended to make multiple 

calculations and, often, the intermediate calculations contained errors. Lave et al. proffered 

the following possible explanation for the shoppers’ supermarket problem-solving behavior: 

the supermarket environment and the shoppers’ knowledge of it affords quite a bit of 
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information about what is typical and reasonable. The interaction between the shopper’s 

experience and the information present in the environment function to establish constraints 

on the solution. Lave et al. gave the following description as an example of how problem 

solving and environment may interact: 

One shopper found an unusually high-priced package of cheese in a bin. He suspected 

an error. To solve the problem, he searched through the bin for a package weighing 

the same amount and inferred from the discrepancy between prices that one was in 

error. (p.77) 

De la Rocha (as cited in Lave et al., 1984) gave another interesting example of using 

the environment to solve a problem. When asked to find three-quarters of two-thirds of a cup 

of cottage cheese, a Weight Watchers member measured out two-thirds of a cup of the 

cheese, spread out the contents and sectioned it into quarters, and removed one quarter. 

The actions of the shopper and the Weight Watchers member are not so different 

from what children do when they use manipulatives or supporting software to reason about 

mathematics problems. Because they are physical objects, manipulatives may make the 

affordances and constraints of a system more obvious to the problem solver. The interaction 

between the problem solver and his or her environment is something that needs to be 

considered in the interpretation of evidence. It may be that students who have difficulty 

reasoning mathematically in formal situations can nevertheless reason quite successfully in 

familiar environments. As another example, Hoyles, Noss, and Pozzi (2001) found that 

nurses used a variety of proportional reasoning strategies to determine what doses to 

administer to patients. More often than not, they did not rely on the computational rule they 

had been taught, but they did not make any errors when administering the doses. Hoyles et al. 

knew from prior work, however, that nurses did not score highly on formal tests of 

proportional reasoning. 

What this body of research suggests is that both children and adults may have 

situation-specific competency that is not necessarily reflected in more formal measures of 

assessment. It may be, however, that situation-specific skill is a precursor to more abstract 

and formal understanding. It may be useful to recognize evidence of situation-specific 

competency, because students at this stage may advance to the next level of abstraction if 

provided with sufficient scaffolding and support. 
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Summary 

This section focused on four interrelated areas of research—developmental 

progressions, strategies, bugs and misconceptions, and the role of the situative perspective—

all of which pertain to the nature of evidence collected in mathematics assessment. If the goal 

is to develop assessments that will serve learning, they need to provide evidence that locates 

students with respect to a proposed developmental trajectory. Although mathematical content 

and process competencies are applied in combination, they have been considered separately 

because the development of mathematical knowledge is more prescribed and largely 

curriculum-driven, while the development of processes such as representation and argument 

are more fluid. 

Many tasks afford multiple solution methods, and this implies that the same task may 

elicit very different evidence depending on how the student responds. This raises questions 

about how to deal with lengthy strategies that are inefficient but that reveal a high level of 

mathematical knowledge. This may be especially true for open-ended tasks with more 

complex responses. Although some bugs and misconceptions are frequent, students do not 

appear to apply them consistently. At the individual level, it will probably be most useful to 

address only the most common bugs and misconceptions, and only in situations where 

students show consistent patterns of responding. At the group or class level, it is sensible to 

address any bugs and misconceptions that occur frequently. Finally, research suggests that 

people can possess high levels of situation-specific competency; it may be useful to elicit 

evidence for this level, as this stage may be a stepping stone to more complete understanding. 

Prescriptions for the Design of Middle-School Mathematics Tasks 

Now that mathematics competency in the middle grades has been characterized and 

the nature of evidence that is important to collect has been discussed, the features of tasks 

that will provide evidence for the identified competencies maybe considered. According to 

Mislevy, Steinberg, and Almond (2002), “A fundamental tenet of the evidenced-centered 

approach to assessment design (and of Messick’s construct-centered approach as well) is that 

the characteristics of tasks are determined by the nature of the behaviors they must produce, 

to constitute evidence for the targeted aspects of proficiency” (p. 116). The content of the 

tasks developed should reflect the core content identified in the earlier section about 

characterizing mathematics competency in the middle grades. At the sixth grade, many of the 
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tasks should focus on number concepts and operations, and should be designed to provide a 

segue to the study of algebra. For seventh grade, there should be a heavy emphasis on 

proportional reasoning and algebraic concepts, and by eighth grade the tasks should require 

students to work with multiple expressions and graphs. In order to develop tasks that will 

elicit evidence for the competencies discussed in this report, it will be necessary to include a 

balance of tasks, some of which require complex responses and others that require only 

shorter responses to targeted prompts. 

