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Abstract 
 
Pretest-posttest experimental designs are often used in randomized control trials (RCTs) in the education field to 
improve the precision of the estimated treatment effects. For logistic reasons, however, pretest data are often 
collected after random assignment, so that including them in the analysis could bias the posttest impact estimates. 
Thus, the issue of whether to collect and use late pretest data in RCTs involves a variance-bias tradeoff. This 
paper addresses this issue both theoretically and empirically for several commonly-used impact estimators using a 
loss function approach that is grounded in the causal inference literature. The key finding is that for RCTs of 
interventions that aim to improve student test scores, estimators that include late pretests will typically be 
preferred to estimators that exclude them or that instead include uncontaminated baseline test score data from 
other sources. This result holds as long as the growth in test score impacts do not grow very quickly early in the 
school year.    
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Chapter 1:  Introduction 

Pretest-posttest experimental designs are often used to examine the impacts of educational interventions 
on student achievement test scores. For these designs, a test is administered to students in the fall of the 
school year (the pretest) and at a spring follow-up (the posttest). Average treatment effects are then 
estimated by either examining treatment-control differences on pretest-posttest gain scores or by 
including pretests as covariates in posttest regression models.  
 
In clustered randomized control trials (RCTs) in the education field, the availability of pretests on 
individual students is critical for obtaining, at reasonable cost, precise posttest impact estimates (Schochet 
2008; Bloom et al. 2005). In these RCTs, groups (such as schools or classrooms) rather than students are 
typically randomly assigned to the treatment or control conditions. This clustering considerably reduces 
statistical power due to the dependency of student outcomes within groups. The inclusion of pretests in 
the analysis, however, can substantially increase precision levels, because group-level pretest-posttest 
correlations tend to be large. Schochet (2008), for example, demonstrates that for a design in which 
schools are the unit of random assignment, about 44 total schools are required to detect an impact of 0.25 
standard deviations if pretests are used in the analysis, compared to about 86 schools if pretest data are 
not available.  This occurs because pretests tend to explain a large proportion of the variance in posttest 
scores. 
 
For logistic reasons, however, pretests on individual students are typically collected after the start of the 
school year. In these cases, including late pretests in the analysis could bias the posttest impact estimates 
in the presence of early treatment effects. Because of variance gains, however, these biased estimators 
could yield impact estimates that tend to be closer to the truth than unbiased estimators that exclude the 
late pretests. Thus, the issue of whether to collect and use late pretest data in RCTs involves a variance-
bias tradeoff. 
 
This paper is the first to systematically examine, both theoretically and empirically, the late pretest 
problem in education RCTs for several commonly-used impact estimators. The paper addresses three 
main research questions:  

1. Under what conditions does the variance-bias tradeoff favor the inclusion rather than 
exclusion of late pretests in the posttest impact models? These conditions are important for 
assessing whether or not to collect expensive pretest data.  

2. What are statistical power losses when late pretests are included in the estimation models? 
Large-scale RCTs in the education field are typically powered to detect minimum detectable 
posttest impacts of about 0.15 to 0.30 standard deviations, ignoring the potential late pretest 
problem. If pretest data are to be collected, how much larger do school sample sizes need to 
be in the presence of late pretests to achieve posttest impact estimates with the same level of 
statistical precision? 

3. Instead of collecting pretest data, under what conditions is it preferable to collect “true” 
baseline test score data from alternative sources? For example, historic aggregate school-
level data could be collected on test scores that are related to the posttest. The correlations 
between these alternative test scores and the posttests are likely to be smaller than the pretest-
posttest correlations, and thus, the alternative test scores will reduce variance less. However, 
these data are likely to be uncontaminated, and thus, will not bias the posttest impact 
estimates.  



2  Introduction  

The theory presented in this paper is based on a unified regression approach for group-based RCTs that is 
anchored in the causal inference and hierarchical linear modeling (HLM) literature. The empirical 
analysis quantifies the late pretest problem in education RCTs using simulations that are based on key 
parameter values found in the literature that pertain to achievement test scores of elementary school and 
preschool students in low-performing school districts. The focus on test scores is consistent with 
accountability provisions of the No Child Left Behind Act of 2001, and the ensuing federal emphasis on 
testing interventions to improve reading and mathematics scores of young students.  
 
The rest of this paper is in seven chapters. Chapter 1 discusses the late pretest problem in more detail, and 
Chapter 2 discusses two measures for quantifying the variance-bias tradeoff when late pretests are 
included in the impact models. Chapter 3 discusses the considered school-based designs, and Chapter 4 
presents the causal inference statistical theory underlying the late pretest problem. Chapter 5 applies this 
theory to several commonly-used impact estimators, and Chapter 6 presents simulation results. Finally, 
Chapter 7 presents a summary and conclusions. 
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Chapter 2:  The Late Pretest Problem 

Pretests on individual students are typically collected after the start of the school year for several reasons. 
First, school administrators and teachers typically prefer that baseline testing occur after students and 
teachers settle into a routine. Second, researchers often want to delay testing until a large percentage of 
signed study consent forms are returned by parents (many studies in a school setting require active 
parental consent). Finally, for cost reasons, studies often employ a small number of interviewer teams per 
site to administer baseline testing in the study schools. Thus, it usually takes time for these teams to set up 
visiting schedules and to travel to schools that are geographically dispersed. Hence, in many RCTs, 
baseline testing is not completed until several months after school begins. For example, in the Head Start 
Impact Study (Puma et al. 2005) baseline testing occurred over a three-month period from October 2002 
through December 2002.  
 
The inclusion of late pretests in the posttest impact models could lead to biased impact estimates for 
several reasons. First, in most evaluations, the tested interventions are implemented in the treatment 
schools and classrooms prior to the start of the school year. For example, in evaluations testing the effects 
of a new math or reading curriculum, teacher professional development typically occurs during the 
summer. Thus, with late pretests, students in the treatment group have already been exposed to the 
intervention.   
 
A second reason that pretests could be contaminated is if the distribution of baseline testing dates differs 
across the treatment and control groups. Student test scores tend to increase over time naturally. Thus, 
pretests could be contaminated if they are administered later for one research group than the other, even if 
there are no early intervention effects. Well-designed evaluations attempt to evenly disperse testing dates 
across the treatment and control groups. However, it is sometimes more difficult to schedule testing dates 
in control schools (who are denied the intervention) than in treatment schools (who are offered 
intervention services). For example, in the National Evaluation of Early Reading First (Jackson et al. 
2007) baseline testing occurred about one month later, on average, in control sites than treatment sites. 



 



Measuring the Variance-Bias Tradeoff  5 

Chapter 3:  Measuring the Variance-Bias Tradeoff 

The main advantage of including late pretests in the posttest impact models is that they can substantially 
improve the precision of the impact estimates. The main disadvantage of including them is that they could 
yield biased impact estimates. This paper uses two related loss functions for quantifying this variance-bias 
tradeoff for a posttest impact estimator γ̂ . The first loss function is the mean square error (MSE):  
 

2 2ˆ ˆ ˆ ˆ(1) ( ) ( ) ( ) ( )MSE E Var Biasγ γ γ γ γ= − = + ,  
 

where ˆ( )Var γ is the variance of the estimator, γ  is the true posttest impact, and ˆ ˆ( ) [ ( ) ]Bias Eγ γ γ= − is 
the bias of the estimator. An estimator is preferred to another if it has a lower MSE value. 
 
The second loss function, which is typically used in the design stage of impact evaluations to determine 
appropriate sample sizes, is the minimum detectable impact (MDI). The MDI represents the smallest 
program impact that can be detected with a high probability. I follow the usual practice of standardizing 
minimum detectable impacts into effect size units—that is, as a percentage of the standard deviation of 
the outcome measures (also known as Cohen’s d)—to facilitate the comparison of findings across 
outcomes that are measured on different scales (Cohen 1988). Hereafter, minimum detectable impacts in 
effect size units are denoted as MDEs. 
 
To develop manageable MDE formulas for biased estimators, it is assumed that under the null hypothesis 
of no impacts on posttest scores, there are no impacts on late pretest scores. This assumption rules out 
early positive or negative intervention effects that disappear by the follow-up test date. This key 
assumption considerably simplifies the MDE calculations because Type I error rates remain the same for 
all estimators.  
 
