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Abstract
Logistic and Cox regression methods are practical

tools used to model the relationships between certain
student learning outcomes and their relevant explanatory
variables. The logistic regression model fits an S-shaped
curve into a binary outcome with data points of zero and
one. The Cox regression model allows investigators to
study the duration and timeline of the critical events,
which are also a binary and dichotomous measure. This
paper introduces logistic and Cox regression models by
illustrating examples, implementing step-by-step SPSS
procedures, and further comparing the similarities and
differences of the model characteristics. Logistic regression
analysis was conducted to investigate the effects of the
explanatory variables such as pre-admission variables,
college cumulative GPAs, and curriculum tracks on student
licensure examination. Moreover, logistic regression
analysis was employed to quantify the effect (odds or
odds ratio) of specific explanatory variables on the binary
outcome holding other variables constant. With regards to
Cox regression analysis, the outcome variable of interest
was the timing of experiencing academic difficulty—
dismissal, withdrawal, and leave of absence. The Cox
regression model was used to detect when students were
most likely to experience academic difficulty beyond their
matriculation. The model also allowed the investigators to
measure the effect (relative hazard or hazard ratio) of
specific risk factors on the academic difficulty after adjusting
for other factors. Identifying the occurrence of critical
events along with the explanatory variables, college
administrators and faculty could implement intervention
strategies to ensure student success.

Introduction
Regression analyses are statistical procedures that

describe the relationship between an outcome (dependent,
or response) variable and one or more explanatory
(independent, or predictor) variables or risk factors. The

choice of regression models depends largely on the
research objectives and the measurement scales of the
outcome variable in the study. Logistic regression analysis
is a suitable technique to investigate the effects of the
explanatory variables on the binary outcome, either success
or failure. Moreover, it allows investigators to perform
predictions based on the resulting model. The Cox
regression model becomes the appropriate choice for
studying the risk factors in relation to the duration and
timeline until occurrence of the critical event, which is also
a binary measure. However, the model itself does not gear
up for the purpose of future predictions.

Logistic regression analysis has been widely used to
study student performance, enrollment, graduation, and
post-graduate employment status, which are restricted to
a binary outcome such as ”success or failure’, ‘enrolled or
not enrolled’,  ‘graduated or not graduated’, and ‘primary
care or non-primary care specialty’ (Case, et al., 1994;
Sadler, et al, 1997; Strayhorn, 2000; and Hojat, 1995). The
logistic regression method allows investigators to estimate
and interpret the effects of the explanatory variables on the
binary outcome. The maximum likelihood estimation
technique is readily available to estimate the regression
coefficients for the non-linear model equation. This
technique maximizes the probability of getting the observed
data given the fitted regression coefficients (Hosemer and
Lemeshow, 1989; Eliason, 1993; and Pampel, 2000). The
model equation renders itself to perform future predictions
to assess the predictive power. In addition, investigators
can transform the model equation into the odds and odds
ratio of the event occurrence. The odds or odds ratio is a
measure of the direction and strength of the relationship
between the explanatory variables and the effects of such
variables on the binary outcome. The logistic regression
model quantifies the association between the explanatory
variables and the outcome variable of interest after adjusting
for other explanatory variables (Matthews and Farewell,
1996). Therefore, it is a useful tool to analyze the
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dependence of a binary outcome on a set of explanatory
variables.

Cox regression analysis is a branch of survival analyses,
which is used to analyze the timeline until a critical event
occurs (Cox, 1972; Cox and Oakes, 1984; and Miller
1981). Survival analyses discussed in this paper appear
in diverse fields under a variety of names. In biomedical
and health sciences, these are called survival analyses
because the event of interest is mortality or death. In
sociological research, these are often referred to as event
history studies. In engineering studies, the term reliability
theory is commonly applied to the lifetime of an object.
Cox regression analysis allows investigators to answer
two questions simultaneously: ”Has the critical event of
interest occurred?” and ”Which risk factors contribute to
the event occurrence?“ (Singer and Willett, 1991). In Cox
regression analysis, the hazard and survival functions are
expressed as a function of time and the risk factors,
which enable investigators to address research questions
in education such as: ”How many semesters elapse
before students drop out of school?”, ”At what year are
students likely to graduate from the college?”, and ”What
explanatory variables contribute to students’ dropout or
graduation?”  Numerous studies related to the timing of
student departure from college were conducted during the
past decade (DesJardins et al., 1997; Han and Ganges,
1995; Huff and Fang, 1999; Ronco, 1994; Singer and
Willett, 1993; and Willett and Singer, 1991). Moreover, in
the Cox regression model, investigators can determine
the effectiveness of college programs by comparing the
patterns of the survival functions. For example, if the
survival function for Group A consistently lies above that
of Group B, the intervention program would appear more
effective for Group A during the study period.

In the Cox regression model, the hazard function is a
function of a set of risk factors and baseline hazard. The
risk factors are similar to independent variables of the
linear regression model except they appear to be non-
linear in the exponential expression. The baseline hazard
is similar to the constant or intercept of the linear regression
model. It describes the overall level of risk and reveals the
main effect of the time variable (Singer and Willett, 1991).
The hazard function displays the timeline fluctuation of a
student experiencing the critical event. The student with
the greater risk has a higher value of the hazard function
as compared to one with the lesser risk at that same
particular time. Thus, a high hazard function indicates the
critical event is more likely to occur. Conversely, a low
hazard function shows that the critical event is less likely
to occur (Kleinbaum, 1996). For instance, investigators
can detect the ineffectiveness of the support services
program by comparing the hazard functions. If the hazard
function is higher for Program A than Program B, Program
A appears to be ineffective during the study period.

Similar to the logistic regression analysis, the Cox

regression model allows investigators to estimate and
interpret the effects of the risk factors on the event occurring.
The partial maximum likelihood estimation technique is
used to estimate the regression coefficients of the model
equation (Hosemer and Lemeshow, 1989; and Kleinbaum,
1996). The interpretation of the regression coefficients in
the Cox regression model is virtually the same as in
logistic regression analysis. For the positive regression
coefficient, the hazard of a student experiencing the critical
event increases as the value of the risk factor increases.
Moreover, if the regression coefficient is zero, the value of
the relative hazard becomes one, indicating that the hazard
of a student experiencing the critical event is not affected
by the risk factor. However, for the negative regression
coefficient, the hazard of a student experiencing the critical
event decreases when the value of the risk factor increases.
For example, if student dropout is the critical event of
interest, the Cox regression model can be used to study
the timeline and the risk factors associated with student
dropout.

The model assumption of Cox regression is very different
from that of the logistic regression model. Logistic
regression assumes that residuals are normally distributed
with a mean of zero and a constant variance. However, the
Cox regression model assumes that the hazard ratio for
different students with different values of the risk factor is
independent of the time variable (Belle, et. al., 2004; and
Kleinbaum, 1996). Thus, when the two hazard functions
are proportional, the title ‘proportional hazards model’ is
applied to Cox regression. The proportionality of the model
assumption implies that the hazard ratio is constant over
time. Therefore, the verification of the model assumption
is essential to ensure the model appropriateness.

In an attempt to demonstrate the usefulness of the two
methods, this paper provides a brief overview and example
illustrations. In particular, it offers step-by-step SPSS PC
commands used for analyzing a binary result or event
occurring related to student-learning outcome. In this
study, the research objectives and questions are defined
as the foundation of the investigation. Next, the study
variables are gathered to form a research-oriented database,
which are extracted from the existing student tracking
system. In addition, the principle of model strategies
serves as a guideline to build the models. It comprises all
relevant variables at the initial phase of the model fitting
and achieves parsimony and consistency upon model
completion. The paper focuses mainly on the model
equations, the assessment of model fittings, the
interpretation of odds ratio and hazard ratio, and the
importance of the model assumptions. Moreover, the two
methods are placed side by side to analyze the similarities
and differences of their characteristics.
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Literature Review
Using logistic regression analysis (Sadler et al., 1997),

the second semester enrollment was discovered to be
significantly associated with the explanatory variables
such as tuition benefits, state residency, race, high school
GPA, and summer orientation. The results of this study
could help the institution implement appropriate
interventions that target students at-risk for leaving. To
investigate student retention at Historical Black Colleges
and Universities, a logistic regression model was
constructed (McDaniel and Graham, 1999). The research
findings showed that students were more likely to return
for the second year if they earned higher ACT test scores.
In addition, students aspiring to achieve doctoral and
professional degrees were more likely to persist than
students with lower degree aspirations. These study results
could assist college administrators and faculty to select
students who are more likely to succeed at their institution.

By using logistic regression analysis, one study found
that student performance in the college program predicted
whether or not students would apply to medical school,
get accepted by medical school, and graduate from medical
school (Strayhorn, 2000). In constructing this logistic
regression model, the significant explanatory variables for
the probability of passing the United States Medical
Licensure Examination (USMLE) Step 1 were medical
college admission test scores, medical school freshman
GPAs, sophomore course performances, and financial aid
support (Chen et al., 2001). These study results could be
used to document the effectiveness of academic programs
and applicant screening. Logistic regression analysis (Case
et al., 1994) was also conducted to investigate the
relationship between the initial performance of identifying
examinees and the ultimate pass rates of the USMLE
Steps 1 and 2. The study results showed that the probability
of ultimately passing both Steps 1 and 2 was significantly
related to the initial score achieved. Based on the availability
of student performance measures, professional activities,
satisfaction results, and research productivities, a logistic
regression model was able to predict primary care and
non-primary care status from the significant predictors,
which include specialty interest, professional plan, and
interests expressed in medical school (Hojat, 1995). The
study results could be used to document the different
tracks of physician training and education.

By constructing hazard models for different college
exiting modes (graduation, withdrawal, transferal, dismissal,
and leave of absence), investigators could better understand
the different factors that influence student behavior (Singer
and Willett, 1991). A survival analysis study indicated that
the academic resource index significantly influenced
graduation (DesJardins and Moye, 2000). Using survival
analysis, another study (Han and Ganges, 1995) revealed
the occurrence of crisis for a selected group of students
who persisted for four or more years and still left their

university prior to graduation. The results from this study
suggest that students in the risk group participate in the
intense and sustained intervention program.

