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Abstract 

The goal of this report was to test the use of sensor-based skill measures in evaluating 
performance differences in rifle marksmanship. Ten shots were collected from 30 novices 
and 9 experts. Three measures for breath control and one for trigger control were used to 
predict skill classification. The data were fitted with a logistic regression model using 
holdout validation to assess the quality of model classifications. Individually, all four 
measures were significant; when considered together, only three measures were 
significant predictors for level of expertise (p < .05). Overall percent correct in shot 
classification for the testing data was 90.0%, with a sensitivity of 67.5%, and 96.0% 
specificity. 

Introduction 

Rifle marksmanship is an inherently complex task. Shooters must position various body 
parts to achieve maximum rifle support and at the same time establish and maintain proper 
sight alignment and correct sight picture, all prior to initiating the coordinated steps 
necessary in the execution of a shot (Chung, Delacruz, de Vries, Bewley, & Baker, 2006). 

Skilled shooters have been found to be able to hold a rifle steadier than unskilled 
shooters (McGuigan & MacCaslin, 1955). Similarly, research on pistol shooting found that, 
while both novices and experts shared a single dominant pattern of movement, experts tended 
to hold their bodies in similar positions, favoring those that minimized the effects of 
movement on the target (Penn State, 2001). It is clear that skilled shooters minimize body 
movements by proper positioning. 

In studies dealing with marksmanship, such as correlation studies between simulators 
and live fire (Hagman, 1998; Schendel, Heller, Finley, & Hawley, 1985; Smith & Hagman, 
                                                
1We would like to thank the staff at Camp Pendleton WTBN. We would also like to thank the following people 
from UCLA/CRESST: Joanne Michiuye for her help with the preparation of this manuscript and with data 
collection, and Daniel Parks for hardware design and development. 
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2000), and studies on the impact of nutrition on performance (Tharion & Moore, 1993) and 
the role of anxiety for novices (Chung, O’Neil, Delacruz, & Bewley, 2005), assessment of 
marksmanship performance has relied on shot placement (e.g., score, accuracy, tightness of 
shots) to make judgments about a shooter’s skill level. Although appropriate as a broad 
measure of relative ability, evaluation solely on the basis of shot placement carries with it the 
potential to conceal underlying differences in shooter skill. In the context of training, the use 
of such an outcome measure as a metric can be detrimental, making identification and 
subsequent remediation of problematic aspects of performance difficult, if not impossible 
(AERA, APA, NCME, 1999; Wiggins, 1998).  

Good metrics must be objective, intuitive, at the level of detail appropriate for decision-
making, acceptable, precise, generalizable, sensitive, reliable, and most important, valid 
(ANSI, 1993). An important consideration in establishing a metric is that an individual’s 
performance needs to be referenced to a criterion, for example an expert. Expert performance 
is considered the referent or gold standard against which to compare trainee performance 
(Chi, Glaser, & Farr, 1988). 

A potential reason for the absence of a valid objective measure in evaluating 
marksmanship skill performance is the subtle nature of the actions involved. While position 
quality, coarse movement of the muzzle, and the trigger break are easily observed by the 
evaluator, the steps leading up to the trigger break (e.g., aiming, trigger squeeze, control of 
respiration) are less perceptible, making direct visual observation and proper diagnosis 
difficult.  

One approach to objectively capture and measure subtle human movements is with the 
use of sensors. Sensors have the potential to serve as a reliable and unobtrusive surrogate in 
situations where human observations are impractical (De Ketelaere, Bamelis, Kemps, 
Decuypere & De Baerdemaeker, 2004; Wide, Winquist, Bergsten, & Petriu, 1998). As a 
methodology for evaluating human performance, sensors have already been shown to be 
effective in the medical field differentiating levels of experience of arthroscopic surgeons 
(Chami, Ward, Phillips, & Sherman, 2008) and laparoscopic surgeons (Rosen, Solazzo, 
Hannaford, & Sinanan, 2001).  

The goal of this study was to test whether sensor-based measures designed to assess 
key aspects of marksmanship skill are sensitive enough to differentiate between levels of 
marksmanship skill performance. Sensors were developed, concentrating on two areas of 
marksmanship believed to impact performance: breath control and trigger control. Each shot 
was then evaluated, using expert criteria, to judge the quality of skill performance. 
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Methods 

Participants 

Shots were collected from 39 participants, 30 novices and 9 experts. Novices ranged in 
age from 19 to 29 years (M = 22.20, SD = 2.57). Of the 30 novices, 23 (77%) were male, and 
7 (23%) were female. Twelve (40%) reported having prior experience shooting a rifle. Of 
those reporting prior experience, 3 (25%) reported having shot a rifle within the last year, 3 
(25%) within 3 to 5 years, and 6 (50%) reported firing a rifle over 5 years ago. None of the 
novices reported experience with competitive shooting and 2 (7%) reported having coached 
rifle shooting.  

