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We report the findings of an empirical analysis of the performance of a group of middle
and high school students before and after an after-school algebra enrichment program
using the SimCalc software incorporating classroom networks. The results highlight
statistically significant gains in their learning and briefly outline contributing factors of
the innovation that gave rise to such improvement.

CONTEXT

The long-term goal of the SimCalc project has been to democratize access to the
Mathematics of Change and Variation (MCV) (Kaput, 1994) especially algebraic ideas
underlying calculus (Kaput & Roschelle, 1998) using a combination of new
representations, links to simulations and new curriculum materials for grades 6-13. The
software enables students to interact with animated objects whose motion is controlled by
visually editable piece-wise or algebraically defined position and velocity functions. One
form of the software has been developed for the TI-83+ (Calculator MathWorlds) and the
other is a cross-platform Java application (Java MathWorlds) which exploits higher
screen resolution, with the ability to pass MathWorlds documents between the two
platforms — see http://www.simcalc.umassd.edu for further details.

Present work has studied the integration of various kinds of connectivity with the
SimCalc environment that enable new and intense forms of social interaction and
learning possibilities. Recent studies (Kaput & Hegedus, 2002) reported the affordances
of newly emerging connectivity technology that allows teachers to distribute and collect
students’ work across diverse platforms from hand-held devices, such as the TI-83+
graphing calculator, to desktop computers. Since this earlier work, we have expanded the
design space of classroom connectivity to include the passing and sharing of students’
individual constructions between computers using standard Internet protocols. The
development of a dedicated Java MathWorlds (JMW) server has allowed students to send
their individual work from within JMW to the teacher who can aggregate and then
display their work on a single coordinate system.

Utilizing this new connectivity/aggregation ingredient, we developed a 5-week after-
school algebra enrichment program for local middle and high school students in a
standard school computer lab. This paper examines their mathematical performance
gains.

THEORETICAL BACKGROUND

The capabilities of classroom connectivity has not merely enhanced the management of
information flow in the classroom, but more powerfully, changed the nature of MCV
learning activities. We have begun to document activity structures (Hegedus & Kaput,
2002) that give rise to mathematically deep and socially intense learning where students’
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personal constructions become part of shared mathematical objects as their work visibly
participates in those aggregated objects. The social structure of the classroom plays a
direct role in the structuring of mathematical activities, and vice-versa in a dialectical
fashion. Students, organized into groups, build functions that vary parametrically across
the groups as well as within groups, yielding structured families of functions reflecting
the directly experienced social structure of the classroom. This epistemologically elevates
the organizational structure of the mathematical objects, from functions to families of
functions. In doing this, students construct parts of a mathematical whole and so the focus
of their attention is on the relations between their individual contribution and the whole.
Thus, students’ personal identities are intimately involved in their building and sharing of
mathematical objects in the public space of the classroom. The main aim of this paper is
to show that classroom connectivity not only offers new and exciting pedagogical
opportunities for teachers but it can significantly improve students’ performance in core
algebra topics over a short period of time.

THE SET-UP OF OUR CONNECTED SIMCALC CLASSROOM

During the course of our intervention, the class

S C C C met after school in a dedicated computer lab.
Figure 1 illustrates schematically the classroom

C C C set-up with a large amount of activity occurring
around the whiteboard (Display) where the

teacher computer was displayed. Two rows of

_ C C C computers (shaded) were used for other school
=) purposes except for one computer (S) dedicated
A P Teacher and Computer to running the SimCalc Server application.

Four rows of computers (16 computers) were

used, usually with 2 students to a computer (C).

Figure 1. Classroom Set-up The classroom set-up was traditional in its

layout with rows of computers, making

interaction and classroom discussion logistically difficult in contrast to networks of

personal hand-helds. The focus of our attention here is on the students rather than the
teacher — a novice SimCalc teacher who received regular direction from us.

