
Exploring the Process of Adult Computer Software Training Using Andragogy, Situated
Cognition, and a Minimalist Approach

Andrew C. Hurt
Texas A&M University

With technology advances, computer software becomes increasingly difficult to learn. Adults often rely on
software training to keep abreast of these changes. Instructor-led software training is frequently used to
teach adults new software skills; however there is limited research regarding the best practices in adult
computer software training. This paper looks at how software trainers incorporate the adult learning
theories of andragogy, situated cognition, and the minimalist training approach into adult computer
software training.

Keywords: Software Training, Adult Learning, Situated Cognition

For the novice adult learner, computer software can be difficult, troubling, and often impossible to understand.
When faced with learning a new software program, adults generally seek help in learning how to use the software
(Gupta & Ndahi, 2002). Often this help comes in the form of instructor-led computer software training.
Additionally, with our society’s ever increasing reliance on computers and the changing nature of software, adults
often find it difficult to keep up. The U.S. Department of Labor projects that between 2004 and 2014 employment in
“management, scientific, and technical consulting services also will grow… by 60.5 percent, spurred by the
increased use of new technology and computer software and the growing complexity of business” (Tomorrow's jobs,
2003). Thus as technology becomes further integrated into society, there becomes increased demand for software
training geared to the novice adult learner.

Although there is an abundance of training literature, there is limited research that looks at successful strategies
to train adults specifically in computer software. A simple literature search conducted on the term “training” in four
databases over the last ten years (1996-2006) results in over one hundred thousand articles. A search using the same
databases and search parameters using the term “computer software training” yielded slightly over 700 results.
Finally, when those results are further siphoned through the term “adult” or “andragogy” the list decreases to
approximately 100 articles. Of those 100 results, very few have anything to do with the process of software training
specifically geared toward adults. Thus the problem is that there is a growing need for increased understanding on
the adult software training process and at the same time a deficiency in the literature regarding this topic

The purpose of this study is to explore how trainers successfully incorporate the adult learning theories of
andragogy and situated cognition with the minimalist approach to software training into the software training of
adults. In order to accomplish this task this study is guided by four research questions: (a) How is the minimalist
approach to software training is being used? (b) How do trainers present the material in a manner which facilitates
the adult learning theory of situated cognition? (c) What evidence is there in the training environment of the five
principles of andragogy? (d) In regards to the process of computer software training, is there a connection between
the minimalist approach, situated cognition, and andragogy? In this paper a discussion of the literature as it pertains
to adult computer software training is presented, the results of a qualitative study focused on identifying these
successful practices is outlined, and implications to the field of Human Resource Development (HRD) are discussed.

Literature Review

When discussing the training of adults, this study would be severely lacking if it did not discuss the theory of
andragogy. Proposed by Malcolm Knowles (1968) andragogy is the prominent theory of adult education. Taking its
roots from pedagogy (theory of adolescent learning); Knowles suggested that adults learn differently than
adolescents. He made five assumptions of adult learners. The first assumption is that as a person matures they move
from a dependent personality (adolescent) towards a more self-directed personality (adult). This self-directed
personality is used to seek out information in order to gain new skills and competencies. The second assumption is
that adults have an ever growing pool of experience. When new learning occurs, adults tie this new learning to their
prior experience. The third assumption is that the readiness of adults to learn is tied to their social role. The fourth

Copyright © 2007 Andrew C. Hurt

assumption is that as humans mature they move from a need to have immediate application knowledge to more
future oriented problem solving skills. Adult learners want problem solving skills not just immediate answers. The
final assumption is that adults are motivated to learn by internal factors not by external ones. Learning motivation
comes from an internal desire to understand the problem, not by external forces pushing adults to learn.

Tied to the way that adults learn is the situation in which learning occurs. Situated learning or situated cognition
is an adult learning theory that says that learning and the situation are so closely related that they can not be
separated (Merriam & Caffarella, 1999). According to Hansman (2001), “the core idea of situated cognition is that
learning is inherently social in nature” (p. 45). Situated cognition’s inherent social nature means that the activity
learned, tools used, interaction among learners, and the context in which the learning takes place all play a factor in
successful integration of new knowledge.