The result of survival analysis indicated that some
students experiencing academic difficulty remained at
risk throughout the first three years of medical school
(Fang, 2000). The research finding implied that academic
support programs focusing only on the entering year might
not be sufficient to fully address this extended period of
risk. The study results of survival analysis (Huff and Fang,
1999) demonstrated that the increase of the relative risks
of students experiencing academic difficulty were
associated with low MCAT scores, low science GPA, low
undergraduate institutional selectivity, being a woman,
being a member of a racial-ethnic underrepresented
minority, or being older. Clearly, investigators in higher
education can use survival analysis to identify students
who are most likely to experience the occurrence of
critical events—dropout, withdrawal, dismissal, and delay
of graduation. Knowing the time-to-event occurrence and
related risk factors, college administrators and faculty can
effectively implement the intervention strategies to increase
the likelihood of student success.

Logistic Regression Equation
The logistic regression model is primarily written as Y

= P(X) + E, where Y is the binary outcome—event occurring
coded as 1 or event not occurring coded as 0 (Hosemer
and Lemeshow, 1989).  The probability P(X) of obtaining
the binary outcome is considered to be the estimated
value given the explanatory variables (X) are known
observations. The error term (E) also called the residual,
represents the difference between the actual binary
outcome (Y) and the estimated probability P(X). The model
is commonly written as P(X)=eZ/(1+eZ) or the equivalent
form of P(X) = 1/(1+e-Z), where Z stands for a linear
combination of βo + β1X1 + β2X2 +...+ βpXp (Hosemer and
Lemeshow, 1989).  The ”e” term in the equation is the
base of the natural logarithm, which is approximately
2.718. The regression coefficients (β) are unknown
parameters to be estimated.  Moreover, the model assumes
that residuals have a mean of zero and a constant variance
of P(X)[1-P(X)], which are statistically independent of one
another.

In a logistic regression model, the probability of a
student obtaining a binary outcome is always in the range
of zero to one, regardless of the value of Z. When Z is
negative infinity for the model equation P(X) = 1/(1+e-Z),
the probability of a student obtaining a binary outcome is
virtually zero (e-Z becomes positive infinity because of
minus negative infinity of Z; and one divided by one plus
positive infinity equals zero). Also, when Z increases from
negative infinity to zero for the model equation P(X)=eZ/
(1+eZ), the probability of a student obtaining a binary
outcome increases from zero to one half (eZ equals one
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when Z is zero; and the model equation shows that one
divided by two equals one half). When Z increases from
zero to positive infinity for the model equation P(X)=eZ/
(1+eZ), the probability of a student obtaining a binary
outcome increases from one half to one (positive infinity
of eZ divided by one plus positive infinity equals one). The
logistic regression equation is the steepest when the
probability equals 0.5 and flattens out on both top and
bottom tails as the probability value approaches zero and
one (Dey and Astin, 1993). All of the characteristics
mentioned above allow investigators to fit the S-shaped
curve into a data set of binary outcomes containing values
of zero and one.

The logistic regression equation is a non-linear curve
rather than a straight-line. Thus, the parameter estimation
method for the logistic regression model is called the
maximum likelihood estimation, which is different from
the least-square estimation method for the linear regression
model. Therefore, it is necessary to use the iterative
process via the computer software to find better
approximations of the logistic parameters that satisfy the
log likelihood equation. When the log likelihood equation
is satisfied or maximized, the probability of an individual
obtaining the observed data is maximized (Eliason, 1993;
Pampel, 2000; and Hosemer and Lemeshow, 1989). In
other words, the solution of the log likelihood equation
implies that the effect of the explanatory variables on the
probability of event occurrence is also maximized.

When all regression coefficients are estimated, the
values of the explanatory variables can be plugged into
the logistic equation to perform predictions. For example,
if the probability of a student obtaining a binary outcome
is greater than or equals to a cut-off point (defaulted value
of one half) that student is placed into the success group.
On the other hand, if the probability of a student obtaining
a binary outcome is less than one half, then that student
is categorized into the failure group (SPSS, Inc, 2002).
Therefore, by comparing the predictive results and actual
observations, investigators can calculate the prediction
accuracy for the success and failure groups, as well as
for the combined success and failure group.  The cut-off
point for predicting the binary outcome can be adjusted
either upward or downward in order to increase specificity
(accuracy of the prediction results for the failure group) or
sensitivity (accuracy of the prediction results for the
successful group) of the model equation.

To assess the overall model fitting and the significance
of specific explanatory variables, the logistic regression
model allows investigators to perform the likelihood ratio
and Wald tests. The likelihood ratio test compares the
likelihood for the intercept only model to the likelihood for
the model with the explanatory variables (Eliason, 1993;
Pampel, 2000; and Hosemer and Lemeshow, 1989). The
logic of hypothesis testing for the likelihood ratio test in
logistic regression is similar to the F test in the linear

regression model. Investigators may conclude that at
least one of the explanatory variables contributes to the
probability of the student obtaining a binary outcome if the
p value is less than the predetermined significance level
(a=.01, .05, or .001). In logistic regression analysis, the
Wald statistic is commonly used to test the significance
of the individual logistic regression coefficients (Hosemer
and Lemeshow, 1989). Moreover, the logic of hypothesis
testing for the Wald test in logistic regression is similar to
the t test in the linear regression model. In the case that
a specific regression coefficient is significantly different
from zero, the corresponding explanatory variable
significantly contributes to the probability of a student
obtaining the binary outcome.

Interpretations of Odds, Log Odds, Odds
Ratio, and Delta P

By means of the mathematical transformation,
investigators can transform an estimated probability into
odds, log odds, odds ratio, and delta p, respectively. An
example of a simple logistic regression model containing
only one explanatory variable is used to illustrate this
transformation process and interpret the resulting statistics.
The odds can be derived as a ratio of the two probabilities,
which is written as odds = P(event occurring)/P(event not
occurring) = P(X)/[1-P(X)] = e(βo + βX), where P(X) = e(βo + βX)/
[1 + e(βo + βX)] (Hosemer and Lemeshow, 1989). The term
eβo refers to the value of the odds for the constant and eâ

represents the value of the odds related to the explanatory
variable. The odds (eβ) can be interpreted as a stand-alone
statistic without the involvement of the change (increase
or decrease) of the explanatory variable. For instance,
when the value of the odds equals three (0.75/0.25), it
means that the odds of student obtaining a binary outcome
(event occurring) is three times higher than that of the
same student not obtaining a binary outcome. However, if
the value of the odds equals one (0.5/0.5=1), the odds of
obtaining a binary outcome is equivalent to the chance of
obtaining a head when flipping a fair coin.

Because the base of the natural logarithm is applied to
both sides of the odds equation mentioned above, the log
odds known as logit can be written as loge(odds)  =
loge{P(X)/[1-P(X)]} = βo + βX (Hosemer and Lemeshow,
1989).  Given the linear relationship exists between the
dependent variable (log odds) and the independent variable
(X), the interpretation of the effect of a specific explanatory
variable is quite similar to linear regression analysis. The
log odds can be interpreted as a unit change in the
explanatory variable leads to the magnitude change (â
units) of the log odds of a student obtaining a binary
outcome. The log odds provides only the direction of the
relationship, but is limited in providing meaningful
information about the effect of the explanatory variable. As
a result, it is difficult to understand the meaning of log
odds. Therefore, the odds ratio should be used to interpret
the effect of the explanatory variable.
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The definition of odds ratio is different from that of the
odds. Recall from the previous paragraph, that the odds is
a ratio of the two probabilities when one is confined to the
event occurring and the other refers to the event not
occurring. The odds ratio is the ratio of two odds when the
different values of the explanatory variable apply to them.
The odds ratio is known as odds change, which describes
the proportionate change in the odds for one-unit difference
in the explanatory variable (Hosmer and Lemeshow, 1989;
and Menard, 1995).  It is a measure of the association
between the explanatory variable and the odds of the
individual obtaining a binary outcome.

An odds ratio of greater than one shows that the odds
of an event occurring increases when the value of the
explanatory variable increases (Menard, 1995). It
demonstrates the existence of a positive relationship
between the explanatory variable and the effect of that
particular variable. The odds ratio is simplified to be an
exponential expression (e1).  One can use the odds of eβo

+ βX, where β > 0 to illustrate the positive relationship and
interpret the meaning of the odds ratio.  For the odds of
eβo + β when X=1 versus the odds of eβo when X=0, the
resulting odds ratio is e1, which is a ratio of eβo + β and eβo.
Again, for the odds of eβo + 2β when X=2 versus the odds of
eβo + β when X=1, the resulting odds ratio is still eß, which
is a ratio of eβo + 2β and eβo + β. For example, this ratio
implies that an average one-unit of increase in the
explanatory variable leads to an increase in the odds of
obtaining a binary outcome by a factor of eβ. Also, using
tutorial program and student success as an example, if
the odds ratio equals 2, it can be interpreted that an
average one-month (time frame) of increase in the
implementation of a tutorial program contributes to an
increase in the odds of a student‘s success by a factor of
2.

However, an odds ratio of less than one indicates that
the odds of an event occurring decreases when the value
of the explanatory variable increases (Menard, 1995). In
this case, the odds ratio is simplified to be an exponential
expression (e-ß). One can use the odds of eβo - βX, where
β > 0 to illustrate the negative relationship and interpret
the meaning of the odds ratio. When the explanatory
variable (X) increases by one unit (from X=0 to X=1), the
odds change increases by a factor of e-β, which is the ratio
of eβo - β and eβo. Moreover, when the explanatory variable
(X) increases by one unit (from X=1 to X=2), the odds
change increases by a factor of e-β, which is the ratio of
eβo - 2β and eβo - β. It is difficult to convey the concept of odds
change for a fraction between zero and one. Therefore, a
better way of interpreting a negative regression coefficient
is to say an average one-unit of increase in the explanatory
variable leads to a decrease in the odds for obtaining a
binary outcome by a factor of eβ, which is an inverse of
e-β (0 < e-β < 1) Using anxiety score and student success
as an example, if the odds ratio equals 1/2, it can be

interpreted that an average one-point scale of increase in
anxiety score leads to a decrease in the odds of a
student’s success by a factor of 2, which is the reciprocal
of 1/2.