Our key innovation was to incorporate a unique identifier for each student into the new
connected classroom activities. Each student was assigned a 4-digit number, which
resonated the physical group set-up of the classroom. The first two digits specified their
group number (established by which row of computers they were in for example) and the
last two digits specified their count-off number in their group. This 4-digit number served
as a natural variant, which mapped to the parametric variation within the mathematical
activities. For example, a now standard introductory task in our work requires each
student to construct a motion by visually or algebraically editing position-time graph
segments to make their screen object travel at 3 feet per second for 5 seconds but starting
at their group number. When each student’s work is aggregated, the teacher can display a
naturally emerging family of functions (a set of parallel functions — see Figure 2) and
begin to discuss the variation across the graphs in terms of the variation across the
groups.
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Figure 2. Class Aggregation in Java MathWorlds

Overlap occurs in the position-time graphs since each group contains several students,
but each student is distinguished by a unique square dot in the upper half of the screen
(“the World”). Clicking on a dot displays the student’s name in the lower left part of the
window (this can be deselected to provide anonymity). Animating the group motion leads
to all the dots moving synchronously in the world, but offset in side-by-side groups as in
a parade. Based on projection of the teacher’s computer onto a classroom display, class
discussion centers on who is where and why, and why the motion and graph
configurations appear as they do. Students are also asked to produce a generic formula
for the entire group, for this example, Y=3X+B where B is the group number. An
additional feature of the SimCalc software is a Matrix window, which displays all work
retrieved from the students and allows the teacher to hide/show students’ graphs, dots and
other representational features of the motion. In addition, and more importantly, the
teacher can sort dots by group or count-off number, thus displaying groups of dots which
naturally correspond to groups of students. Here, the students’ identities are projected
into an organized aggregate structure, which resonates with the structure of the
mathematics. In addition, the dynamic feature of the SimCalc environment enables a
motion-representation of the generic formula and the role of the parameters M and B —
via the parallel motion and offset starting positions. The parallelism of the linear
functions is represented in the parade-like motion of the group!

In later activities, we systematically vary the role of both group and count-off number in
increasingly more rich and complex tasks dealing with core algebra topics, such as slope
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as rate, linearity, parametric variation and systems of equations. A more detailed account
of our intervention triangulating our empirical work with our observational data can be
found in Hegedus & Kaput (in review). Following our intervention fusing the SimCalc
environment and classroom connectivity with these and many more related activities, we
saw significant gains in student performance. We now report our testing methodology
and empirical results.

PRE-POST TEST METHODOLOGY

In order to measure changes in students’” understanding of the core algebra ideas attended
to in our intervention, we administered a 20-item pre-post test comprised of 12 questions
from the 10" grade 2001 state (Massachusetts) exams, 1 Advanced Placement Calculus
item and 7 questions selected from a pool of items developed by the SimCalc Project and
refined over several years. Fourteen of the questions were multiple choice and the
remaining items were short answer or open-response. Some of the questions were not
directly addressed in our intervention and served as face-validity items that assessed
whether more general algebraic skills were developed during the intervention. Twenty-
five students from our original group of 38 completed the course. The scores of 24 of
these students were used in our statistical analysis, as one student did not complete the
pre-test. Those students not completing the course were not statistically different
(mean=0.430, variance=0.019, n=13) in their achievement on the pre-test from the final
sample used for pre-post test comparison (mean=0.427, variance=0.019, n=24).

We adopted the rubric for the MCAS open-response item (4 points) and combined it with
the other multiple-choice questions and SimCalc items (scored between 2 and 4 points) to
total a test score of 31 points. The test items were comparable in difficulty and passed a
test for internal consistency reliability (a=0.71) for its use as a pre-post-test measure. The
pre and post-tests were scored by two markers. A high interrater coefficient (r = 0.80)
was obtained and a third marker was used in collaboration with the other two markers to
obtain the final results.

DATA RESULTS AND ANALYSIS

We aimed to show that any change in student’s performance was mainly caused by our
intervention of the connected SimCalc classroom and not necessarily the social or
academic demographics of the participants or other indirect variables. To this aim, we
present our results, which separate out the performances of 2 different subgroups and the
performance on individual items combining various statistical procedures and measures
of gain. Our middle school students were higher achievers (as described in their mean
scores). Our high school students were low achievers, with low proficiency levels
(average 218) on recent 8" grade state examinations. The five-week teaching experiment
had a positive effect on the mathematical behavior of both groups of students as
presented in Table 1.