Under this assumption, the MDE formula for γ̂  can be obtained by first noting that for significance level 
α, the critical value for the t-statistic under the null hypothesis of no impact on posttest scores is 

1(1 { / 2})T α− −  for a two-tailed test and 1(1 )T α− −  for a one-tailed test, where 1(.)T − is the inverse of 
the student’s t distribution function with df degrees of freedom. For a given MDI value, statistical power 
for a two-tailed test under the alternative hypothesis H1: MDIγ =  can then be expressed as follows: 
 

1ˆ ˆ(2) (1 { / 2}) | , ( )
ˆ( )

P T MDI Bias
Var
γ α γ γ β
γ

−
⎛ ⎞

> − = =⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 
where β is the preset statistical power level (for example, 80 percent). The MDE formula for γ̂  can then 
be obtained by solving for MDI in (2) and dividing MDI by the standard deviation of the posttest score 
( 1θ ): 
 

1 1ˆ ˆ ˆ(3) ( ) / [ ( , , ) ( ) ( )] / ,MDE MDI Factor df Var Biasγ θ α β γ γ θ= = −  
 

where Factor(.) is 1 1[ (1 { / 2}) ( )]T Tα β− −− + for a two-tailed test and 1 1[ (1 ) ( )]T Tα β− −− +  for a one-
tailed test. Factor(.) becomes larger as α and df decrease and as β increases (see Schochet 2008).  If 

.05α =  and .80β =  (typical assumptions) and df > 40, Factor(.) is about 2.5 for a one-tailed test and 
2.8 for a two-tailed test. An estimator is preferred to another if it has a lower MDE value. 
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The MDE formula in (3) is appropriate only when the posttest impact estimators are unbiased or biased 
downwards (that is, when ˆ( ) 0Bias γ ≤ ) so that there is a variance-bias tradeoff when comparing 
estimators. In these cases, relative to the MSE criterion, the MDE criterion tends to place more weight on 
the variance component and less weight on the bias component. 
 
Finally, it is important to note that the MSE and MDE criteria do not include pretest data collection costs. 
Thus, this paper does not consider these costs when comparing estimators.  
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Chapter 4:  Considered Designs 

The focus of this paper is on two-level experimental designs in which students are nested within units 
(such as schools or classrooms) that are randomly assigned to either a single treatment or control 
condition. Two-level designs are considered here to keep the presentation manageable and because they 
are the most common designs used in education research. The two-level considered designs are as 
follows: Design I, where schools are the unit of random assignment; and Design II, where classrooms are 
the unit of random assignment and school effects are treated as fixed (which occurs in the common case 
where schools are purposively selected for the study and school effects are treated as fixed strata, so that 
the impact results generalize to the study schools only).  
 
Finally, this paper also considers Design III, where students are the unit of random assignment and 
purposively-selected site (school or district) effects are treated as fixed. This is a nonclustered, stratified 
RCT design that is a special case  (collapsed version) of the two-level designs discussed above. These 
designs are discussed in more detail in Schochet (2008).   
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Chapter 5:  Theoretical Framework 

This chapter discusses the statistical theory underlying the variance-bias tradeoff associated with 
including pretests in the posttest impact models for two-level clustered RCTs. The theory is discussed in 
the context of the causal inference theory underlying RCTs  (Neyman 1923; Rubin 1974; Holland 1986; 
Imbens and Rubin 2007; Freedman 2008; Schochet 2007).  
 
It is assumed that students are nested within n units (schools or classrooms) that are randomly assigned to 
a single treatment or control group. The sample is assumed to contain np treatment units and n(1-p) 
control units, where p is the sampling rate to the treatment group (0<p<1).  
 
This paper considers a “superpopulation” version of the Neyman-Rubin causal inference model (see 
Imbens and Rubin 2007; Schochet 2007; and Yang and Tsiatis 2001). Let Z1Ti be the “potential” unit-level 
continuous posttest score for unit i in the treatment condition and Z1Ci be the potential posttest score for 
unit i in the control condition. Potential posttest scores for the n study units are assumed to be random 
draws from potential treatment and control posttest distributions in the study population, with means μ1T 
and μ1C, respectively; a common variance 2

1 0σ > is assumed for each research group to ensure that 
variance estimates based on standard ordinary least squares (OLS) methods are justified by the Neyman-
Rubin causal model (Freedman 2008; Schochet 2007). It is assumed that treatment assignments are 
independent of  potential outcomes (due to random assignment), and that potential outcomes for each unit 
are unrelated to the treatment status of other units. Finally, let Z0Ti, Z0Ci, μ0T, μ0C, and 2

0σ  denote 
corresponding quantities for fall pretest scores, and let 01σ  denote the covariance between the potential 
pretest and posttest scores for both the treatment and control groups (which could depend on how late the 
pretests are collected).1  
 
Suppose next that m students are sampled from the student superpopulation within each study unit. Let 
Y1Tij be the potential posttest score for student j in unit i in the treatment condition and Y1Cij be the 
corresponding potential posttest score for the student in the control condition. Y1Tij and Y1Cij are assumed 
to be random draws from student-level potential treatment and control posttest distributions (which are 
conditional on school-level potential outcomes) with means Z1Ti and Z1Ci, respectively, and common 
variance 2

1 0τ > . Corresponding variables for student-level pretest scores are denoted by replacing 
subscripts of “1” by subscripts of “0”. The covariance between student-level potential pretest and posttest 
scores within units is denoted by 01τ .2  
 
Under this causal inference model, the difference between the two potential posttest scores, 1 1( )Ti CiZ Z− , 
is the unit-level treatment effect for unit i, and the average treatment effect parameter (ATE) is 

1 1 1 1( ) .Ti Ci T CATE E Z Z μ μ= − = − The unit-level treatment effects, and hence, the ATE parameter, 

                                                 
1 Neyman (1923) considered a “finite population” model where potential outcomes are assumed to be fixed for 

the study  population and where the only source of randomness is treatment status. 

2 Equal cluster sample sizes are assumed for simplicity, and because this largely holds in clustered RCT 
designs in the education area. The results presented in this paper apply approximately for unequal cluster sizes if m 
is replaced in the formulas by the average cluster size m (Kish 1965). 
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cannot be calculated directly because for each unit and student, the potential outcome is observed in either 
the treatment or control condition, but not in both. Formally, if Ti is a treatment status indicator variable 
that equals 1 for treatments and 0 for controls, then the observed posttest score for a unit, 1iz , can be 
expressed as follows: 
 

1 1 1(4) (1 )i i Ti i Ciz T Z T Z= + − .   
 
Similarly, the observed posttest score for a student 1ijy  is: 

 
1 1 1(5) (1 )ij i Tij i Cijy TY T Y= + − . 

 
The simple equations in (4) and (5) form the basis for the causal inference theory presented below. 
 
 The terms in (5) can be rearranged to create the following regression model: 
 

1 0 1 1 1(6) ( )ij i i ijy T u eα α= + + + , where  
 

1. 0 1Cα μ=  and 1 1 1T Cα μ μ= −  (the ATE parameter) are coefficients to be estimated 

2.  1 1 1 1 1( ) (1 )( )i i Ti T i Ci Cu T Z T Zμ μ= − + − − is a unit-level error term with mean zero and 

between-unit variance 2
1σ that is uncorrelated with iT    

3. 1 1 1 1 1( ) (1 )( )ij i Tij Ti i Cij Cie T Y Z T Y Z= − + − −  is a student-level error term with mean zero and 

within-unit variance 2
1τ that is uncorrelated with 1iu and iT  

Importantly, (6) can also be derived using the following two-level HLM model (Bryk and Raudenbush 
1992): 
 

1 1 1

1 0 1

1:
2 : ,

ij i ij

i i i

Level y z e
Level z T uα α

= +

= + +
 

 
where Level 1 corresponds to students and Level 2 to units. Inserting the Level 2 equation into the Level 
1 equation yields (6). Thus, the HLM approach is consistent with the causal inference theory presented 
above.3 
 
A similar approach can be used to develop a regression model for the observed pretest scores: 

 
0 0 1 0 0(7) ( )ij i i ijy T u eβ β= + + + , 

 

                                                 
3 It is assumed that there are no biases due to missing posttest data. Davidian et al. (2005) discuss 

semiparametric estimation of treatment effects in a pretest-posttest study with missing data. 
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where 0 0Cβ μ= , 1 0 0T Cβ μ μ= − , and 0iu and 0ije are between- and within-unit error terms, respectively, 

with the following properties: 0 0( ) ( ) 0;i ijE u E e= =  0 0( ) ( ) 0;i i i ijE Tu E T e= =  2
0 0( ) ;iVar u σ=  

2
0 0( ) ;ijVar e τ=  0 0( , ) 0;i ijCov u e =  0 1 01( , ) ;i iCov u u σ=  and 0 1 01( , )ij ijCov e e τ= .  

 
If the pretests are “true” baselines, 1β  will equal zero because of random assignment.  Stated differently, 
with true baselines, 0 0Ti CiZ Z= and 0 0Tij CijY Y= . With late baselines, the size and sign of 1β  will depend 
on the growth trajectory of intervention effects, the overall timing of baseline testing, and differences in 
testing-date distributions across the treatment and control groups.  For example, 1β  will tend to be 
positive if the intervention has early beneficial intervention effects or if pretest testing dates are, on 
average, later for treatments than for controls.   
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Chapter 6:  The Variance-Bias Tradeoff for Various ATE Estimators 

This chapter uses the causal inference regression models in (6) and (7) to mathematically examine the 
variance-bias tradeoff for several commonly-used ATE impact estimators. All estimators and their 
asymptotic properties were obtained using standard OLS methods. Appendix A provides a proof of the 
asymptotic results for the analysis of covariance (ANCOVA) estimator (the most general case); proofs for 
the other estimators are similar.  
 