Complex Response Types 

Complex response types can take many forms. One type of complex response is an 

extended text response that presents an argument or justification. Complex responses are not 

necessarily lengthy, however, and they do not necessarily have to contain text. For example, 

proofs by dissection require a sequence of moves rather than explanatory text or expressions. 

As another example, a solution to an algebra problem might consist of a diagram followed by 

an ordered set of equations—and contain little if any text. In providing a complex response, 

students may invoke a variety of representations, depending on the affordances of the 

response type. In developing tasks that elicit complex responses, a wide variety of task types 

should be considered, and they may vary along any of the following dimensions: the nature 

of the prompt, the level of interaction, and the format of the responses. 

Complex responses can provide valuable evidence about students’ process 

competencies. For example, a complex response may consist of a mathematical argument 

that draws on tabular, graphic, and symbolic representations—the response may reflect 

strategic decisions as well as procedural fluency and background knowledge. As discussed 

earlier, however, often different strategies may be applied to the solution of a problem, and 

different strategies provide different evidence and require different amounts of time. From a 

fairness perspective, it is especially important to consider the impact of strategy selection if a 

nonjudicious strategy choice will compete with the amount of time a student has to complete 

the remaining tasks in an assessment. One possible solution is to provide students with some 

guidance regarding how to approach tasks that require complex responses. This is often done 

by breaking a task down into multiple parts, where responses to earlier parts constitute 

subgoals for the eventual solution, which is usually the goal of a later part. It is possible that 

even fairly subtle task modifications may help provide structure that could prevent students 
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from embarking on an overly complex solution procedure. Catrambone (1996) found that, 

when presenting students with worked examples, providing even noninformative labels for 

related sequences of steps helps them to establish subgoals during problem solving on 

subsequent transfer tasks. 

Of course, imposing even subtle constraints may result in tasks that provide less 

evidence of strategic planning. In a formative assessment system, it is probably acceptable to 

impose few, if any, constraints because the results will never be used for accountability 

purposes. Teachers and students can use these tasks as an opportunity to compare and 

contrast different solution methods, including discussions of why they are equivalent and 

why some may be more efficient than others. In an accountability assessment system, 

however, strategy by task interactions raise concerns with respect to fairness in scoring. 

Particularly with tasks that require complex responses, it will be necessary to conduct both 

cognitive task analyses and pilot studies that focus on alternative strategies and how they 

differ, both in terms of the evidence they provide and the time they require. 

Some complex response types provide an opportunity for students to formulate and 

develop mathematical arguments, an important process competency discussed earlier. 

Although there are many simple response types that assess mathematical reasoning skill, they 

do not provide evidence for how well a student can structure an argument or how clearly he 

or she is able to explain it. During the course of a complex response, a student may have the 

opportunity to communicate mathematical ideas with clarity, perhaps using a variety of 

representations. The extent to which this kind of thinking is in evidence should form the basis 

of the scoring rubric. 

A prompt that requires a complex response must be very carefully constructed so that 

students do not misunderstand the intent. Marshall (1995b) described her experience as a 

member of the Mathematics Advisory Committee for the California Assessment Program 

(CAP). After the CAP field tested open-ended items with 12th-grade students, members of 

the advisory committee reviewed a sample of responses from among the large number 

collected—their findings were discussed in the document A Question of Thinking. Marshall 

discussed one of the items summarized in that report: about one-quarter of the students who 

answered this particular item did not respond in mathematical terms, focusing instead on 

situational factors. Her point was that many of the students may not have understood the 
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purpose of the task. This is not an uncommon experience in the development of open-ended 

problems, where there are no options to provide cues about what constitutes an acceptable 

response. Attention to the design of the prompt can help avoid this situation; breaking a task 

into parts can also help provide supporting structure that can clarify how a task should be 

interpreted. 

