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Over a period of about 3 years, 3204 students in Grades 4 to 10 completed 9862 tests to
identify and track their interpretation of decimal notation. Analysis of the longitudinal
data demonstrates that different misconceptions persist among students to different
degrees and in different patterns across the grades. Estimating the prevalence of
misconceptions is complex due to the nature of longitudinal data. Best estimates are
provided of grade prevalences and the proportions of students affected during schooling.

Many students have difficulty understanding decimal notation. The reasons for this lie
both in the nature of the mathematical and psychological aspects of the task and in the
teaching they receive. Understanding decimal notation is a complex challenge, which
requires the co-ordination of many ideas and draws on previous learning and fundamental
metaphors of number and direction both to advantage and disadvantage (Stacey, Helme
& Steinle, 2001). As a consequence, there are a wide variety of erroneous ways in which
students interpret decimal numbers, often referred to as decimal misconceptions. This
paper reports results from a study that has both cross-sectional and longitudinal
components, so that the prevalence of different misconceptions can be determined and
the paths that students take between these misconceptions can be traced over some years.
This quantitative work is set in a context where we have also examined more closely
particular misconceptions and have provided some explanations in terms of how the
students may be thinking about decimal notation, drawing on interview and written data
from school students and teacher education students (Steinle & Stacey, 2001; Stacey,
Helme & Steinle, 2001) and examined the effectiveness of targeted teaching, although
these aspects are not discussed in this paper.

This paper reports two aspects of the longitudinal data. Firstly, we report the prevalence
of certain groups of misconceptions by grade level and show that there are interesting
variations amongst the patterns in how these misconceptions persist amongst students of
different ages. We also discuss how an estimate of the lifetime prevalence of these
misconceptions might be obtained from the longitudinal data. In previous papers, we
have made preliminary reports on the prevalence of expertise and misconceptions, as well
as the paths that students commonly follow on the way to expertise (Steinle & Stacey,
1998, Stacey & Steinle, 1999a and 1999b). The present paper extends these analyses by
using a larger dataset collected over a longer timeframe and by using more sophisticated
analyses. We intend that the results will be useful to researchers working on students’
understanding of decimals and to those interested more generally in the aetiology of
students’ ideas. We also intend that the discussion of the technical difficulties of analysis
of longitudinal data will be of broad interest.

! This study was funded by the Australian Research Council, under a grant to Kaye Stacey and Liz
Sonenberg. We wish to thank the teachers and students who provided data for the study.
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DATA COLLECTION

Sample and Procedures

The Decimal Comparison Test (described below) is used to classify students’ thinking
about decimal notation. The test, which takes less than 10 minutes, was administered by
volunteer class teachers to intact classes of students in 13 volunteer schools in 6 suburban
regions of a large Australian city. Researchers analysed the tests, allocating a code that
indicates the students’ thinking, and returned all results to the classroom teacher with
explanations. By including both secondary schools and their “feeder” primary schools,
not only could students be tracked from grade to grade within a school, but also across
the primary-secondary transition (Grade 6 to Grade 7). The results of individual students
were traced throughout the study and the longitudinal results were analysed with the
computer program “STATA”.

In total, there were 3204 students in Grades 4 to 10, who completed 9862 tests between
1995 and 1999. Schools were requested to test students at six monthly intervals but not
all teachers volunteered and others delayed testing for various reasons. These procedures
have important effects on the data which need to be managed: there are a large number of
students who are tested only once (or whose later tests could not be confidently
identified), many students have broken sequences of tests due to their own absence from
school on the day of the testing or their class not having been tested in a given semester.
Overall, however, a very rich data set was collected: the maximum number of tests
completed by a student was 7 (49 students), the average number of tests per student was
3.1, and the average time between tests was 8 months, offering an unprecedented
opportunity to see the development of students’ ideas on one topic over time. The regions
represented all socio-economic groups, but the sample is only representative and
voluntary, not randomly selected.