Traditionally, learning has been viewed as theoretically independent of the situation (Wilson, 1993). From a
situated cognition perspective, new knowledge is extremely difficult to obtain without learning the material in the
context in which that material will be used. Wilson provides numerous examples of studies that have shown transfer
of learning to be context based. Although there is some disagreement in the adult learning community, “proponents
of a view of cognition as inherently situated offer evidence that adult learning and knowing are profoundly
structured by the context in which they occur” (p. 74).

Michal Hughes (1998) suggested that to meet the needs of adult computer software learners, trainers need to
approach the training instructional design process from a situated learning point of view with an emphasis on the
principles of andragogy. In his article Hughes lists several points that need to be considered when designing training
around this topic. First, the situation in which training will be conducted is integral to the acquisition of knowledge.
Second, trainers must provide the necessary “scaffolding.” Scaffolding is the support network that is provided to the
student. Third, there needs to be supports in place that help the instructor. These supports might track student
progress, gauge understanding, or help the instructor interact with students. The final point is that there needs to be a
solid definition of the role and nature of assessment in the training. This definition will help distinguish the
boundaries by which students and the instructor can work.

Of the computer software training literature there is little empirical research that specifically focuses on adults.
Several studies have been conducted on undergraduate college students; however, it is difficult to gauge whether
these individuals would be classified as adults. Based on Knowles (1968) assumptions of andragogy, there is no
definitive way of determining an exact age at which an adolescent becomes an adult. An undergraduate college
student is typically 18-22 years old, thus the problem is that this is often the age at which individuals in U.S. culture
often transverse between adolescents and adulthood. Therefore, findings from studies of undergraduates may not
have transferability to work related contexts.

There are a few studies that explore software training involving adults. Harp, Snadra, and Satzinger (1998)
looked at the method that was used to teach computer software training. The focus of the study was to identify
differences in perceived usefulness of three forms of software training. The first form was computer-based training
(CBT); which involves participants using instructional software to learn how to use other forms of computer
software. The second form of training was a video tutorial. In this form, participants watch a video which instructs
them on how to use the software and then participants follow along on their computers. The third form was
instructor-lead classroom training. In this final form, participants learn to use software by watching and listening to
an instructor. Then the students complete the task on their own computers. Results of the study by Harp et al.
indicated that users preferred the CBT and instructor-led training over the video training. No difference was found in
the preference between CBT and instructor-led training.

Similar to the method used in software training, Judith Lambrecht (1999) looked at the overall approach to
software training. She suggested that when conducting software training there are two avenues that an instructor
could use. The first is a traditional systematic approach. In this approach the instructor explicitly explaining what to
do to solve a problem. One advantage of this approach is that it teaches the learner exactly what to do in a specific
situation. A disadvantage is that when faced with situations that they have not experienced, learners have difficulty
finding solutions to problems. The second avenue for teaching software training is the minimalist approach. In this
approach instructors teach learners basic problem solving skills. The minimalist approach was developed by John
Carroll in the 1980s (Carroll, 1990). Carroll suggested that software training is a “paradox of learning…to learn, the
student must interact with the system; but to interact with the system, the student must learn”(p. 147). Hence one
advantage of the minimalist approach is that when faced with new problems learners apply their problem solving
skills and find the correct solution on their own. Instead of the systematic approach which only teaches students to
solve problems that they have previously encountered.

Lambrecht (2000) then tested the systematic and minimalist approaches to software training in a year long
qualitative study. She conducted 46 interviews in total, across three “exemplary” high schools in the state of

Minnesota. Interviews were conducted with a mix of students, teachers, and staff. Her results showed that the
dominant method was the systematic approach. Lambrecht’s results appear to be consistent with the tenets of
systematic training considering that the systematic approach is characterized by a high learner need for dependency.
Although Lambrecht (2000), did not exclusively use adult learners, considering Knowles’s first assumption of
andragogy that adolescents are dependent in regards to their learning. Lambrecht’s results could suggest that had she
conducted her study in an adult oriented environment instead of a high school, she likely would have found that the
minimalist approach would have been the dominate training method. This is because as andragogy assumes, “as a
person matures they become more self-directed” (Merriam & Caffarella, 1999, p. 272). Having reviewed the
dominant literature regarding the adult learning theories of andragogy and situated cognition and having looked at
the literature regarding the process of the minimalist approach to training, it seems appropriate to explore how
trainers incorporate these three principles in the software training of adults.