All nine experts selected for study were active-duty members of the armed forces with 
a primary military occupation specialty (MOS) as marksmanship coaches. All were male and 
ranged in age from 21 to 25 years (M = 23.33, SD = 1.41). Coaching experience ranged from 
1 to 24 months (M = 12.44, SD = 7.52). In addition to being rifle marksmanship coaches, five 
(56%) were also qualified as rifle marksmanship instructors.  

While several subjects in the novice sample had some familiarity with marksmanship, 
none had training consistent with marksmanship instruction as delivered in the armed forces. 
Accordingly, all subjects were regarded as novices. 

Design 

Holdout validation was used to assess the quality of shot classifications based on 
estimated model parameters (Kerlinger & Pedhazur, 1973). Participants were randomly 
assigned to two groups, model training and model testing. Cases in model training were used 
to estimate model parameters, while observations in model testing are held back from the 
estimation procedure and later fitted to the data. Sample distribution of subjects across data 
files is presented in Table 1. 

Table 1 

Distribution of Subjects in Model Training and Model Testing Data 

 Data  

Status Training Testing Total 

Novice 15 15 30 

Expert 5 4 9 

Summary 20 19 39 

Note. Ten shots were collected from each subject. 
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Apparatus 

Data were collected in an indoor controlled environment. An instrumented weapon was 
developed using off-the-shelf sensing components and a demilitarized M16/A2 housing a 
pneumatic recoil system designed to approximate the weight, noise, and action of a real 
weapon firing real rounds (LaserShot, 2008). Four performance skill measures were collected 
using two sensors, a force-pressure sensor attached to the trigger to measure the amount of 
pressure exerted on the trigger during firing, and a respiration belt used to measure 
participants’ respiration. Both sensors were wired to a microprocessor and data were 
wirelessly downloaded onto a remote laptop. Shots were directed against a projection of a 
circular target equivalent to 20 inches wide at 200 yards. A camera identified shot placement 
on target by recognizing infrared laser strikes delivered by the rifle. For more detailed 
information on the development of the sensor-based measures and targeting system, see 
Espinosa, Nagashima, Chung, Parks, and Baker (2009, CRESST Tech. Rep. No. 756). 

Procedure 

All novices were provided basic instruction on shooting position, weapons handling, 
and proper sight alignment. Initial instructions were delivered to all novices by the same 
researcher. Although participants were instructed to shoot in the kneeling position, they were 
given the option of choosing between low, medium, or high kneeling. Variations in the 
kneeling position were modeled by the instructor; in addition, illustrations depicting left- and 
right-handed variations on the kneeling position were provided. Ten shots were collected and 
analyzed from each subject across two trials. No time constraints were imposed on the 
shooters and they were not provided feedback regarding shot placement until the end of each 
trial. 

Measures 

Four performance skill measures were evaluated for each shot, three related to breath 
control (breath location, breath duration, and shot-percent breath) and one for trigger 
control (trigger duration). 

Breath location represents the location in the respiratory cycle at trigger break. Values 
can range from 0 to 100, with 0 indicating that the shot was taken while fully exhaled, and 
100 indicating that the shooter was fully inhaled. Doctrine dictates shots be taken during a 
natural respiratory pause, therefore a value near zero is desirable.  

Breath duration is a measure of the time, in seconds, between full inhales flanking the 
shot. Larger values indicate longer periods of time between breaths (slower rate of 
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respiration); conversely, smaller values indicate a shorter period of time between breaths 
(faster rate of respiration).  

Shot-percent breath is used to approximate the location, in percent, of where the trigger 
break occurred relative to the full inhales spanning the trigger break. For example, .50 
indicates that a shot was fired equidistant from two full inhales. 

Trigger duration was the only measure of trigger control and represents the amount of 
time, in seconds, pressure is exerted on the trigger prior to a shot being fired. Larger values 
indicate a greater amount of time taken to pull the trigger.  

