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STUDENTS’ USE OF TECHNOLOGY IN
MATHEMATICAL PROBLEM SOLVING:

TRANSFORMING TECHNOLOGICAL ARTIFACTS INTO
MATHEMATICAL TOOLS

Manuel Santos, Evelyn Agüero, Alexander Borbón &  Cristhian Páez
Cinvestav, IPN, Mexico

Can textbook exercises be transformed into problem solving activities that encourage
students to develop mathematical thinking? This study documents what high school
students showed when they were explicitly asked to use technological tools to examine
and solve a routine problem from different angles or perspectives. In this process,
students dealt with several representations that were important to analyze and quantify
concepts of variation or change attached to the problem, in terms of models of solutions.
When does a technological artifact become a mathematical problem-solving tool for
students? What process of appropriation do students go through in order to use such tool
in mathematical practice? What type of mathematical resources and strategies do students
need in order to transform the use technological artifacts into mathematical tools? What
process do students take in order to meaningfully employ those tools in problem solving
activities? What types of mathematical representations are enhanced through the use of
technological tools? These are important questions that we use as a guide or reference to
evaluate the potential of technological tools in students learning of mathematics. In
particular, we are interested in documenting what high school students exhibit when are
asked to systematically use dynamic software, excel, and symbolic calculators in problem
solving activities.   In this context, we recognize that there are multiple ways in which
technology can be employed by students and we are interested in characterizing those
ways in which technology becomes a powerful tool for students to identify and explore
conjectures, to quantify and analyze (graphically or numerically) particular phenomena,
and to identify patterns or relationships through the analysis of distinct representations.
In this study a routine problem that often appears in first calculus course is used to
identify and analyze different types of models that students construct to solve the
problem. In this process, the use of technology becomes a powerful tool for students to
represent and examine relationships through the use of resources and concepts that appear
traditionally in domains such as algebra, geometry, functions, and trigonometry.

CONCEPTUAL FRAMEWORK
There are different learning trajectories for students to take in order to achieve
mathematical competence; however, a common ingredient is a need to develop a clear
disposition toward the study of the discipline. Such a disposition includes a way of
thinking in which students value: (a) the importance of searching for relationships among
different elements or components of the tasks in study (expressed via mathematical
resources), (b) the need to use diverse representations to examine patterns and
conjectures, and (c) the importance of providing and communicating different arguments
(Santos, 1998).  Thus, it becomes important to encourage students to think of the
discipline in terms of dilemmas or challenges to be met and resolved.  This means that
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they need to conceptualize their learning experiences in terms of activities that involve
posing questions, identifying and exploring relationships, and providing and supporting
their answers or solutions (NCTM, 2000).  It is necessary to value the students’
participation and persuade them about the power of reflecting on what they do, in
mathematical terms, during their interaction with tasks or mathematical content. “To be
able to guide students’ inquiry toward the learning of the mathematical content in the
syllabus, teachers must first convince students that inquiry is a legitimate, safe, and
productive way to learn in school” (Lampert, 1995, p. 215).  Here, students’ view of
mathematics involves accepting that it is more than a fixed and static body of knowledge;
it includes that they need to conceptualize the study of mathematics as an activity in
which they participate actively in order to identify, explore, and communicate ideas
attached to mathematical situations.

…Students themselves become reflective about the activities they engage in while learning or
solving problems.  They develop relationships that may give meaning to a new idea, and they
critically examine their existing knowledge by looking for new and more productive
relationships.  They come to view learning as problem solving in which the goal is to extend
their knowledge (Carpenter & Lehrer, 1999, p. 23).