Methodology

This study took a grounded theory approach to discovering how software trainers use the minimalist approach,
situated learning, and andragogy in the software training of adults. Grounded theory is a type of qualitative
methodology where in the researcher is attempting to develop theory from the data that is presented (Merriam,
1998). Grounded theory is a process of inductively discovering the phenomenon in question (Egan, 2002). In this
study software trainers were interviewed and then based on those results, the process of incorporating the minimalist
approach, situated cognition, and andragogy into the software training of adults was derived.
Prospective Study Participants

In order to explore this process on how software trainers incorporate the minimalist approach, andragogy, and
situated cognition into the training of adults. The experiences of two software trainers employed in the training
department of an organization located in the southern part United States were analyzed. These two individuals were
chosen because they exemplify the “best” the department has to offer in regards to software trainers. In this study
the participant’s names have been changed in order to protect their anonymity.

The first trainer, named Jerry, is a middle-aged white male. Jerry has been conducting software training for the
past 11 years. The last six of those years have been as an employee of the organization used in this study. Jerry’s
prior experience includes working as a debit card trainer and providing software training for his family’s business.
Jerry primarily focuses on teaching Microsoft Office courses (Word, Excel, Frontpage, Publisher, Outlook), Adobe
courses, and introduction to Windows/computers courses.

Matt, the second trainer that was interviewed is a middle-aged white male. Matt is a graphic artist by training
and as a result got into using the first version of Powerpoint. Matt has been teaching various software packages for
the last 8 years. Although, he has only been employed in the organization for one year, his experience is extensive.
Matt primarily teaches the Microsoft software; Powerpoint, Publisher, Access, Project, Visio, and Frontpage.
Data Collection

The two individuals listed above were informally asked to participate in approximately an hour long interview.
The interviews were conducted on the same day (one in the morning and one in afternoon) and both were recorded
using a digital recorder. The purpose of this project was explained to both interviewees prior to and at the beginning
of the interviews. The interviews were conducted using Patton’s (1988) general interview guide approach. In this
approach, the interviewer discusses the topic(s) of interest with the interviewee prior to conducting the interview.
Then during the interview, the interviewer works those questions into the dialogue; rephrasing them as the
situation/dialogue dictates. In general this is an approach used to discovery new spontaneous information, yet allows
for the specific research questions to be addressed.
Data Analysis

After completing the interviews, the digital record of each was transcribed. A constant comparative method of
coding the data was used in the analysis of the data (Coffey & Atkinson, 1996). As Merriam (1998) suggested, the
constant comparative method involves comparing each individual piece of data with all of the others. In so doing,
categories can begin to form around a specific topic. Central to the grounded theory approach; these topics were
used as a basis for developing the emergent theory of how software trainers use andragogy, situated learning, and a
minimalist approach in the training of adults on computer software. It should be noted that one of the tenets of
grounded theory is that it is an ongoing process (Egan, 2002). Grounded theory involves continuously collecting
data then analyzing. This process is repeated until commonality within the data is seen. The information presented
here is merely the first stage of a multistage on going process. As more data is collected the results will further be
clarified as the theory emerges.

Reliability and Validity
In order to control for validity and reliability, I employed as several authors (Peshkin, 1988; Wolcott, 1994)

suggest a rigorous subjectivity and as Merriam (1998) suggests triangulation and member checks. I have strived to
present my opinion and position as clearly as I can, while conducting the interviews, coding and analyzing the data,
and writing this paper. As Wolcott suggests, clearly presenting the authors subjectivity is essential in creating a valid
study because it allows the reader to make an informed decision about the author. Additionally, I have employed the
triangulation technique which involves analyzing the data from as many perspectives as possible. Using the multiple
perspectives allows the researcher to “triangulate” the truth of the data (Mathison, 1988). Finally, member checks
have been employed throughout this study. Member check is a process where the researcher continually brings the
data back to the subjects to make sure they are interpreting it correctly. After the data was transcribed, I provided my
two interviewees with copies of the transcriptions and after the data was coded I went back again to my two
interviewees and asked if they thought the information an accurate representation of what they told me in the
interview.
Researcher Bias