Although odds and odds ratio are commonly used for
interpreting logistic regression results, the delta-p statistic
can be used to measure the effect of a specific explanatory
variable on the probability of obtaining the binary outcome
(Peng et al., 2002). Using financial aid and student success
as an example, a delta-p of .10 for a student receiving
financial support is interpreted as increasing the probability
of a student’s success by 10% as compared to student
who does not receive financial support. The delta-p is
transformed from the regression coefficient using a method
originally recommended by a researcher, Peterson, in
1984 (Peng et al., 2002). The odds ratio can be found in
SPSS printouts when logistic regression analysis is
performed, however, the delta-p statistic cannot be
generated by the SPSS PC Version 12.0 commands.

Example of Logistic Regression Analysis
A logistic regression model was constructed for a

sample of 200 matriculated students randomly selected
from the population in 1993-1997. The study attempted to
answer the research question, ”How well can the USMLE
Step 1 pass status be predicted by the explanatory
variables: demographics, admission test scores,
undergraduate GPA, medical school cumulative GPA,
course grades, and financial aid support?“ Thus, the
research objectives of this study were: (a) to identify
explanatory variables that significantly contribute to the
probability of passing the USMLE Step 1; and (b) to
provide insight into the measure (odds or odds ratio) of the
effects of the explanatory variables.

In this study, the outcome or response variable was
binary, i.e. USMLE Step 1 pass status, which was (labeled
as p-f-grp for the SPSS command), coded 1 for the pass
group and 0 for the fail group. The probability of a student
passing USMLE Step 1 was a continuous scale between
zero and one. The explanatory variables were a combination
of the discrete measure (gender, race, and medical school
curriculum track) and the continuous measure
(undergraduate basic sciences average, undergraduate
GPA, medical college admission test scores—MCAT
physical sciences, MCAT biological sciences, MCAT verbal
reasoning scores, medical school freshman GPA, number
of sophomore courses failed, and financial aid loan
amount). The coding scheme for the discrete measurement
was gender (1 for male and 0 for female), ethnicity (1 for
African American and 0 for Non-African American),
historical black colleges and universities status (1 for
HBCU graduate and 0 for Non-HBCU graduate), and medical
school curriculum track (labeled as curr_grp for the SPSS
command, 1 for four-year curriculum track and 0 for five-
year curriculum track).
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The logistic regression model was constructed using
the forward selection procedure. At each step, the
explanatory variable with the smallest significance level
for the Wald statistic was entered into the model. The
default entry criterion for the explanatory variables was a
p value of .05. The Wald statistics for all variables in the
model were examined and the explanatory variable with
the largest p value for the Wald statistic was removed
from the model. The default removal criterion was p=.10.
If no explanatory variables met the removal criterion, the
next eligible variable was entered into the model. The
iteration process for selecting explanatory variables
continued until no additional variables met the entry or
removal criterion.

SPSS PC Commands for Logistic
Regression Analysis

The eight steps of the SPSS PC Version 12.0
commands required to produce logistic regression analysis
are as follows:

Step 1 - Click Analyze, click Regression, and click
Binary Logistic; Step 2 – Click on dependent variable
(p_f_grp), and click <right arrow> sign to move it to the
dependent box; Step 3 - Hold down the CTRL key, click
all independent variables (ung_bsa, ung_gpa, mcat_vr,
mcat_ps, mcat_bs, curr_grp, gender,  ethnic, hbcu,
course2f, fresh_gp, and loan_amt), and click <right arrow>
sign to move them to the covariates box; Step 4 - Click
<down arrow> sign to display the method options and
select Forward-Wald; Step 5 - Click Categorical button;
Step 6 - Hold down the CTRL key, and click on categorical
variables (curr_grp, gender, ethnic, and hbcu) and click
<right arrow> sign to move them to the categorical
covariates box, and click Continue; Step 7 - Click the
Option button, select classification plots, click display At
Last Step, and click

Continue; and Step 8 - Click OK. Note that Step 8 –
Click Paste to generate LOGISTIC REGRESSION syntax
command lines as follows: LOGISTIC REGRESSION
p_f_grp /METHOD = FSTEP(WALD) ung_bsa  ung_gpa
mcat_vr  mcat_ps  mcat_bs  curr_grp  gender  ethnic
hbcu course2f fresh_gp loan_amt /CONTRAST
(curr_grp)=Indicator /CONTRAST (gender)=Indicator  /
CONTRAST (ethnic)=Indicator / CONTRAST
(hbcu)=Indicator /CLASSPLOT /PRINT = SUMMARY /
CRITERIA = PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .

Major Findings for Logistic Regression Analysis
The sample size of 200 in this study was appropriate

because the ratio (1 to 50) of the number of the explanatory
variables (4) to the sample size (200) exceeded the
minimum ratio of 1 to 10 recommended for the logistic
regression study (Peng et al., 2002). It is crucial to
assess the model collinearity, model assumption, model
fitting, and model accuracy prior to interpretation of the

research findings. The collinearity exists if one explanatory
variable is a function of the other explanatory variables.
There was no evidence of model collinearity because the
tolerances (TOLi = 1 – Ri

2, where Ri
 is a multiple correlation

coefficient between one explanatory variable (Xi) and the
other explanatory variables (Xs) in the equation were large
(a range of .571 to .971) based on a linear regression
printouts (Norusis, 1985; and Menard, 1995). Moreover,
the assumption of the logistic regression model was
satisfied because the histogram of residuals appeared
normally distributed with a mean of zero, and the residuals
on the scatter diagram also appeared to be parallel with
the X-axis, the indication of a constant variance.

As shown in the footnote of Table 1, the logistic
regression model containing the four explanatory variables
fits the data well based on the model chi-square test
(X2=83.40, df=4, and p<.001) and the small value of the  –
2 log likelihood (159.23). Also, the improvement chi square
value (X2=38.01, df = 4, and p<.001) indicated that the
model fits the data better than it had initially. The model-
fitting statistic, namely the pseudo R-square, measured
the success of the model by explaining the variations in
the data. The pseudo R-square for Nagelkerke (0.49) was
significantly different from zero. This indicated that forty-
nine percent of variations in the binary outcome variable
was accounted for by the explanatory variables. Finally,
the prediction accuracy of 92% for the pass group and
84% for the combined pass and fail group were high.
However, the prediction accuracy of 63% for the fail group
was not high.

As illustrated in Table 1, the regression coefficients for
the MCAT physical sciences score, MCAT biological
sciences score, number of sophomore courses failed, and
medical school freshman GPA were significantly different
from zero at the .001 significance level using the Wald
test. It was evident that these four explanatory variables
significantly affected the USMLE Step 1 pass status.
However, the research findings indicated that the
undergraduate basic sciences average, undergraduate
GPA, MCAT verbal reasoning score, gender, ethnicity,
HBCU status medical school curriculum track, and financial
aid support were not significantly associated with the
licensure examination performances.

The logistic regression method yielded the following
logistic regression equation to predict the USMLE Step 1
pass status: the estimated probability (Passing USMLE
Step 1) = P(X) =  eZ / (1 + eZ ), where e is the base of the
natural logarithm, approximately 2.718; and Z   = - 12.21
+ 0.62 * MCAT Physical Sciences Score +  0.51 * MCAT
Biological Sciences Score - 2.53 * Number of Sophomore
Courses Failed + 1.89 * Medical School Freshman GPA.
Based on the contribution from each of the explanatory
variables, the estimated probability can be obtained from
this equation for a particular student. It can be said that
if the estimated probability is greater than or equal to 0.5,
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Variables in
the Equation

Logistic
Regression
Coefficient (ß)

Standard
Error of ß  SE (ß)

Odds Ratio (eß)

MCAT Physical
        Sciences Score

0.62*** 0.209 1.87

MCAT Biological
        Sciences Score

0.51*** 0.144 1.66

Number of Sophomore
        Courses Failed

-2.53*** 0.639 0.08

Medical School Freshman GPA 1.89*** 0.533 6.59

Constant -12.21*** 2.317 0.00

***  p < .001 based on the Wald test [X2 = (ß/SE(ß))2 with df=1]
N=200
-2 Log Likelihood: -2LL=159.23
Model Chi Square Test: X2=83.40, df=4, and p<.001
Improvement Chi Square Test: X2=38.01, df=4, and p<.001
Pseudo R-square: Nagelkerke R-square = 0.49
Prediction Accuracy:  Pass Group (92%), Fail Group (63%), and Combined Group (84%)

Table 1
Logistic Regression Model for Predicting

USMLE Step 1 Pass Status

a student advances to the pass group of the USMLE Step
1.  However, if the estimate probability is less than 0.5, a
student falls into the fail group of the USMLE Step 1.

The effect (odds ratio) of each explanatory variable on
the pass status of the USMLE Step 1 is shown in the last
column of Table 1. When an average of the medical school
freshman’s GPA increased by one point, the odds of a
student passing USMLE Step 1 increased by a factor of
6.59. This value indicates that the effect of the medical
school freshman GPA on the USMLE Step 1 performance
was very high. A change in the MCAT scores definitely led
to a change in the USMLE Step 1 performances. If an
average of the MCAT physical sciences score increased
by one point, the odds of a student passing USMLE Step
1 increased by 87%.  Meanwhile, when an average of the
MCAT biological sciences score increased by one point,
the odds of a student passing USMLE Step 1 increased
by 66%. Furthermore, the odds of a student passing
USMLE Step 1 increased by a factor of 0.08 when the
number of courses failed in sophomore year increased by
one. In other words, the odds of a student passing USMLE
Step 1 decreased by a factor of 12.5 (an inverse of 0.08)
because of one additional sophomore course failed in the
basic science disciplines. This implied that the effect of
sophomore course performances on the USMLE Step 1
pass rate was extremely high. A noteworthy finding is that
the odds of a student passing the licensure examination
depended heavily on sophomore course performances
and medical school freshman GPAs as compared to
those of pre-admission variables—MCAT physical sciences
and biological sciences scores.