We used a paired Student’s t-Test to measure the significance of the difference in the
groups mean scores. A paired test was suitable given a high correlation coefficient
between their pre/post-test scores (0.78) as well as the two groups being identical and the
same test being used to measure the effect of the intervention.
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Group n Pre Test Post Test Cohen’s | Hake’s )
Mean SD Mean | SD d effect Gain

All 24 | 42.7% | 0.141 | 65.9% | 0.149 1.60 0.42 0.0001
7" & 8" | 10 | 52.2% | 0.092 | 76.8% | 0.123 1.78 0.5 0.0001
9™ 14 | 37.7% | 0.158 | 62.0% | 0.136 1.91 0.36 0.0001

Table 1. Pre- and Post-Test Results

In addition, a parametric test was used given that the students were selected from a large
population and had varying mathematical abilities. This was confirmed using a normality
test'. The results show a statistically significant increase (p<0.05) in both the mean scores
as a group, as well as by age group. Even though the group of grade 7 & 8 students
(n=10) showed higher test averages than the grade 9 students (n=14) the latter group
yielded a higher effect size of 1.91 standard deviations. In both groups, the effect size
was extremely high. This illustrates that while the 5-week session had a very positive
effect on both groups it appears that there was a more positive effect on the 9" grade
students. Our concern was with the difference in both age groups both in background and
prior knowledge. How much of this gain was due to prior knowledge? To attend to this
question, we used Hake’s gain statistic — an average normalized gain — which related
mean gain relative to original performance, i.e. Gain = <Post>— <Pre>/ 1 — <Pre> where
the angled brackets represent mean scores. Hake studied over 6000 diagnostic tests of
physics undergraduates in reform- vs. traditional-based classrooms (Hake, 1998)
observing higher gain scores (>0.4) for reform-based classrooms. Hake’s work and other
studies indicate that this statistic is related to students’ growth in a more cognitive sense
(McGowen & Davis, 2001; Hake, 1998). Table 1 highlights how, while our group of 9"
graders had a greater effect size, our group of 7" and 8" graders had a greater gain (0.5)
relative to their performance on the pre-test. We calculated an individual Hake’s gain
statistic for each student for two purposes. First, we calculated how their increase in
performance from pre to post test related to their prior knowledge by correlating their
individual Hake’s gain statistic with their pre-test scores. There was insignificant
correlation for both the middle school students (r=0.09) and our high school group
(r=0.12) highlighting that instruction was at the right level for students who have an
average or little prior knowledge of the subject as judged by the pre-test score. This was
an important find for us in establishing that gain in our non-standard classroom was
mainly based on our intervention rather than student background given that we had a
mixture of students of varying educational performance, of varying exposure to the core
mathematical ideas we were attending to, as well as ages.

" To test whether the samples were from a Gaussian distribution we used the method of Kolmogorov and
Smirnov.
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Test Pre-Test Post-Test
Item Type P
Mea SD | Mea SD
1 Direct linear extrapolation. Interpreting | 0.333 | 0.482 | 0.667 | 0.482 | 0.0195
straightness qualitatively. Unit conversion
Modeling. Reading graphs with zero starting | 0.917 | 0.282 | 0.875 | 0.338 | >0.999
3 Algebraic modeling of linear quantities with | 0.833 | 0.380 1 0 n/a
non-zero starting values

4 Concept of averaging. Unit conversion. End | 0.333 | 0.482 | 0.417 | 0.504 | 0.547
point analysis
5 Graphical interpretation. Comparing starting & | 0.458 | 0.509 | 0.917 | 0.282 | 0.001
ending point differences.
Co-linearity. Interpretation as slope 0.333 | 0.482 | 0.458 | 0.509 | 0.375

6

7 Linear extrapolation. Multiplicative reasoning 0.792 | 0.415 | 0.833 | 0.381 | 0.813
8 Attention to labels and scales. Unit conversion. | 0.667 | 0.482 | 0.875 | 0.338 | 0.109
9 Reading graphs 0.750 | 0.442 | 0.875 | 0.338 | 0.313
10 | Interpreting Pi as a coefficient 0.333 | 0.482 | 0.875 | 0.338 | 0.0002

11 | Point-wise interpretation of graph to obtain | 583 | 0.504 | 0.625 | 0.495 | 0.820
two varying quantities. Graphical construction
12 | Slope as rate. Interpretation of velocity (SC; | 1.917 | 0.583 | 2.958 | 1.367 | 0.002

OR4pt)
13 Slope as rate, Change of sign (slope) (AP) 0.542 | 0.509 | 0.583 | 0.504 0.813
14 | Concept of rate. Multiplicative reasoning (SC, | 0.750 | 0.676 | 1.792 | 0.588 | <0.001
SA2pt)
15 | Slope as rate. Average. (SC, SA2pt) 0.125 | 0.338 | 0.208 | 0.509 | 0.491
16 Slope as rate attending to scales (SC) 0.333 | 0.482 | 0.833 | 0.381 | 0.0005
17 | Concept of rate with divisors. Non-standard. | 0.417 | 0.504 | 0.625 | 0.495 | 0.206
(8C)

