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Abstract 
An extensive review of the research literature and a study comparing over 36,000 

survey responses with archival true scores indicated that one should expect a minimum 
of at least three percent random error for the least ambiguous of self-report measures. 
The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation 
exerts a large influence on one or more Lilliputian/small subpopulations. As a simple 
example, if three percent random measurement error occurs for a sample of 1,000 on a 
race/ethnicity item having two groups (white and minority), where the majority group 
make up 90 percent of the total population, then 27 majority subjects (three percent) 
will be erroneously classified as minorities and three minorities (three percent) will be 
incorrectly classified as majority. Assuming no missing data, the study will therefore 
report 876 majority respondents (873 majority + 3 incorrectly classified minority 
respondents) and 124 minority respondents (97 minority + 27 incorrectly classified 

majority). Although the incorrect majority respondents percentage is small (
3

873  = 

0.3%), the erroneous minority classification is substantial (
27
97  = 27.8%). Such a large 

proportion of incorrectly classified respondents may alter estimates of measured 
differences between groups. The Gulliver Effect may occur whenever small 
subpopulations are of interest, whether this involves endangered species, rare diseases 
or unusual crimes such as the kidnapping of juveniles. 
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The Gulliver Effect: The Impact of Elephantine Subpopulation Measurement Error 
on Lilliputian Subpopulation Estimates 

Introduction 
Much social science research relies upon survey data. Takalkar, et. al, (1993) 

found in a study of 258 research articles in five flagship journals from three different 
fields - (a) Industrial-Organizational Psychology; (b) Management; and (c) Institutional 
Research -that between 36 and 76 percent of the articles in these journals used either 
survey or other self-report measures. Error estimates for surveys, when provided, 
usually represent a strictly theoretical approximation of sampling errori, when, in fact, 
measurement error is almost surely the greatest problem in all social and behavioral 
sciences’ research (Olson, 2006, p. 739). Numerous and various sources of error occur 
in measurements as the literature indicates: Fuller, 1987; Goyder, 1987; Wentland and 
Smith, 1993, Groves, 1989, etc.. Groves (1989, p. 17) lists twelve error sources present in 
all non-interview social science instruments, of which only three involve sampling error. 
Interviews add two additional error sources. Most researchers acknowledge the 
tentative nature of survey data, yet few conduct empirical investigations of survey items' 
response validity. Herein we primarily address only two of these nine error sources 
present in addition to the typically reported sampling error. We attempt to show that 
one can always expect at least a small proportion of non-sampling error from any self-
report measure. Because of the Gulliver Effect, even a small proportion of error among 
large subpopulations can substantially impact data and possibly alter differences 
between majority and minority, or rare subpopulations in many common situations. 

For continuous measures, classical measurement theory views obtained estimates 
as a combination of a true value plus noise or error. In the dichotomous or 
multichotomous situation, mismeasurement can no longer be viewed in this way, but 
rather as the probability of correct and incorrect classifications. In the dichotomous 
situation, say males and females, these would be respectively, the probability of a 
correctly classified male and a correctly classified female. In the current discussion, for 
the dichotomous situation, any incorrectly classified male or female would necessarily 
be a misclassified case for the alternative value.  

This paper primarily involves a strictly mathematical phenomenon, the effects of 
which we hope to make clear through explanation and examples and a 50 year review of 
related literature.  

Some Relevant Literature 
Below are some studies where researchers compared survey responses to a 

reasonably accurate correctly classified value. In general, studies with any direct 
comparison between observed measures and what may be called ‘true’ values are rare. 
This occurs due to an inability to obtain such values for most variables that are 
measured by self-report. However, sometimes, organizational records can provide 
values for certain variables,  such as criminal offenses, race/ethnicity and salary. Test 
retest studies, where responses at time one are compared with those at time two, are a 
less valid source of information. 
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Cannell and Fowler (1963) asked patients (N = 586) to report the number of 
times they had visited a doctor in a two-week time period. The researchers compared 
the patients' responses with doctors' records. Results showed that there was 30 percent 
error in reporting the number of visits to the doctor. Most patients underreported the 
number of visits. Additionally, some unknown degree of interviewer errors also 
contributed to the total measurement error in this study. 

Walsh (1967) asked college students (N = 270 males) to report demographic 
information using three methods: interviews and two forms of questionnaires, all of 
which exhibited approximately the same error rate against personal records. Students 
were least accurate in reporting their high school GPA to a single decimal point (52% 
incorrect) and college GPA (49% incorrect). Students were most accurate in reporting 
the number of legal violations (2% incorrect) and the number of visits to Student Affairs 
for disciplinary reasons (3% incorrect), but this resulted primarily because these last two 
items almost never occurred. The most frequent response was zero, with very little 
variance.  