All research and for that matter researchers are not without their own personal biases. The single biggest bias
that I bring to this study is that I am a software trainer employed by the organization used in this study. In many
ways this is a benefit, as a software trainer I have first hand knowledge of the work activities, cliental, and most
importantly trainer abilities. However, there are some significant concerns that should be noted. First, being a
software trainer, I have developed my own style of training. My personal style could influence the results of this
study because I might inadvertently apply my perceptions about software training to the interview process and data
analysis. This is a problem because then the results would be a reflection of my beliefs and not the interviewees.
Second, I am employed by the organization used in this study. As with most organizations, there are rules and
regulations that must be followed when running a training class. These rules and regulations could present a bias as
they influence how I teach and for that matter how both Jerry and Matt teach.

Research Findings

This section presents the results of the two interviews. After the data was collected and analyzed five major themes
emerged from the data. These five themes are presented in a graphical representation which can be seen in Figure 1.
The five themes are: pre-training activities, systematic training activities, minimalist training activities, situated
training activities, and andragogy.

Figure 1. Training Process

Pre-Training

The first category which I have entitled pre-training consists of all the information the student currently has
about the software. This category is depicted in Figure 1 and consists of the entire left half of the model. The pre-
training category is unique in that the software trainer does not have the ability to change what the learner’s prior

experiences are, but all of these experiences affect the way in which the trainer must structure the course to the
learner. This process begins with the background that the student has with the software and with computers in
general.

The student is then forced to make a choice. One way or another the student must learn the software program,
so their choice becomes either to seek out a formal training solution or try and teach themselves the program. If the
student has been successful in teaching themselves other programs then they will like attempt to teach themselves
the new program. As Matt suggested, many times students will “look for online materials and practice as best they
can with the software application.”

However, if the student has not been successful at learning a new program in the past or they have unresolved
issues that they can not seem to clarify on their own, then formal training is often sought. These unresolved
problems do not develop because of the learner’s inability to grasp the material, but rather as a need for support. As
Jerry described it, “It’s not that they can’t learn the software it just that they have a fear of using the software. So
sometimes you just have to hold their hand until they get more comfortable with it.” Matt provides another example
of a situation that drove the learner to seek formal software training:

I once taught an 80 year old lady how to use a computer. When we first started she didn’t even own a
computer… she just wanted to learn so that she could email her grand kids and store/share recipes with her
friends. It’s a real testament to the desire of an individual to learn something new.

In Matt’s example it was not that the grandmother was unable to learn the software, rather it was a function of
her being intimidated by the software and thus needing a supporting hand. The desire of individuals to learn a new
software program is not something that the instructor has the power to change, but these desires in part motivate and
encourage the student to seek a formal training solution. This whole process of pre-training is important because it
becomes the basis for what the trainer does have the ability to change in a classroom environment.

The last step in the pre-training category entails the student’s current understanding of the software. This step
also becomes the first of four areas that the instructor has control over. This step begins with the student attending
the training session. It then becomes the instructor’s job to try and ferret out the background knowledge that the
student has. As Matt says, “I have to learn who my students are, what they want, and why they need this.”

In order to work with students throughout the training and figure out the students prior experiences, the software
instructor needs several skills. When asked what kinds of skills a “good” software instructor should have, Jerry said
that “[Instructors] need to have basic speaking skills… instructors should also have class management skills.”
Although these skills seem to be relatively straightforward classroom teaching skills, Matt suggests a more nurturing
skill set. “Computer software trainers need; enthusiasm, flexibility, empathy, and a real desire to help people… you
know it may sound silly, but a good software trainer needs to be able to be human.”
Systematic Training

Once the instructor has gained some basic information on the background experiences of their students, they
can start to conduct the actual training. The training process starts with systematic training. The systematic training
process entails the instructor explicitly guiding the student through the material. Both instructors in this study used
course manuals during training. These manuals provide a step-by-step or “systematic” guide on how to use various
components of the software. As Jerry said, “Software training is really about hard skills because you have to tell
them to point here and click there. The lessons are really step-by-step.”

This step-by-step manner in which the instruction is presented is useful to the student because it gives them the
solution to an exact problem or question. Jerry elaborates on this idea and expresses a concern with it:

A lot of software trainers are just your techy types. They show you how to do something, which is fine for
people that just want the answers, but it’s not really effective for most. It’s effective for teaching the
application, but it’s not effective if you want anyone to remember what you did. Most [students] want to
remember what you did and not what you said.