There is a final reason why tasks that require extended responses may be helpful to 

include, in addition to the nature of evidence they provide. Such tasks may also support 

learning, because they require students to explain their reasoning. Students who provide 

higher quality self-explanations during the learning of worked examples tend to show higher 

levels of problem-solving performance (Chi, Bassok, Lewis, & Reimann, 1989; Pirolli & 

Recker, 1994). Also, prompting students to explain during the learning of worked examples 

improves subsequent performance (Chi, de Leeuw, Chiu, & LaVancher, 1994). However, 

eliciting self-explanations is not helpful under all circumstances or for all types of tasks. In 

situations where making self-explanations imposes additional cognitive load and competes 

with the resources needed for learning, they may not be of benefit (Nathan, Mertz, & Ryan, 

1994). So while students often benefit from making explanations while studying worked 

examples, it is not clear that this will be of benefit when making explanations is part of the 

task. Further research should investigate the impact on learning of providing explanations 

during an assessment. 

Basic Response Types 

Basic response types include multiple-choice and multiple selection–multiple choice, 

as well as some constructed response types, including: numeric entry, mathematical 

expressions and equations, some kinds of graphs, and short-answer text. Note that the term 

basic does not imply that these problems are easy to solve, only that an answer, if found, is 

straightforward to indicate, relative to a complex response type. These types also have an 

extremely important role to play in a middle-school mathematics assessment program 

designed to encourage learning. Basic responses may be useful for diagnosing 

misconceptions. As discussed earlier, since students are not necessarily consistent in how 

they endorse misconceptions, it is important not to overinterpret a single student response. It 

is certainly worthwhile, however, to develop prompts that target particular common 

misconceptions (such as the incorrect addition strategy). Once important misconceptions 
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have been identified, there is still the question of how to organize them in such a way that 

they may be meaningfully incorporated into tasks, and there are a number of approaches to 

this. Minstrell (2001) uses the facet as the unit of organization. Each content area is 

subdivided into several concept clusters, and each cluster describes a number of student 

facets, or ideas. In the design of a particular item, options (or possible responses) are 

developed in accordance with particular facets. The eventual response made by the student is 

identified with respect to the facet it represents. 

Bart, Post, Behr, and Lesh (1994) developed the notion of a semi-dense item to guide 

the development of informative multiple-choice items. In order to qualify as semi-dense, an 

item has to meet the following requirements: each possible response must be interpretable in 

accordance with one and only one cognitive rule, and each relevant cognitive rule must be 

represented by a possible response. A cognitive rule could be a misconception, a procedural 

bug, or a correct idea. Although the semi-dense notion was developed to guide multiple-

choice item construction, the idea may be easily extended to the development of constructed 

response types. Instead of constructing options that are in a one-to-one correspondence with 

cognitive rules, one considers the correspondences between possible responses and cognitive 

rules, and this can help guide the design of the prompt. For example, if more than one 

misconception could lead to the same generated response, one might reword the item (to use 

different numbers, perhaps) so that this scenario does not occur. In practice, it is challenging 

to develop items that meet the criteria for semi-density. Nevertheless, collectively these 

criteria provide a useful gold standard against which to compare any diagnostic tasks that are 

developed. 

Cromley and Mislevy (2004) used a template-based approach to organize 

misconceptions for use in an assessment, incorporating the identification of misconceptions 

into an evidence-centered design approach. 

Basic response types may also be useful in situations that assess recognition of 

mathematical structures. In some situations, it may be of greater interest to assess schema 

recognition than the details of solution. Experienced algebra problem solvers are able to 

quickly classify algebra word problems into schematic categories, and appear to use these 

categorizations during solution (Hinsley, Hayes, & Simon, 1977). Bennett, Sebrechts, and 

Rock (1995) piloted two categorization task types for the GRE program. In tasks of the first 
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type, examinees sorted algebra word problems by matching them to category exemplars. In 

tasks of the second type, examinees and experts rated the similarity of pairs of algebra word 

problems. For both types of tasks, examinee performance was positively correlated with 

admission test scores. On the similarity task, high-performing examinees made ratings that 

were more like experts’. Examinees preferred the sorting task to standard multiple-choice 

items, but preferred standard multiple-choice items to the similarity ratings task. Bennett et 

al. suggested that categorization tasks might also be used for diagnostic purposes, but that 

future research would need to determine whether student weaknesses may be specific to a 

particular aspect of problem solving (e.g., representation vs. solution). Categorization tasks 

might be candidates for inclusion in either a formative or accountability assessment. 