Wyner (1980) compared the self-reported number of arrests with the actual 
number of arrests obtained from police records for a group of drug addicts (N = 79). The 
mean error was 3.2 percent below actual. Although the average bias was small, the 
number of errors was high. Wyner reported that 87.5 percent of all respondents (69 of 
79) gave incorrect responses. Another finding showed the influence of recall: "For each 
arrest that occurred before 1960...the odds are almost even that it will be reported or 
that it will be omitted" (Wyner, 1980, p. 171). 

Laing, Sawyer, and Noble (1987) examined the accuracy of student-reported 
extra-curricular activities and special accomplishments in high school by comparing 
students' responses with information obtained from the high school staff (N = 477). The 
typical rate of incongruent responses was about ten percent. The authors found a seven 
percent error rate on a race/ethnicity variable. Lacking electronic records, the 
researchers had high school staff complete questionnaires to obtain the validating 
information. This step adds error to the measures against which student responses were 
compared. 

Based on their review of the literature, Means, Habina, Swan, and Jack (1992) 
concluded that estimates suggest a one to four percent underreporting of smoking 
among the general population and that this underreporting increases significantly to 15-
20 percent among those smokers who are being heavily pressured to quit.1 The 
researchers used relatively "objective" chemical indicators of smoking behavior, such as 
the level of cotinine in the blood. 

Several studies report on incomes matched from surveys to tax records. Cristia & 
Schwabish (2007) found an average of more than 15 percent error between actual and 
survey-reported incomes for 140,259 records compared with IRS records, with males 
exhibiting greater errors than females. Moore, Stinson, & Welniak (1999) report a net 
underreporting of roughly four percent across all tax data, with higher incomes tending 
to under-report while lower income individuals tended to over-report. 

                                                 
1 Takalkar, Waugh and Micceri (1993) also found 20 percent error where emotional pressure appeared to influence 
responses. 
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Takalkar, Waugh, & Micceri (1993) with a sample of 4,596, investigating survey 
responses on 36,061 items for which archival data were available regarding application 
and admission to a university, found  1,522 (4.2%) of the responses to be incorrect. 
Errors on the race/ethnicity variable were three percent (a form of test-retest error). 
Regarding the accuracy of their true scores, the authors note: "The data in these files 
were created in the admissions offices of the universities. Therefore, these data should 
be extremely accurate and were treated as 'true scores'." 

Wentland and Smith (1993) evaluated data from 37 studies where survey 
responses were compared with records of behavior or characteristics for 56,701 
respondents on 258 items. They found error percentages ranging from zero percent to 
96 percent (“…an outlying value…”), with few items having more than 70 percent error, 
but many having 10 to 15 percent error. 

The proportion of responses that were incorrect in the research cited above 
ranged from two percent to about 96 percent. The measures investigated by this 
research ranged from extremely simple, factual and permanent items (e.g., sex) to either 
items with substantial memory requirements (e.g., number of arrests) or items involving 
both precision and memory (e.g., High School Grade Point Average). In general, items 
involving more complex tasks (e.g., greater memory, greater precision, more decisions, 
etc.) were associated with a greater proportion of measurement error. Supporting this, 
Groves (1989, p. 407) states: “Cognitive processing appears to be central to survey 
measurement error.” The preceding studies indicate that one should expect at least a 
small amount of measurement error to be present in all survey and other self-report 
items, even those that are simple, factual and permanent. Olson (2006, p. 739) 
concludes: “Comparisons of overall nonresponse bias and measurement error bias on 
survey statistics often show that measurement error bias is at least as large as 
nonresponse bias, if not larger, and that these non-sampling errors often far outweigh 
any sampling errors.” 

The Gulliver Effect 
The Gulliver Effect occurs when a small proportion of error in a large 