The Posttest-Only Estimator 
 
The posttest-only estimator ˆPosttestγ does not adjust for the pretests and is obtained by applying OLS 
methods directly to equation (6).  The resulting estimator is as follows: 

 
1 1ˆ(8) ,Posttest T Cy yγ = −  where 

 

 1 1
1 1

1 n m

T i ij
i j

y T y
nmp = =

= ∑∑  and 1 1
1 1

1 (1 )
(1 )

n m

C i ij
i j

y T y
nm p = =

= −
− ∑∑ . 

 
As n approaches infinity (for fixed m), 1ˆ p

Posttestγ α⎯⎯→ , where p⎯⎯→  denotes convergence in 
probability. Thus, ˆPosttestγ  is an asymptotically unbiased estimator for the ATE parameter.  Furthermore, 
results in Appendix A can be used to show that ˆPosttestγ converges to a normal distribution with the 
following asymptotic variance: 
 

 
2 2
1 11ˆ ˆ(9) ( ) ( )

(1 )Posttest PosttestAsyVar MSE
p p n nm

σ τγ γ
⎡ ⎤

= = +⎢ ⎥− ⎣ ⎦
. 

 
The within-unit (second) variance term in (9) is the conventional variance expression for an impact 
estimate for a nonclustered, stratified design (Design III). Design effects in a clustered design arise 
because of the first variance term, which represents the correlation of student posttest scores within the 
same units (Murray 1998; Donner and Klar 2000; Raudenbush 1997).  
 
For the empirical work presented below, it is convenient to express the variance expression in (9) in terms 
of the intraclass correlation (ICC1) (Cochran 1963; Kish 1965), which is defined as the between-unit 
variance ( 2

1σ ) as a proportion of the total variance of the outcome measure ( 2 2 2
1 1 1θ σ τ= + ): 

 

 
2 2

1 1 1 11 (1 )ˆ(10) ( )
(1 )Posttest

ICC ICCAsyVar
p p n nm

θ θγ
⎡ ⎤−

= +⎢ ⎥− ⎣ ⎦
. 

 
In this formulation, design effects from clustering are small if mean posttest scores do not vary much 
across units (that is, if ICC1 is small).  
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The Differences-In-Differences (DID) Estimator 
 
The DID estimator ˆDIDγ is obtained by applying OLS methods to a gain-score model formed by 
subtracting the pretest model in (7) from the posttest model in (6).  The DID estimator is:  
 

 1 1 0 0ˆ ( ) ( ),DID T C T Cy y y yγ = − − −  
 

where 1Ty and 1Cy are defined as above and 
 

  0 0
1 1

1 n m

T i ij
i j

y T y
nmp = =

= ∑∑ and 0 0
1 1

1 (1 )
(1 )

n m

C i ij
i j

y T y
nm p = =

= −
− ∑∑ . 

 
As n approaches infinity, 1 1ˆ ( )p

DIDγ α β⎯⎯→ − ; thus, the asymptotic bias of the DID estimator is 1β− . 
This estimator will provide a downwardly biased estimate of the posttest impact if the intervention 
improves late pretest scores. Conversely, ˆDIDγ will provide an upwardly biased estimate of the posttest 
impact if the intervention lowers late pretest scores. The DID estimator will be asymptotically unbiased if 
and only if 1 0.β =   
 
The DID estimator converges to a normal distribution with mean 1 1( )α β−  and the following asymptotic 
variance: 
 

 
2 2 2 2
1 0 01 1 0 012 21ˆ(11) ( )

(1 )DIDAsyVar
p p n nm

σ σ σ τ τ τγ
⎡ ⎤+ − + −

= +⎢ ⎥− ⎣ ⎦
.  

 
This expression can also be written as follows: 
 

 
2 2 2 2
1 0 0 1 01 1 0 0 1 012 21ˆ(12) ( ) ,

(1 )DIDAsyVar
p p n nm

σ σ σ σ ρ τ τ τ τ λγ
⎡ ⎤+ − + −

= +⎢ ⎥− ⎣ ⎦
 

 
where 01 01 1 0( / )ρ σ σ σ=  and 01 01 1 0( / )λ τ τ τ=  are unit-level and student-level pretest-posttest 
correlations, respectively.  The DID variance does not depend on 1β .  The asymptotic variance for the 
nonclustered Design III can be obtained by setting 2 2

1 0 0σ σ= =  in (12). 
 
The comparison of (9) and (12) shows that ˆDIDγ will have smaller variance than ˆPosttestγ  if the pretest-
posttest correlations are positive and sufficiently large.  For example, if we focus only on the leading unit-
level variance term in (12) and assume that 2 2

1 0σ σ= , the DID estimator will be more efficient 
if 01 0.5ρ ≥ . This condition is likely to hold in our application, because pretest-posttest correlations of 0.7 
to 0.9 are typically found in the education field (Schochet 2008; Bloom et al. 2005). Thus, if 1 0β ≠ , 
ˆDIDγ  will be asymptotically biased, but MSE and MDE values could be smaller for ˆDIDγ  than for ˆPosttestγ  

due to efficiency gains, as discussed in the empirical analysis below. 
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The ANCOVA Estimator 
 
The ANCOVA estimator ˆANCOVAγ is obtained by regressing observed posttest scores on iT and the pretest 
scores. The true model for the posttest scores is (6), but the observed pretests are included as “irrelevant” 
covariates to improve the precision of the posttest impact estimates. 
 
It is assumed that two pretest variables are included as covariates in the model: (1) the unit-level mean 
pretest score, 0iy , and (2) the difference between the student-level pretest score and the unit-level pretest 

score, 0 0 0( )w
ij ij iy y y= − . These two variables are used to allow for separate effects of the pretests in 

reducing between- and within-unit variance. Thus, the ANCOVA estimation model is: 
 
 1 0 1 0 2 0(13) ( )w

ij i i ij i ijy T y yδ γ δ δ ν ω= + + + + + , 
 
where iν and ijω  are mean zero error terms and 0δ , 1δ , and 2δ  are parameters to be estimated. 
 
As shown in Appendix A, as n approaches infinity, 2

1 1 01 0ˆ ( / )p
ANCOVAγ α β σ σ⎯⎯→ − .  Thus, the 

asymptotic bias of the ANCOVA estimator is: 
 

01 1
1 1 012

0 0

ˆ(14) ( )ANCOVAAsyBias σ σγ β β ρ
σ σ

= − = − . 

 
The term 2

01 0( / )σ σ  is the OLS parameter estimate from a regression of the unit-level potential posttests 
on the unit-level potential pretests (that is, when 1iu  is regressed on 0iu ). Thus, the asymptotic bias of 
ˆANCOVAγ is the product of this regression coefficient and 1β− .  The ANCOVA estimator will be unbiased 

only if 1 0β =  or 01 0ρ = . 
 
If 1 0β ≠  and 01 0ρ ≥ , the relative bias of ˆANCOVAγ  compared to ˆDIDγ  will depend on the value 
of 01 1 0( / ).ρ σ σ   The bias of ˆANCOVAγ  will be smaller in absolute value if 01 1 0( / ) 1ρ σ σ < .  This will 
occur if 0σ  and 1σ  are similar, which is likely to hold in our application (see below). This condition will 
also hold if 0 1σ σ>  or 01 0ρ = . The bias of the two estimators will be the same if 01 1 0( / ) 1ρ σ σ = , which 
is the assumption underlying the DID model (that is, the regression coefficient on the pretest covariate is 
1). The DID estimator will be less biased in absolute value only if 1 0 01( / )σ σ ρ> .   
 
As shown in Appendix A, ˆANCOVAγ has an asymptotic normal distribution with mean 2

1 1 01 0( / )α β σ σ−  
and the following asymptotic variance: 
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2 2 2 2
1 01 1 01(1 ) (1 )1ˆ(15) ( )

(1 )ANCOVAAsyVar d
p p n nm

σ ρ τ λγ
⎡ ⎤− −

= +⎢ ⎥− ⎣ ⎦
,  where   

         
2 2

1 1
2 2
0 0 0

(1 ) (1 )1 1p p p pd
ICC

β β
σ θ

⎡ ⎤ ⎡ ⎤− −
= + = +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 , 

 
2 2 2
0 0 0θ σ τ= + , and 2 2

0 0 0/ICC σ θ= .  
 
The term inside the brackets in (15) is similar to the variance expression for the posttest-only estimator in 
(9) except that 2

1σ and 2
1τ are reduced by 2

01(1 )ρ−  and 2
01(1 )λ− , respectively, to account for the pretest-

posttest correlations (these are regression R2 adjustments). Countering these precision gains is the design 
effect 1d ≥ which inflates the variance due to the collinearity of iT  and 0iy in (13). This design effect 
will typically be small, unless the early treatment effect measured in effect size units 1 0( / )β θ  is 
unrealistically large compared to the expected size of the posttest impact. For example, assuming p = 0.50 
and ICC0 = 0.15, we find that d = 1.11 if 1 0( / )β θ = 0.10 and  d = 1.07 if 1 0( / )β θ = 0.20. These values of 

1 0( / )β θ  are large relative to the posttest impact that most studies are powered to detect (about 0.15 to 
0.30 standard deviations).  
 