Analysis 

A logistic regression model was developed to test the extent to which shots can be 
classified as originating from a novice or expert using the skill measures as predictors. An 
extension of simple logistic regression is used to account for multiple predictors as follows: 

logit(Y) = ln(π/(1- π)) = α + β1X1 + β2X2  + … + βpXp 

π = Probability (Y = outcome of interest | X1 = x1, X2 = x2, …, Xp = xp) 

= [(e α + β
1

X
1

 + β
2

X
2

  + … + βpXp) / (1 + e α + β
1

X
1

 + β
2

X
2

  + … + βpXp)] 

where π is the probability of the classification, α is the Y intercept, βs are regression 
coefficients, and Xs are the set of predictor variables. The value of the coefficient β 
determines the direction of the relationship between X and the logit of Y. When β is greater 
than zero, larger X values are associated with larger logits of Y. Conversely, if β is less than 
zero, larger X values are associated with smaller logits of Y. αs and βs are estimated using 
the maximum likelihood (ML) procedure designed to maximize the likelihood of reproducing 
the data given the parameter estimates.  

The outcome variable (Y) is expertise status (status) and was used to designate cases as 
either expert or novice (1 = expert, 0 = novice). The logistic procedure predicts the “1” 
category of the dependent variable, making the “0” category the reference category. The skill 
measures were used as four continuous predictor variables—breath location, breath 
duration, trigger duration, and shot-breath location. The logistic regression analysis was 
carried out using the binary logistic regression command in Statistical Package for the Social 
Sciences (SPSS,® 1999) version 16 in Windows 2000 environment.  
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The statistical significance of individual regression coefficients (i.e., βs) was tested 
using the Wald chi-square statistic, and the Hosmer-Lemeshow (H–L) test was used to assess 
the goodness-of-fit for the final logistic model. 

Several indices describing the predictive performance were calculated to assess 
predicted model classifications—sensitivity (true positive fraction), specificity (true negative 
fraction), false positive, false negative, and the c statistic. 

Sensitivity is the proportion of correctly classified experts and specificity represents the 
proportion of correctly classified novices. False positive is the proportion of cases 
misclassified as experts, while false negative is the proportion of cases misclassified as 
novices.  

The c statistic is a measure of discrimination, ranging from 0.5 to 1. A value of 0.5 
indicates that the model is no better than assigning observations randomly into outcome 
categories; A value of 1 indicates that the model assigns higher probabilities to all 
observations with the event outcome, compared with nonevent observations. 

Results 

Descriptive Statistics 

Mean and standard deviations for the skill variables are provided in Table 2. For all 
shots, breath location ranges from 0.00 to 91.80 (M = 35.34, SD = 23.86), breath duration 
ranges from 0.31 to 13.16 seconds (M = 3.45, SD = 2.35), shot-percent breath ranges from 
0.01 to 1.00 (M = .54, SD = .25), and trigger duration ranges from 0.00 to 95.27 seconds 
(M = 4.32, SD = 8.06). 

Mean breath location was 42.1 (SD = 22.9) for novices, and 13.0 (SD = 8.7) for 
experts. When a shot was fired, novices, on average, were partially inhaled, while experts 
were nearly fully exhaled at trigger break. The mean breath duration for novices was only 
2.5 seconds (SD = 1.1), and 6.5 seconds (SD = 2.8) for experts. These values indicate that the 
average respiratory cycle for novices around the trigger break lasts 2.5 seconds, whereas for 
experts, the respiratory cycle lasts 6.6 seconds. The mean shot-percent breath for novice was 
.52 (SD = .27) and .64 (SD = .17) for experts. The novice group mean of .52, or 52%, 
indicates that the average shot was fired midway between two full inhales, while the expert 
group has a mean of .64, or 64%, which indicates that experts take shots closer toward the 
end of a respiratory cycle. For the measure of trigger control, the mean trigger duration for 
novices was 5.2 sec (SD = 8.9), and 1.4 sec (SD = 2.3) for the expert group. Novices appear 
to take longer pulling the trigger, 5.2 seconds, compared to experts, 1.4 seconds. 
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Table 2 

Mean and Standard Deviation for Skill Measures 

 Status  

Variables 
Novice 
M (SD) 

Expert 
M (SD) 

All subjects 
M (SD) 

Breath control    

Breath location 42.05 (22.85) 12.97 (8.71) 35.34 (23.86) 

Breath duration 2.54 (1.10) 6.46 (2.85) 3.45 (2.35) 

Shot-percent breath 0.52 (0.27) 0.64 (0.17) 0.54 (0.25) 

Trigger control    

Trigger duration 5.20 (8.93) 1.42 (2.29) 4.32 (8.06) 

Note. n = 300 for novice group and n = 90 for expert cases. 