In summary, the medical school freshman GPA and
sophomore course performance were significant explanatory
variables for the USMLE Step 1 performance. The two
MCAT scores (physical and biological sciences) were
also significant explanatory variables, regardless of other
pre-admission variables such as gender, ethnicity, and
undergraduate BSA and GPA scores.  As expected, the

medical school freshman GPA was strongly correlated
with the Step 1 performance while the number of courses
failed during sophomore year was negatively associated
with the Step 1 performance. It is evident that basic
science disciplines have a predictive power for the medical
licensure examination. This may imply that the medical
school has implemented an adequate basic sciences
curriculum, course instructions, and student assessment
compared to other medical schools in the nation.

Survival Analysis
The Cox regression model can be used to study the

risk factors that are significantly associated with the
timing of the critical event. The timeline known as survival
time refers to the length of the time interval (month,
semester, or year) between the onset time of the study
and the timing of the event occurrence (Steinberg, 1999).
The critical events cover not only negative and unpleasant
experiences, such as dropout and academic difficulty, but
also positive and pleasant results, such as passing certain
examinations and graduation.

Survival analysis is a unique statistical approach for
analyzing uncensored and censored data in a single study
(Singer and Willett, 1991). With regard to uncensored
data, they are often referred to as a complete set of
timelines about the event occurring as opposed to some
censored cases for which the event of interest does not
occur during the study period (Kleinbaum, 1996; and
Steinberg, 1999). For instance, if the graduation status
within a two-year master’s program is the event of interest,
the timely graduation in two years can be considered as
the uncensored data. Similarly, if the academic difficulty
(dismissal, leave of absence, and withdrawal) from a
seven-year doctorate program is the critical event of interest,
the time-to-event for students A, F, and G illustrated in
Table 2 belongs to the uncensored data. The censored
data provide only partial information of timelines, which are
collected under these circumstances: (1) students do not
experience the event of interest (academic difficulty) before
the study ends (student B - graduated, student D - still
enrolled); (2) student withdraws from the study (student C
- deceased); and (3) student is lost to follow-up during the
study period (student E - transferred out). Because the
occurrence of time-to-event for students (students B, C,
D, and E) is not evident and hidden from view, the term
‘censored’ is applied to it. In essence, censoring occurs
when investigators have some partial information about
the time-to-event of the individual students, but they do not
know the exact time variable.  The survival time is measured
in years from the time students enter the study. Students
C and F entered the study at year two and one, respectively,
which are different from the rest of the group who entered
at the beginning of the study.

To understand survival analysis, one needs to begin
with the survival function S(t). As indicated by researchers
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(Braun and Zwick, 1993; Elandt-Johnson and Johnson,
1980; and Lee, 1992), the survival function can be
expressed as S(t) = 1 – F(t) = P(T>t), where T represents
a specific time of the event occurrence. In other words,
the survival function cumulates the proportion of individuals
surviving longer than the time variable, which is a
complement of the cumulative distribution function. The
survival function gradually decreases when more individuals
experience the critical event. It depicts theoretically the

survival experience of individuals from time zero to time
infinity (Hosmer and Lemeshow, 1999; Kleinbaum, 1996;
and Lee, 1992). The survival function has a probability
value of one when the time variable equals zero and a
probability value close to zero when the time variable
approaches infinity. However, in practice, the estimated
survival function is a step function rather than a smooth
curve, which goes down at a step at each time interval to
describe the survival events during the study period.

If the survival function represents a positive or pleasant
experience (e.g., surviving from dropout and academic
difficulty), the hazard function h(t) is eventually considered
as a negative or unhappy event (e.g., experiencing dropout
and academic difficulty). The hazard function is a measure
of the tendency of an individual to experience the critical
event. Unlike the survival function, the hazard curve does
not range from one to zero. Instead, it starts anywhere
and goes up and down in any direction over time. The
hazard function is designed to provide insight into the
conditional failure rate (Kleinbaum, 1996). It explicitly
refers to the instantaneous potential per unit time for the
critical event to occur, given that individual has survived to
a particular time (Hosmer and Lemeshow, 1999;
Kleinbaum, 1996; and Lee, 1992). Investigators who have
been exposed to calculus and mathematical statistics
may desire to know the relationship of hazard and survival
functions.

Table 2
Example of Uncensored and Censored
Data for the Doctorate Program

Relationship between Hazard and
Survival Functions

The hazard function may be written as the conditional
failure rate = h(t), where

h(t)=lim{P[t < T < ( t+∆t) | T> t] / [∆t]}
     ∆t ---> 0

=lim{P[t < T < ( t+∆t) and T > t] / [∆t  P(T>t)]}
   ∆t ---> 0

The definition of conditional probability, P(A|B) = P(A and
B) / P(B) (Meyer, 1970), is applied to the hazard function
above. That is P(A|B)= P [t < T < (t+∆t) | T > t]; P(A and
B) = P[t < T< ( t+∆t) and T > t];  and P(B) = P(T > t), where
A represents [t < T < (t+∆t)], a specific survival time (T)
of the event occurrence in a narrow time interval between
t and t + ∆t, and B refers to (T > t), a specific survival time
(T) of the event occurrence greater than the time variable
(t).

h(t)=lim{P[t < T < (t+∆t) and T > t] / [ ∆t P(T>t) ]}
      ∆t ---> 0

= lim{P[t <T< (t+∆t)] / [∆t P(T > t)]}
    ∆t ---> 0

The method of combining sets (that is, events) to obtain
a new set is applied to the numerators of the hazard
function above. Given A and B are the two events, A∩B is
the event which occurs if and only if A and B occur (Meyer,
1970). Therefore, the joint events of A and B, A∩B, or [t
< T< (t+∆t) and T > t] equals the overlap, intercept, or [t
< T < (t+∆t)] area of the event A [i.e., t < T< ( t+∆t)], and
the event B (i.e. T > t).

h(t) = lim {P [t < T < (t+∆t)] / [∆t P(T>t)]}= f(t) / S(t)
         ∆t  ---> 0

The hazard function h(t) above becomes a ratio of the
two probabilities: the probability density function f(t) and
the survival function S(t). The equality of the formula is
based on two mathematical relations: (1) probability density
function f(t) = lim {P[t < T < (t+∆t)] / ∆t} as  ∆t ---> 0 (Lee,
1992); and (2) S(t) =  P(T>t) (Braun and Zwick, 1993;
Elandt-Johnson and Johnson, 1980; and Lee, 1992).

h(t) = f(t) / S(t) = {d[1– S(t)]/dt} / S(t) = – {d [S(t)]/dt} / S(t)

The equality of the hazard function above is derived
from the substitutions of two mathematical expressions:
(1) f(t) = d[F(t)]/dt; and (2) F(t) = 1 – S(t) into the equation
h(t) = f(t) / S(t) (Braun and Zwick, 1993; Elandt-Johnson
and Johnson, 1980; and Lee, 1992). Because the derivative
(d/dt) with respect to the time variable is applied to F(t),

The Outcome Variable is Academic Difficulty: Dismissed, Withdrew, and Leave of  Absence because of
Academic Reasons

Years Time Variable Status Variable*

0       1       2       3      4       5      6       7
---------+-------+-------+------+------+------+-------+ ------------------------------------------------

A ---------------X   (dismissed) 2 1

B -----------------------------------------------graduated 6 0

C                 -----------------------deceased 3 0

D----------------------------------------------------------study end (still enrolled) 7 0

E ---------------------------------------transferred out 5 0

F       -------------------X   (leave of absence) 2 1

G----------------------------------------X   (withdrew) 5 1

---------+-------+-------+------+------+------+-------+
  0     1       2       3      4       5      6      7

Years

* Status variable is coded as 1 for event occurring (uncensored data) and coded 0 for event not
occurring (censored data).
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the hazard function can be reiterated as the change
(slope) of an individual experiencing the hazard per unit
time given that individual has survived longer than time (t).

There is a clearly defined relationship between the
hazard and survival functions. Investigators can derive the
hazard function from information regarding the survival
function. As indicated by researchers, h(t) = – [d S(t) / dt]
/ S(t) = – d[logeS(t) / dt] (Braun and Zwick, 1993; Elandt-
Johnson and Johnson, 1980; and Lee, 1992).   Note that
the cumulative hazard function H(t) = – logeS(t) or H(t) =
– ln S(t) because the integral (or sum) is applied to both
sides of this equation—h(t) = – d[loge S(t)/dt]. Investigators
can also derive the survival function from information
regarding the hazard function. Because h(t) = – [d S(t) /
dt] / S(t), the mathematical expression of the survival
function can be written as S(t)=e[-∫h(u)du], where the integral
(∫) is denoted by the area under the curve between u = zero
and u = t (Elandt-Johnson and Johnson, 1980; Kleinbaum,
1996; and Lee, 1992). Therefore, it is clear that the survival
function S(t) decreases as the hazard function h(t)
increases, and vice versa.

Kaplan-Meier Survival Analysis
Before proceeding to the Cox regression model, it is

imperative to describe several terms that are frequently
used in survival analysis: Kaplan-Meier estimator, survival
function, conditional probability, and log-rank test. The
Kaplan-Meier estimator allows investigators: (1) to use the
definition of conditional probability to derive survival functions
for distinct groups; and (2) to determine the program
effectiveness by comparing the survival function among
groups, respectively.

Because students’ survival for the subsequent time
interval depends on students’ survival from the previous
time interval, the Kaplan-Meier formula is merely the
application of the conditional probability (Belle, et al.
2004; and Kleinbaum, 1996), which can be expressed as
P(A and B) = P(B) P(A|B) as illustrated in Table 3. The
formula can be interpreted as the probability of the
occurrence of the joint events A and B equals the probability
of the event B multiplied by the probability of the event A,
given the occurrence of event B. Event A (After) refers to
the occurrence of the student surviving for the subsequent
time interval. Event B (Before) represents the occurrence
of the student surviving for the previous time interval.