By comparing (9) and (15), it can be seen that ˆANCOVAγ  will typically be more efficient than ˆPosttestγ .  This 

will always be the case if 1 0β =  and either 2
01 0ρ >  or 2

01 0λ > . This will also typically be the case if 

1 0β ≠  except in the unlikely event that R2 gains from including the pretests are offset by power losses 
from the design effect d.  For example, if we focus on the unit-level variance terms only, ˆANCOVAγ will be 

more efficient than ˆPosttestγ  if 2
011/(1 )d ρ< − , which as discussed, will usually be satisfied in practice. 

Thus, although the ANCOVA estimator could be biased with late pretests, this estimator may produce 
lower MSE and MDE values than the posttest-only estimator due to efficiency gains.  
 
The comparison of (11) and (15) shows also that the ANCOVA estimator will typically be more efficient 
than the DID estimator (see also Oakes and Feldman 2001; Allison 1990; and Reichardt 1979 for a 
discussion comparing the ANCOVA and DID estimators for nonclustered designs). This will always be 
the case if 1 0β =  and either 01 1 0( / ) 1ρ σ σ ≠  or 01 1 0( / ) 1λ τ τ ≠ . It will also tend to be the case if 

1 0β ≠ .  For example, focusing on the unit-level variance terms only, ˆANCOVAγ will be more efficient than 
ˆDIDγ  under the following condition: 

 

 
( )2

01 0 1
2
01

[ / ]
1

(1 )
d

ρ σ σ
ρ

−
< +

−
. 

 
Because d values are likely to be small, this inequality is likely to be satisfied for most values of 

01 1 0( / ) 1ρ σ σ ≠ .  
 
These findings suggest then that the ANCOVA estimator will generally be preferred to the DID estimator, 
because the ANCOVA estimator will typically produce ATE estimates with smaller biases and smaller 
variances. Thus, in practice, the ANCOVA estimator will tend to produce estimators with smaller MSEs 
and MDEs, as quantified in the empirical analysis below.   
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Finally, for Design III (in which students are randomly assigned within sites), the regression model 
covariates include the student-level pretests 0ijy only (but not the school-level pretests). For this design, 

the asymptotic bias for ˆANCOVAγ  is 1 01 1 0( / )β λ τ τ− , and the asymptotic variance is: 
 

2 2 2
1 01 1

2
0

(1 )1 (1 )ˆ( ) 1
(1 )ANCOVA

p pAsyVar
p p nm

τ λ βγ
τ

⎡ ⎤⎡ ⎤− −
= +⎢ ⎥⎢ ⎥− ⎣ ⎦ ⎣ ⎦

. 

 
The Unbiased ANCOVA (UANCOVA) Estimator 
 
The UANCOVA estimator is obtained using regression models where the model covariates include “true” 
baseline variables. This estimator is therefore asymptotically unbiased. I consider two categories of 
baseline covariates. The first category—which is the focus of the empirical analysis—includes baseline 
test score data on tests that are related to but not exactly the same as the posttest. These covariates could 
include school-level standardized test scores for prior cohorts of students in the study schools (who are 
similar to and in the same grades as the students in the study sample). If available, they could also include 
school records data from earlier grades for students in the study sample. These alternative baseline data 
are likely to have lower correlations with the posttests than the student-level pretests that are directly 
aligned to the posttests. Thus, they may reduce variance less. However, these baseline data are likely to be 
uncontaminated, and thus, will produce unbiased ATE estimators. They may also be less costly to collect. 
 
The option of collecting alternative baseline data is most pertinent for designs in which schools are the 
unit of random assignment (Design I). Aggregate school-level data can be obtained from public sources or 
from school records as part of the evaluation data collection effort. It is usually more difficult to obtain 
longitudinal school records data for specific teachers and students. Thus, alternative baseline data may not 
always be a viable substitute for pretest data for designs in which the unit of random assignment is at the 
classroom level (Design II) or the student level (Design III). Accordingly, the empirical analysis for the 
UANCOVA estimator presented below focuses on school-based designs. 
 
The second category of covariates includes basic student-level demographic baseline variables that 
pertain to the period prior to random assignment. Including these variables in  posttest-only regression 
models typically yield R2 values of about 0.10 to 0.20 (Schochet 2008). These covariates, however, 
typically yield only small marginal improvements in R2 values if pretests are also included in the models 
(Schochet 2008). Thus, the empirical analysis for the ANCOVA and DID estimators ignore these 
covariates.   
 
The asymptotic properties of the UANCOVA estimator ÛANCOVAγ  can be obtained by setting 1 0β =  in the 
corresponding formulas for the ANCOVA estimator. Using this approach, we find that ÛANCOVAγ  has an 
asymptotic normal distribution with mean 1α  and the following asymptotic variance: 
 

2 2 2 2
1 01 1 01(1 ) (1 )1ˆ(16) ( )

(1 )
U U

UANCOVAAsyVar
p p n nm

σ ρ τ λγ
⎡ ⎤− −

= +⎢ ⎥− ⎣ ⎦
, 

 
where 2

01Uρ  and 2
01Uλ are, respectively, unit- and student-level correlations between the alternative 

baselines and the posttests. It is assumed that 2 2
01 01Uρ ρ<  and 2 2

01 01Uλ λ< . If the covariates only include  

school-level aggregate test scores, then 2
01 0Uλ = .  
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If  2
01 0Uρ >  or 2

01 0Uλ > , ÛANCOVAγ  will be more precise and have lower MSE and MDE values than 
ˆPosttestγ . However, ÛANCOVAγ  will typically be less precise than ˆANCOVAγ  unless the regression R2 values are 

very similar for the two models. For example, focusing only on the leading unit-level variance terms in 
(15) and (16), ˆANCOVAγ  will be more precise than ÛANCOVAγ  if 2 2

01 01(1 ) /(1 )Ud ρ ρ< − − , which will 

typically hold in practice unless 01Uρ  and 01ρ are very similar. The empirical analysis below compares 
plausible MSE and MDE values for the two estimators. 
 
The Generalized Estimating Equation (GEE) Estimator  
 
An alternative analytic approach for adjusting for late pretests—that strays somewhat from the causal 
inference framework discussed above—is to model the growth in impacts as a function of time. The GEE 
estimator that is considered here involves the simultaneous estimation of the models in (6) and (7) where 
the unit early treatment effect ( 1iβ ) is modeled as a function of the posttest impact ( 1α ) and the number 
of months between randomization and the  pretest data collection date ( it ). Specifically, it is assumed 
that 1 1( ,[ / ])i i if t lβ α= , where il  is the length of the follow-up period (for example, 10 months for a 
spring posttest), and (.)f is a function that specifies how impacts grow over time (the next chapter 
discusses these functions in more detail).   
 
Using this modeling approach, equation (7) can be rewritten as:  
 

0 0 1 0 0(17) ( , ) ( )ij i i i ijy f c T u eβ α= + + + , 
 

where ( / )i i ic t l=  and 0 1ic≤ ≤ . The parameters in equations (6) and (17) can then be simultaneously 
estimated using GEE methods (Liang and Zeger 1986; Yang and Tsiatis 2001), which, for tractability, are 
discussed assuming that the data are aggregated to the unit level.  
 
The GEE estimator for the parameter vector 1 0 0( )α α β′ =θ  can be obtained as the solution to the 
following equations:   
 

 
1

ˆ(18) ( - ) 0
n

i i
i=

′ =∑ -1
i iD Ω z z ,   where 
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Because ˆˆ =i iz D θ , the GEE estimator is as follows: 
 

1
0

1 1

0

ˆ
ˆ ˆ ˆˆ(19) ( ) ,

ˆ

GEE n n

i i
i i

γ
α

β

−

= =

⎛ ⎞
⎜ ⎟

′ ′= =⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑-1 -1
GEE i i i iθ D Ω D D Ω z  
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where ˆ
iΩ  is a consistent estimator for the unknown iΩ .   

 

As n approaches infinity,  Liang and Zeger (1986) show that if 1

1

ˆ( )
n

i
i

−

=

′∑ -1

i iD Ω D  exists, ˆGEEγ  has an 

asymptotic normal distribution with mean 1α  and  asymptotic variance 1[ ( )]iE −′ -1
i iD Ω D . Thus, the GEE 

estimator is consistent, assuming that f(.) is specified correctly.  
 
As an example, suppose that impacts grow linearly over time so that 1 1( , )i if c cα α= .  In this case, it can 
be seen after some algebra that the asymptotic variance of ˆGEEγ  is: 
 

 
2 2 2
0 1 01

2 2 2
0 1 0 1 01

(1 )1ˆ(20) ( )
(1 ) 2GEEAsyVar

np p c c
σ σ ργ

σ σ σ σ ρ
⎡ ⎤−

= ⎢ ⎥− + −⎣ ⎦
, 

 
where c is the mean ic across units. If 0ic =  for each unit (that is, if the pretests are collected before 
randomization), (20) reduces to the ANCOVA variance expression in (15) with 1 0β =  (focusing on unit-
level terms only). If 0c > , (20) will be larger than if 0c =  as long as 01 0 12 ( / )c ρ σ σ<  (which is 
likely to occur in practice), but the relative efficiency of the ANCOVA and GEE estimators will depend 
on specific parameter values.     
 