subpopulation exerts a large influence on one or more small subpopulations. One 
common situation in which the Gulliver Effect could have a major influence on findings 
involves studies that investigate differences among racial/ethnic groups. As a simple 
example, if 900 of 1,000 respondents to a survey are majority, cases where majority 
respondents erroneously mark themselves as minorities may represent such a great 
proportion of the "apparent" minority respondents as to attenuate or exaggerate 
estimates of differences between or among the groups. If three percent random error 
occurs among the 1,000 respondents (27 errors from the majority and 3 errors from the 
minority), this would mean that 27 of the apparent 124 minority respondents (97 
correctly classified minority respondents + 27 erroneously classified majority) are 
actually majority that erroneously marked themselves as minority. Such a large 
proportion of incorrectly classified individuals may diminish response differences 
between groups (e.g. ethnic groups) thereby creating false negatives. This particular 
race/ethnic proportion is not uncommon  in social and behavioral science researches 
(see review in the section on reducing the Gulliver Effect’s influence). 
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False positives may also occur when apparently significant differences between 
majority and minorities result not from actual differences between members of 
populations, but rather when a comparatively large number of the majority group 
sloppily completes surveys and is erroneously included in the minority groups. One 
might expect that people who make one error are likely to make more than one error 
(see Wyner, 1980). This means that apparent differences between majorities and 
minorities may only represent differences between those who carefully fill out forms 
and those who are careless. As an extreme, yet instructive example, suppose a survey 
involving ethnic groups asked the question "Upon what planet were you born?" We 
might expect a high proportion of those who incorrectly answer "Mars" to be among 
those also incorrectly marking themselves as minorities. Because the "sloppy" majority 
respondents would represent a comparatively large proportion of reported minorities, 
the researchers might falsely conclude that a significantly greater proportion of one or 
more minority groups were born on Mars than were whites.  

A perhaps more likely situation occurs in the real world of America’s War on 
Terror. If one tenth of one percent of America’s 300 million population is, in fact, 
terrorist (300,000), and if the FBI has a classification measure that is 99 percent accurate, 
that would mean of our 300 million people, roughly three million Americans would be 
classified as terrorists, for a 90 percent misclassification rate. Unfortunately, this 
misclassification proportion appears to be close to true given the Justice Department’s 
conviction rate in terrorist cases. 

The presence of several different minority groups does not necessarily reduce this 
effect. For example, an analysis of 50 Midwestern Liberal Arts Colleges’ 2005 
enrollment distribution, using the IPEDS Peer Analysis System, showed 81.8 percent 
white, 4.9 percent unknown, 4.0 percent Alien, 3.7 percent African American, 2.9 
percent Asian, 2.5 percent Hispanic and 0.3 percent Native American. A random 
measurement error of three percent among the 82 percent of whites would distribute 24 
erroneous responses (.03 × 1000) plus 5.4 from the minorities equally across all groups 
(5 erroneous responses per group). These erroneous responses would represent a false 
misclassification for minority groups of 10 percent for unknowns, 20 percent for 
Hispanics, and 167 percent for Native Americans. Naturally, the smaller the proportion 
of a given Lilliputian subpopulation, the greater the impact of random error from the 
Gulliverian subpopulation and the greater the chance of erroneous interpretations for 
dependent outcome measures. 

At this point, the issue of differential error rates in different subpopulations 
deserves attention. First, it is not likely that error rates will be identical for any two sub-
samples as was suggested in the above example, and empirical evidence suggests that 
sometimes they may differ substantially (e.g. Abu-Sayf, 1999). Many studies report 
either differential error rates or different biases for various sub-samples, some examples 
include Haberman and Elinson, 1967; Oksenberg and Cannell, 1977; Wyner, 1980; 
Means,Habina, Swan, and Jack, 1992; Takalkar, Waugh and Micceri, 1993; Cash and 
McFadden, 1993; Abu-Sayf, 1999; Ostroff, Atwater and Feinberg, 2004; Cristia & 
Schwabish, 2007. Second, the U.S. Census Bureau has documented that response rates 
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differ for different respondent groups, particularly minorities (Sweet, 1990), and in 
different geographic locales (Mihm, 2000). It would not be surprising if such differential 
response rates associate with different error rates. Supporting this, Olson (2006, p. 737) 
states: “We find that the relationship between nonresponse bias, measurement error 
bias, and response propensity is statistic-specific and specific to the type of 
nonresponse.” In situations where the Gulliver Effect occurs, the overall error rate will 
be determined primarily by the majority sample error rate. Where the error rate is 
greater among small subgroups, the misclassification effects will be magnified; where it 
is smaller, misclassification may be reduced, depending on the size of the sub-sample. 
Despite the preceding, for simplicity’s same, in most examples given herein, equal error 
rates are used for all subpopulations.  

One might argue that variables such as race/ethnicity should show relatively 
small proportions of error. In fact, items that request current factual information do 
tend to show smaller error rates than more complex items involving judgment, opinion 
or memory processes. However, Laing, Sawyer and Noble (1987) found a seven percent 
error rate on their race/ethnicity variable. Takalkar et al. (1993) concluded: "We can 
safely say from this and preceding research, however, that even the least ambiguous 
self-report variables tend to exhibit between 3% and 5% error." Errors on variables such 
as race/ethnicity, which request current and factual information, may result from 
misreading forms, mismarking forms, errors in transferring information to an answer 
sheet, misunderstanding terms (e.g., many people who are born in the continental 
United States think of themselves as Native Americans), general sloppiness, fear of 
answering correctly, or merely a desire, either joking or malicious, to misinform. Several 
additional problems arise in a combined racial/ethnic variable, which the Census 
Bureau changed to a two part variable in 2000 (Hispanic or non, and race, including 
multi-racial), but which has remained a single variable for most researchers and 
institutions. Multi-racial individuals may answer one way at one time, and another at a 
different time or in a different situation, further complicating the process. 