Matt, agrees with Jerry that step-by-step training does not create an effective learning environment. “In many
ways I let the class dictate how they want to learn the material, but there are some basic instructions that need to be
given just so that everyone knows how to use the software.”

Based on Jerry’s and Matt’s assessments of the software training environment, the process of systematic
training seems to be a necessary evil. It does not create an effective learning environment, yet the instructor has to
do it in order to get all of their students up to the same level. Matt mentioned a strategy that he uses to get students
more interested in the process and to make it more relevant to their lives:

People like handouts. So I try to pullout informative things [from the lessons] and expand on them because
when they get back to their offices the examples we use in class aren’t going to be helpful. They need more
general topics that have a wide use.

Many of the handouts that Matt gives to his classes follow this systematic approach. Matt’s handouts layout in
explicit detail, how to perform a specific operation. Although, the handouts clearly define what to do, in Matt’s
quotation it can be seen that he is unconsciously moving into the minimalist and situated categories of training with
the phases “general topic have a wide use” and “when they get back to their offices.”
Minimalist Training

The third category which I have named minimalist training requires the instructor to go one step beyond the
systematic method. In systematic training the information is presented, but the problem is that the learning
environment that systematic training requires is not conducive to the learner. Hence, there becomes a need to
reinforce the concepts that were presented in the systematic training and to do so in a manner which will help the
student to remember.

Minimalist training involves the instructor presenting the material under the guise of problem solving. The goal
of the minimalist approach is to give the students a set of problem solving skills that they can use to learn and fix
problems with the software after they have left the training session. It was clearly evident in my discussion with both
trainers that they use several strategies to try and accomplish this. For instance, Jerry uses what he calls the “play” to
teach the students how they can problem solve on the software:

Sometimes I just play with the software during class… [But the trick is] you have to have an idea of how
you’re going to play to make it look like your [actually] playing … I plan out the play. After the play I
come back and relate it to the objectives.

What Jerry is doing with his “play” is actually demonstrating during the training session that students can
attempt to solve their own software problems and discover new ideas without having to attend a formal training
course. This concept aligns perfectly with the minimalist approach because it suggests that students are learning to
identify and develop their own solutions. When I asked Jerry if this has ever back-fired for him he said, “Sure that
happens all the time. But when my playing around fails the students learn how to solve problems.”

Matt on the other hand has two different strategies that he uses to teach problem solving skills. The first focuses
on having the students form teams. “In my [Microsoft] Access classes, I sometimes have the class develop a
database together; this helps them to solve problems together.” By learning from each other, students start to
develop a set of problem solving skills based on the small group interaction. This would also like benefit students
later on as the potential is there to develop lasting relationships with fellow class members. Matt’s second strategy is
to subtly assist students while they are practicing the lesson activities. “…I really try and watch the students to see if
their not getting it. If they aren’t then I sit down with them and try to help them work through their problems… by
helping them discover where they went wrong.”
Situated Training

The third category is entitled situated training. Up till this point the learner has been presented the basic
knowledge they need to know in order to use the software (systematic training), then they are taught how to solve
problems on their own outside the training session (minimalist training), finally they need to be taught how this
software is going to be useful to them (situated training).

In situated training the trainer’s sole purpose is to explain the software in terms that the learner can connect
with. This manifests itself in relating the software program’s applications and functioning to the learner’s job. In this
category it becomes essential that the instructor has a solid understanding of the learner’s prior experiences. Jerry
and Matt both elaborated on why this is so important. However, I think Matt said it best, “its funny sometimes how a
student really won’t get the topic, but the minute you put their data in it…it makes perfect sense… that’s the key,
just find terms they can understand.” Situated training focuses on connecting the applications of the software to the
student’s job. Jerry told me about how he often tries to connect the software to the student’s job:

I often have students bring in an example of their work…, I once had a lady who had an entire years worth
of information on one worksheet [in Excel]… it was a matter of showing her how to separate the
information out… which really helped her.

In Jerry’s examples he helps the student to discover the applicability of the software to their job. In doing this
the student is better able to grasp the potential uses of the software, which further increases their desire to learn.