As another example, suppose instead that impacts grow quadratically over time, so that 2

1 1( , ) .i if c cα α=   

In this case, the asymptotic variance of ˆGEEγ  can be obtained from (20) by replacing c with 2c . More 
generally, (20) applies to impact growth functions that can be expressed as 1 1( , ) ( )i if c g cα α= , for some 
function (.)g ,  by replacing c with ( )g c  in (20). 
 
This GEE approach hinges critically on the correct function form specification for 1( , )if cα , which is 
difficult to test. Thus, we do not include the GEE estimator in the empirical analysis, because it is difficult 
to quantify potential estimator biases. However, this approach is useful for testing the sensitivity of 
posttest impact findings to alternative estimation procedures. 

 
HLM Growth Curve Approach 

 
Finally, a somewhat related method to the GEE approach is to use an HLM growth curve approach to 
model student test scores as a function of the time between randomization and data collection. Under this 
approach, pretests are treated as dependent variables and stacked with the posttests for analysis. This 
yields a three-level HLM model, where Level 1 corresponds to time, Level 2 to students, and Level 3 to 
units. This approach is not considered here, because our focus is on designs with a single posttest, so that 
data on only two time points are available for each student, yielding zero available degrees of freedom for 
analysis. The growth curve approach would be more appropriate if additional longitudinal test score data 
were available, so that flexible  function forms for the outcome-time relationship could be specified and 
tested.  
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Chapter 7:  Empirical Analysis 

This chapter calculates MSE and MDE values for the posttest-only, DID, ANCOVA, and UANCOVA 
estimators using simulations that are based on key parameter values that are found in the literature. The 
focus is on RCTs for education interventions that aim to improve achievement test scores of elementary 
school and preschool students in low-performing school districts. 

Structure 
 
To help structure and interpret the empirical analysis, it is assumed that the evaluation is designed to 
detect an intervention effect on spring achievement test scores of 0.15 to 0.30 standard deviation units. 
These targets are often used in large-scale RCTs in the education field and represent a reasonable 
compromise between evaluation rigor and evaluation cost (see Schochet 2008 and Hill et al. 2007). These 
standards are often justified based on what is realistically attainable from meta-analyses of impact 
findings from previous evaluations in related areas. These effect sizes can also be interpreted by noting 
that the test performance of young students in math and reading grows by about 0.70 standard deviations 
per grade (Schochet 2008). Thus, a standardized effect size of 0.25, for example, corresponds with 
roughly 3.5 months of instruction (assuming a regular 10-month school year).  
 
The empirical results below hinge critically on the growth trajectory of test score impacts, which will 
partly determine the level of contamination in the late pretest scores. Figure 7.1 displays four hypothetical 
growth trajectories of test score impacts between the start and end of the school year, where the posttest 
impact at the end of the school year is expected to be 0.25 standard deviations (Table 7.1 displays 
monthly impact values for each scenario and formulas). The testing date distributions are assumed to be 
similar for treatments and controls.  
 
The trajectory of impact growth will likely depend on a number of factors, including the  nature of the 
outcome measure, the nature of the intervention, and the types of students under investigation. For 
instance, all else equal, initial impact growth is likely to be steeper for an intervention that can be 
implemented quickly (such as the use of a new textbook) than for an intervention that takes more time to 
implement (such as a whole-school reform), for more intensive than less intensive interventions, and for 
students who are more willing and able to grasp intervention components. While there is a large literature 
on the extent to which test scores grow over time, there is very little evidence on the extent to which 
impacts grow within a school year. Although more research is needed on this issue, it seems plausible that 
for many interventions, treatment effects on student achievement test scores are likely to grow gradually 
(linear growth; Panel A in Figure 7.1) or slowly at first but then more quickly after a critical mass of 
information has been administered and processed (quadratic growth; Panel B or C). Logarithmic growth 
(Panel D) seems less plausible for test score outcomes but may be more plausible for other educational 
outcomes (not considered in this paper) such as student behavior, teacher knowledge of specific 
intervention components, or student assessments that are directly aligned to intervention components.  
 
Figure 7.1 and Table 7.1 suggest then that for many scenarios, intervention effects on late pretest scores 
will be a relatively small percentage of expected end-of-the-year intervention effects. For example, if the 
average pretest was collected 2 months after the start of the school year for each research group, the ratio 
of the pretest-to-posttest impact would be about 20 percent if impacts grew linearly (.05/.25) and 4 
percent if impacts grew quadratically (.01/.25). These findings have important implications for the 
empirical analysis presented below.
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Table 7.1 : Hypothetical Growth Trajectories of Test Score Impacts, by the Number of Months Since the 
Start of School (Design I) 

 Growth Trajectory of Test Score Impacts (Measured in Standard Deviation Units)a 

Months Since Start 
of School 

Linear  
Growth 

Quadratic 
Growth 

Quadratic Growth After 
Initial Negative Impacts 

Logarithmic 
Growth 

0 0.00 0.00 0.00 0.00 

1 0.03 0.00 -0.01 0.07 

2 0.05 0.01 -0.02 0.11 

3 0.08 0.02 -0.01 0.14 

4 0.10 0.04 0.00 0.17 

5 0.13 0.06 0.02 0.19 

6 0.15 0.09 0.05 0.20 

7 0.18 0.12 0.09 0.22 

8 0.20 0.16 0.13 0.23 

9 0.23 0.20 0.19 0.24 

10 0.25 0.25 0.25 0.25 
 
Note: Testing date distributions are assumed to be similar for the treatment and control groups. 
 
a Linear growth assumes that ( ) .025I t t=  where I(t) is the impact in month t. Quadratic growth assumes that 

2( ) .0025I t t= ; Quadratic growth after initial negative impacts assumes that 2( ) .0069( 4)I t t= − for 4t ≥ ;  
Logarithmic growth assumes that ( ) .104 ln( 1)I t t= + . 

 
Assumptions 

To keep the presentation manageable, the MSE and MDE calculations were performed using the 
following empirically-based assumptions: 

 
1. ICC values of 0.15 at the school and classroom levels for both the pretests and posttests 

(that is, 1 0ICC ICC= = 0.15). Schochet (2008), Hedges and Hedberg (2007), and Bloom et 
al. (2005) provide empirical evidence for these ICC values.  

2. Pretest-posttest squared correlations(R2 values) equal to 0.50 and 0.70. These R2 values are 
typically found in the literature for achievement test scores of young children (Schochet 
2008; Bloom et al. 2005). Thus, results are presented for 2 2

01 01 0.50ρ λ= =  

and 2 2
01 01 0.70ρ λ= = . These correlations are likely to be larger if the pretests are conducted 

later rather than earlier, and thus, could be indexed by time. For simplicity, however, the 
calculations ignore this indexing. 

3. Pretest and posttest variances are equal (that is, 2 2 2
1 0σ σ σ= = and 2 2 2

1 0τ τ τ= = ). This 
restriction is based on an analysis of test score data from previous RCTs. For example, for 
the Teach for America (TFA) Evaluation (Decker and Glazerman 2004), the ratio of pretest-
to-posttest variances on the Iowa Test of Basic Skills (ITBS) was 1.0 for  reading and 0.90 
for math for students in grades one to five. Similarly, for the New York City School Voucher 
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Experiment (Mayer et al. 2002), the corresponding variance ratio for ITBS scores was 1.06 
for reading and 0.80 for math, and for the Evaluation of the Effectiveness of Educational 
Technology Interventions (Dynarski and Agodini 2003), the variance ratio for the Stanford 
Achievement Test (SAT) was 1.0 for first graders, 1.1 for fourth graders, and 1.2 for sixth 
graders. Furthermore, the pretest and posttest variances in these studies were very similar for 
the treatment and control groups (not shown). Finally, based on empirical evidence, it is 
assumed that 2 2 2θ σ τ= +  = 15.  

4. The evaluation includes a total of 40 or 60 schools. These are typical sample sizes that are 
included in large-scale education RCTs where schools are the unit of random assignment. 
These sample sizes typically yield MDEs in the 0.15 to 0.30 range (Schochet 2008). Fewer 
schools (10 to 40), however, are considered for classroom- and student-level designs 
(Designs II and III), because these designs are less clustered than Design I and yield more 
precise estimates for a given school sample size. 

5. A 1:1 treatment-control split (that is, p=0.50). A 1:1 split is a common design used in 
education RCTs because it yields the most precise impact estimates for a given sample size. 
Results are very similar for a 2:1 split (not shown).  

6. The intervention is being tested in a single grade with an average of 3 classrooms per school 
per grade and an average of 23 students per classroom. It is assumed that 80 percent of 
students (or 55 students per school) in the baseline sample provide posttest data.  