The examples of Gulliver Effect impacts provided above should be fairly 
conservative. That is, one can probably expect that random errors greater than three or 
four percent occur with some frequency on various classification items. Adding to this 
problem are data from studies such as that of Cash and McFadden (1993) in which the 
non-response rate among minorities was three times that for whites. This would 
decrease even further the proportion of correctly classified minority respondents. If, for 
example, we take the error rate of seven percent cited by Laing et. al. (1987) and the 
non-response rate of eight percent for whites and 24 percent for minorities cited by 
Cash and McFadden (1993), then the following scenario would occur with a two-group 
race/ethnicity variable for a sampling frame of 1000 with 90 percent whites (900) and 
10 percent minorities (100). In this case, 828 responses (900 × .92) would be returned by 
whites and 76 by minorities (100 × .76). Among these responses, a seven percent 
measurement error would occur (Laing et. al, 1987). Thus, 58 (seven percent) of the 828 
true white respondents would erroneously report themselves as minorities, and seven 
percent of the 76 true minority respondents (5) would report themselves as white. 
Therefore, the final reported numbers would be 775 whites (828 - 58 + 5) and 129 
minorities (76 - 5 + 58). Of the total 904 respondents, 14.3 percent would be reported as 
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minority (compared to the true value of 10 percent, or a 43 percent overreporting), and 
only 55 percent of the 129 reported minorities would truly be minority group members 
(71 of 129). This example shows that greater non-response rates by minority 
subpopulations, a not uncommon effect, can magnify the Gulliver Effect's influence. 
Further, this example is not a worst-case scenario. Abu-Sayf (1999) reported errors 
ranging from 16 percent to 42 percent in race/ethnic test-retest reporting among his 
subpopulations. This suggests that the proportion of respondents who represent such 
smaller subpopulations might be consistently over-reported in surveys due to purely 
random response errors by large subpopulations and greater non-response among 
minority groups. We might also note that even Census data involves primarily self-
reports. 

The Gulliver Effect is not limited to race/ethnicity. For any analyses made 
between or among different subpopulations, one of which is extremely large, researchers 
must be aware of the potential for such an effect. One example of the Gulliver Effect 
occurred in the Takalkar et al. (1993) study. Among the 33,667 items (93.3% of all 
items) where the respondent truly did not apply to a university other than the home 
institution, 1,210 of the items (3.6%) erroneously reported that the respondent was 
either accepted or denied at another university. This small error inflated the total 
apparent number who applied to other universities by 46 percent, from its true value of 
2,394 to 3,495. 

The Effects of Misclassification Errors 
Few articles in the social and behavioral science literature deal with 

misclassification errors. Among  those that do, most merely call attention to specific 
misclassification problems rather than presenting generalized methods to deal with 
them. For example, Feser and Pia (2002), dealt with Maximum Likelihood Estimators 
(MLE) in the context of logistic regression report: “…the MLE and the classical Rao's 
score test can be misleading in the presence of model misspecification which in the 
context of logistic regression means either misclassification's errors in the responses, or 
extreme data points in the design space.” Lilienfeld, Alliger, and Mitchell (1995) indicate 
that “…errors in integrity testing reflect the systematic misclassification of some honest 
individuals as dishonest.” Hilton (1995, p. 248) notes: “Failure to recognize the role of 
conversational assumptions in governing inference processes can lead rational 
responses to be misclassified as errors and their source misattributed to cognitive 
shortcomings in the decision maker.” Ferguson, Horwood and Lynkset (1995, p. 384) 
suggests a method to convert continuous scales into dichotomous decision forms where 
he used a latent Markov model requiring at least three historic data points which took 
account of errors of measurement in the classification of children (see also Friedman, 
1997). On this topic, Dwyer (1996, p. 360) outlines some problems that such 
dichotomizing creates when used for cut scores, which “…(a) always entail judgment; (b) 
inherently result in misclassification; (c) impose an artificial dichotomy on an 
essentially continuous distribution of knowledge, skill or ability; and that (d) no ‘true’ 
cut scores exist.” Also discussing dichotomized cut scores, de Moor, Barnowski, Cullen 
and Nicklas (2003, p. 393) note: “Current methods of dietary assessment may not be 
reliable enough to attain acceptable levels of correct classification.” 
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Other non-biometric disciplines also provide some examples, Kapteyn, Kapteyn, 
and Ypma (2007, p. 513) found “…very substantial biases…” when comparing 
misclassification between administrative and survey data in simple econometric models. 
Wiley and Martin (1999, p. 134) suggest “…incorporating misclassification errors into a 
latent class model for observed response states. We apply this model to survey responses 
dealing with government welfare programs and suggest that our approach can retrieve 
information where unidimensional and multidimensional models do not fit.” The 
misclassification errors reported in these several studies can lead to incorrect or 
inaccurate conclusions if careful adjustments either a priori or post hoc are not made, 