Pearson correlations among the skill variables are reported in Table 3. The correlation 
of breath location and breath duration was significant, r (388) = -.488, p < .001, as was 
breath location and shot-percent breath at r (388) = -.216, p < .001, and breath duration and 
shot-percent breath, r (388) = .280, p < .001. Trigger duration did not correlate significantly 
with the other variables. 

Table 3 

Correlations for Measures of Skill Performance 

Variables 1 2 3 4 

1. Breath location --    

2. Breath duration -.488** --   

3. Shot-percent breath -.216** .280** --  

4. Trigger duration .096 -0.049 0.005 -- 

Note. N = 390. 
**p < 0.01 (two-tailed). 

Given the significant correlation values between the variables for breath control, 
tolerance values were calculated to assess the threat of collinearity. Tolerance values range 
from .730 for breath duration to .990 for trigger duration (Table 4). Based on the critical 
value tolerance < .2, the potential threat of collinearity is negligible (Menard, 1995). 



8 

Table 4 

Collinearity Statistics for Independent Variables 

Variable Tolerance 

Breath control  

Breath location .750 

Breath duration .730 

Shot-percent breath .913 

Trigger control  

Trigger duration .990 

Note. Tolerance is equivalent to 1/variance inflation factor. 

Logistic Regression Model 

We first estimated individual univariate logistic regression models for the variables in 
the training data to test the research hypothesis regarding the relationship between the 
likelihood of classification as expert based on the individual measures of skill performance. 
Again, the outcome variable, status, was used to designate the shot classification as expert 
marksman (1 = yes, 0 = no). The four continuous predictor variables include the three 
variables for breath control (breath location, breath duration, shot-percent breath) and one 
measure for trigger control (trigger duration). Table 5 presents the results from the analysis 
for the univariate relationship between the skill measures and predicted marksmanship status.  

Table 5 

Summary of Univariate Logistic Regression Results for Marksmanship Skill Variables Using Training Data  
(n = 190)  

Variables B SE Wald statistic OR 95% CI 

Breath control      

Breath location -0.137 0.022 37.559 0.872** .834 - .911 

Breath duration 2.039 0.335 37.060 7.686** 3.986 - 14.820 

Shot-percent breath 2.892 0.758 14.572 18.029** 4.084 - 79.584 

Trigger control      

Trigger duration -0.237 0.075 9.902 0.789* .681 - .915 

Note. OR = odds ratio, CI = confidence interval. 
*p < .01. **p < .001. 

Considered individually, all four variables are significant (p < .01) predictors relative to 
the null model. Next, we estimated a multiple logistic regression model to investigate the 
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simultaneous effects of all four skill measures on status. Given the significance of the four 
predictor variables in the univariate model, a four-predictor multiple logistic model was fitted 
to the data. Table 6 presents the results of multiple regression analysis. 

Table 6 

Summary of Multiple Logistic Regression Results for Marksman Skill Variables Using Training Data (n = 200) 

Variables B SE Wald statistic OR 95% CI 

Breath control      

Breath location -0.148 0.052 7.946 0.862** .778 - .956 

Breath duration 2.111 0.491 18.502 8.256*** 3.155 - 21.604 

Shot-percent breath 2.241 3.752 0.357 9.398 .006 - 14691 

Trigger control      

Trigger duration -0.540 0.200 7.282 0.583** .393 - .863 

Constant -6.381 2.604 6.003 0.002*  

Note. OR = odds ratio, CI = confidence interval. 
*p < .05. **p < .01. ***p < .0001. 

When all four predictors are considered jointly, the overall model significantly 
differentiates between expert and novice skill performance relative to the null model, 
χ2 =188.18, df = 4, p < .001. The variables breath location, breath duration, and trigger 
duration are significant (p < .05). The variable shot-percent breath, while a significant 
predictor when used alone, was not a significant predictor when used concurrently with all 
four variables. The test of the intercept (i.e., constant in Table 6) suggests the intercept 
should be included in the model.  

The log odds of expert classification is as follows: 

log (π/1-π) = -6.381 - 0.148*(breath location) + 2.111*(breath duration) + 2.241*(shot-
percent breath) - 0.540*(trigger duration) 

When interpreting the logistic regression results, an odds ratio greater than 1.0 implies 
a positive association between the skill measure and status, while an odds ratio less than 1.0 
implies a negative association. Odds ratios close to 1.0 indicate that unit changes in that skill 
variable do not affect the odds of predicted status. The variable breath location with an odds 
ratio of .862 indicates that as breath location increases, the odds of expert skill diminish. 
Specifically, the odds of expert classification diminished by a factor of .137, for one unit 
increase in location, controlling for other variables in the model. Additionally, for breath 
duration, a one-second increase in breath duration results in an 8.26 times greater chance of 
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expert classification. Lastly, the odds ratio of .583 for trigger duration signifies that for every 
one-second increase in trigger duration, the odds of expert classification decreases by a 
factor of .417. The variable shot-percent breath was not a significant predictor. 