7. A two-tailed test at 80 percent power and a 5 percent significance level for the MDE 
calculations. These are typical assumptions that are used in statistical power calculations for 
education RCTs and yield a value of about 2.8 for Factor(.) in equation (3). 

8. The distributions of testing dates are similar for the treatment and control groups. Although 
pretests are sometimes conducted slightly later in control sites than in treatment sites, most 
well-designed RCTs ensure that testing dates are spread evenly across the two research 
groups. For simplicity, the same testing date distribution is assumed for treatments and 
controls. Thus, it is assumed that late pretests could be contaminated by early treatment 
effects, but not by differences in testing dates across the two research groups.    

9. The covariates for the UANCOVA estimator include only aggregate school-level test scores 
for prior cohorts of students. Thus, results are presented for Design I only and it is assumed 
that 2

01 0Uλ =  in equation (16) and that 2 2
01 01Uρ ρ< .The UANCOVA results for R2 values of 

0.10 and 0.20 pertain also to an UANCOVA  model where the covariates include basic 
student demographic data rather than baseline test scores.  

All calculations were conducted using the asymptotic variance and bias formulas shown above (using an 
EXCEL spreadsheet). The calculations can easily be revised using alternative assumptions that may 
pertain to specific evaluations. 

 



 Empirical Analysis  25 

Empirical Results for Design I 
 
Table 7.2 displays, for Design I, the largest early treatment effect measured in effect size units (that is, 

1 /β θ ) for which ˆDIDγ  and ˆANCOVAγ  yield  smaller MSE and MDE values than ˆPosttestγ  and  ÛANCOVAγ . 4  
The rows with R2=0 pertain to the posttest-only estimator and the rows with R2>0 pertain to the 
UANCOVA estimator. For example, if the sample contains 40 schools and p=0.50, ˆANCOVAγ  will 
yield a smaller MSE value than ˆPosttestγ  if the early treatment effect is less than 0.127 standard 
deviations. Note that MDEs for the posttests for the four ANCOVA specifications are 0.26, 0.20, 
0.21, and 0.16, respectively, which were calculated assuming uncontaminated pretest data (the usual 
power analysis approach for calculating appropriate sample sizes). 
 
The first key finding from Table 7.2 is that under most reasonable assumptions about the growth 
trajectory of impacts and pretest administration dates, the DID and ANCOVA estimators will typically be 
preferred to the posttest-only estimator (see rows with R2=0). MSE values will be smaller for ˆDIDγ  and 
ˆANCOVAγ  than ˆPosttestγ  if early treatment effects are less than about 0.10 standard deviations (the figures are 

somewhat larger using the MDE criterion). Assuming an  ultimate spring posttest impact of 0.25 standard 
deviations, this condition will hold if test score impacts grow linearly and the pretests are collected within 
about 4 months after the start of the school year, or if test score impacts grow quadratically and the 
pretests are collected within about 7 months (Table 7.1). Even under logarithmic growth, the DID and 
ANCOVA models will still be preferred if pretests are collected within about 2 months after the start of 
the school year (Table 7.1). The results are stronger using the MDE than MSE criterion, because the MDE 
criterion places more weight on the variance component and less weight on the bias component. The 
results also become stronger as R2 values increase (and especially so using the MDE criterion). 
 
The second main finding from Table 7.2 is that consistent with the theory presented above, the ANCOVA 
estimator will typically be preferred to the DID estimator. The ANCOVA estimator yields lower MSE 
and MDE values under our assumptions, because the ANCOVA estimator has both smaller bias in 
absolute value terms ( 1 01β ρ  compared to 1β ) and smaller variance (because the design effect d is very 
small and 01 1 0 01( / ) 1ρ σ σ ρ= ≠ ). Differences between the two estimators become larger as R2 values 
decrease.  
 
The third key finding is that ˆANCOVAγ  will typically be preferred to ÛANCOVAγ  as long as test score impacts 
do not grow very quickly early in the school year. This result is consistent with the theory presented 
above, and holds even if R2 values for the UANCOVA model are a sizeable fraction of R2 values for the 
ANCOVA model.  For example, for 60 schools and R2 values of 0.70 for the pretests and 0.50 for the 
alternative baselines, ˆANCOVAγ  will yield lower MSE and MDE values if 1 0/β θ  is less than about 0.065 
standard deviations. This condition will hold if the pretests are collected within 2 months after the start of 
the school year assuming linear impact growth and within 5 months after the start of the school year 
assuming quadratic impact growth (Table 7.1). 
 
The somewhat surprising findings for the UANCOVA estimator are due to the importance of R2 values in 
reducing variance in clustered RCTs. Loss function improvements due to modest increases in R2 values 
tend to offset losses due to estimator biases and collinearity among the covariates.  

                                                 
4 As discussed above, the MDE loss function criterion is pertinent only if it is assumed that 1 / 0β θ ≥ .  
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Table 7.2: Maximum Values of 1 0/β θ  for Which the ANCOVA and DID Estimators Would be Preferred to 

the Posttest-Only and UANCOVA Estimators (Design I)  

    Maximum Values of 1 0/β θ  

 Model R2 Values  MSE Criterion  MDE Criterion 

Number of 
Schools 

ANCOVA  
and DID   

Posttest-Only 
or UANCOVAa 

 
ANCOVA DID 

 
ANCOVA DID  

40 0.5 0.0a  0.127 0.083  0.143 0.085 
  0.1  0.115 0.073  0.121 0.068 
  0.2  0.101 0.062  0.098 0.050 
  0.3  0.086 0.048  0.073 0.032 
  0.4  0.066 0.029  0.046 0.012 
         

40 0.7 0.0a  0.128 0.106  0.188 0.154 
  0.1  0.119 0.098  0.169 0.138 
  0.2  0.110 0.090  0.149 0.120 
  0.3  0.100 0.081  0.128 0.101 
  0.4  0.089 0.072  0.106 0.082 
  0.5  0.076 0.060  0.081 0.060 
  0.6  0.060 0.046  0.054 0.037 
         

60 0.5 0.0a  0.104 0.068  0.118 0.069 
  0.1  0.094 0.060  0.100 0.055 
  0.2  0.083 0.051  0.080 0.041 
  0.3  0.070 0.040  0.060 0.026 
  0.4  0.055 0.024  0.038 0.010 
         

60 0.7 0.0a  0.105 0.086  0.155 0.126 
  0.1  0.098 0.080  0.140 0.112 
  0.2  0.090 0.074  0.123 0.098 
  0.3  0.082 0.067  0.106 0.083 
  0.4  0.073 0.059  0.087 0.067 
  0.5  0.062 0.049  0.067 0.049 
  0.6  0.049 0.038  0.045 0.030 

 
Note: Testing date distributions are assumed to be similar for the treatment and control groups. See the text for 

formulas and assumptions underlying the calculations. The calculations assume p=0.50 and that schools are 
the unit of random assignment. 

 

a The posttest-only estimator corresponds to rows with R2=0 and the UANCOVA estimator corresponds to rows with 
R2>0. 



 Empirical Analysis  27 

To demonstrate this point further, Table 7.3 displays estimated variances, squared biases, and MSEs for 
ˆANCOVAγ  and ÛANCOVAγ  assuming 60 schools and R2 values of 0.70 and 0.50 for the ANCOVA and 

UANCOVA models, respectively.  The variance of ˆANCOVAγ  (excluding the design effect d) is 
considerably smaller than the variance of ÛANCOVAγ . This occurs because the ANCOVA R2 value is larger 
and affects both the school- and student-level variance terms rather than the school-level term only.5  
Furthermore, for most plausible values of 1 0/β θ , the design effect d for ˆANCOVAγ  is very small and does 
not materially inflate the variance estimates. Finally, although the squared bias terms grow quickly, 
ˆANCOVAγ still yields lower MSE values than ÛANCOVAγ  if 1 0/ 0.062β θ < . Thus, from a statistical 

standpoint, under many realistic scenarios about the growth of impacts and data collection schedules, the 
pretests will tend to yield estimates that are closer to the truth than the alternative baselines. 

These findings provide statistical support for the collection and use of pretest data in education-related 
RCTs even if the pretests are likely to be collected several months late.  It is important to realize, 
however, that the bias generated by late pretests will erode statistical power, and thus, if pretest data are to 
be collected, this bias should be taken into account in the statistical power calculations for the study. 
Table 7.4 demonstrates these power losses for ˆANCOVAγ  by displaying required school samples to maintain 
a fixed MDE value for various 1 0/β θ  and R2 values. For example, if R2 = 0.50, an MDE of 0.228 
standard deviations can be achieved with 50 schools if there is no bias ( 1 0/ 0β θ = ), but 65 schools are 
required if 1 0/ 0.04β θ = and more than 100 schools are required if 1 0/ 0.10β θ = . Thus, to achieve 
desired precision targets, school sample sizes should be increased sufficiently to offset power losses 
associated with anticipated estimator biases due to contaminated pretest data.  