Perhaps the most damaging arena for the Gulliver Effect is false positive 
diagnosis of such as HIV/AIDS. For example, Kleinman, Busch, Hall, Thompson, Glynn, 
Gallahan, Wonby, and Williams (1998, p. 1082), using the gold standard Western blot 
test, found “The rate of false-positive Western blot results documented in this study was 
0.00041% of all donations tested (95% CI, 0.00026%-0.00058%) and 4.8% of donations 
with results classified as Western blot positive.” Placing this within context for a national 
sample, proportions of American populations that test positive for AIDS range from 
0.008 percent for whites to 0.076 percent for African Americans (Kaiser Foundation, 
2003). CDC (2003) estimates are that roughly 0.3 percent of 300 million Americans 
have HIV/AIDS with some 24-27 percent undiagnosed. The incidence rate reported by 
the Kaiser Foundation suggests that 76 of 100,000 African Americans and 8 of 100,000 
whites have HIV/AIDS. However, the error rate of Kleinman, et al indicates that 41 false 
positives would occur among each 100,000 meaning that more than half of the African 
Americans and 41 of 49 whites would be misclassified. Other, quicker and less expensive  
HIV/AIDS diagnostic techniques provide far less accurate results (CDC, 2007). Given 
the social, emotional and health care costs of false positive HIV/AIDS diagnoses, the 
Gulliver Effect in this situation can prove extremely damaging. 

Impacts of the Gulliver Effect on Statistics 
Even when adjustments are made in an attempt to control for the Gulliver Effect 

(see the section on reducing the Gulliver Effect below), problems can arise in statistical 
analyses. Not wishing to delve too deeply into the vast statistical literature, nonetheless, 
measurements form the basis for statistical analyses, thus, any biases resulting from 
either direct measurement or from inaccurate adjustment necessarily impair statistical 
results. Among the several problems with commonly used statistical analyses are some 
fallacious assumptions which underlie much theoretical, simulation and empirical 
published work. Perhaps the most insidious fallacy is the concept of a symmetric error 
distribution around a population mean that underlies almost all measurement and 
statistical theory and practice.  Modern perspectives on this derive from one of the 
original sources of modern science, which was repeated measurements of astronomical 
phenomena (Bessel, 1818). Assuming that no mechanical bias existed in the observation 
instruments (telescopes), then each observation contained both random and non-
random error. When many such observations were compiled, it became apparent that 
the arithmetic mean was not an unreasonable estimate of center, because the 
observation errors in one direction tended to be offset by errors in the opposite 
direction. Thus developed the following misleading perspective, largely as a result of the 
work of Gauss, who sponsored Bessel and determined “Error distributions are 
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symmetric in shape, with every positive error offset by a negative error of similar 
magnitude.” This convenient assumption was originally developed partly because it fit 
the data, but largely because it fit the arithmetic mean, and thereby allowed for 
mathematically soluble formulae. It was pushed strongly into the academic mindset by 
Gauss and Galton (Seal, 1967). Although this idea may be true for repeated observations 
of the same object, it appears inherently absurd to over generalize repeated observation 
of a single object to single observations of many different objects. To keep this 
convenient assumption, measurement texts tell you that a measure’s values reflect a 
distribution of “error” about a central true score. Thus a sample of the weights of 50 
people represents the distribution of error around the one “true” human weight of the 
target population. However, this appears to be an unrealistic assumption for measures 
involving humans, or almost any other naturally occurring population. In any 
representative sample from a human population there must be at least two subgroups 
(male and female), each of which varies around a different center on almost any 
measure one can imagine. Additionally, other subpopulations always exist, each of 
which has a different center and spread in the subpopulation.  