18 | Algebraic expression of real-life varying | 0.750 | 0.847 | 2.042 | 1.233 | <0.001
quantities. Interpreting the y-intercept

19 | Determining slope from value. Concept of | 0.625 | 0.824 | 1.167 | 0.637 | 0.0012
families of functions (parametric variation)
(SC, OR4pt)

20 | Algebraic and geometric reasoning. | 1.458 | 1.141 | 1.792 | 1.103 | 0.148
Interpretation of real-life scenarios. Systems of
equations.(MCAS,OR4pts)

Table 2. Item-by-item analysis

We also conducted an item-by-item analysis to assess which questions and corresponding
content and skills contributed to the increase in performance for the group. Table 2
highlights the mean scores from pre- to post-test as well as content areas for each
question, where “SA” denotes short answer and “OR”, open-response questions. The
remainder are multiple-choice. All questions are from the 2001 State examination unless
stated; SimCalc (SC), Advanced Placement (AP). We conducted a Wilcoxon matched-
pairs test for multiple-choice items (binary response) and paired Student’s t-test for short
answer and open response questions. We highlight 8 items of statistically significant gain
(p<0.05). One ceiling-effect item (3) could not be tested.



The highlighted items in Table 2 outline a genre of skills, which were mainly consonant
with our original aims for the course. They involve interpretation of graphs,
understanding of slope as rate, interpreting Y=MX+B and how varying the parameters M
and B vary graphical views, linearity, interpreting slope in real-life situations (e.g.,
(constant) velocity as slope of linear position-time graphs), and, most significantly, to
generate and interpret families of linear functions from parametrically varying M and B.
Curiously, we had not originally intended to concentrate on graphical interpretation,
especially for non-motion based scenarios, and we believed our intervention had not
concentrated on such a skill, yet the overall performance of the group on such tasks
(items 1, 5, 10, 12) led us to believe that there was something implicit in our instruction
and the connected classroom set-up that enabled students to continually reflect on the
graphs they created (both algebraically and visually). We cannot include the whole test
but a full version is available on-line at the SimCalc website®, however we wish to
present two of these questions which serve as face-validity items to strengthen our claim
that a connected SimCalc classroom has a positive effect on students’ learning. The
students scored significantly higher on the post-test for item 5. Their pre-test performance
was very similar to the mean scores for the high school (45.0%) the previous year as well
as the State overall mean score (46.0%). This item required students to interpret and
compare non-linear graphs of varying enrollment figures of three clubs over time. Here
students must determine end-point differences and interpret the results as quantities.

5. Based on the graph, which organization showed the Club Membership, 1985-1995

most growth in membership over the 10-year period? 200 e

A. The Math Club . 10| - S Gl

B. The Hiking Club % ool &

C. The Drama Club a ;; © T ‘-:_‘__',.c-__f__-
D. The Drama Club and the Hiking Club are tied for the » Jj [ ]

most growth. §55885350838

R R rRR R RS

Figure 3. Item 5

The second face-validity item we wish to highlight is item 10, which shows the most
significant increase given that on the pre-test the students performed the same as the high
school (34%) and the state (33%), which was quite poor, and excelled on the post test
(87.5%). Furthermore, the question required the students to interpret a non-standard
algebraic relationship of two geometric quantities. Our intervention had predominantly
used standard algebraic notation (i.e. Y=MX+B) or some incorporation of identifiers (e.g.
count-off/group numbers) into the parameters M and/or B.

10. The circumference, C, of a circle is found by using the formula C = ntd, where d is the diameter.
Which graph best shows the relationship between the diameter of a circle and its circumference?

2 http://www.simcalc.umassd.edu/New Website/pretest.html
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Figure 4. Item 10
CONCLUSION

It is our primary claim that in combining the dynamic SimCalc environment with
classroom connectivity we can significantly improve students’ performance on 10" grade
MCAS algebra-related questions in a short period of time. Even though we had a non-
standard mixture of students, our analysis has shown that all our students performed
better relative to their prior knowledge, which in some cases was little or none, on
questions involving core algebraic ideas. We believe that classrooms which integrate
dynamic software environments with connectivity technology can dramatically enhance
students’ engagement with core mathematics beyond what we thought possible in the
absence of such support. Further work is needed, both to explain such enhancement and
to exploit it.
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