Students need to use different representational media to express their ways of thinking
while dealing with tasks or problems. The students’ constructions of powerful
representational systems play an important role in developing distinct artifacts to
understand and explain complex systems (Lesh, in press). The use of different tools
offers students the possibility of examining situations from perspectives that involve the
use of various concepts and resources.  As a consequence, each representation might
become a platform to identify and discuss mathematical qualities attached to the process
of solution. Thus, during this process, a table might shed light on trends displayed by
discrete data while an algebraic approach focuses on continuous behavior and general
tendency (infinity). Geometric and dynamic approaches to the problem might provide a
means for students to visualize and examine relationships that are part of the depth
structure of the task. Specially, dynamic constructions help students focus their attention
on common properties that appear while moving elements within the same configuration
or representation.  Lesh (in press) argues that “useful ways of thinking usually need to
develop iterative and recursively, with input from people representing multiple
perspectives”.  In this context, solving the task goes beyond reporting a particular
solution, it is a process of constructing, investigating, representing, applying, interpreting,
and evaluating several ways to solve the problem (Schoenfeld, 1998).

GENERAL PROCEDURES AND THE INITIAL PROBLEM
Twenty-four students (grade 12) worked on a series of tasks that included textbook
problems (in addition to assignments of the course). Students met twice a week during
2.5 hours.  In this report we document features of mathematical thinking that students
exhibited while interacting with one problem. In general, each student had access to a
computer (excel and dynamic software) and a calculator. In each session, students had
opportunity to work individually, in small groups, and as a part of the whole group
discussions. Some students had some experience in using the tools and often those
students taught other students during and out of the regular sessions.  The example used
to illustrate the students’ ways of thinking (models) involves a routine problem that
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regularly appears in calculus textbooks. Thus, models that students exhibit during their
interaction with this task illustrate mathematical processes and content that appear when
students use distinct representations to explore mathematical qualities attached to various
methods of solutions. Ideas from arithmetic, algebra, geometry, and calculus emerge
naturally as a means to analyze relationships that appear in each student’s approach. It is
important to mention that there is no intention to provide a detailed analysis of students’
work, rather each students’ approaches to the task is shown to highlights the type of
representation used to solve the problem. In particular, attention is paid to the variety of
ideas and strategies that emerged when students are encouraged to use different
technological tools to represent and approach even routine exercises. Thus, the initial
nature of the task can be transformed into sequences of students’ mathematical
explorations.

The Initial Problem1.  The distance between two
telephone poles is of 10 m as shown in the figure. The
length of each pole is 3 and 5 meters respectively. To
support the poles, a cable from the top of each pole
will be tied to a point on the ground between the two
poles. Where should that point be located in order to
use the minimum length of cable?

10 m

5 m
3 m

P

Two poles and a cable

Students worked on this problem first individually and later as a part of a group of three
students.  When some small groups presented their approaches to the entire class, it was
common that new ways to solve the task emerged from the class discussion and students
had opportunity to rewrite their initial approaches.  At the end of each session, the teacher
directed the class to discuss advantages and limitations of what students had presented.
So, in general, students became aware not only of the power of their own methods but
also of the strengths of other students’ approaches.

Students’ construction of models to solve the problem
The term model is used to characterize ways in which students identify and employ ideas,
concepts, representations, operations, and relationships to solve problems. So the
construction of models is a process that involves constant exchange and refinements of
students’ ideas.

Students’ initial interaction with the problem focused on identifying key ideas to detect
particular relationships. Thus, understanding the task involved the introduction of a
representation and notation that led students to discuss a set of questions.

                                                  
1 The general statement of this problem is known as Heron’s Problem. It is often stated as “given
two points on the same side of a line, find a point on that line such that the sum of its distances to
the given points is minimal”.
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(i) An important mathematical idea embedded in this
task is to recognize that the length of the cable varies
when P is moved along the segment between the two
poles.  Here, it is also important to quantify that
change. Students, in general, introduced particular
notation that helped them identify key elements of the
task.

3

5

10
A B

C

D

P

Representation and a notation

 (ii) How can we know that the length of the cable change when point P is moved along
the line between the two poles? How can we determine the distance between one pole
and point P? What data do we have? Can we use the Pythagorean’s Theorem? These
were initial questions that helped students identify relevant information and explore
relationships between the length of the cable and location of point P.