Applying the visual examination method on the survival
curves, investigators can detect the difference between
two survival functions. For example, if two survival functions
are separated in the first half of the study period, but
thereafter, are somewhat closer to each other, then a
large gap forms. This suggests that the intervention strategy
is more effective earlier during the study period. In Kaplan-
Meier survival analysis, the log-rank test allows investigators
to test the significant differences of survival functions at
different follow-up times among the study groups

(Kleinbaum, 1996). By comparing the survival curves for
the experimental group (with the intervention strategy) and
the control group (without the intervention strategy),
investigators can determine the effectiveness of the
intervention strategy if the experimental group appears to
be superior.

Cox Regression Equation
Unlike the Kaplan-Meier estimator, the Cox regression

method allows investigators to generate the hazard function
as a function of the time variable, risk factors, and baseline
hazard. Investigators can calculate the measure (relative
risk or relative hazard) of the risk factors and interpret the
hazard ratio. The hazard ratio is the ratio of two hazard
functions that allows investigators to measure the
association between the risk factors and the effects of
such factors on the risk functions.

The Cox regression model can be expressed as h(t, X)
= ho(t)e

β1X1 + β2X2 +...+ βpXp
 (Hosmer and Lemeshow, 1999;

Kleinbaum, 1996; and Lee, 1992). The hazard function,
h(t, X), is a function of the baseline hazard ho(t) and the
risk factors (X). The baseline hazard function is similar to
the constant of the linear regression model, which
represents the value of the hazard function before the risk
factors are taken into account. The base of the natural
logarithm is denoted by e that equals approximately 2.718.
The risk factors may include continuous and categorical
variables. The continuous variables, e.g., grade-point-
averages and test scores are measured by an interval or
ratio scale. The categorical variables, e.g., gender and
course grades, are measured by a nominal and ordinal
scale, respectively. The regression coefficients (β) are
unknown parameters to be estimated by the partial
maximum likelihood estimation approach (Hosemer and
Lemeshow, 1989; and Kleinbaum, 1996). The term ‘partial’
likelihood is applied because the likelihood equation
calculates probabilities only for cases of the event
occurrence rather than all cases. For a specific value of
the time variable, the hazard function depends on the
quantities of eβ1X1 + β2X2 +...+ βpXp

 and ho(t). It exhibits graphically
the variation in the time-to-event occurrence (Kleinbaum,
1996). Because the hazard function is a non-linear curve,

Table 3
Example of Calculating the Estimated Survival

Function S(t) for the Doctorate Program*

The Outcome (or Event) Variable of Interest is Academic Difficulty: Dismissed, Withdrew, and Leave
of Absence because of Academic Reasons

 Time
(in years)

ti

Risk
Set***
R(ti)

Number
of Events

Number
of Censored

Estimated S(t)**
or % of Surviving

0 7  students' survival time > 0 year 0 0 1

2 7  students' survival time > 2 years 2 1 1 x 5/7 = .7143

5 4  students' survival time > 5 years 1 3 .7143 x 3/4 = .5357

* Survival times  (in years):   2+, 2+, 3, 5+, 5, 6, and 7 come from Table 2, where + stands for the
occurrence of academic difficulty
** Kaplan Meier formula: P(B) P(A|B) = P(A and B), e.g., S(t=5)=(.7143) (3/4) =.5357
*** Each student in R(ti) has a survival time = ti
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it is necessary to use the iterative process to find better
approximations of the regression coefficients that satisfy
the partial likelihood equation.

To assess the model goodness of fit, the Cox regression
model allows investigators to address the research
question, ”Does the model containing the variables in
question tell us more about the outcome variable than a
model that does not include these variables?” (Willett and
Singer, 1991). In particular, it allows investigators to perform
the likelihood ratio test, which compares the likelihood for
the intercept only model to the likelihood for the model
containing the risk factors within each model. The logic of
hypothesis testing for the likelihood ratio test is the same
for Cox regression and logistic regression models. Based
on the significance of the likelihood ratio test, investigators
can claim that at least one of the risk factors contributed
to the relative hazard. In addition, Cox regression analysis
uses the Wald test to examine whether or not each
individual regression coefficient is significantly different
from zero. The logic of hypothesis testing for the Wald
test is also similar for both the Cox and logistic regression
models. If an individual regression coefficient is significantly
different from zero, the corresponding risk factor significantly
contributes to the hazard function of an event occurring.

Cox regression analysis is known as the proportional
hazards model because the model assumes that two
hazard functions are proportional to each other over time
(Kleinbaum, 1996). For example, given two students, if
one initially has twice as much relative risk than the
second student, then the relative risk for the first student
is two times that of the second student at all time points.
Also, given two student groups, if one group initially has
three times the relative risk compared to the second
group, the relative risk of the first group is three times
more than that of the second group during the study
period. In other words, the model assumes that the relative
hazard is constant across time for two different students
and student groups, respectively.

Interpretations of Relative Hazard
and Hazard Ratio

The exponential expression of each regression
coefficient in the Cox regression model is called relative
risk or relative hazard. The magnitude of the relative
hazard indicates the direction of the association between
the outcome variable and the corresponding risk factor. If
the relative hazard is greater than one (i.e. positive
regression coefficient), the hazard of a student experiencing
the critical event increases as the value of the risk factor
increases. This implies that the relative hazard is positively
associated with the risk factor. Moreover, if the relative
hazard becomes one (i.e. regression coefficient is zero),
the risk factor has no effect. On the other hand, if the
relative hazard is a positive fraction and less than one (i.e.
negative regression coefficient), the relative hazard of a

student experiencing the critical event decreases as the
value of the risk factor increases. This implies that the
relative hazard is negatively associated with the risk factor.

Investigators should focus on the hazard ratio (HR)
when they study the effects of the risk factors on the
critical event in Cox regression analysis. The value of the
hazard ratio reflects the strength of the relationship between
a specific risk factor and the effect of that factor. The
hazard ratio is a ratio of two hazard functions, which can
be expressed as HR = [hM(t)] / [hN(t)] = [ho(t).e

βX] /
[ho(t).e

βX*] = eβ(X – X*) (Kleinbaum, 1996).  The hazard ratio
is the ratio of the relative hazard to the risk factor (X)
changes, i.e., the relative hazard of X = 0 compared to the
relative hazard of X = 1. The hazard ratio decreasing or
increasing is based on the positive or negative regression
coefficient. The hazard ratio can also be interpreted as the
multiplicative change, rather than additive change, in the
hazard of a student experiencing the critical event based
on every unit of the change in a specific factor, holding
other factors as constant.  If the hazard ratio of the Mth

group (without the intervention strategy) versus the Nth

group (with the intervention strategy) equals three,
investigators may conclude that students in the M th group
experience three times greater hazard compared to those
in the Nth group. Moreover, if the risk factor (X) with a value
of four is for student M and the same risk factor with a
different value (X*) of three is for student N, the hazard ratio
equals eβ (X – X*) = eβ (4 – 3) = eβ. Assuming the hazard ratio
is two (eβ =2, where β = loge2), the hazard of a student
experiencing academic difficulty is two times greater for
student M compared to student N. Note that the baseline
hazard function, ho(t), appears in both the numerator and
denominator terms of the hazard ratio, which can be
cancelled out if the proportional assumption of the hazard
function is held true.

Example of Cox Regression Analysis
A Cox regression model was used to analyze a sample

of 200 matriculated students randomly selected from the
population in 1993-1997. The study attempted to answer
the following research questions: “How well can the following
risk factors explain students encountering academic
difficulty: demographics, undergraduate GPAs, medical
college admission test scores, medical school academic
performances, medical school curriculum tracks, and
financial aid support amounts?” and “In which months do
students experience the highest risk of academic difficulty
based on the risk factors mentioned above?” Thus, the
aims of the study were: (a) to identify risk factors that are
significantly associated with the hazard ratio of students
experiencing academic difficulty; (b) to provide insight into
the measure (relative risk, relative hazard) of the effects of
the risk factors mentioned above; and (c) to detect at what
month students are most likely to experience academic
difficulty.

The outcome variable of interest was a continuous
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measure—the hazard function of students experiencing
academic difficulty. Academic difficulty refers to dismissal,
withdrawal, and leave of absence due to academic reasons.
The time variable was the survival time in months. The
time origin of this study was the matriculation year, which
was not at the same calendar year for each matriculating
class. A combined data set for a five-year period was
adopted for this study based on the justification of class
comparability in academic difficulty and risk factors. The
study ended in the 36th month because no single student
experienced academic difficulty beyond the 36th month
within the study population. The status variable was labeled
as difficult (difficult for the SPSS command) and coded as
1 for students who experienced academic difficulty and 0
for students who did not experience academic difficulty
during the study period. The risk factors with a continuous
measure were undergraduate basic-sciences average
(BSA), undergraduate GPA, medical college admission
test scores (MCAT physical sciences, biological sciences,
and verbal reasoning scores), medical school freshman
GPA, number of sophomore courses failed, and the financial
aid loan amount. The risk factors with a discrete measure
were gender (1 for male and 0 for female), ethnicity (1 for
African American and 0 for Non-African American),
historical black colleges and universities status (1 for
HBCU graduate and 0 for Non-HBCU graduate), medical
school curriculum track (labeled as curr_grp for the SPSS
command, 1 for four-year curriculum track and 0 for five-
year curriculum track).

This Cox regression model was constructed by means
of the forward selection procedure. At each step, the risk
factor with the smallest observed significance level of the
Wald statistic was entered into the model. The default p
value of .05 was the entry criterion for the risk factors.
Next, all risk factors in the model were examined to see
if they met the default removal criterion (p=.10). The Wald
statistics for all risk factors in the model were examined,
and the risk factor with the largest observed significance
level for the Wald statistic was removed from the model.
If there were no risk factors that met removal criterion, the
next eligible risk factor was entered into the model. This
process continued until no risk factors met entry or removal
criterion.

