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In this study, we explore six students' conceptions of Z, in an effort to understand
students' conceptions of quotient groups in general. We discovered that there were three
different ways our students thought about Z, namely as infinite sets, element-set
combinations, and representative elements. We explore how Z,, might be conceived of in
terms of these three cognitively different interpretations, as well as our students'
difficulties in working with Z, using each of these interpretations. We conclude that Z,, is
not a trivial example of a quotient group, and provide recommendations for teaching Z,
and other quotient groups.

INTRODUCTION

The first course in abstract algebra is considered by mathematics students and teachers
alike to be a troublesome and often disappointing experience. There may be many
reasons why students struggle in abstract algebra; the course requires skills in proof,
conceptual understanding of abstract structures, facility with complex notation, and
mathematical breadth sufficient to understand examples developed using functions,
matrices, complex numbers, and permutations. The course usually moves quickly and
presupposes a good deal of mathematical maturity. Because of the difficulty of the
course, students often leave with negative feelings toward proof, abstraction and formal
mathematics

In our own experience with teaching abstract algebra, we have found that student attrition
rises steeply when students encounter the concept of quotient or factor group. The
relatively little research that has been done on students’ understanding of abstract algebra
seems to confirm our experience, but does not help us understand why students struggle
with quotient groups. Dubinsky, Dautermann, Leron and Zazkis (1994) suggest that
students’ struggles are due to the complexity of the quotient group concept, building as it
does on notions of subgroup, normality, and group operations. However, they provide
little insight into exactly how students are thinking of these underlying constructs, and
how their understanding contributes to or undermines their attempts to make sense of
quotient groups. Asiala, Dubinsky, Mathews, Morics and Okta¢ (1997) observe that
students who were successful in working with quotient groups often computed coset
products using the representative method (i.e., writing the coset aH as a). However, they
note that students’ use of this type of notation gave little information about how the
students were thinking about cosets and quotient groups.

To better understand why students struggle with quotient groups, we decided to
investigate students’ conceptions of Z,, the cyclic subgroups of order n. We chose this
collection of quotient groups because they are typically used in abstract algebra texts as
straightforward, unproblematic first examples of quotient groups, in hopes that their
mathematical familiarity will help students understand the more abstract case (cf
Herstein, 1999). We explore in this paper why Z, as a prototype of a quotient group is
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nevertheless difficult to understand, and what this might imply for understanding quotient
groups in general. In particular, we address the following research questions:

1. What are students’ conceptions of Z, as a quotient group?
2. What difficulties do students have in understanding Z, as a quotient group?
METHODOLOGY

The data we report here were collected as part of a larger study designed to investigate
students’ conceptions of quotient groups. The study consisted of two parts: the
compilation of case studies (Stake, 1998) of six undergraduate students enrolled in an
undergraduate introductory course in abstract algebra taught by Williams; and an analysis
using grounded theory (Strauss & Corbin, 1998) of the cases and other class data to
identify conceptions, themes and problems common across students in the class. The six
students who participated in the case studies were recruited based on their willingness to
participate and selected so that there were an equal number of men and women. Siebert
conducted six 45-minute, semi-structured interviews with each student during the
semester. Tasks in these interviews focused on students’ understanding of groups and
quotient groups, including Z, for different values of n. These interviews were video-
taped, and careful fieldnotes were created for each interview. Additional data were
collected from the class as a whole, including videotapes of class instruction, detailed
fieldnotes of class, and copies of the written work of all students in the class.

Our attempts to understand students’ conceptions of Z, represent a dialectic between a
“top down” and “bottom up” approach. Our study was “top down” in the sense that we
used our own conceptions of what is important to know about quotient groups to select
tasks that would reveal whether or not students possessed the understanding we valued.
At the same time, however, we were sensitive to the way students made sense of and
approached tasks. In this way, our study was also “bottom up,” in that students’ solutions
often caused us to rethink what ideas and images were important to understanding
quotient groups. Thus, students solutions not only informed us about how they thought
about Z, but also led us to change our own understanding of Z, Our newfound
understanding often led to the development of new tasks leading to new data, and further
revisions of our model of understanding Z,. We refer to this cyclic process as grounded
content analysis (Lobato, personal communication, 1999), and recognize that content
analysis cannot be conducted in the absence of the students to whom we wish to teach the
content.