Basic response types are also extremely useful when the purpose is to determine 

whether a student has knowledge of a specific fact or procedure. As discussed earlier, highly 

open-ended prompts that require complex responses may elicit the use of any of a number of 

strategies, and so the responses may provide different evidence, both with respect to 

background knowledge and procedural fluency. Complex response types are therefore not 

necessarily suited for assessing a student’s knowledge of a particular fact or skill. It is 

important to make sure that such “knowledge and skill check” types are included; otherwise 

students may develop selective preferences for particular procedures or disregard specific 

facts. 

Again, the importance of encouraging the development of procedural fluency should 

be emphasized. As described earlier, conceptual understanding and procedural fluency 

interact, and it would be a mistake to develop tasks that as a set only assess one or the other. 

It will be important to include tasks that encourage the development of procedural fluency as 

well as conceptual understanding. It has already been discussed how procedural tasks can 

reflect a lack of conceptual understanding. But developing students’ skill with procedures 

may indirectly enhance conceptual understanding, as the following quote from Silver (1987) 

suggests: 

Students’ problem-solving abilities might improve greatly if they could use working 

memory more efficiently, that is, if they learned to use automatic processing for the 

more routine elements of an activity, and thus made resources available for the 

controlled processing of the novel aspects of solving the assigned problems. (p. 40) 



 

57 

Another advantage of administering basic response types is that it is possible to 

automatically score them very accurately. Bennett, Morley, and Quardt (2000) discussed 

three constructed response types: mathematics expressions (ME), generating examples (GE), 

and graphical modeling (GM). The ME type requires a mathematics expression as a 

response, the GE type requires that the student provide an example that meets certain 

mathematical constraints, and the GM type requires the student to plot a function. These 

types place different cognitive demands on the student, but all of them have keys that can be 

expressed in mathematical terms and all can be automatically scored. At this stage, designing 

keys for automatic scoring of constructed response types can be challenging and requires 

specific technical knowledge, but several tools are under development at ETS that should 

make the key definition process both more accessible and more generalizable. 

Prompt Complexity 

So far we have justified a need for both complex and basic response types. Complex 

response types that require an extended text response will usually take longer to complete 

than basic response types. But the expected length of the response is not the only feature that 

determines how a student will interact with a task element or how long it will take to 

complete. The task prompts may also vary in complexity. Some problems may require a good 

deal of reflection followed by a concise response. For example, in a data analysis and 

probability problem, it is important to assess whether a student can draw meaningful 

conclusions and notice trends from data presented in a table or graph. For this type of 

problem, the student may spend the majority of his or her time studying the data that is 

displayed and drawing inferences from it. 

When administering exams to her graduate statistics classes, Marshall (1995b) 

provides students with statistical output and asks questions about the outputs. She does this 

so that students do not have to focus on statistical computations, at least for some of the 

tasks. Statistical output is an example of a highly complex prompt—more complex than 

would be encountered in a middle-school mathematics assessment—but the example will 

serve to illustrate the point. Marshall recognized that the outputs take time to absorb, and she 

didn’t want students to spend exam time figuring out the outputs; nor did she want students 

who read more slowly to be pressed for time. She solved the problem by distributing the 

outputs to students a week before the test, so that they would have time to reflect on the 
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information contained in them. The students spend their exam time answering questions that 

refer to the outputs. This kind of solution would work very well in the context of a formative 

assessment, as would the approach of having students iteratively revise data models in a 

group setting (as in the work of Lehrer & Schauble, 2000, described earlier). 

While allowing students to reflect on materials in advance might work very well in a 

formative setting, for security reasons it would not be advisable in an accountability setting. 

For this reason, it is likely that tasks developed for accountability assessments should not 

require students to read a lot of background text or to sift through material—if a problem is 

based on a large amount of data or information, it should be presented in consolidated or 

summarized form. 