Similarly, when Matt is developing a class, he said “I try and develop scenarios in my head that are going to
help the students in their jobs. Because that’s what really matters, connecting the software back to them.” These
scenarios that Matt develops are his way of situating the training in the jobs of his students. Matt also relayed to me
a story of how he connected the learning to the student:

I had a woman who came to Access training and she was an Excel person [she did not think Access would
be useful]. Now Excel and Access are completely different programs. So [during class] I would say you can
do this in Excel, but here is where Access goes far beyond what Excel can do. As soon as I showed her how
to link records she got on board with Access.

In this story, Matt interacts with a student in order to convince the student that Access is a useful program. To
do this he situated the example in a way that showed her Access’s applicability beyond Excel. The result was that
the student saw a new way of looking at Access; one that would help her in her job.

Finally, situated training ends the training process. The learner has all of the knowledge necessary to use the
software in a productive way. All of this knowledge then becomes apart of prior experience, hence the dashed line in
Figure 1. The knowledge gained from the three types of training (systematic, minimalist, and situated) relates back
to experience. Thus, in the student’s mind the training course will serve as prior experience to be drawn from the
next time software problems are encountered. However, the entire process has not been completely explained.
Andragogy

The final category is simply entitled andragogy. Andragogy plays a vital role in the software training process
because andragogy mediates the entire relationship. In every step of the process the software trainer must be
cognizant of the principles of andragogy. Evidence of this is clearly seen throughout the dialogue that has been
presented thus far. Additionally, both trainers made other comments throughout the interviews which relate to
andragogy. For instance as Matt puts it, “I’ve never really had a student who truly didn’t want to learn. Just about
everyone who comes to my classes has a desire to learn the material.” As andragogy states, this quote demonstrates
that adults come to learn. A final illustration of how software trainers think about androgogy’s role during the entire
process can be seen from Matt:

I think about what kind of people I’m going to have in my classes. Take for instance Acrobat, I’ll be
teaching that [class] in a few weeks and I’m thinking that the students in my class will likely not be first
time computer user, [likely they will be]… more professional individuals who are going to be using acrobat
to produce formal documents and things like that.

In Matt’s development of the Acrobat class, he is conducting a future oriented thinking and trying to identify
what kind of students will be in his class. Andragogy assumes that adults have an ever growing pool of experience.
It is this experience that Matt is considering as he prepares for his class. This category of andragogy ends the
discussion of the findings section, however it should be note that andragogy plays an extremely important function
to the entire process because of its role as a mediator. In essence a discussion of all the other roles can not ensure
with out also discussing andragogy.

Summary & Discussion

This study focused on identifying how software trainers use the minimalist approach to training, situated cognition,
and andragogy in the software instruction of adult. To understand how they do this, two software trainers employed
in the training department of a large organization located in the southern United States were interviewed. The results
of this study found that effective software training can be divided into five components. First there is the pre-
training; these are all the experiences that learners bring with them into the training sessions. Second there is
systematic training. In this type of training instructors present the material in a step-by-step fashion. The trainer
explains every detail to the learner. Although useful for knowing how to use a software application this type of
training is deficient in its ability to solve problems. Third, there is minimalist training; this type of training focuses
on giving the learner problem solving skills. Problem solving skills help the learner by improving their ability to
answer their own questions. Fourth there is situated training. This is the highest most detailed level of training. In
situated training the instructor attempts to connect the learning back to the students work environment. This provides
the learner with an understanding of how to use the software within their own work context. The final category is
andragogy; of all the categories this may be the most important because it mediates the entire relationship described
thus far. Both software trainers interviewed showed clear evidence that they used the principles of andragogy
throughout the entire process.
Discussion

As was presented at the beginning of this paper; this research study was guided by four questions. As for the
first question, there was clear evidence depicting how the minimalist approach to training was used. However, a
concern with this finding is in regards to Lambrecht’s (1999, 2000) discussion on when to use a minimalist
approach. She suggested that trainers should uses either a systematic or a minimalist approach when conducting
training. However, what these findings indicate is that both approaches are being used. The systematic is used at first
to explain the basics of how the software works, and then the minimalist approach is used to further clarify and teach
the students more specific problem solving skills.