The second part of our study—the analysis using grounded theory of the cases and
classroom data for common themes, conceptions, and problems—began during data
collection. Important themes and problems were identified from class fieldnotes and from
the journal entries Siebert wrote after each student interview. Subsequent interview
questions pursued these themes and problems. Once all of the data were collected, we
compiled descriptions of each target student’s understanding of Z, and quotient groups in
general. We also identified and transcribed relevant segments from class instruction on
Z,, and reviewed all the students’ homework and test responses related to Z,. What
emerged from these comparisons of correct and incorrect solutions was a framework of
concepts that were foundational for our students to understand Z,, as well as insights into
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the difficulties students had with these concepts. Due to the space constraints of this
paper, we only present our findings concerning three interpretations of Z, and students’
difficulties in perceiving Z, in these three different ways.

THREE INTERPRETATIONS OF Z,

Based upon our analysis of students' thinking, we propose that there are three different
ways that students might reason about Z,: as infinite sets, as element-set combinations,
and as representative elements. We illustrate these three interpretations in Table 1 using
Z, as an example. Note that each of these three conceptions involves a unique
representation of cosets and coset operations. However, the differences between these
three interpretations of Z, is more than mere notational variation. Each of these three
conceptions involves an algebraic group composed of cognitively and experientially
different, albeit mathematically equivalent, objects. In other words, while one may assert
that there is no real mathematical difference between the structures of the three algebraic
groups, we suggest that there is a vast difference in how students think about and operate
on the objects that comprise each group. We briefly explain each one of these
interpretations below.

Table 1: Three Interpretations of Z, illustrated with Z,.

Infinite Sets Element-Set Representative
Combinations Elements
Elements {...,-8,-4,0,4,8,...} 0+4Z 0
{...,-7,-3,1,5,9,...} 1+4Z 1
{...,-6,-2,2,6,10,...} 2 +47Z 2
{...,-5,-1,3,7,11, ...} 3+47 3
Operation Add all elements of one (a+4Z) + (b +47Z) a+b=(a+ b)mod4
set to all elements of = (a+b)+4Z
another
Infinite Sets

Under this interpretation, the group Z, is comprised of a collection of infinite sets. The
group operation is set addition, defined to be the collection of all possible sums created
by adding single elements from one set to single elements from the other. To form the
sum, students need to add several single elements from one set to several single elements
from the other set until they see a pattern and are able to write the infinite set that
contains all possible sums.

Element-Set Combinations

In this second interpretation, group objects are comprised of an element and a set. The
element serves as an operator on the set, because it shifts all of the elements of the set
along the number line the same number of spaces as its value. For example, 1I24Z is all
the multiples of 4 shifted right one position. The group operation for these objects is
grounded in the infinite set interpretation of cosets. To add shifted sets, we use the same
type of addition as for infinite sets. However, this is equivalent to shifting the original set
by the sum of the two element operators. For example, (12AZ)3O2EAZ) is the same as
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(1ED)EAZ, because when we add any multiple of 4 shifted 1 to the right to any multiple
of 4 shifted 2 to the right, we get a multiple of 4 shifted 3 to the right.

Representative Elements

In this third interpretation, group objects are single elements. The group operation
consists of adding elements modulo n, also referred to as clock arithmetic. In this
interpretation, the set aspect of the group elements is hidden by the operation. Thus,
students are able to do calculations without ever invoking the image of a set.

Relative Strengths of the Three Interpretations

Each interpretation provides our students with unique conceptual insights into Z,. The
infinite sets interpretation brings to the foreground the set nature of cosets. Students
cannot avoid thinking about the group operation in Z, as operating on an object
comprised of a collection of elements. Furthermore, the infinite set interpretation is
needed to provide a satisfactory conceptual justification for why the group operation for
the element-set interpretation is defined the way it is, and why it is not defined as
(aE3@Z)BPEHEZ)ELEM)EARZ. On the other hand, the representative interpretation
of Z, brings to the foreground the element operators on the original subgroup, and
drastically reduce the cognitive load required for computation. Finally, the element-set
interpretation balances both a set interpretation and an element operation interpretation.
As such, it plays a critical role in proofs and conceptualizing the structure of Z,.