Decimal Misconceptions and their Diagnosis

It is well established that the task of choosing the larger of a pair of decimal numbers (or
ordering a larger set) is very useful for revealing how a student interprets decimal
notation. Some students consistently choose the longer of the pair (e.g. they will say 4.63
is a larger number than 4.8) and others will choose the shorter (e.g. they will say 5.62 is a
larger number than 5.736). We label these behaviours as Longer-is-larger (L) and
Shorter-is-larger (S). There are many different patterns of thinking which lead to these
behaviours, which have been explored by Fuglestad (1998), Resnick et al (1989), Sackur-
Grisvard and Leonard (1985), Stacey and Steinle (1998), Swan (1983) and others.
Consequently, although L and S are sometimes referred to in the literature as
misconceptions, they are actually both behaviours arising from clusters of
misconceptions, which space precludes us from discussing here.

The behaviours L and S were identified on the basis of the pattern of responses to the
Decimal Comparison Test, which has been based on similar tests reported in the
literature. This test consists of one sheet of paper with 30 pairs of decimal numbers
(referred to as 30 items) with the instruction: For each pair of decimal numbers, circle
the larger. The thinking pattern of the student is diagnosed by a detailed analysis of the
pattern of responses to the 30 items, and the test is allocated one of 11 “fine codes”. One
of these (A1) represents expertise on this task with the student being correct on all item
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types, nine represent misconceptions which are reasonably well understood and one is for
test responses with unclassified patterns. The patterns of thinking corresponding to these
“fine codes” are grouped according to whether they exhibit L or S or other behaviour as
explained below. Because of space limitations, the analysis presented in this paper is at
the level of the L and S groups of misconceptions (the “coarse codes”), not the finer
classification.

Table 1 provides the ten core items from the Decimal Comparison Test that serve to
identify the L and S students. For convenience, the larger decimal is always given first in
Table 1, but not on the test. The code A (Apparent-expert) indicates that a student has
answered correctly on these ten core items, and the code U (Unclassified) is used on
papers that do not fit the A, L or S response patterns. To allow for “careless errors”, the
A, L or S code is allocated even if there is one deviation from the expected pattern. So,
for example, a student with O or 1 correct on Type 1 and 4 or 5 correct on Type 2 would
be classified as L. The ten core items have been carefully chosen as “normal” items to
avoid the complications, many of which arise from visible and invisible zeros (Steinle
and Stacey, 2001), which distinguish between the fine classifications. Note again that A,
L, S and U are behaviours, rather than particular ways of thinking. A student could be
classified A, for example, by being truly an expert or by simply selecting the number
with the larger digit in the tenths column as the larger, in which case they may not be able
to choose the larger from 7.942 and 7.94.

Type 1 items Type 2 items
Behaviours
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Longer-is-larger (L) X X X X X Vv Vv Vv Vv Vv
Shorter-is-larger (S) v v v v v X X X X X
Apparent-expert (A) Vv Vv Vv Vv Vv Vv v v v v
Unclassified (U) none of the above

Table 1: Expected responses by students with particular behaviours

Figures 1 and 2 illustrate how students’ responses fit the A, L, S groups. Figure 1 shows
the 36 possible scores on Type 1 and Types 2 items if students answered randomly with
probability being correct on any item of 0.5. The majority of students would, if guessing,
have scores of 2 or 3 on both Types 1 and 2. (Note that the (5,5) corner corresponding to
A is hidden in this graph, because the expected numbers are very small.) A choice other
than one half for the probability of being correct or unequal probabilities for Type 1 and
Type 2 will shift the “mountain” of probabilities from the centre, but not change the
overall single peaked mountain shape. The contrasting data in Figure 2 comes from the
3531 tests completed in 1997 by students from Grades 5 to 10. There are three clear
peaks. A considerable number of students answer all 10 items correctly hence the column
at the back corner (5,5) in Figure 2 is considerably taller than all other columns (and has
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been truncated to 800 from 1664). The very low columns in the centre of the graph
demonstrate that students, on the whole, are not choosing randomly on this test.
Secondly, the very tall columns at the side corners, corresponding to L and S behaviours,
confirm the validity of the L and S constructs. In fact, if only the 1867 papers with one or
more errors in these 10 items are considered, then 59% are coded as L or S. Hence,
Figure 2 shows that the sets of Type 1 and Type 2 items are internally homogeneous but
different to each other and hence that the classifications to L, S and A are indeed
meaningful.