Finally, because it may be difficult to anticipate 1 0/β θ values, some studies that collect pretest data may 
be interested in conducting statistical hypothesis tests to determine whether or not to include late pretests 
in the analytic models. It is difficult, however, to develop a suitable test for this analysis, because 
confidence intervals for pretest score impacts are likely to be wide (due to low R2 values). For example, 
assuming 60 schools and other assumptions from above, the 95 percent confidence interval around the 
pretest impact is 1 0

ˆ ˆ/ 0.09β θ ± standard deviations (assuming an R2 value of 0.20 owing to the use of 
basic student demographic covariates). Thus, consider a reasonable testing strategy that would include 
pretests in the analysis only if the following null hypothesis is rejected: 0 1 0: ( / ) 0.10H β θ ≥  (where the 
0.10 cutoff is selected using results from above). This strategy is similar to the one used by Puma et al. 
(2005) for the Head Start Impact Study. Because of wide confidence intervals, however, this test would 
be rejected only if the estimated pretest impacts were very small (or negative). Thus, this approach is too 
conservative because it would too often exclude the pretests.    

Instead, the results from above suggest that in education RCTs, if posttest impacts appear to be nonzero, a 
reasonable approach in practice would be to include pretests in the analysis unless the estimated impacts 
on the pretests were quite large (say, greater than 0.15 standard deviations) or if the pretest-posttest 
correlations were much lower than expected. This strategy is warranted because, as shown, statistical 
power gains can be achieved even if pretest impacts are a relatively large proportion of expected posttest 
impacts. It is prudent, however, to assess the robustness of study findings by comparing the impact 
findings from models with and without the pretests and using the GEE estimator discussed above under 
various functional form specifications for 1( , )if cα . 

                                                 
5 The variance for UANCOVA estimator is 551 if the R2 is assumed to affect not only the school-level variance 

term but also the student-level variance term. 
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Table 7.3: Variance, Bias, and MSE Estimates for the ANCOVA and UANCOVA Estimators, for 
Various Values of 1 0/β θ  (Design I) 

 UANCOVA (R2=0.50)a  ANCOVA (R2=0.70)a 

Value of 1 0/β θ  Variance = MSEb 
Variance           

Excluding db 
Design Effect 

(d) Bias2b MSEb,c 

0.00 603 331 1.0000 0 331 
0.02 603 331 1.0007 28 359 
0.04 603 331 1.0027 112 444 
0.06 603 331 1.0060 252 585 
0.08 603 331 1.0107 448 782 
0.10 603 331 1.0167 700 1,036 
0.12 603 331 1.0240 1,008 1,347 
 
Note: Testing date distributions are assumed to be similar for the treatment and control groups. See the text for 

formulas and assumptions underlying the calculations. 
 
a The figures assume a sample size of 60 schools and that schools are the unit of random assignment. 
b The figures are multiplied by 105 and divided by 2

0θ . 
c The MSE calculations were obtained using the following formula: (Variance Excluding d*Design Effect)+Bias2. 

 
 
 

 
 
Table 7.4.  School Sample Sizes Needed to Equate MDE Values for the ANCOVA Estimator, by the Size of 

the Early Treatment Effect (Design I)  
 School Sample Sizes Needed to Achieve an MDE of: 
Early Treatment Effect 
( 1 0/β θ ) 

0.255 
(R2=0.50) 

0.197 
(R2=0.70)

0.228 
(R2=0.50) 

0.177 
(R2=0.70) 

0.208 
(R2=0.50) 

0.161 
(R2=0.70) 

No Bias:  0 40 40 50 50 60 60 

0.02 45 48 57 61 69 75 

0.04 51 59 65 76 81 96 

0.06 58 73 76 97 95 127 

0.08 67 93 89 129 114 177 

0.10 78 123 107 180 140 262 
 
Note: Testing date distributions are assumed to be similar for the treatment and control groups. See the text for 

formulas and assumptions underlying the calculations. The calculations assume p=0.50 and that schools 
are the unit of random assignment. 
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Empirical Results for Designs II and III 
 
Table 7.5 displays figures, comparable to those in Table 7.2, that compare the posttest-only and 
ANCOVA estimators for Designs II and III.6 The calculations assume R2=0.50 for the ANCOVA model 
and that the sample includes 10 to 40 schools rather than 40 or 60 because Designs II and III are less 
clustered than Design I, and thus, can achieve similar power levels with fewer study schools. 
 
The results for Designs II and III are very similar to those for Design I (Table 7.5). The ANCOVA 
estimator yields lower MDE and MSE values than the posttest-only estimator for most plausible 
assumptions about test score impact growth and pretest data collection schedules. The results are robust to 
the number of schools that are included in the evaluation. 

 

Table 7.5. Maximum Values of 1 0/β θ  for Which the ANCOVA Estimator Would be Preferred to the 
Posttest-Only Estimator (Designs II and III) 

Number of 
Schools MSE Criterion MDE Criterion 

MDEs  for the ANCOVA Estimator 
Assuming Uncontaminated Pretests 

Design II: Classrooms Are the Unit of Random Assignment 
10 0.158 0.175 0.320 
20 0.113 0.128 0.227 
30 0.093 0.106 0.185 
40 0.080 0.092 0.160 

Design III: Students Are the Unit of Random Assignment 

10 0.078 0.091 0.155 
20 0.055 0.064 0.110 
30 0.045 0.053 0.090 
40 0.039 0.046 0.078 

 
Note: Testing date distributions are assumed to be similar for the treatment and control groups. See the text for 

formulas and assumptions underlying the calculations. The unit of random assignment is at the classroom-
level for Design II and at the student-level for Design III.  The calculations assume R2=.50 for the ANCOVA 
model.

 

                                                 
6 This chapter considers only the ANCOVA estimator because, as discussed, it is preferred to the DID 

estimator. 
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Chapter 8:  Summary and Conclusions 

This paper has examined theoretical and empirical issues related to the inclusion of late pretests in 
posttest impact models for clustered RCT designs in a school setting. The inclusion of late pretests will 
increase the precision of the estimated posttest impacts but could also introduce bias. Accordingly, the 
theoretical work examined, using a loss function approach, the conditions under which these biased 
estimators will produce impact estimates that are likely to be closer to the truth than unbiased estimators 
that either exclude the pretests or use uncontaminated test score data from other sources. The empirical 
work quantified the variance-bias tradeoffs for several commonly-used impact estimators.     
 
The first research question that the paper addressed is: Under what conditions should late pretest data be 
collected and included in the posttest impact models?  The answer to this question is clear: From a loss 
function perspective, estimators that include late pretests will typically be preferred to estimators that 
exclude them. This finding is supported by both the theoretical and empirical work, and will hold under 
most reasonable assumptions about the growth trajectory of impacts and pretest collection dates. In 
particular, the two most common pretest-posttest estimators—the DID and ANCOVA estimators—will 
typically yield smaller loss function values than the posttest-only estimator. This remains true even if the 
early treatment effect is a relatively large fraction of the expected posttest impact, and for designs in 
which schools, classrooms, or students are the unit of random assignment.  
 
Another analysis finding is that the ANCOVA estimator will typically have smaller biases and smaller 
variances than the more restrictive DID estimator. Thus, the ANCOVA approach will often be preferred 
to the DID approach, because it will generate estimators with smaller loss function values.  
 
The second research question that this paper addressed is: If pretest data are to be collected in education 
RCTs, what are statistical power losses when late pretests are included in the estimation models? The 
answer is that relative to a design with uncontaminated pretests, power losses with late pretests can be 
large, even if pretest contamination is modest. Thus, school sample sizes for RCTs in the education field 
should be increased to offset power losses if pretest data are expected to be collected several months after 
the start of the school year. 
 
The final research question that this paper addressed is: Instead of collecting pretest data, is it preferable 
to collect uncontaminated baseline test score data from alternative sources? The answer is generally “no.” 
Under the assumption that R2 values for these alternative test scores are somewhat smaller than those for 
the pretests, the ANCOVA estimator will tend to dominate the UANCOVA estimator as long as the 
growth in test score impacts do not grow very quickly early in the school year. These somewhat 
surprising results hold because even relatively small increases in R2 values will likely offset estimator 
biases and variance increases due to the collinearity of the model covariates.        
 
The results comparing the ANCOVA and UANCOVA estimators, however, will not hold if R2 values 
using school records and pretest data are similar. Bloom et al. (2005) and Cook et al. (2008) provide 
preliminary evidence that aggregate school-level R2 values using school records data can be large, but this 
issue has not been systematically explored in the literature. Thus, comparing R2 values using pretest and 
school records data is an important area for future research. Another important future research topic is to 
examine the relative costs of obtaining the two types of data. To the extent that school records data are 
cheaper to collect than pretest data, the UANCOVA estimator could be preferred to the ANCOVA 
estimator if the loss functions account not only for variance and bias, but also for data collection costs. 
 
Another important issue that affects the findings is the growth trajectory of test score impacts over the 
school year. Although it is reasonable to assume that impacts grow linearly (the most agnostic 
assumption) or quadratically, there may be contexts where test score impacts grow very quickly and then 
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level off. In these instances, the biased estimators may perform worse than the unbiased ones. To obtain a 
base of knowledge about actual patterns of impact growth, future studies could be designed to administer 
tests at several points throughout the school year.   
 