STUDENTS' UNDERSTANDING OF THE THREE INTERPRETATIONS OF Z,

Although students varied in their ability to work successfully with the three different
interpretations of Z,, we were nonetheless able to identify common trends across the six
target students in our study. We present these trends below for each of the three
interpretations of Z,,.

Z, as a Group of Infinite Sets

We found that all six students were able to write examples of Z, as a collection of infinite
sets and perform the group operation on those sets. However, students universally had a
different understanding of the group operation than we had intended. To add infinite sets,
the students took one element from one set, added it to one element in the other set, and
then identified the infinite set that contained the sum of the two elements as the sum of
the two infinite sets. While this method of operating always leads to correct results, it is
different from thinking about operating on infinite sets as whole objects. This led to
problems when students were asked to explain why they could add whole sets by just
adding two elements. For example, David tried to justify this method for adding two
cosets in Z,, by listing the two sets and adding elements that were vertically lined up, as
shown in Figure 1. David was unable able to recover once he recognized that his result
was actually an infinite set from Z,,, not Z,,. In fact, we found that students’ most
common methods for trying to add two infinite sets were either vertical addition of
elements, as David did, or set union, despite having seen the instructor demonstrate the
correct method for adding infinite sets in class. In the interviews, only two students were
able to produce the valid group operation for adding whole infinite sets, and then only
after a great deal of experimentation.
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0+10Z = {K ,-20,-10,0,10,20,K }
6+10Z = {K 14, - 4,6,16,26,K }

{L —34,-14,6,26,46,K } —6+20Z

Figure 1: David's incorrect addition of infinite sets.

Z, as a Group of Element-Set Combinations

We found that all six of our students could write examples of Z, in the form of element-
set combinations and perform the group operation correctly. Furthermore, students were
generally more successful in justifying the group operation for element-set combinations
than they were for infinite sets. Four of the six students noted that subgroups of Z are
normal, and thus by a theorem they had investigated in class, the coset operation was
well-defined. However, despite these successes, there were occasional lapses in students’
attention to and understanding of the set part of the element-set combination notation.
These lapses showed up in students’ notational mistakes. For example, when given the
problem of determining what 4ZEEZ produced, several students interpreted 4Z and 6Z
as the cosets 434 and 634, and then added the element parts of these cosets to get
103L[Z, which they wrote as 10Z. Occasionally students inserted elements into the set
part of the coset notation, as Mandy did when she wrote cosets in Z,,/(4,,) in the form of
nE@3,, instead of n@H ,). These mistakes suggest that students were often thinking of
cosets in terms of elements and not as sets.

Z, as a Group of Representative Elements

In general, our students were most successful with the representative interpretation of Z,,.
Students were adept at working with the clock arithmetic group operation for
representative elements. We looked for evidence of misconceptions concerning students’
understanding of this interpretation of Z, and were unable to find any. Students were able
to correctly solve all problems involving the representative element interpretation of Z,.
However, as demonstrated above, their success with this interpretation cannot be
interpreted as an indication of solid understanding of Z,. In particular, by operating with
representative elements, students are not required to address the complexity of thinking
of Z, as a collection of sets.

Students’ Flexibility with the Three Interpretations

For the purposes of proof and conceptual understanding, the element-set interpretation is
likely to be the most powerful. However, it derives its power from coordinating the
infinite set interpretation with the representative element as an operator. In other words,
unless students are able to maintain meaning for both the element and the set aspects of
the element-set objects, they become little more than formal symbols. We found that in
many instances, the set component of the element-set objects became merely a notational
baggage with little meaning, as demonstrated above with students' syntactical errors in
writing cosets in element-set notation.

