
4—231

GOAL SKETCHES IN FRACTION LEARNING
Dr. Catherine Sophian & Samara Madrid

University of Hawai‘i at Mänoa

To examine how conceptual knowledge about fraction magnitudes changes as students'
learning progresses, 5th and 7th-grade students were asked to solve fraction magnitude
problems that entailed finding a fraction between two given fractions and then to
evaluate solutions for similar problems that were modeled for them. When the given
fractions share a common denominator or numerator, a simple strategy is to keep the
common value and choose an intermediate value for the other component. 5th graders
used this strategy on both common-numerator and common-denominator problems, and
judged it "very smart" when it was modeled. 7th graders typically converted common-
numerator fractions to a common denominator and often judged the strategy of picking
an intermediate denominator “not smart."

INTRODUCTION
While many U.S. students, and often even their teachers (c.f., Ma, 1999), think of
mathematics learning as primarily a matter of learning computational procedures,
educational psychologists and mathematics educators agree that mathematics learning
needs to be conceptually grounded (Hiebert, Carpenter, Fennema, Fuson, Wearne,
Murray, Olivier, & Human, 1997; Kilpatrick, Swafford, & Findell, 2001). Indeed,
contemporary research in cognitive science indicates that the growth of mathematical
understanding and the growth of computational skill are mutually facilitative (Rittle-
Johnson, Siegler, & Alibali, 2001; Kilpatrick et al., 2001). In particular, conceptual
knowledge appears to play a fundamental role in the development of problem-solving
strategies (Siegler, 1996; Siegler & Crowley, 1994). For example, there is evidence that
students can make sound judgments about the merits of a new strategy even before they
themselves have begun to use it. When Siegler and Crowley asked students to rate a
variety of strategies that were modeled for them, the students rated as "very smart"
strategies that were more advanced than the ones they themselves used. Siegler (1996)
postulated that knowledge structures called goal sketches, “specif[y] the hierarchy of
objectives that a satisfactory strategy in the domain must meet" and thus provide a
conceptual basis for evaluating possible strategies and for generating new ones (p. 194).
On this account, students’ judgments about alternative problem-solving strategies are a
potentially rich source of information about their conceptual knowledge of the problem
domain for which the strategies are proposed. The research to be reported here applied
this reasoning to the examination of students’ developing knowledge about fraction
magnitudes. This domain was selected for study because there is abundant evidence that
students have difficulty understanding the magnitude relations between fractions with
different denominators (e.g., Peck, Jencks, & Chatterley, 1980). Thus, the objective of
the present research was to examine student’s goal sketches about fraction magnitudes,
particularly in relation to fractions with different denominators, and to examine how goal
sketches change with age and years of schooling.
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To separate conceptual knowledge from learned computational rules, problems on which
students were not likely to have been directly instructed were used. On each problem,
two fractions were presented and the task asked of the child was to generate a third
fraction that was in between the two in its value. After completing all the problems, the
student was asked to make judgments about different solution methods modeled by the
experimenter on a similar problem set.
We focus here specifically on problems in which one of the two components of the
fractions—numerator or denominator—was the same across the two fractions presented
(e.g. 3/13 & 4/13, a common-denominator problem, or 1/4 vs. 1/5. a common-numerator
problem). These are of particular interest because it is not necessary to do precise
calculations in order to identify with certainty a fraction
that is of intermediate magnitude. A straightforward solution strategy is to preserve the
common numerator or denominator while generating an intermediate value for the
component that differs across the two given fractions (e.g. 2/9, for a fraction between 1/9
& 4/9). This type of strategy (which shall henceforth be termed the “intermediate-
component strategy”) is interesting, particularly in relation to common-numerator
problems, because it uses an understanding of the problem constraints to avoid the need
for the relatively complex computational procedure of finding a common denominator for
the fractions.

METHOD
Twenty-four 5th-grade children (11 female, 13 male) and 10 7th-grade children (7 female,
3 male) have participated in the study to date (the samples will be equal in size when data
collection is completed). A female experimenter tested students individually in a single
session lasting about 20 minutes. First, students received 12 problems on which they
were asked to find a fraction whose value was in between the two fractions they were
given. Four of these were common-denominator problems and four were common-
numerator problems; the rest involved pairs of fractions that differed in both their
numerators and their denominators. Within the common-denominator and common-
numerator problems, half the problems involved numerators or denominators (whichever
differed) that differed by 3 (e.g., 2/9 vs. 5/9), while the other problems involved
numerators or denominators that differed by only 1 (e.g., 1/4 vs. 1/5). This distinction is
significant for the intermediate-component strategy because, in the latter case, there is no
whole-number intermediate value. It is therefore necessary, if an intermediate-component
strategy is to be used, either to use a fractional value for numerator or denominator or to
convert the fractions to equivalents that contain larger (and more widely-spaced)
numbers, e.g., by multiplying numerator and denominator by 2.