I. A Discrete Model.   Some students focused on calculating particular cases that emerge
when point P is moved along segment AB.  Although they initially divided the segment
of length 10 into two arbitrary segments, later they organized the lengths systematically
into a table arrangement.  AP represents the distance from the length of the shorter pole
to point P; PB the length between point P and the other pole.  P1 and P2 represent the
lengths of the poles, D1 and D2 the corresponding hypotenuses and D1+D2 the length of
the cable. A table that includes a refined partition of segment AB and the hypotenuses of
the two triangles are shown next.

AP PB P1 P2 D1 D2 D1+D2

1 9 3 5 3.16227766 10.2956301 13.4579078

1.25 8.75 3 5 3.25 10.0778222 13.3278222

1.5 8.5 3 5 3.35410197 9.86154146 13.2156434

1.75 8.25 3 5 3.473111 9.64689069 13.1200017

2 8 3 5 3.60555128 9.43398113 13.0395324

2.25 7.75 3 5 3.75 9.22293337 12.9729334

2.5 7.5 3 5 3.90512484 9.01387819 12.919003

2.75 7.25 3 5 4.06970515 8.80695748 12.8766626

3 7 3 5 4.24264069 8.60232527 12.844966

3.25 6.75 3 5 4.4229515 8.40014881 12.8231003

3.5 6.5 3 5 4.60977223 8.20060973 12.810382

3.75 6.25 3 5 4.80234318 8.0039053 12.8062485

4 6 3 5 5 7.81024968 12.8102497

4.25 5.75 3 5 5.20216301 7.61987533 12.8220383
Students observed that the length of the cable decrease up to some value and then increases again. Here,
they identified that when the point on is 3.75 from the point A, then the cable gets the minimum length.

A Visual Representation.  After students generated a table, they presented the
corresponding graph. Here, they observed that when the point gets closer to one of the
poles the length of the cable gets larger.  Indeed, they observed that when the point was
3.75 the length of the cable reaches the minimum value.  Here, students asked: When or
under which conditions does the midpoint of the segment determine the minimum length
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of the cable? Students reported that when the lengths of the poles were the same then the
midpoint of AB was the point at which the cable reaches its minimum length. Otherwise,
the point will be located on the segment and close to the point with shorter length.

VISUAL APPROACH
The key ingredients of this model include the idea of analyzing particular cases, the
process of refining the segment partition, the use of the Pythagorean theorem, the use of
the tool (excel) and the visual representation of the data.

II. A Symbolic Model and the Use of a Calculator. A small group of students
expressed the hypotenuse in each right triangle as x2 + 9 and 25 + (10 - x)2

respectively and the length of the cable as the sum of these two expressions.  That is,
22 )10(259)( xxxl -+++= . How can we find the minimum value of l(x)  in this

expression? Can we graph this function? With the help of a calculator, some students
graphed the function l(x)  and identified the value in which the minimum value is
reached. Other students, who decided to follow algebraic procedures to find the minimum
value of l(x) , realized that they could contrast their results with those obtained through
the use of the symbolic calculator. So the calculator functioned as a monitor of the
students’ work.

Graphic representation Symbolic approach

In this model, students focused on representing the function that related the position of
the point to the length of the cable. Here, the fundamental components of this model
include the use of particular notation, algebraic procedures, and establishing connections
between the graph representation and the problem. The calculator had a dual purpose: to
graph the function and identify the solution and to verify algebraic operations (derivative,
roots of equation).
Iii.a geometric model.  Another method suggested by the instructor was to examine the
case in which one pole was reflected on its vertical line with respect to segment that joins
the two poles (figure below). They observed that angles APC and APE are congruent.
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Students recognized that in this case the segment ed that intersects AB at P is the
minimum length of the cable. They argued that any other point different p’ will generate
a triangle EP’D in which the sum of EP’ and P’D will be always longer than ED (figure
below). The argument was based on using the triangle inequality.  That is, they showed
that in ∆EP’D, EP’ P’D ED.
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Justification of the solution

To find the distance AP, Some students recognized that triangles APE and BPD were
similar. Therefore, the corresponding sides held proportionality, that is, x

3
=

10 - x
5

which led to x =
15
4

.