SPSS PC Commands for Cox Regression Analysis
The 12 steps of the SPSS PC Version 12.0 commands

required to perform Cox regression analysis are as follows:
Step 1 - Click Analyze, click Survival, and click Cox
Regression; Step 2 - Click on time variable (month), and
click <right arrow> sign to move it to the time box; Step
3 – Click on status variable (difficult) and click <right
arrow> sign to move it to the status box; Step 4 - Click the
Define Event button, key in 1 in the single value box, and
click Continue; Step 5 - Click all risk factors (ung_bsa,
ung_gpa, mcat_vr, mcat_ps, mcat_bs, gender, ethnic,

hbcu, course2f, fresh_gp, and loan_amt) and click <right
arrow> sign to move it to the covariates box; Step 6 - Click
the method options and select Forward-Wald; Step 7 –
Click on stratifying variable (curr_grp) and click <right
arrow> sign to move it to the strata box; Step 8 - Click the
category option, click <right arrow> sign to move the
covariates (gender, ethnic, hbcu) to the categorical
covariates box, and click Continue; Step 9 -Click the Plots
button, select Hazard plots, and click Continue; Step 10
- Click the Option button, select display model information;
Step 11 – select Display Baseline Function, and click
Continue; and Step 12 - Click OK. Note that Step 12 –
Click Paste to generate COXREG syntax command lines
as follows: COXREG month /STATUS=difficul(1)/
STRATA=curr_grp/CONTRAST(gender)=Indicator/
CONTRAST(ethnic)=Indicator/CONTRAST(hbcu)=Indicator
/METHOD=FSTEP (WALD) ung_bsa  ung_gpa  mcat_vr
mcat_ps  mcat_bs  gender  ethnic hbcu  course2f  fresh_gp
loan_amt /PLOT HAZARD /PRINT=SUMMARY BASELINE
/CRITERIA= PIN (.05) POUT(.10) ITERATE(20).

Major Findings for Cox Regression Analysis
Data were analyzed to examine the relationship between

the risk factors and the hazard of a student experiencing
academic difficulty. The curriculum track demonstrated its
significant contribution to the hazard function (β=-1.33,
p<.001, and eβ=0.265), and the log-minus log (LML) plot
of the survival functions appeared not to be parallel in the
first run of Cox regression analysis. These findings support
evidence of the violation of the proportional hazards
assumption. Therefore, the stratified Cox regression model,
stratifying on curriculum track, was implemented. No
strong evidence of the violation of proportionality was
found based on the parallel pattern of the LML plot of the
survival curves.

As illustrated in the footnote of Table 4, the model fits
the data quite well based on the model chi-square test
(χ2=39.09, df=3, and p<.001) and the small value of  the
–2 log likelihood (280.24). Also, the improvement chi
square (χ2=44.60, df = 3, and p<.001) indicated that the
model fits the data better than it had initially. Note that the
initial –2 log likelihood was 324.84 in which the model
contained only the constant term.  Because the three
explanatory variables were added in the model, the –2 log
likelihood became 280.24, a decrease (improvement) of
44.60 units.

In this study, the following eight risk factors were not
significantly associated with the hazard of a student
experiencing academic difficulty: undergraduate basic
sciences average, undergraduate GPA, MCAT physical
science, MCAT biological science, ethnicity, HBCU status,
Medical school freshman GPA, and financial aid loan
amount. However, the risk factor, MCAT verbal reasoning
score, had the highest Wald statistic (32.5) and entered
the model equation in the first step. This was followed by
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the inclusion of two more risk factors—gender and number
of sophomore courses failed. As shown in Table 4, the
regression coefficients for MCAT verbal reasoning score
and gender were significantly different from zero at the
.001 significance level. Also, the regression coefficient for
the number of courses failed during sophomore year was
significantly different from zero at the .05 significance
level.

It was evident that these three risk factors—MCAT
verbal reasoning score, gender, and number of courses
failed in sophomore year—were significantly associated

with academic difficulty. The hazard ratio was used to
express the measure of the effects of these risk factors.
For instance, the number of courses failed in the
sophomore curriculum exhibited the hazard ratio of 2.11.
It indicated that a student who failed an additional course
had about a two times greater hazard of experiencing
academic difficulty as opposed to a student who did not.
On one hand, the hazard ratio (0.35) for gender
demonstrated that male students had 0.35 times greater
hazard of experiencing academic difficulty compared to
female students. Because the hazard ratio of 0.35 was a
positive fraction and less than one, it is more meaningful
to interpret that male students had almost three times
(inverse of 0.35) less of a hazard than female students to
experience academic difficulty. On the other hand, the
hazard ratio (0.51) concerning MCAT verbal reasoning
indicated that a one-unit increase in the MCAT verbal
reasoning score was associated with a decrease in relative
risk of academic difficulty by a factor of two (inverse of
0.51).

The hazard function h(t, X) against time (t) was plotted
graphically based on the stratified Cox regression model.
Figure 1 displays the hazard curves showing the four-year
curriculum track is lower than the five-year curriculum
track. This suggested that students in the four-year
curriculum track were less likely to experience academic
difficulty. According to the pattern of the hazard function,
students in the five-year curriculum track experienced

academic difficulty starting at the 20th month (first semester
of the sophomore year), peaked at the 30th month (second
semester of the sophomore year), and maintained the
same level of hazard through the rest of the study period.
The implication of this research finding was that the
medical school should focus on academic support for
students in the five-year curriculum track to address this
extended period of academic difficulty.

Similarities between Logistic and Cox
Regression Models

As illustrated in Table 5, logistic and Cox regression
models share several common characteristics. The model
similarities are mainly reflected in the principle of modeling
strategies, the objective of regression models, the method
of parameter estimations, and the procedure of variable
selections.

In the principle of modeling strategies, both models
include all relevant explanatory variables at the initial
stage of model fitting and achieve parsimony and
consistency at the completion stage of model fitting. All
relevant explanatory variables can be included in a single
model with both methods as well because multiple effects
can be simultaneously studied, and the effect of individual
explanatory variables can be examined while others are
held constant. Moreover, when fewer explanatory variables
are sufficient to explain the occurrence of the event,
investigators do not need elaborate explanations and
unnecessary variables in models. Furthermore,
investigators need to demonstrate the consistency of the
model structure. It is important that significant explanatory
variables and the effects of these variables are as identical
as possible when the models are constructed over time.

Another characteristic that the two models have in
common is the study objective. Both logistic and Cox
regression models are applicable to the occurrence of the
binary outcome or critical event. They are designed to
study the relationship between certain student learning
outcomes and their relevant explanatory variables. The
logistic regression model allows investigators to identify
explanatory variables that significantly contribute to the
probability of a student obtaining a binary outcome while

Variables in
the Equation

Logistic
Regression
Coefficient (ß)

Standard
Error of ß  SE (ß)

Odds Ratio (eß)

MCAT Physical
        Reasoning Score

-0.68*** 0.119 0.51

Gender
        (1 for male; 0 for female)

-1.05*** 0.377 0.35

Number of Sophomore
        Courses Failed

0.75*  0.309 2.11

*p < .05 and  *** p < .001 based on the Wald test [X2 = (ß/SE(ß))2 with df=1]
N=200
-2 Log Likelihood: X2=280.24
Model Chi Square Test: X2=39.09, df=3, and p<.001
Improvement Chi Square Test: X2=44.60, df=3, and p<.001

Table 4
Cox Regression Model for Students
Experiencing Academic Difficulty

Figure 1
Hazard Curves for Students

Experiencing Academic Difficulty
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the Cox regression model allows investigators to identify
risk factors that significantly contribute to the hazard
function of a student experiencing the critical event.

Both methods use the maximum likelihood estimation
technique to estimate the regression coefficients and to
construct the non-linear model equations. The principle of
maximum likelihood is basically the same, although the
Cox regression model uses the partial likelihood estimation
(considering probabilities for the event occurrence rather
than censored cases). The maximum likelihood estimation
technique is applied to estimate the regression coefficients
such that the likelihood of observing data is maximized.
This technique has been discussed in many statistical
books (Eliason, 1993; Hosemer and Lemeshow, 1989;
Kleinbaum, 1996; and Pampel, 2000). First, the probability
distribution (i.e., model equation) of students obtaining the
outcome is prepared. Secondly, the joint probability
distribution is derived based on the product of probability
distributions under the assumption of independence. Thirdly,
logarithm transformation is applied to the joint probability
distribution to yield the log likelihood functions. Lastly, the
iterative procedure is undertaken to estimate the regression
coefficients. The iterative procedure begins with the value
for individual parameters in the log likelihood functions,
followed by a cycle of adjusting initial values to improve the
model fitting. This procedure ultimately achieves the
maximum likelihood estimates of the regression coefficients.

Logistic and Cox regression analyses use the same
procedures such as enter, forward, and backward elimination
to select significant explanatory variables (SPSS Inc, 2002).
These procedures are briefly described as follows: (a)
Enter procedure—All explanatory variables are forced to
be included in the model in one step; (b) Forward stepwise
procedure—Explanatory variables are included in the model
one at a time based on the highest Wald or the likelihood-
ratio statistics with the entry criterion (p=.05). As each
new variable is added to the model, all of the existing
explanatory variables in the model are evaluated for removal
based on the Wald or likelihood-ratio test with the removal
criterion (p=.10) When no more variables meet the entry or
the removal criteria, the algorithm of selecting significant
variables stops; and (c) Backward procedure—All of the
explanatory variables are entered into the model during the
first step. The explanatory variables that meet removal
criterion (p =.10) are removed sequentially. When no more
variables meet the removal criteria, the algorithm of selecting
significant variables stops.