Cognitive Load and Task Design 

Complex tasks present a design challenge because they are difficult to develop 

without introducing construct-irrelevant features. Scenarios that are so complicated that they 

distract from the main goal should be avoided. Also, it may be that while the goal of some 

tasks is to find out what students know, the primary goal of other tasks may be to support 

learning. And it may be that the same tasks cannot serve both goals in all instances. Sweller 

(1992) provided a number of suggestions for reducing cognitive load in mathematics tasks 

designed to facilitate learning. One of his suggestions was to include goal-free tasks. His 

argument was that in solving goal-specific tasks, students often work backwards from the 

solution, using means-ends analysis. This requires cognitive resources that may compete with 

learning. The particular example he used was a geometry problem in which the student must 

find the value of a particular angle. This is an effortful process, requiring the student to work 

backwards from the unknown until he or she finds an angle to relate to the goal angle. The 

student must then retrace his or her steps to compute the value. In a goal-free problem, the 

student would be asked to find the values of all the angles that appear in the diagram. Sweller 

and colleagues have corroborated the finding that working with goal-free tasks improves 

learning in geometry, trigonometry, and kinematics (as cited in Sweller, 1992). 

The potential benefit of learning from worked examples has also been documented 

(Sweller, 1992; Zhu & Simon, 1987). Most of the positive findings from the self-

explanations literature discussed earlier involve explanations of worked examples. Sweller’s 

account of why learning from worked examples is effective is again that studying examples 
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imposes less cognitive load than solving problems, giving students the opportunity to attend 

to features that support subsequent problem solving. To ensure that students have incentive to 

learn as much as possible from the worked examples, Sweller recommends alternating 

worked examples with tasks to be solved. 

Finally, Sweller (1992) noted that students do not always learn successfully from 

worked examples. Although studying worked algebra problems was often helpful, students 

did not derive the same benefit from studying worked geometry examples, at least initially. 

The geometry examples initially consisted of a diagram followed by lines of text that 

described the steps in solving the problem. The text typically referred to angles in the 

diagram, forcing the student to shift back and forth between the diagram and the text in order 

to consolidate all the information in the problem. Sweller and colleagues found that by 

integrating the text into the diagram so that the problem-solving steps were near the angles 

they referred to made the geometry examples function more like the algebra examples. In 

other words, students derived a learning benefit from studying them. Again, Sweller 

explained this result in terms of reduced cognitive load. 

What do Sweller’s recommendations imply for the design of a middle-school 

mathematics assessment? There is no reason to include tasks that introduce cognitive load 

unnecessarily. Goal-free tasks may be useful to include in either formative or accountability 

assessments. One possibility for including goal-free tasks might be in a multipart task. An 

early part might ask the student to find values for many unknowns, and a later part might ask 

the student for a particular part (the goal). In a formative assessment, it may be very helpful 

to intersperse worked examples with problem-solving tasks. Providing worked examples 

might also be an opportunity to present examples in accordance with Michener’s 

classification scheme, described earlier. Time constraints will probably not allow the use of 

worked examples in an accountability assessment. 

Interactive Task Components 

Manipulatives have been used as part of mathematics instruction for years. More 

recently, software such as Geometer’s Sketchpad is becoming widely used. Such tools 

provide students with a way to reason concretely about more abstract concepts and allow for 

experimentation. We should consider incorporating virtual manipulatives and simulations in 

computer-based assessments that are developed. In the development of formative 
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assessments, there is the potential for flexibility in how interactive task components are 

incorporated and used by students. The interaction in an accountability system will need to 

be limited and simple. Students should not be spending any time struggling with the interface 

or stuck at an impasse from which there is no easy return. 

ETS has developed a graphical interface in which students can plot functions by 

clicking on a sequence of points. Since these items may be automatically scored, we may 

make heavy use of this capability for integrating interactive components. Spreadsheets may 

be incorporated into tasks that involve transformations of tabular data. 

Using Item Modeling and Automatic Item Generation to Support Large-Scale Task 

Development and Formative Assessment 

An assessment system that consists of both an accountability component and a 

formative component will require classes of items, where each item in a class addresses a 

subset of a given constellation of competencies. Note that the term item here refers to any 

task element to which a student would respond. On the accountability side, if some skills will 

be reassessed across periodic administrations, multiple items from each class are needed in 

order to measure a student’s standing with regard to identical and/or related skills at different 

time points. Since the formative materials are intended to support learning of the skills 

assessed by the accountability component, multiple items from each class are needed for both 

components. Item modeling is an approach that can support systematic development of 

classes of related items. Although it is unlikely that item modeling and automatic item 

generation can significantly support the development of complex, extended, and highly 

situated tasks that are included in the CBAL assessment system, it can support the 

development of shorter diagnostic tasks and may be able to support the development of parts 

of the more extended tasks. 

