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NOTATION ISSUES: VISUAL EFFECTS AND ORDERING
OPERATIONS

Dave Hewitt
University of Birmingham

Abstract: This paper reports on part of a wider study on the teaching and learning of the
conventions of formal algebraic notation. Through the analysis of paper tasks given to
teachers I argue that not only does the inherent mathematical structure have an effect on
the way in which an equation is manipulated but also the visual impact of notation itself.
Students’ interpretation of arithmetic equations written in words and then structurally
similar equations written in formal notation raise issues about when students perceive
order which is not strictly left-to-right and the possible significant role the equals sign
has in this.
Hughes (1990, p132) gave an example of a six year old, Andrew, who used bricks to
work on the problem ‘ =- 513  ’. Andrew made three piles of bricks containing one, three
and five bricks and then proceeded to add up the bricks to make his answer of nine. When
confronted with notation, all anyone can do is try to relate that notation to existing
knowledge or awareness and this boy did just that. There is nothing within the notation
itself which would tell this child he was wrong. Notation is arbitrary (Hewitt, 1999) in the
sense that it is a social convention of arrangements of symbols where there is no
necessity for the notation having had to be the way it has turned out. Decisions were
made a long time ago and certain decisions have been accepted within the community of
mathematicians. According to Walkerdine (1990, p2) Saussure is credited with
recognizing the importance of the fact that the relationship between the signifier and the
signified is arbitrary; that is to say, conventional rather than necessary. Meaning has to
be brought to the notation. Goodson-Espy (1998) talked of often coming across issues
about student interpretation of notation when trying to explain student learning of
algebra. Elsewhere (Hewitt, 2001) I have argued that some of the difficulties within
algebra might be due to difficulties with notation per se rather than mathematical notions
themselves. The fact that Andrew ended doing an addition of 531 ++  when confronted
with ‘ =- 513  ’ does not tell us anything about whether he can subtract five from 13.
With regard to the mathematics, we only learn that he can add up those numbers
successfully. Any difficulty he might have had could just be about interpreting the
notation, rather than the mathematics of carrying out such subtractions.
Students can create their own notations for arithmetic operations from an early age
(Hughes, 1990; Steffe and Olive, 1996). Attaching a label or symbol to a concept is a
natural activity with which young children engage. The act of symbolising is not so much
the issue, as Sáenz-Ludlow and Walgamuth (1998, p153) pointed out the inverse process
of interpreting symbols to unfold mathematical concepts challenges all learners. It is this
inverse process of interpreting someone else’s notational conventions which often causes
difficulty. Sfard and Linchevski (1994) pointed out that algebraic thinking appears before
notation – both historically and with learning. For the creators of notation, they already
have an algebraic awareness which they are choosing to notate. Which notation they
choose is a matter of preference, not a matter of right or wrong. However, for inheritors
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of someone else’s notation, all they are given is a collection of symbols and they are left
with the much harder task of searching through their own knowledge and awareness to
find something with which they can relate to the notation. For learners this is not a matter
of preference as it is often judged by others as right or wrong. For a learner the formal
notation can be a barrier to engagement in mathematical problems and can obfuscate
otherwise accessible mathematics.
Deacon (1997) pointed out that learning any language is not as simple as a one-to-one
correspondence between signifier and signified. He talked of moving from associations
between symbols and objects, to relationships between symbols. This is certainly
significant with formal notation as there are not only associations between a symbol such
as ‘2’ with the mathematical notion of two, or ‘+’ with addition, etc, but also a symbol
has varying significance dependent upon its position in relation with other symbols. For
example, the meaning of ‘2’ in ‘24’, ‘42’ and ‘42’ changes due to its position in relation
to the ‘4’. As Mercer (2000, p67) pointed out words gather meaning from ‘the company
they keep’. Kirshner (1989b) argued that many students develop meaning for ordering of
operations in an expression such as x23 +  through the visual impact of the position of
symbols rather than through analysing the associated mathematical content of operations.
For example, the ‘2’ and the ‘x’ are closer together than the ‘3’ is to the ‘2’. He proposed
that attaining and expressing algebraic skill is principally a linguistic rather than an
intellectual exercise (Kirshner, 1989a, p38). Perhaps a greater awareness is required of
the pedagogic job to be done to help students develop linguistic skills of reading and
writing algebraic notation as well as working on the algebraic notions that end up being
expressed in formal notation.