Overall Model Evaluation 

The Hosmer–Lemeshow test of inferential goodness-of-fit yielded a χ2(8) of .196 and is 
non-significant (p > .05), suggesting that the model exhibits a considerable degree of fit to 
the data. In other words, the null hypothesis of a good model fit to data was tenable. The 
logistic model resulted in a c statistic of .973, indicating that for 97.3% of all possible pairs 
of shots—one expert and the other novice—the model correctly assigned a higher probability 
to those who were expert. 

For the model training data, 147 of 150 novice shots and 46 of 50 expert shots were 
accurately classified. Accordingly, the sensitivity, the ability to identify expert shots, was 
92%, and the specificity, the power to identify novice shots, was 98% for the training data. 
For the model testing data, 144 of 150 novice shots and 13 of 40 expert shots were accurately 
classified, resulting in a sensitivity of 96% and specificity of 67.5%. A 2 × 2 classification 
table showing observed versus predicted classifications, based on a cutoff value of .50, or 
50%, can be found in Table 7 for the training data, and Table 8 for the testing data. 

Table 7 

Summary of Predicted Classification for Model Training Data 

 Predicted  

Observed Novice Expert % Correct 

Novice 147 3 98.0 

Expert 4 46 92.0 

Overall % correct   96.5 

Note. Cut value set at .50. 
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Table 8 

Summary of Predicted Classification for Model Testing Data 

 Predicted  

Observed Novice Expert % Correct 

Novice 144 6 96.0 

Expert 13 27 67.5 

Overall % correct   90.0 

Note. Cut value set at .50. 

Table 9 

Classification Performance for Testing Data 

Measure Computation Value Definition 

Sensitivity 27 / (27+13) 0.675 The proportion of correctly classified events (expert). 

Specificity 144 / (6+144) 0.960 The proportion of correctly classified nonevents (novice). 

False positive 6 / (6+27) 0.182 The proportion of observations misclassified as expert 
over all of those classified as experts. 

False negative 13 / (13+144) 0.083 The proportion of observations misclassified as novices 
over all of those classified as novice. 

 

As shown in Table 9, the predictions for experts were less accurate than novice 
classification. This observation is supported by the magnitude of sensitivity (67.5%) 
compared to that of specificity (96.0%). Both false positive and false negative rates were 
modest at 18.2% and 8.3% respectively. Given the distribution of expert and novice across 
the two data files, the default accuracy in classification by identifying all cases as novice (the 
most prominent classification) in the training data was 75% and 78.9% in the testing data. 
Compared with the overall percent correct classification in the training data (96.5%) and the 
testing data (90.0%), there was a 21.5% and 11.5% improvement, respectively. 

Discussion 

In this study, our objective was to test whether sensor-based skill measures provided 
discriminatory power in differentiating novice and expert skill performance. A key finding in 
our analysis is that sensor-based skill measures, considered jointly, provide a reliable method 
of discriminating differences in expert-novice marksmanship performance. Specifically, 
breath location, breath duration, and trigger duration prove to be significant predictors in 
expert-novice shot classification.  
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In evaluating the predicted probabilities, the training data exhibited an accuracy rate of 
96.5% and the testing data only 90.0%. One possible explanation for this discrepancy is the 
variability in skill performance across experts. Whereas the 6 false positive cases in the 
testing data are distributed nearly evenly across five novice shooters, all 13 false negative 
cases are distributed across only two experts; one expert shooter accounted for 9 of the false 
negative classifications, with the remaining 4 attributed to another. Given that in the testing 
data, all 4 false negative cases came from a single expert shooter, there is reason to believe 
that, even across experts, there is a considerable amount of variability in skill performance. 
Since the criteria for expert selection were based in part on active-duty marksmanship 
coaches, further refinement of the expert group into subgroups may lead to improved 
predictions and shed light on additional levels of skill performance. 

Although we are confident in the results of sensor-based measures in differentiating 
skill performance, we remain cautious in extending the generalizability of these results to 
live-fire environments. Additional studies are needed to assess the reliability of sensor-based 
assessment of skill performance in live-fire environments in supporting skill diagnosis.  
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