LaDuca, Staples, Templeton, and Holzman (1986) used the term item model to refer 

to classes of items that assess the same content. Hively, Patterson, and Page (1968) referred 

to related mathematics items as item forms. As in Bejar (2002), we use the term item model 

to refer to a class of items that share a common set of characteristics. In particular, we focus 

on quantitative item models, which share specifications expressed in mathematical terms. 

Assessment items may be organized into classes along a number of different 

dimensions. Most often, mathematics items are classified based on their underlying 
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quantitative structure—Mayer’s (1981) taxonomy of algebra story problems is an example. 

Items may also be classified in accordance with other characteristics, such as numerical 

complexity, surface features, or item format. 

Components of an item model that may change are represented as variables; 

constraints specify how variables are related. Item models may be represented by item shells 

that consist of static text interspersed with slots for the variables. This sort of representation 

is sufficient in many situations; however, it does have limitations. For further discussion on 

this point, see Higgins, Futagi, and Deane (2005) and Deane, Graf, Higgins, Futagi, and 

Lawless (2006). 

An item model can be used as a guide to generate items by hand, but it may also be 

programmed with a computer, and items may be automatically generated from the program 

(e.g., Meisner, Luecht, & Reckase, 1993; Singley & Bennett, 2002). When an item is 

generated, random values that satisfy the constraints are assigned to each variable in the 

model. Each item generated from an item model is referred to as an instance (Bejar, 2002). 

Bejar described how item models may be designed to generate one of two types of instances: 

isomorphs or variants. Isomorphs share a common deep structure and have similar 

psychometric parameters; variants differ systematically in this regard. For example, an item 

model may be designed to generate some items that are easy and others that are difficult. 

Irvine (2002) referred to a variable that influences psychometric parameters as a radical and 

a variable that does not as an incidental. 

Item models may be used to generate instances in different standard formats, 

including multiple-choice and constructed response. Variables may be incorporated into any 

part of an item model, including the stem, the key, and if applicable, the distractors. For 

example, a constructed response item model includes a stem model and a key model, and a 

multiple-choice item model includes a stem model, as well as option models. Item models 

may also be used to describe instances in more novel formats, including multipart questions 

that may be scored using a partial credit rubric. Finally, modeling may be extended to 

generate complex scoring keys, answer choice rationales, and response-specific feedback. 

For example, Morley, Lawless, and Bridgeman (2005) modeled answer choice rationales. 

Modeling response feedback so that it is customized to each instance can be accomplished by 
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reusing variables from the stem model or any of the option models in a feedback model. An 

example of this is shown in Graf, Steffen, Peterson, Saldivia, and Wang (2004). 

Automatic item generation may be an economical approach to test development in 

large-scale assessment programs (Bejar et al., 2002). First, items are generated from an 

algorithm, rather than individually through a manual process. Second, the approach may save 

on pretesting costs. If the psychometric parameters of model-generated instances may be 

predicted successfully in advance, it may not be necessary to calibrate each instance 

individually (e.g., Bejar, 1993, 1996; Bejar et al., 2002; Bejar & Yocom, 1991; Embretson, 

1999). Several researchers have explored the extent to which item models generate 

isomorphs, or instances with highly similar psychometric parameters (Meisner, Luecht, & 

Reckase, 1993; Sinharay & Johnson, 2005; Steffen, Graf, Levin, Robin, & Lu, 2006). The 

general result from this work is that some models generate instances with very similar 

parameters while others generate instances with highly variable parameters, and how a model 

will behave is not always clear at the outset. Because of this, an iterative approach to item 

model development, where empirical evaluation is followed by subsequent revision, is 

recommended (Bejar, 1993; Bejar & Yocom, 1991; Embretson & Gorin, 2001; Graf, 

Peterson, Steffen, & Lawless, 2005). 

A model-based approach may also enhance construct validity, because it requires that 

the relationships between generative principles and psychometric properties be made explicit 

(Bejar, 1993; Bejar & Yocom, 1991). Item modeling lends itself to being used in conjunction 

with experimental designs that systematically explore features that influence item difficulty 

and discrimination (Bejar, 1993; Bejar & Yocom, 1991; Embretson, 1999; Enright, Morley, 

& Sheehan, 2002; Enright & Sheehan, 2002; Graf et al., 2005; Newstead, Bradon, Handley, 

Evans, & Dennis, 2002). 