Finally, the methods developed in this paper could also be applied to examine the late pretest problem for 
RCTs in fields other than education. The main conclusions presented here, however, could differ in other 
contexts due to differences in the growth trajectory of treatment effects, the timing of pretest data 
collection, pretest-posttest correlations, and other key parameter values.    
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Appendix A: Proof of Asymptotic Results for the ANCOVA Estimator 

Lemma 1.  Let ˆANCOVAγ be the OLS estimator forγ in the two-level model in (13).  Then, as the number of 
units, n, increases to infinity and for fixed m, ˆANCOVAγ converges to a normal distribution with mean 

2
1 1 01 0( / )α β σ σ− and the following asymptotic variance: 
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Proof:  It is convenient to express (6) and (7) in terms of centered random variables: 
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ijX  values, and 1 2( )γ δ δ′ =δ  denote the parameter vector in (13). 
 
As n approaches infinity (for fixed m) the OLS estimator δ̂ in (13) converges to the following vector: 
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By inserting (A.2) and (A.3) into (A.4), it can be shown that: 
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It follows then that: 
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To obtain the asymptotic distribution of the two-level OLS estimator, we rewrite the right-hand-side of 
(A.4) as follows: 
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where (1)po  denotes a vector that converges in probability to zero. Because ( )E ⎡ ⎤− =⎣ ⎦
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1X y X δ 0 , a 

simple application of the central limit theorem (see, for example, Rao 1973) can be used to show that δ̂ is 
asymptotically normally distributed with the following variance: 
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The variance in (A.1) then follows using formulas from above and additional algebra to calculate the 

expectations in (A.9). 

 

 



References  R-1 

References 
 
Allison, P. (1990).  Change Scores as Dependent Variables in Regression Analysis. In Sociological 

Methodology (20). Edited by C. Clogg. Oxford, UK: Blackwell, 93-114; 
  
Bloom, H., L. Hayes, and A. Black (2005).  Using Covariates to Improve Precision. New York, NY: 

MDRC. 
 
Byrk, A. and S. Raudenbush (1992).  Hierarchical Linear Models for Social and Behavioral Research.  

Applications and Data Analysis Methods. Newbury Park, CA: Sage. 
 
Cochran, W. (1963).  Sampling Techniques.  New York:  John Wiley and Sons. 
 
Cohen, J. (1988). Statistical Power Analysis for Behavioral Sciences. Hillside, NJ: Lawrence Erlbaum. 

Cook, T. et al. (2008). Impacts of School Improvement Status on Students with Disabilities.  Technical 
Work Group Materials. Washington, DC: American Institutes for Research. 

Davidian, M., A. Tsiatis, and S. Leon (2005). Semiparametric Estimation of Treatment Effect in a Pretest-
Posttest Study with Missing Data. Statistical Science, 20(3), 261-301. 

 
Decker, P., S. Glazerman, and D. Mayer  (2004). The Effects of Teach For America on Students:  

Findings from a National Evaluation.  Princeton, NJ:  Mathematica Policy Research. 

Donner, A. and N. Klar (2000).  Design and Analysis of Cluster Randomization Trials in Health 
Research.  London: Arnold. 
 

Dynarski, M. and R. Agodini (2003).  The Effectiveness of Educational Technology:  Issues and 
Recommendations for the National Study. Princeton, NJ:  Mathematica Policy Research. 

Freedman, D. (2008). On Regression Adjustments to Experimental Data. Advances in Applied 
Mathematics, 40, 180-193. 

 
Gleason, P. and R. Olsen (2004). Impact Evaluation of Charter School Strategies. Design Documents. 

Princeton, NJ: Mathematica Policy Research, Inc. 

Heckman, J. and E. Vytlacil (2005). Structural Equations, Treatment Effects, and Econometric Policy 
Evaluation. Econometrica, 73(3), 669-738. 
 

Hedges, L. (2004).  Correcting Significance Tests for Clustering. Chicago, IL: University of Chicago 
Working Paper. 

Hedges, L. and E. Hedberg (2007). Intraclass Correlation Values for Planning Group-Randomized Trials 
in Education.  Educational Evaluation and Policy Analysis, 29(1), 60-87. 

 
Hill, C., H. Bloom, A. Black, and M. Lipsey.  Empirical Benchmarks for Interpreting Effect Sizes in 

Research.  New York, NY: MDRC. 
 
Holland, P (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 

81(396), 945-960. 



R-2  References 

Imbens, G. and D. Rubin (2007). Causal Inference: Statistical Methods for Estimating Causal Effects in 
Biomedical, Social, and Behavioral Sciences, Cambridge University Press.  

 
Jackson, R. et al. (2007). National Evaluation of Early Reading First. Final Report to Congress.  U.S. 

Department of Education, Institute of Education Sciences: Washington DC. 

Kish, L. (1965).  Survey Sampling.  New York:  John Wiley and Sons. 
 
Liang, K. and S. Zeger (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 

73, 13-22. 
 
Mayer, D., P. Peterson, D. Myers, C. Tuttle, and W. Howell. (2002). School Choice in New York City: 

An Evaluation of the School Choice Scholarships Program. Washington, DC:  Mathematica Policy 
Research, Inc. 

Murray, D. (1998).  Design and Analysis of Group-Randomized Trials. Oxford: Oxford University Press. 
 
Neyman, J. (1923). On the Application of Probability Theory to Agricultural Experiments:  Essay on 

Principles. Chapter 9, Translated in Statistical Science, 1990: 5(4), 465-472. 
 
Oakes, J and H. Feldman (2001). Statistical Power for Nonequivalent Pretest-Posttest Designs:  The 

Impact of Change-Score Versus ANCOVA Models. Evaluation Review, 25(3), 3-28.   

Puma, M. et al. (2005). Head Start Impact Findings: First Year Findings. Final Report to the U.S. 
Department of Health and Human Services, Administration for Children and Families: Washington 
DC. 

Rao, C. (1973). Linear Statistical Inference and Its Applications.  New York: Wiley and Sons. 
 
Raudenbush, S. (1997). Statistical Analysis and Optimal Design for Cluster Randomized Trials. 

Psychological Methods, 2(2), 173-185.   

Reichardt, C. (1979).  Quasi-Experimentation: Design and Analysis for Field Settings. Boston:  Houghton 
Mifflin. 

 
Rubin, D. (1974). Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. 

Journal of Education Psychology, 66, 688-701. 
 
Rubin, D. (1977). Assignment to Treatment Group on the Basis of a Covariate. Journal of Education 

Statistics, 2(1), 1-26. 
 

Schochet, P. (2007). Is Regression Adjustment Supported by the Neyman Model for Causal Inference?. 
Working Paper: Mathematica Policy Research, Inc.:  Princeton NJ. 

Schochet, P. (2008). Statistical Power for Random Assignment Evaluations of Education Programs. 
Journal of Educational and Behavioral Statistics, 33(1), 62-87. 

Yang, L. and Tsiatis, A. (2001). Efficiency Study of Estimators for a Treatment Effects in a Pretest-
Posttest Trial. American Statistician 55(4), 314-321. 


	The Late Pretest Problem in
Randomized Control Trials of
Education Interventions

	Disclosure of Potential Conflicts of Interest

	Contents

	List of Tables

	List of Figures

	Chapter 1: Introduction

	Chapter 2: The Late Pretest Problem

	Chapter 3: Measuring the Variance-Bias Tradeoff

	Chapter 4: Considered Designs

	Chapter 5: Theoretical Framework

	Chapter 6: The Variance-Bias Tradeoff for Various ATE Estimators

	The Posttest-Only Estimator

	The Differences-In-Differences (DID) Estimator

	The ANCOVA Estimator

	The Unbiased ANCOVA (UANCOVA) Estimator

	The Generalized Estimating Equation (GEE) Estimator

	HLM Growth Curve Approach


	Chapter 7: Empirical Analysis

	Structure

	Figure 7.1
Hypothetical Growth Trajectories of Test Score Impacts

	Table 7.1 : Hypothetical Growth Trajectories of Test Score Impacts, by the Number of Months Since the
Start of School (Design I)


	Assumptions

	Empirical Results for Design I

	Table 7.2: Maximum Values ofβ1/θ0 for Which the ANCOVA and DID Estimators Would be Preferred to
the Posttest-Only and UANCOVA Estimators (Design I)

	Table 7.3: Variance, Bias, and MSE Estimates for the ANCOVA and UANCOVA Estimators, for
Various Values of β1/θ0 (Design I)

	Table 7.4. School Sample Sizes Needed to Equate MDE Values for the ANCOVA Estimator, by the Size of
the Early Treatment Effect (Design I)


	Empirical Results for Designs II and III

	Table 7.5. Maximum Values of
β1/θ0 for Which the ANCOVA Estimator Would be Preferred to the Posttest-Only Estimator (Designs II and III) 


	Chapter 8: Summary and Conclusions

	Appendix A: Proof of Asymptotic Results for the ANCOVA Estimator

	References