Geary (1947, p. 240) provides some history by noting that up to the end of the 
19th Century, for several reasons, there existed a  

…prejudice in favour of the hypothesis of universal normality…With 
the development about the beginning of the century, of the theory of 
moments, statisticians became almost over-conscious of universal non-
normality. …Our historian will find a significant change of attitude about a 
quarter-century ago following on the brilliant work of R.A. Fisher who 
showed that when universal normality could be assumed, inferences of the 
widest practical usefulness could be drawn from samples of any size. 
Prejudice in favour of normality returned in full-force and interest in non-
normality receded to the background (though one of the finest 
contributions to non-normal was made during the period by R.A. Fisher 
himself), and the importance of the underlying assumptions was almost 
forgotten. Even the few workers in the field (amongst them the present 
writer) seemed concerned to show that ‘universal non-normality doesn’t 
matter’: References (when there were any at all) in the text-books to the 
basic assumptions were perfunctory in the extreme. Amends might be 
made in the interest of the new generation of students by printing in 
leaded type in future editions of existing text-books and in all new text-
books: Normality is a myth; there never was, and never will be a normal 
distribution. 

Geary (p. 241) said the preceding sentence was an over-statement, due to a lack of 
evidence. The evidence has become available over the past 50 years. Following in the footsteps 
of numerous prior researchers, Micceri (1989, p. 161) found that among 440 large sample 
measures in Education and Psychology, where error is conceived in texts and theory as a 
symmetric and light tailed (Gaussian), that all were significantly non-normal at the alpha .01 
significance level. Among achievement tests and gain score measures, 4.3 percent were 
relatively symmetric, smooth and unimodal with tail weights not extremely distant from those 
expected at the Gaussian. No psychometric measures (n=125) nor criterion/mastery tests (n=35) 
were in this group. Among these distributions, tail weights ranged from the uniform to the 
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double exponential. Other non-Gaussian distribution properties that occurred included 
exponential level asymmetry, severe digit preferences, multimodalities and modes 
external to the mean/median interval. As is noted, these findings replicate those from 
empirical studies in every research arena ever investigated, the important factor being 
that measures in education and psychology are specifically designed to produce 
Gaussian type distributions. This was the last bastion of possible Gaussian distributions. 

Another common fallacious assumption is that errors tend to cancel each other 
and zero out. In the hard sciences, where measurement errors can better be estimated, it 
is well known that they frequently are either asymmetric, or propagate rather than 
canceling each other across multiple measurements or measures (e.g. Taylor, 1982). 
Engineers who fail to properly consider this propagation effect, may find their bridges 
collapsing. One should expect similar, but greater effects to occur in the far less accurate 
and validated measures common to the social and behavioral sciences.  

Regarding statistical analyses and Type I (alpha) and Type II (power) statistical 
errors, it is probably worthwhile to provide a short summary of what factors have long 
been known to impact statistical error. A variety of univariate, bivariate and multivariate 
distributional anomalies (non-Gaussian distributions) can sometimes severely impact 
obtained alpha and/or power. On this among the numerous studies that have been 
conducted, perhaps McClelland (2003) best elucidates the situation for Psychology by 
noting that statements in psychology statistics texts claiming Ordinary Least Squares 
(OLS) robustness in all but highly unusual situations have been disproved by more 
recent research. In either a two-group or multi-group situation statistically, unequal cell 
sizes create difficulties for OLS statistical techniques. In the two-group situation (t), 
adjustments for unequal ns such as Satterthwaite’s approximation to the t 
(Satterthwaite, 1946) reduce power by reducing the sample n, but also serve to reduce 
Type I errors. Although most statistical textbooks provide examples having equal cell 
sizes for factorial ANOVA, because unequal ns cause problems (Blair, 1981; Ito, 1980). 
When heteroskedasticity is present, a common and ‘massive’ problem in ecological 
inference (King, 1997, p. 17), both Type I and II errors can differ substantially from 
nominal alpha or expected power (McClelland, 2003). Because the Gulliver effect, when 
present, may either increase or decrease the gap between two groups, with an increased 
gap, assuming no heteroskedasticity, the effect would falsely increase a test statistic’s 
power to detect differences, and with a reduced gap, it would falsely reduce a test 
statistic’s power to detect possibly real differences. 