Figure 1: Distribution of A, L, S, U Figure 2. Actual distribution based on data
assuming answers selected at random. from 1997 (Truncated at (5,5) corner).

(Key: A black, L grey, S striped, U unshaded)

PREVALENCE ACROSS THE GRADES

An important use of the longitudinal data is to report on how many students are likely to
be affected by each of the decimal misconceptions. This simple notion requires careful
thought. One useful measure is the percentage of students who demonstrate the behaviour
at any given grade and another is the percentage of students who are likely to
demonstrate the behaviour at some time in their schooling. In defining useful measures,
we draw on epidemiology (Hope et al, 1998, p 791) where the point prevalence of a
disease is defined as the number of cases at a point in time divided by the population at
risk and the period prevalence is the number of cases at any time during the study period,
divided by the population at risk. This concept moves closer to the notion of lifetime risk
for a disease.

The measure which corresponds to point prevalence in our context is “grade prevalence”,
which is intended to indicate the percentage of students in a given grade who are likely to
exhibit the behaviour. The naive measure for this would be the percentage of tests from a
given grade receiving a certain code. However, we have used only the 3204 first tests that
students have done, so that individuals are not included twice (especially in the data from
one grade) and to avoid the repeat-test effect. Data shows that students who undertake the
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test repeatedly improve more than others, most probably because teachers who take the
effort to test their students are more likely to give decimal notation an emphasis in their
teaching. Additionally, these students probably have above average attendance at school.
The grade prevalence results are affected by the constitution of our sample, as well as the
strictness of the rules for classifying behaviour (as mentioned above, we permit one error
per type, for example). The data set is of sufficient size that over 250 first tests have been
available at each grade.
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Figure 3. Primary school grade and Figure 4. Secondary school grade and
schooling prevalences for A, L and S. schooling prevalences for A, L and S.

The grade prevalences for Grades 4 to 10 are shown in Figures 3 and 4 (along with the
schooling prevalence (SP), which is discussed below). The grade prevalence of L drops
steadily (often nearly halving across successive grades), indicating that L is principally a
misconception of younger students. In contrast, the grade prevalence of S stays
reasonably constant, with 10 to 20% of students in the middle grade levels exhibiting this
behaviour. In the next section, we will show that there are also very different patterns of
students’ movements into and out of these misconception groups. The percentage of
students coded as A increases, as would be expected. However, it falls significantly short
of 100%, rising only to 70% at Grade 10, indicating that problems with understanding
decimals continue beyond the compulsory years of schooling for a significant group of
students. Data not shown in Figure 3 shows that at all grade levels, about 12% of the tests
coded A are not Al. This indicates that about 12% of students who can deal with the
Type 1 and 2 items, cannot deal with those with zeros after the point, the same digits in
the tenths column or other complicating features. They may have no real understanding
of decimal notation, despite being coded as A.
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PERSISTENCE OF MISCONCEPTIONS ACROSS THE GRADES

The calculation of grade prevalence above uses only cross-sectional data. In this section,
we use the longitudinal data to describe how persistent each misconception code is.
Figure 5 shows the probabilities of a student retesting in the same code on the next test
that they complete. This data is based on an average of 332 students per data point with a
maximum of 1202 students (Grade 7 A to A) and only two data points based on less than
100 students (Grades 9/10 L and S).

Figure 5 shows that students testing as A have a high probability (around 90%) of
retesting as A on the next test that they do, regardless of their initial grade level.
Although not shown, the retesting probabilities for A1 are similar. The probabilities for
retesting as an L reflect the decreasing numbers of students in this code, and the fact that
the L code is populated mainly by young students (Figures 3 & 4). The data for S
demonstrates that students about Grade 8 (based on 195 students) are especially likely to
be retained in this group (for explanation see Stacey, Helme, & Steinle, 2001). The
different trends at Grades 9 and 10 may be due to the smaller sample or it may reflect the
fact that students at this level who are still in the L or S codes have special learning
difficulties.
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Figure 5. Probability of retesting in the same code, by grade of initial test.