Slope Approach. Some students also realized that the minimum distance of the cable is
obtained when the slopes of the two lines CP and PD are the same but with opposite sign.
That is, when the angles APC and BPD are congruent.  Here, they introduced a
coordinate system with A as its origin point. Thus, they calculated the slopes of the line
that passes by (0, 3) and (x, 0) and the line that passes by (x, 0) and point (10, 5).

m1 =
-3
x

 and m2 =
5

10 - x
; to hold the condition students observed that:

-3
x

= -
5

10 - x
¤ -30 + 3x = -5x ¤ x =

15
4

The components attached to this model involve the use of properties of triangles
(congruence and similarity) to identify the solution. Supporting the solution was also a
key part of this model. In addition, the use of a coordinate system played an important
role to introduce basic ideas of analytical geometry.

IV. A Dynamic Model. Yet another approach that students showed while dealing with
this problem was to represent the problem through the use of dynamic software. This
software allowed students to determine graphically the relationship between the distance
AP and the length of the cable (CP + PD). Here, by moving point P along segment AB a
graph of the behavior of the length is generated.  It is also important to mention that a
table including some values of distance CP and the corresponding value of CP+PD can
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also be obtained. In this case what students reported was an approximation of the
minimum length of the cable, that is, 12.81. In addition, students could drag basic
parameters and generalize their results (for example, varying distance between poles or
poles lengths).

1
x

1

y

3

5

10

( , )3.73 12.81

AP CP+PD
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2.87 12.86 
3.33 12.82 
3.73 12.81 
4.23 12.82 
4.63 12.85 
4.90 12.89 
5.30 12.95 

CP+PD= 12.81 cm
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A dynamic representation

A key component of this model was to represent dynamically the relationship between
the point of the segment and the length of the cable. The use of a coordinate system to
show the graphic representation of that relationship was also an important ingredient. In
addition, students in this model could explore easily other cases in which they change
parts of the initial representation (lengths of poles and segment).

Students had the opportunity to discuss advantages and disadvantages attached to each
model. In particular, they noticed that geometric and dynamic models did not involve
algebraic procedures to find the solution.  To close the session, the teacher posed the
following related problem:

Let C be a given point in the interior of a given angle. Find points A and B on the sides of the
angle such that the perimeter of the triangle ABC is a minimum.

Students’ first approach was to represent the problem with the use of dynamic software.
In using the software it was also important to introduce a particular notation (figure
below).  Let OR and OR’ rays with a common point O and C a point on the interior of
angle ROR’. Thus, their first goal was to find the minimum length from point C to any of
the angle side. They drew segment CB from point C and perpendicular to ray OR’. Now,
from C they drew a perpendicular line to OR and from B a perpendicular segment BD
perpendicular to OR. They recognized that segment DQ and segments QC and DB
represented an analogous case to the original problem. That is, the objective was to
identify a point on DQ such that BA + AC was minimum. Using that the line joining BC’
(CQ = QC’) intersects DB at P. and this point determines the minimum distance.
Therefore, the triangle with the minimum perimeter is triangle CPB.
An extension: An angle, an interior point and a triangle with minimum perimeter, and graph
showing an approximate solution using dynamic software.
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REMARKS
When students openly search for various approaches while working on mathematical
tasks it is common to identify different types of representations that help them examine
and use different problem solving resources and strategies.  Some tasks or problems that
often appear in regular textbooks can be taken as platform to engage students in
mathematical practice.  In particular, the use of technology became a powerful tool to
explore properties and relationships that did not appear in paper and pencil approaches. It
was evident, that students’ ideas about solving routine problems get enhanced when
explicitly they search for various ways to represent and solve the tasks. That its, routine
problems are seen as a means to encourage students to extend and reflect on their
mathematical thinking. Thus, teachers might use initially some of their textbook
problems as a way to engage students in the search of powerful representations to elicit
and refine their previous mathematical ideas. These ideas eventually are transformed in
models that are useful to solve problems.
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