Researches involving small sub-samples deal primarily with the reliability of 
estimates, increasing this, or making adjustments to correct errors resulting from small 
sub-samples and are largely limited to Statistical and Health Sciences journals (see 
below). This small sample concern is well founded, because the Central Limit Theorem 
tells us that, as the sample size of the sampling distribution of OLS means increases to 
the asymptote, the distribution shrinks closer and closer around the parameter value µ. 
Recently published research on such topics as misclassification is largely absent from 
Psychology, Education and Sociology journals. Biometrics, following on the work of Karl 
Pearson (1895), has come closer to dealing with the way the real world works, unlike 
many other disciplines who have almost blindly adopted the Null Hypothesis 
Significance Testing paradigm (NHST). Several critiques and evaluations of the 
controversy exist, including, but not limited to  (Rozeboom, 1960; Greenwald, 1993; Nix 
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and Barnette, 1998, and Nickerson, 2000). Nickerson (p. 341) concludes “…that NHST 
is easily misunderstood and misused but that when applied with good judgment it can 
be an effective aid to the interpretation of experimental data.” Unfortunately, many who 
apply NHST fall into the group that Rozeboom (1960, p. 416) describes: “…in his need 
for the tools constructed by a highly technical formal discipline, the experimentalist, 
who has specialized along other lines, seldom feels competent to extend criticisms or 
even comments; he is much more likely to make unquestioning application of 
procedures learned more or less by rote from persons assumed to be more 
knowledgeable of statistics than he.”  

Unfortunately, Rozeboom’s statement applies all too frequently, and it’s effects 
on research, can be substantial. McClelland (2000, p. 393) notes: “Many psychologists, 
particularly those far removed from their last statistics course in graduate school, 
believe that the standard least-squares statistical procedures are relatively robust 
against all but the most serious kinds of nasty data.” 

Can One Reduce the Influence of the Gulliver Effect? 
In this paper we focused primarily on a single type of error because it can have 

such large effects on estimates for rare subpopulations. This is important because 
frequently, rare subpopulations are of great interest to scientists, decision and policy 
makers, and therefore, to researchers in all disciplines. Unfortunately the Gulliver Effect 
can create a substantial proportion of erroneous classifications for small 
subpopulations, which can alter estimates of measured differences between specific 
subpopulations and detrimentally affect sometimes inappropriate statistical procedures. 
Gulliver Effects may generate either false positive or false negatives, and can thereby 
cause misguided judgments and policies regarding such differences. The implications 
surrounding the Gulliver effect are somewhat unnerving when one considers the 
instructive examples noted above. 

At this point, the question arises: are any methods available that can reduce the 
detrimental influence of the Gulliver Effect on findings and conclusions? Several 
methods for such purposes appear in the literature, for example, the use of a gold 
standard cross validation using a carefully controlled small sample to test the accuracy 
of the primary sample and make adjustments if necessary. Several adjustment methods 
are considered or reported below. 

One a priori historical method that can help reduce the impact of the Gulliver 
Effect is disproportional stratified sampling, where small groups are oversampled to 
assure reasonable numbers from Lilliputian subpopulations in the final obtained sample 
(Sudman, 1976). The fact that minority subpopulations tend to be less likely to respond 
or participate than majority populations makes this an even more important 
consideration in many situations (Goyder, 1987). Although well known among 
theoreticians, this technique does not appear to be widely used by practitioners. A 
systematically sampled review of 146 recently published articles (1998 through 2006) in 
flagship journals from Institutional Research (Research in Higher Education, N=46) 
and Industrial/Organizational Psychology (Personnel Psychology, Journal of Applied 
Psychology, N=100) found only two cases where disproportional stratified oversampling 
was employed. Both of those were studies employing data from a National Research 
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Database where oversampling was applied. This sample of articles verified the currency 
of Takalkar, Waugh and Micceri’s 1993 study, as 75.6 percent of the articles used self-
report measures, and 55.9 percent used surveys, so surveys occurred in 74% of articles 
using measures. By far the most common sampling technique was the convenience or 
availability sample (86.4% of samples), most frequently of students. Regarding the 
presence of Lilliputian subpopulations, in 90.3 percent of the situations where 
dichotomous or multichotomous values were reported, the majority segment of the 
sample comprised 84.6 percent or more of the total sample. Majority sample sizes 
ranged from a low of 40.6 percent to a high of 97 percent, with most being above 88 
percent and only two near 85 percent. Clearly, situations where the Gulliver Effect may 
impact findings are not uncommon. 