In the second part of the experiment, the experimenter modeled solutions for 10
problems: three common-denominator problems, three common-numerator problems, and
four problems for which the given fractions differed in both their numerators and their
denominators. On the common-denominator and common-numerator problems, three
strategies were modeled by the experimenter: (1) an intermediate-component strategy
resulting in a whole-number value (when the component that was not in common differed
by more than one; e.g., e.g. 2/7 was found for a fraction between 2/6 vs. 2/9), (2) an
intermediate-component strategy resulting in a fractional value (for problems on which



4—233

the component that was not in common differed by only one; e.g. 1 over 4-1/2 was found
for a fraction between 1/4 vs. 1/5), and, (3) an intermediate-component strategy involving
conversion to equivalent fractions (e.g. 2/9 was found for a fraction between 1/4 vs. 1/5).
Each of these strategies was modeled once on a common-denominator problem and once
on a common-numerator problem. After each problem the child was asked to judge
whether or not the experimenter's answer was correct and also to rate it as "very smart,"
"kind of smart," or "not smart."

RESULTS & DISCUSSION
Figure 1 summarizes students’ use of the intermediate-component strategy in their own
problem solving. There was a sharp drop in use of the intermediate-component strategy
between the problems for which a whole-number intermediate value was available
(plotted in the left panel of the figure) and those for which only a fractional intermediate
value could be generated without converting to equivalent fractions (plotted in the right
panel). Clearly, the availability of a whole-number intermediate value made it much more
likely that students would adopt the intermediate-component strategy. Additionally,
usage of the intermediate-component strategy changed with grade level, as can be seen

by comparing the white versus shaded bars within each panel. The 7th graders used the
intermediate-component strategy more often than the 5th graders did on common-
denominator problems, but less often than the 5th graders on common-numerator
problems. Instead, they solved 45% of the common-numerator problems on which there
was a whole-number intermediate value between the two denominators, and 55% of those
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on which there was not, by converting the fractions to common denominators. In
contrast, none of the 5th graders even once attempted to convert different-denominator
fractions to a common denominator in order to solve the problems. Thus, the 7th graders
appear to have extended the school-taught procedure of finding a common denominator
for different-denominator fractions to the problems presented here—displacing a simpler
solution strategy that was widely used by 5th graders.
Figure 2 summarizes the judgments students made about the intermediate-component
strategy when it was modeled by the experimenter. 5th graders gave much more positive
ratings overall than 7th graders did—in part because the younger students were reluctant
to judge anything the experimenter did as “not smart”. The pattern of ratings within each
grade level, however, illuminates more telling differences between the groups.
Among the 5th graders, the pattern of judgments diverges from the pattern of strategy use
in that applications of the strategy that result in fractional numerators or denominators are
judged no less smart than ones that result in more conventional whole-number values.
This is the only aspect of the data in which we see the kind of divergence between

students’ own strategy use and their judgments about modeled strategies that provided
evidence for goal sketches in research in other mathematical domains. Although the 5th

graders tend not to use the intermediate-component strategy when it results in a fractional
numerator or denominator, they acknowledge it to be a fairly smart way to solve the
problems when the experimenter models it.
Among the 7th graders, the pattern of judgments closely resembles the pattern of strategy
use observed in the first part of the study. Thus, just as the 7th graders were more likely to
use an intermediate-component strategy on common-denominator problems than on
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common-numerator ones, they also deemed it “smarter” when the experimenter applied it
to common-denominator problems than when she applied it to common-numerator
problems. Likewise, they deemed it “smarter” when it yielded a whole-number value for
the intermediate numerator or denominator than when it yielded a fractional value for that
component. The close correspondence between the strategies 7th graders use in their own
problem-solving and their judgments about strategies modeled by the experimenter
suggests that there is no longer a gap between their goal sketches and their actual
problem-solving, at least with respect to the strategies studied here.
Insofar as goal sketches guide strategy development, then, it appears that acquisition of
the computational algorithm of finding a common denominator has derailed rather than
stimulated the process of strategy development. In learning the procedure of converting
fractions to common denominators, students apparently came to believe that that is the
only correct way to work with different-denominator fractions. That 7th graders were able
to extend the algorithm of converting to a common denominator to new problems can be
seen as positive in that it indicates the generalizeability of their learning. However, the
fact that this strategy for solving the present problems displaced simpler but equally
effective alternative strategies, so that they were not even judged positively when
modeled for the students, underscores concerns about the dominance of procedural over
conceptual aspects of student learning. In focusing on common denominators, they failed
to recognize the possibility of drawing conclusions about magnitude relations among
different-denominator fractions—surely an important element of understanding fraction
magnitudes.
Thus, while procedural learning has been found to be facilitative of conceptual
understanding in previous research (e.g., Rittle-Johnson, et al., 2001), the present findings
underscore concerns that it can also have an adverse effect. Clearly, a fundamental
problem for educators and psychologists alike is to clarify the conditions under which its
impact is positive versus negative. To clarify this issue, research on students’ goals
sketches should be combined with detailed examination of the instruction those students
are receiving.
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