The second question was also clearly addressed in this study. The highest level of training was found to be
based on situated cognition. There were also many other aspects of this study that seemed to incorporate situated
cognition. In fact the entire idea of using computer based training to teach people software is situated concept.

For the third question, andragogy was found to be the mediating variable across this entire process. Andragogy
was always in the minds of the two trainers. Both considered their student’s success foremost on the list of training
objectives and in doing so this required them to think in andrgological terms. Andragogy is so important to this
study that it is impossible to discuss one component without also discussing andragogy’s effect on it. However, this
is not an unexpected phenomenon considering the fact that Knowles developed andragogy to be a set of guiding
principles in adult learning. In this study that is what andragogy was show to do; be a guiding principle in minds of
software trainers.

Finally, to address the fourth question there is clearly a connection throughout the process between all three
theories. In reviewing the results section, within each category there are elements of all three of these concepts.
Admittedly, there are dominant themes within each category however there certainly are elements of each
throughout the entire training process. Unfortunately, it is beyond the scope of this study to accurately explain how
that relationship works. More detailed research needs to be conducted which specifically addresses each of these
three components and their use in software training
Implications for the Field

Having its roots firmly grounded in the fields of adult education and training; Human Resource Development
(HRD) is perhaps the ideal place to present research on adult computer software training. Yet little research has been
published specifically in this field. In the last 10 years, Human Resource Development Quarterly had only 4 articles
that dealt with software training. Three of those articles had no relevance to this topic and the fourth article has been
cited in this paper. Additionally, with the integration of computers into nearly every setting and the ever changing
and updating nature of software; HRD scholars and practitioners alike would be well suited to learn the essentials of
adult computer software training. Thus this study could provide a beginning framework for further exploration of the
adult computer software training process.

References

Carroll, J. (1990). The nurnburg funnel: Designing minimalist instruction for practical computer skill. Cambridge,

MA: The MIT Press.
Coffey, A., & Atkinson, P. (1996). Concepts and coding. Thousand Oaks, CA: Wadsworth.
Egan, T. M. (2002). Grounded theory research and theory building. Advances in Developing Human Resources,

4(3), 277-295.
Gupta, A., & Ndahi, H. (2002). Meeting the digital literacy needs of growing workforce. Reading Matrix: An

International Online Journal, 2(1), Retrieved on 9/17/2006 from http://www.readingmatrix.com
Hansman, C. (2001). Context-based adult learning. In S. Merriam (Ed.), The new update on adult learning theory

(Vol. 89, pp. 43-51). San Francisco: Jossey-Bass.
Harp, C. G., Taylor, S. C., & Satzinger, J. W. (1998). Computer training and individual differences: When method

matters. Human Resource Development Quarterly, 9(3), 271-283.
Hughes, M. A. (1998). Active learning for software products. Technical Communication: Journal of the Society for

Technical Communication, 45(3), 343-352.
Knowles, M. (1968). Andragogy, not pedagogy. Adult Leadership, 16(10), 350-352, 386.
Lambrecht, J. J. (1999). Teaching technology-related skills. Journal of Education for Business, 74(3), 144-151.
Lambrecht, J. J. (2000). Developing end-user technology skills. Information Technology, Learning, and

Performance Journal, 18(1), 7-19.
Mathison, S. (1988). Why triangulate? Educational Researcher, 17(2), 13-17.
Merriam, S. (1998). Qualitative research and case study applications in education. San Francisco: Jossey-Bass.
Merriam, S., & Caffarella, R. (1999). Learning in adulthood (2nd ed.). San Francisco: Jossey-Bass.
Patton, M. (1988). Qualitative evaluation and research methods (2nd ed.). Thousand Oaks, CA: Sage.
Peshkin, A. (1988). In search of subjectivity-one's own. Educational Researcher, 17(7), 17-21.
Tomorrow's jobs. (2003). Occupational Outlook Handbook. Retrieved on 9/17/2006 from

http//www.bls.gov/oco/oco2003.htm
Wilson, A. (1993). The promise of situated cognition. In S. Merriam (Ed.), An update on adult learning theory (Vol.

57, pp. 71-79). San Francisco: Jossey-Bass.
Wolcott, H. (1994). Transforming qualitative data. Thousand Oaks, CA: Sage.