Whereas the behaviours of groups L and S seem similar in Figure 5, Table 2 reveals the
differences. The probabilities in the second row reflect the data in Figure 5, combined
across grade levels. However, the first row gives the probability that a student testing in a
given code had tested in that code on their immediately prior test. (Note that the data sets
are necessarily not quite the same: row 1 is based on second to final tests, row 2 is based
on first to penultimate tests etc). Whereas only one quarter of the L. students came from
another code on the preceding test, on average, half of the S students were previously in
another code (mainly L or U). To oversimplify, many students begin in the L. group at
Grade 4/5 and then they move out at some stage, whereas code S recruits across the
middle years of schooling, with students moving in and out with reasonable probability.
This data is affected by the length of the study, which may have concluded before the
student returned to the code and hence it provides a lower limit on the real data. This
phenomenon is central to discussion of the schooling prevalence in the next section.

A Al L S U
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Probability of an immediately previous 0.77 0.74 0.73 0.48 0.71
test of same code

Probability of an immediately 0.91 0.89 0.44 0.38 0.71
following test of same code

Table 2. Probabilities of a student having previous and following tests in same code
SCHOOLING PREVALENCE

In addition to the grade prevalences, it is also of interest to know how many students are
affected by the misconception during their school lives (or at least between Grades 4 and
10). This quantity, which we call schooling prevalence, is analogous to the lifetime risk
for a disease. A first proposal is to calculate the percentage of the 3204 students who
were allocated a given code on any test that they completed during the course of the
study. This would be reasonable if all 3204 students had been completely tracked from
Grades 4 to 10. However, it is inappropriate for our sample, because students enter and
leave the study at all stages from Grade 4 to Grade 10. Students who were in Grade 8
when they entered the study, for example, may never test as L even though they were L
beforehand. Calculating the schooling prevalence therefore requires care. A first decision
is that the data better supports calculation of primary schooling prevalence and secondary
schooling prevalence separately. The 3 years of the longitudinal data nearly matches the
complete timespan of interest (Grades 4 — 6 and Grades 7 — 10). Happily, this information
is useful, matching the separate professional concerns of primary and secondary teachers.

Table 3 shows the schooling prevalences based on the sample of primary (secondary)
students who have completed at least 4 tests in the primary (secondary) school. The
calculated prevalence is the number of students who have at least one test in the code, as
a percentage of the restricted sample. No student is in both samples. Table 3 data for both
L and S are compatible with the grade prevalences (Figures 3 and 4) and the persistence
patterns. Comparison with the grade prevalences in Figures 3 and 4 shows that the
prevalence for A is very much higher. This is because of the repeated test effect discussed
above. Given this and the pattern of the persistence data (Figure 5), our best estimate for
the schooling prevalences of A (and Al) is obtained from the maximum of the grade
prevalences, say 40% for primary and 70% for secondary. Round numbers are used to
emphasize that these are estimates. These best estimates have been graphed as SP in
Figures 3 and 4.

A Al L S U
Calculated primary schooling 68% 60% % 35% 449
prevalence (n=333)
(Best estimate bracketed) (40%) (30%) (70%) (35%)
Calculated secondary schooling 899% 83% 20% 27% 299,
prevalence (n=763)
(Best estimate bracketed) (70%) (60%) (20%) (30%)

Table 3: Schooling prevalence calculated from restricted sample (students with 4+ tests in

primary (secondary) school) and overall best estimates (brackets).
CONCLUSION
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This paper has reported best estimates for the percentages of students in each of the
Grades 4 to 10 likely to exhibit certain types of behaviour (L, S and A) related to
misconceptions about decimal numeration. The different behaviours exhibit different
prevalence, persistence and patterns across grades. Using the longitudinal data and
knowledge of the prevalence and persistence, estimates have been made of the percentage
of students who will exhibit the given behaviours at some time during their primary
schooling (effectively after Grade 4 for this topic) and secondary schooling. These results
are summarized in Figures 3 and 4. The results show the importance of addressing this
decimal numeration explicitly. More generally, the paper has demonstrated some of the
challenges and potential of dealing with longitudinal data and has provided a case study
of the development of students’ ideas on a topic across the grade levels.
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