Although the most obvious application of item modeling may be to support 

development in large-scale testing programs, we should consider how to use a model-based 

approach to support the development of diagnostic, classroom-based assessments. These 

kinds of assessments could be used to guide instruction, as part of a formative approach. A 

formative approach to assessment has been shown to have a positive impact on student 

learning (Wiliam, Lee, Harrison, & Black, 2004). 
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The goals for developing diagnostic item models for formative assessment are quite 

different from the goals of the research described earlier. First, we are less concerned with 

generating instances with psychometric parameters that can be predicted very accurately, and 

more concerned with generating instances that consistently measure patterns of 

understanding with accuracy sufficient to focus instruction. We should also be exploring 

opportunities to automatically generate targeted response feedback and partial-credit scoring 

rubrics. 

Concluding Summary 

The purpose of this report is to provide a set of recommendations to guide the design 

of formative and accountability assessments for middle-school mathematics. The document 

is divided into four main sections. The Mathematical Competency section discusses 

important aspects of mathematical competency; mathematical competency is characterized 

with respect to both core content and key processes. It concludes that in the middle grades, it 

is most important to focus on algebra and the connections between algebra and numbers and 

operations. This is not to suggest, however, that this focus will come at the expense of other 

core content that is emphasized in the middle grades. The competency models presented in 

the second section propose developmental trajectories for content (as inferred from the 

NCTM curriculum focal points) and process. On the process side, students should develop 

increasingly abstract representations to support increasingly sophisticated mathematical 

arguments. 

The next section, Describing and Quantifying Evidence of Mathematical Proficiency, 

describes the features of responses that provide evidence with respect to the specified 

competencies. This section focuses on developmental progressions, strategies, bugs and 

misconceptions, and the role of the situative perspective. One of the concerns expressed in 

this section is how to contend with the challenge of strategy by task interactions. Open-ended 

response types in particular lend themselves to the use of alternate strategies. Different 

strategies may reveal very different evidence and take different amounts of time to complete. 

This is especially a concern in the development of accountability assessments. One possible 

solution is to provide just enough guidance in the structure of the prompts to ensure that 

students do not pursue unwieldy strategies or find themselves stuck at an unrecoverable 

impasse. The review of the literature on bugs and misconceptions led to the conclusion that it 
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is worthwhile to diagnose very common misconceptions, especially in situations where 

students show consistent patterns of responding. More often than not, however, students are 

not consistent in the bugs or misconceptions they endorse, so it is not cost-effective to try to 

identify and diagnose each possible bug or misconception. 

The final section, Prescriptions for the Design of Middle-School Mathematics Tasks, 

makes recommendations for features of tasks that may also be considered learning events. 

Tasks that require extended responses and tasks that require short answers will both be 

needed in order to provide evidence of the specified competencies. Complex response types 

are ideal for eliciting evidence of mathematical processes, including how students use 

alternate representations and develop arguments. Since complex response types lend 

themselves to alternate solution strategies, students are not always required to draw on 

specific knowledge or procedures. The basic response types are better suited for identifying 

common misconceptions and for determining whether a student has knowledge of a 

particular skill or procedure. In an effort to minimize the influence of construct-irrelevant 

variables, tasks should not impose any unnecessary cognitive load. Finally, in order to 

support the development of assessments on a large scale, a model-based approach to task 

development is recommended, as is the continued enhancement of automatic scoring 

capabilities. 
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Notes 
1It is an open question how an accurate picture of student performance for the year will be 

established, since student competency is likely to change over the course of the year, 

particularly if the formative component is effective. Bejar, Graf, and Oranje (2009) 

discussed three possibilities. One possibility is to provide students with alternate forms that 

reassess competencies assessed earlier in the year. A second possibility is to design tasks 

that are cumulative with respect to the knowledge and skills they require—tasks 

administered early in the year would assess more basic competencies, while tasks 

administered later in the year would assess more advanced competencies as well as their 

basic building blocks. A third possibility is to assign greater weight to PAAs administered 

later in the year. 

2 Only the headings of the first three objectives are quoted; for complete text descriptions of 

all the cognitive objectives, the reader should refer to Lesh and Lamon (1992). 