We hypothesize that students often lacked meaning for the set component of the element-

set interpretation because they did not understand how to operate on infinite sets. In other

words, while students knew the definition of the operation on element-set objects and

generally recognized that the element-set operation was well-defined, this did not help
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them understand why (aEEHZ)BIPEEZ)ZEE)EARZ. Naturally, an instructor might
provide mathematical arguments justifying the element-set interpretation by appealing to
group closure or the operation being well-defined, but these are not cognitively
satisfying. Students' experience with adding algebraic expressions suggests that they
should add like terms, so that (¢«E3MZ)BMPEEZ)Ehould yieldkEMA)EOAnZ. When
students discover that this is not how element-set objects are added, then it is difficult for
them to maintain meaning for the set component, because it does not receive the same
status in computations as does the element. In other words, the element-set objects
become essentially representative elements with the set appended at the end. Thus, the
operation for element-sets does not contain any more explanatory power than the
operation for representative elements.

CONCLUSIONS AND RECOMMENDATIONS

The cyclic groups Z, are in many ways the prototypical examples of quotient groups. It is
often assumed that because they are formed from a familiar set by a simple relationship,
they are easily accessible to students. However, our analysis of students’ thinking about
Z, suggests that Z is a cognitively complex algebraic structure that involves three
different cognitive interpretations. Because of this complexity, abstract algebra
instructors cannot assume that their students will naturally and easily grasp the
complexities of Z, as an example of a quotient group.

We found that students were able to do computational problems within Z, without
difficulty by thinking of it as a collection of representative elements under clock
arithmetic. Indeed, our students tended to reduce the objects in Z, into single elements
whenever possible. While it is often useful to think about group objects as single
elements when working with quotient groups, it is also important to be able to flexibly
return to thinking of the group objects as sets when necessary. To move beyond
computational facility, our students needed to think of Z, in terms of element-set
combinations. Such an understanding is built upon an understanding of elements of Z, as
infinite sets — specifically, as sets created by “shifting” the subgroup nZ by adding an
integer to each element. Thus, full understanding of Z, as element-set combinations must
take into account both the infinite set nZ and the element that shifts it. Given this
understanding, the definition of addition in Z, becomes natural, and students’ ability to
flexibly deal with problems and proofs is greatly enhanced. Our data suggest that a full
understanding of Z, as element-set combinations that allowed for such flexibility was not
common among our students.

Recommendations for Teaching Z,

Students will need substantial help in understanding Z,. In particular, instructors will
need to help their students understand the three cognitively different interpretations of Z,,
because the ability to work with Z, as a quotient group often requires students to work
flexibility within and between these three different interpretations of Z,. Furthermore,
our research suggests that the most difficult part of understanding and coordinating the
three interpretations of Z, is helping students to focus on and understand the key role that
sets play in the construction of Z,. Our students tended to lack this flexibility in moving
from thinking of group objects as elements to thinking of them as sets again. We suggest
that students need specific experiences in working with Z,_ as a collection of infinite sets
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and exploring all the different possible group operations to identify an operation that
yields group structure. Students also need opportunities to move back and forth from
element-set combination and representative element interpretations to the infinite set
interpretation.

Recommendations for Teaching Other Quotient Groups

Upon reflection, we feel that understanding a quotient group in terms of sets, element-
sets, and representative elements would be helpful when studying any quotient group, not
just Z,.. Each of these interpretations is not only applicable to other quotient groups, but
also emphasizes different aspects of a quotient group, and thus enhances understanding.
As with Z,, the set interpretation of the quotient group brings to the foreground the set
nature of cosets, and also motivates and justifies the operation on element-set objects. In
contrast, the representative element interpretation reduces the cognitive complexity of the
group structure by associating them with their element operators, perhaps allowing
students to more easily perceive and recognize emergent properties of the resultant
quotient group. Finally, an understanding of the element-set interpretation supports and in
turn is supported by an understanding of the other two interpretations. The element-set
interpretation is particularly crucial because it is the representation that coordinates both
the set and element operator aspects of cosets. For these reasons, we recommend that
instructors of abstract algebra consider addressing these three interpretations of quotient
groups for any of the quotient groups their students study.
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