In both models, investigators utilize the –2 log likelihood
value as criterion to make a judgment concerning the
significance of the explanatory variables. The –2 log
likelihood (-2LL), a chi square statistic, is important because
it tells the probability of obtaining the binary outcome given
the established parameter estimates. It is also a measure
of how well the estimated parameters fit the data; a small
value of the –2 log likelihood means the model fits the data

well. (Norusis, 1985). Both models allow investigators to
perform the likelihood ratio test that compares the likelihood
for the intercept only model to the likelihood for the model
containing the explanatory variables within each analysis.
If the p value is less than the predetermined significance
level (á=.05, .01, or .001), investigators may claim that at
least one of the explanatory variables or risk factors in the
model significantly contribute to the outcome variable. An
additional similarity of the two models includes the use of
the Wald statistic as criterion to test the association
between individual explanatory variable and the outcome
variable. If the p value for the Wald test is less than the
predetermined significance level, investigators may
conclude that a specific explanatory variable significantly
contributes to the probability or the hazard function of
experiencing a critical event.

 Logistic and Cox regression models allow investigators
to interpret the effect (odds ratio and hazard ratio) of
specific explanatory variables on the outcome variable.
The interpretations of the odds ratio and hazard ratio are
the same, although the calculations are quite different.
Logistic regression analysis uses the odds ratio (eβ) to
indicate that an average one-unit of change in the
explanatory variable leads to a change in the odds of a
student obtaining a binary outcome by a factor of eβ. Cox

Table 5
Summary of Similarities between

Logistic and Cox Regression Models

Similarities of Two Models Logistic and Cox Regression Analyses

Principle of Modeling Strategies

Inclusion of all relevant explanatory variables or risk
factors at the initial stage of the model fitting; and
achieving parsimony and consistency upon the
completion stage of the model fitting

Objective of Regression Models

Logistic Regression:
To identify explanatory variables (X) that significantly
contribute to the probability, P(X), of student
obtaining a binary outcome

Cox Regression:
To identify risk factors (X) that significantly
contribute to the hazard function h(t,X) for the
duration and timeline of a student experiencing the
critical event

Method of Parameter Estimations The principle of the maximum likelihood estimation
is applied to estimate the regression coefficients

Procedure of Variable Selections
Enter, forward, or backward procedures are used to
select significant explanatory variables or risk
factors to form the regression model

Test of Significant Predictors

Similar to the F test in linear regression, both
models use  minus two log likelihood (-2LL) test for
the significance model fitting (All explanatory
variables do not contribute to the outcome
occurrence vs. At least one of the explanatory
variables contribute to the outcome occurrence)
Similar to the t test in linear regression, both
models use the Wald test for the significance of the
individual regression coefficients.

Interpretation of Magnitude Effects

Logistic Regression:
To provide insight into the measure (odds, odds
ratio, e(ß0 + ß1X1+ ß2X2+…+ ßpXp)) of the effects of the
explanatory variables

Cox Regression:
To provide insight into the measure (relative hazard,
hazard ratio, or e( ß1X1+ ß2X2+…+ ßpXp)) of the effects  of
risk factors
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regression analysis utilizes the hazard ratio (eβ) to indicate
that an average one-unit of change in the risk factor
contributes to a change in the hazard of a student
experiencing the critical event.

Differences between Logistic and
Cox Regression Models

As described in Table 6, the distinct characteristics of
logistic and Cox regression models can be distinguished
by the formation of research questions, the expression of
model equations, the assessment of model fittings, and
the verification of model assumptions.

 Logistic regression analysis focuses on a critical event
occurring or not occurring. Examples of research questions
formed include “Will the student experience the occurrence
of the critical event, ‘yes’ or ‘no’?” and “What explanatory
variables contribute to the occurrence of the critical event,
‘success’ or ‘failure’?” However, Cox regression analysis
is concerned with the duration and timing of the occurrence
of the event. The research questions may be framed as
“At what time (month, semester, year) does the student
experience the critical event at the highest risk?”, and
”What risk factors contribute to the occurrence of the
critical event at different time of the study periods?”

 A key difference between logistic and Cox regression
analyses is to use distinct model equations to study the
relationship between the binary outcome and the
explanatory variables. The logistic regression model is
written as P(X) = eZ / (1+eZ), where Z = βo + β1X1 + β2X2
+...+ βpXp, and P(X) is the probability of obtaining a binary
outcome. The Cox regression model may be expressed
as h(t,X)=ho(t)e

Z, where Z = β1X1+ β2X2 +...+ βpXp. The
hazard function, h(t,X), is a function of time (t), the risk
factors (X), and the baseline hazard ho(t). The baseline
hazard is dependent on the time variable, acting as a
constant term and contributing to the hazard function in
a multiplicative manner.

 A noteworthy difference between the two models is
the pattern of non-linear curves. In the logistic regression
model, the main focus is to estimate the probability of
obtaining the binary outcome. The estimated probability
is a continuous measure that begins with zero and
increases as a smooth S-shaped curve. The value of the
probability is between zero and one depending on the
explanatory variables and the regression coefficients.
However, for the Cox regression model, the hazard function
is a continuous variable dependent on the duration and
timeline of experiencing the critical event. The hazard
function is a rate, which is ranged from zero to positive
infinity. It begins with any positive value and goes up and
down depending on the product of the baseline hazard
and the risk factors.

 Logistic regression, unlike the Cox regression model,
has the capability of assessing the prediction power of the
model and performing future predictions. In the logistic

regression model, the prediction results can be used as
criteria to make a judgment regarding accuracy of the
classifications. The cross-tabulating method is used to
categorize the predicted and the actual responses into a
2 by 2 table that indicates the accuracy of the classification
results. However, in the Cox regression model, the
classification results are not readily available to assess
the model accuracy. Although the logistic regression
model can be used to perform future predictions based on
the known explanatory variables for prospective students,
the Cox regression model is not capable of performing
such predictions. On the right side of the Cox regression
equation, all risk factors (X) for prospective students are
the observed values that are ready to be placed into the
equation. However, the time variable (t) in the baseline
hazard ho(t) for prospective students is unknown, therefore
it cannot be placed into the equation to perform future
predictions.

The availability of pseudo R-squares also differs between
the two models. The pseudo R-square measures the
success of the model in explaining the variations in the

Table 6
Summary of Differences between Logistic and

Cox Regression Models

Differences of
Two Models Logistic Regression Analysis Cox Regression Analysis

Formulation of
Research
Questions

Will the critical event occur (yes or no-
the binary outcome)? What
explanatory variables contribute to the
occurrence of the critical event?

When (at what time) will the critical event
occur (yes or no-the binary outcome)?
What risk factors contribute the timeline
of the occurrence of the critical event?

Expression of
Model

Equations

P(X)=eZ/(1+ eZ ), where P(X) is the
probability of event occurrence; e is
the base of the natural logarithm; Z =
ß0 + ß1X1+ ß2X2+…+ ßpXp;  ßs are
regression coefficients; and Xs are
explanatory variables

h(t,X) = h0(t) e
z, where h(t,X) is hazard

function of the event occurrence given
time variable (t); h0(t) is baseline hazard;
e is the base of the natural logarithm; Z
= ß1X1+ ß2X2+…+ ßpXp;  ßs are
regression coefficients; and Xs are risk
factors

Pattern of Non-
Linear Curves

P(X) is a continuous measure
(probability of a student experiencing
the critical event such as pass/fail,
achiever/nonachiver)

P(X) begins with zero and increases
as a smooth S-shaped curve. P(X) is
the probability value between zero and
one depending on the explanatory
variables and the regression
coefficients

P(X) cannot be used to detect the
timeline of the occurrence of the
critical events.

h(t, X) is a continuous measure (hazard
function for the timeline of  a student
experiencing the critical event such as
dropout, dismissal, and withdrawal)

The hazard function h(t,X) begins with
any positive value and goes up and
down. It is a rate between zero and
positive infinity depending on the product
of baseline hazard and the function of
risk factors.

h(t, X) can be used to detect the timeline
of the occurrence of the critical events.

Assessment of
Accurate

Predictions

Explanatory variables are the
observed values readily to be plugged
into the equation to perform
predictions

The prediction results allow
investigators to identify potential at-
risk students to participate in the
mandatory intervention program.

The classification results are available
to assess prediction accuracy.

Risk factors are the observed values
readily available for the predictions.
However, the time variable (t) in the
baseline hazard function ho(t) is
unknown value that cannot be plugged
into the equation to perform predictions.

The classification results are not
available to assess prediction accuracy.

Assessment of
Model Fittings

Pseudo R-square is readily available
to assess the model fittings.

Pseudo R-square is not available to
assess the model fitting.

Verification of
Model

Assumptions

Residuals are normally distributed with
a mean of zero and a constant
variance.  The histogram and
scattergram of residuals are plotted to
check for the normality and the
homogeneity of variance.

Hazard ratio are constant across time. If
the hazards are proportional, the survival
curves generated by log minus log (LML)
should be parallel.
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data, which means it indicates that the proportion of
variations in the outcome variable is accounted for by the
explanatory variables. In the logistic regression model, the
pseudo R-squares are used as criteria to assess the
model goodness of fit. However, in the Cox regression
model, the pseudo R-squares are not readily available to
assess the model fitting in SPSS PC Version 12.0
commands.

  Finally, another key difference between the two models
lies in the model assumptions. For the logistic regression
model, residuals are assumed to have a mean of zero and
a variance of P(X) [1-P(X)]. Investigators must check for
violation of the assumption by plotting the histogram and
scatter diagram for residuals. The model assumption is
satisfied if (1) the histogram of the residuals is normally
distributed with a mean of zero and (2) the residuals on the
scatter diagram appear to be parallel with the X-axis, (i.e.,
the indication of a constant variance). The Cox regression
model states that there is a multiplicative relationship
between the baseline hazard function ho(t) and the function
of the risk factors. As a result, the ratio of the hazard
functions for an event with different values for the risk
factor does not depend on time (t). Therefore, investigators
need to check for violation of this assumption by using the
log-minus log (LML) plot of the survival function. If the
hazards are proportional, the survival curves generated by
LML should be parallel (Steinberg, 1999). Under the
assumption of proportional hazards, the resulting curves
should be parallel and separated only by a constant
vertical difference.