A second method to control effects, recommended by Gustafson (2004) involves 
using Bayesian adjustments with uncertainty through Markov Chain Monte Carlo 
(MCMC) sampling with probabilities varied across a range of possible values to obtain a 
more valid estimate of truth. Gustafson notes (2004, p. 131): “…the Bayes-MCMC 
analysis provides a straightforward route to statistical inference which accounts for 
misclassification of a binary explanatory variable.” When one has an idea from historical 
research what a likely probability of a variable’s cases will fall into one category or 
another, probabilities may be assigned differentially over a specific range. For example, 
regarding majority presence in a population, the naïve assumption is that the obtained 
percentages are true, however this is unlikely to be true for many reasons, including the 
Gulliver Effect. Assuming, for example, a three percent random error with an obtained 
majority presence of 90 percent one could have a best guess adjustment estimate of two 
point seven percent more respondents in the majority group and two point seven 
percent less for the minority group (as explained above). The assigned probabilities for 
the majority group could then be something like 92.7, 0.25, 91.7 and 93.7, 0.175, 90.7 
and 94.7, 0.10, 89.7 and 95.7, 0.05, and so on to the end of a possible range. The 
situation becomes more complex in the multichotomous situation, although the use of 
multiple categorical variables is apparently not a difficult task in MCMC. Finally, 
Gustafson notes (2004, p. 131) that “…often something other than ‘off-the-shelf’ MCMC 
techniques may be needed for model fitting.” This is certainly not a impossibly difficult 
method to help reduce the impact of category misclassification resulting from the 
Gulliver Effect among other error sources. 

Another adjustment approach which Gustafson (2004, p. 104) critiques, is 
adjusting with false certainly, where one randomly reassigns an expected misclassified 
portion of the majority and minority population to the other population using MCMC. 
This approach, at least in theoretical simulations, is of questionable value (Gustafson, 
2004, p. 104), because “…the reduction in bias achieved by adjusting for 
misclassification may not fully offset the increased variability incurred by admitting that 
misclassification is present. However, this should not be viewed as justification for using 
a naïve rather than an adjusted analysis.”  

Other approaches for making post hoc adjustments, some of which require 
sophisticated skillsii, are explicated in: Lash, and Fink (2003), Rice, and Holmans 
(2003), Thurigen, Spiegelman, and Blettner (2000), Raudys and Jain (1991).  Friedman 
(1997) proposes a method for a theoretically unbiased classification of continuous 
variables into groups. 
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Conclusions and Discussion 

The Gulliver Effect is one specific type of misclassification, resulting as a 
straightforward mathematical consequence of extreme sub-sample disproportions. 
Although not limited to race/ethnicity, that situation is of importance because so many 
social and behavioral science and economic researches use race/ethnicity classifications 
as independent variables and as a proxy for affluence, and because some management 
decisions are based on self-reported race/ethnicity characteristics. The Gulliver Effect 
has its greatest impact where one or more subgroups make up a very small portion of 
the total population. Some extreme examples include rare minorities such as Native 
Americans, rare plants, rare animals, rare fungi, rare diseases, rare accidents, or any 
other phenomenon that makes up less than five percent of a population, like the 
kidnapping of juveniles which “…constitutes only one-tenth of 1 percent of all the crimes 
against individuals.” (Finkelhor and Ormrod, 2000, p. 1). 

An important question to ask is just how frequently and how influential the 
Gulliver Effect may be in empirical research?  As was noted above in the review of recent 
journal articles, self-report measures are commonly used, and majority populations 
almost always comprise at least 85 percent of the total sample. What is perhaps most 
alarming about this review is the fact that so much research, and particularly so in 
Psychology, makes use of availability samples rather than the generally accepted 
random sampling techniques. Oversampling to reduce the Gulliver Effect’s influence is 
almost non existent in the recent literature. Regarding how this may influence analyses 
and findings, the Gulliver Effect can bias results in a fairly wide variety of research 
situations, ranging from those using Logistic Regression to those applying Chi Square 
analyses. Admittedly, one hopes to have comparatively equal binary groups when 
conducting Logistic Regression or discriminant analysis which reduces the 
misclassification effects, however, in the Chi Square case, cell sample sizes of five (5) are 
usually considered adequate for a reliable estimate (Cochran, 1954). Further, in two-
group or multi-group analyses, this effect will most likely exacerbate the detrimental 
effects of heteroskedasticity. As was noted in several examples, the Gulliver Effect can 
result in seriously inaccurate classifications. Supporting this position, Gustafson (2004, 
p. 37), regarding the relative influence of the same error rate for continuous and binary 
measures, states: “Having 10% of all the measurements 'entirely corrupted' in the binary 
case is clearly much more damaging than having all the measurements corrupted about 
10% in the continuous case!” 

This issue deserves more research attention. More studies directed specifically at 
determining the proportion of both large majority and minority groups that are typically 
misclassified by self-report techniques should be undertaken. Further, the impacts on 
outcome variables should also be addressed. Unfortunately, such studies require both 
extremely large samples and an available “true” value. A three percent error in a sample 
of 1,000 only amounts to 30 responses, and one cannot trust such a small number to 
reliably represent the proportion of misclassified individual. Ideally, samples of 10,000 
to 100,000 would be used. Such studies should be conducted in a consistent fashion to 
cover every arena in where large majority populations occur in order to develop 
reasonable adjustment estimates such as that proposed by Gustafson (2004).
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