Summary
In this study, the main objectives for constructing logistic

and Cox regression models were accomplished. For logistic
regression analysis, the explanatory variables contributing
to the probability of a student passing the USMLE Step 1
were identified.  It was evident that the MCAT (physical
and biological sciences) scores, number of sophomore
courses failed, and medical school freshman GPAs were
significantly associated with the USMLE Step 1
performances.  The study results confirmed that MCAT
scores and medical school course performances were
significant predictors of the USMLE Step 1 (Chen et al.,
2001; and Haught and Walls, 2002). The implication of the
study results was that the medical school should continue
its effort to recruit and admit qualifying students with high
MCAT scores, and to strengthen teaching and learning to
ensure student success on the licensure examination.

With regard to Cox regression analysis, the method
indicated that academic difficulty was significantly
accounted for by risk factors such as MCAT verbal
reasoning score, gender, and number of sophomore courses
failed. Moreover, students in the five-year curriculum track
experienced academic difficulty during the first semester
of their sophomore year, peaked at the second semester

of the sophomore year and maintained the same level of
risk through the rest of the study period. The research
results were consistent with the literature stating that an
increase in the relative risk for a student experiencing
academic difficulty was significantly associated with a low
MCAT score (Huff and Fang, 1999), and students at risk
for academic difficulty remained at risk throughout the first
three years of medical school (Fang, 2000). The implication
of this study was that the medical school addressed
academic difficulty issues through academic development
and support services.

Strengths
Both logistic and Cox regression models are typically

used for data analysis concerning binary outcomes such
as admitted/not admitted, enrolled/not enrolled, and
graduated/not graduated. In particular, the logistic
regression method is capable of allowing investigators to
answer some important questions linked to learning
outcomes”Is student performance likely to improve or not
improve after the implementation of tutorial and remedial
programs?” ”Are student graduation and attrition status
significantly associated with the explanatory variables
concerning student characteristics and college learning
environment?” and ”Can the probability of students
expressing overall college satisfaction be estimated by
certain explanatory variables concerning academic
programs and services?”

In Cox regression analysis, the hazard function is a
function of the time-to-event and risk factors. This function
provides investigators with the valuable information to
answer certain learning outcome questions such as ”How
many semesters elapse before students experience
academic difficulty?” ”What risk factors are significantly
associated with the occurrence of academic difficulty?”
”At what month are students likely to pass the licensure
examination?” ”What explanatory variables significantly
contribute to the success of licensure examination?” ”How
many years pass before students graduate from the
college?” and ”To what extent student’s timely and delayed
graduation are accounted for by the explanatory variables
concerning the overall quality of educational program and
student support?”

 Clearly, these two models are proven to be useful tools
in studying explanatory variables that are significantly
associated with binary outcomes. Moreover, the effect of
a specific explanatory variable or risk factor on the event
occurrence can be investigated holding other explanatory
variables or risk factors constant. Both methods also
allow investigators to assess the model fittings by means
of the likelihood ratio test. Furthermore, using the logistic
regression model, investigators can perform classifications,
and subsequently evaluate the predictive power.
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Limitations
This study is not completely conclusive  because of

some methodological limitations. For example, given both
models were built to study the effects of the explanatory
variables on the binary outcomes—passing licensure
examination (yes or no) or experiencing academic difficulty
(yes or no)—the investigator is unable to use the same
techniques to study multiple outcome categories. These
outcomes categories include three pass- or fail-groups of
licensure examination (e.g., first-time pass, second-time
pass, and fail at least two times) and three categories of
academic difficulty (e.g., dismissal, withdrawal, and leave
of absence), respectively.

The Cox regression model is also known as the Cox
proportional hazards model and has to satisfy the model
assumption of proportional hazards. If the model
assumption is seriously violated, the analysis results
could be inaccurate and misleading. However, it is difficult
to make judgments about the proportional hazards on the
LML plot of survival curves partly because the functions
are non-linear instead of straight lines.  In other words, the
validity of the model assumption may not be properly
evaluated because of the limitations of the LML
assessment tool.

Major Alternatives
To study the outcome variable with multiple categories

as a function of the explanatory variables, polytomous
logistic regression analysis is a possible alternative (Peng,
et al., 2002). Polytomous logistic regression analysis
includes ordered and multinomial logistic regression
models. The ordered logistic regression model is applicable
to three or more ordinal outcome categories (e.g., first-
time pass, second-time pass, and at least two-time fail
groups for licensure examination). The model is called the
cumulative logit model because it is based on the
cumulative response probabilities of being in a category or
lower (Walters, et al., 2001). The model is also called the
proportional odds model because it assumes that the
corresponding regression coefficients in the link function
are equal for each explanatory variable. Therefore, the
model assumption has to be verified carefully by the
parallel lines test (SPSS, Inc., 2002).  If the model
assumption is satisfied, investigators can proceed to
interpret the effects of the explanatory variables.

If the model assumption is violated in the ordered
logistic regression analysis, the multinomial logistic
regression model should be considered as another
alternative. The outcome variable of multiple nominal groups
includes the reference group and the target groups. For
instance, in passing licensure examination, the first-time
pass group is labeled as the reference group, the second-
time pass group is coded as target group 1, and at least
two-time fail group is considered as target group 2. Two
model equations are generated for the nominal outcome

with the three groups. In addition, the two sets of relative
risk rates are calculated when the probability of a student
falling into a specific target group is compared to that of
a student in the reference group (Walters, Campbell, and
Lall, 2001). The multinomial logistic regression analysis
relaxes the model assumption of the proportional odds. It
does not require that investigators verify the assumption of
parallel lines because the relationship between the
explanatory variables and the effects of these variables
depends on the outcome category (Plank and Jordan,
1997).

An implicit feature of the Cox regression model is
reflected in the model assumption of proportional hazards
for all time intervals. If the LML plot of survival curves for
assessing the validity of the model assumption is not
successful, the smoothed plots of the scaled Schoenfeld
residuals proposed by Therneau and Grambsch (Belle, et
al, 2004) may be a better approach. The Schoenfeld
residual method not only provides the investigator with an
easier visual interpretation, it also offers a statistical test
for the proportional hazards assumption (Belle, et al.,
2004). An additional alternative for detecting the violation
of the model assumption is the likelihood ratio test (Palmer,
et al., 2003). Departure from the assumption of proportional
hazards can be analyzed by the likelihood ratio test
comparing models with and without the stratifying variable
by the covariate interaction terms (e.g., the curriculum
track by the three explanatory variables—MCAT verbal
reasoning score, gender, and the number of sophomore
courses failed, respectively, in the present study). If no
statistical significance is found in these interaction terms,
then the model assumption of proportional hazards is not
violated.

In the Cox regression model, if the effects of the
explanatory variables change during time in a practical
situation (e.g., age and financial aid amount fluctuate over
years), it may lead to a violation of the model assumption.
For this reason, the extended Cox regression model that
utilizes the time-dependent variables should be considered
as an alternative to analyze data for that do not require the
model assumption (Klein and Moeschberger, 1997; and
Kleinbaum, 1996). The extended Cox regression model
allows investigators to study the effect of the explanatory
variables along with the time-dependent variables on the
hazard function.

Editor’s Notes
Recently there has been an increased interest in using

various methodologies that better fit the situations we
encounter. While Multiple Linear Regression with its
Ordinary Least Squares has been part of our methodology
for many years, it has always had certain limitations.  For
example in predicting probabilities it has the unfortunate
characteristic of going both negative and also going greater
than one.  Logistic Regression deals with this by creating
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a dependent variable, the log odds, that can range from
negative to positive and that can exceed 1.0.  While
Logistic Regression has been discussed in the statistical
literature for numerous years, it has become more prevalent
in institutional research during the last several years.

A second use of Linear Regression has been to explain
the time between a process starting and completing. Here
again the linearity of relationships tends to be suspect.  In
addition the regression model is not able to handle data
where specific completion date is not available. Cox
Regression is capable of dealing with both of these issues.
As with logistic regression, it uses a function of the
exponential and converts the relationship into one that is
linear in logarithms.

While both the Logistic and Cox procedures are part of
many standard statistical software, such as SPSS,
correctly using them is frequently not intuitive.  This is
where the article by Dr. Chen provides an extremely
valuable service.  First it provides a good summary of
when and why a researcher would want to use these types
of models.  In addition it provides an example of their use.
In fact it gives you the step-by-step procedures needed to
run your own analysis in SPSS.  Next it gives a brief
interpretation of the results.

What I think you will find most exciting however is Table
6 where there is a head to head comparison of the two
methodologies.  As an exercise to consider when linear
regression should be used, the reader may well want to
add an additional column to Table 6, title the column
Linear Regression, and fill in the cells.  For example under
Pattern of Non-Linear Curves, one might want to list the
use of various nonlinear transformations such as quadratic
and cubic terms. The reader might also want to add rows
to Table 6 such as Interpretation of Regression Weights.
The interpretation of these weights for the Logistic and
Cox procedures can be found in the text of the article.

This suggestion also applies to Table 5 where you may
want to put in the similarities that Multiple Linear Regression
has with Logistic and Cox Regression.

Also found in this article is the discussion of the
relationships between Hazard and Survival functions.  As
such this paper represents an excellent first step or primer
and explains techniques that greatly extend our analytical
methodologies.  Readers do need to be warned, however,
that if they are interested in using these techniques they
must focus on learning more about them.  For example
when using Chi Square and testing within stepwise or
nested models, it is extremely important to select
appropriate models that are theoretically relevant. The
selection of the specific stratification of the model, where
stratification is desirable, is also an extremely important
element in the methodology.  In terms of building the
models, Dr. Chen selected Forward-Wald to build his
survival model. There are other options such as
simultaneously entering the variables or backwards

elimination of variables The decision to use a specific
strategy should be selected based on the situation and
the intent of the researcher.

Another option the researcher has in Logistic Regression
is to adjust the cut-point for classifying and observation
into the two categories. Dr. Chen used the default of .5 but
you may want to use a proportion that’s closer to the
actual split in the sample.

This article will give you an extremely good start in
appropriately using two alternatives to the traditional
regression methodology.  As you begin to use one or both
of the alternatives, the references he provides contain the
information that will be essential for you to use the
methodologies appropriately.
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