THE STUDY
This paper reports on part of an ongoing study into how some students are interpreting
and using formal algebraic notation before they have had many lessons on the topic of
algebra within their secondary schooling. A wider aspect of the study, not reported here,
involves observation of students working with recently developed software which is
aimed at helping them to create and work with formal notation. Additionally, I am
interested in how teachers themselves work with notation when solving some algebraic
tasks and their opinions about working with students on formal algebraic notation. I used
a questionnaire for teachers which included asking them to solve specially chosen linear
equations and to answer various questions on notational matters. I also asked students to
complete two written tasks. The first involved a series of arithmetic equations written in
word form. Students were asked to state whether they felt the statement was
mathematically correct and then asked to write the statement out (whether correct or not)
as a formal mathematical equation. This was completed before the second task was given
out, which involved a series of arithmetic equations, this time written in formal notation.
The task was for the students to put a tick or a cross next to each one depending upon
whether they felt the equation was correct or not. Each word statement in the first task
sheet was mathematically equivalent in form to a statement written in formal notation on
the second task sheet. The numbers involved in these equations were deliberated kept
small in an attempt to reduce arithmetical difficulties.
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The analysis of data was carried out in two ways. First, the design of some of the
statements in the tasks and questions on the questionnaires were such as to test pre-study
conjectures about some effects notation can have on the way notation is interpreted and
worked with. Second, I used a mixture of collecting quantitative information and also
coding some of the students’ formal notation versions of the word statements. As per
Grounded Theory (Glaser & Strauss, 1967) the coding was not determined in advance.
However, the development of classifications was based more upon a Discipline of
Noticing (Mason, 2002) framework where I used my initial awareness of related issues in
order to notice similarities and differences and thus begin classification. This in turn
sharpened my sensitivities and helped me to notice other features which led to further
classification and re-forming of previous classifications. This is a cycle of using
awareness to notice, which in turn sharpens sensitivities to related issues, which in turn
informs my awareness to help further noticing, etc.
The focus of this paper is on the way notation is interpreted, created and used by teachers
and students in the study. To this end I will focus on preliminary results from 40 teachers
and from one particular class of Year 7 (11-12 year old) students.

RELATIONSHIP BETWEEN MATHEMATICS AND NOTATION
Notation not only can have an effect on the interpretation of a formal algebraic statement,
but it can also have an effect on the way in which someone works with, and manipulates,
algebraic statements. I asked teachers to solve some equations, two of which were:

47
2

13
=

kx
and 47)2(13 =++- xk

The first involves multiplication and division, the second involves addition and
subtraction. As multiplication is to division what addition is to subtraction, there is an
certain isomorphism between these two statements in a structural sense. Although they
have similar structure, there is a significant difference in the visual impact of the two
equations. I looked at the first line of the teachers working as they solved each of these
equations for x. Just over a quarter of the teachers moved the x in the first equation on its

own without moving the k  or the 2 , such as x
k

47
2

13
= . When solving the second

equation, the x was never moved on its own until later lines of working when the bracket
was no longer present. I argue that although the mathematical structures are equivalent,
there is a significant difference in the visual structures and that it is the visual structure
which affects how someone is likely to manipulate the equation as well as the
mathematical structure. In the first equation although x is adjoined to k there is still ‘free
space’ for it to take a journey to the right-hand-side of the equation. On the other hand,
the second equation has x held within brackets which visually holds and keeps the x
together with the k and 2. It is not until the bracket disappears (usually through either
distributing the subtraction across the whole bracket, or by taking the whole of the
bracket across to the other side) that the x is ‘visually free’ to be manipulated on its own.
Thus the notation affects the way in which the equation is manipulated.
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THE EQUALS SIGN
The imbalance of the ‘=’ sign is well known (for example, Boulton-Lewis et al, 2000).
Through the practice of teachers and textbooks of presenting ‘the answer’ on the right-
hand-side of an equation, the ‘=’ sign has become to take on a meaning different to that
of indicating that two sides are equivalent. Electronic calculators have reinforced this
situation due to the temporal order in which buttons are pressed and the fact that an
‘answer’ is produced following the pressing of the ‘=’ sign. This is one reason which can
account for students feeling that equations with the right-hand-side involving an
operation are somehow unfinished (Lack of Closure - Collis, 1975) whereas they can
accept an operation on the left-hand-side. This is supported by the fact that on average
over 20% of students transposed the word statements where a single number was on the
left of equals, into notation statements with the single number on the right of the ‘=’ sign.
This is not something that just students do. There were two linear equations teachers were
asked to solve for x where it is perhaps ‘natural’ for the x to finish up on its own on the

right-hand-side of the equation, for example 47
2

13
=

kx
. However, in 49 out of 80 cases

the teachers changed the sides of the equation in their working so that the x ended up on

its own on the left-hand-side (i.e. 
k

x
94

13
=  rather than x

k
=

94

13 ). This appears to support

the conjecture that having what is perceived to be ‘the answer’ on the right-hand-side
(in this case the answer to the question what does x equal?) is something which
stays with teachers as well as students. This helps fuel a self-perpetuating cycle with
teachers offering examples with the ‘answer’ on the right-hand-side of the equals sign
and so students abstract from such examples that there is a rule that equals is always
followed by the ‘answer’. Some of these students then becomes teachers and the cycle
continues.

ORDER WITHIN STATEMENTS
Students were presented with arithmetical equations written in words. Generally students
ordered the operations as they read them - left to right. For example, out of 29 school
students, 20 read the statement Two plus one times three equals nine as correct and 24
said the statement Four times two add three equals twenty was wrong (see Table 1). The
final statement of 17 presented to students was Three plus two times four equals eleven
and I expected there to be a clear majority of students who felt that this statement was
wrong, which would support the left-to-right ordering of the operations. However, the
results showed that students were divided between whether they felt this was correct or
not: 15 said correct; 14 said wrong. So what might account for the difference between
this statement and the two earlier ones? Why did so many students think that this
statement was correct? One possibility was that if the word statement was literally
translated into a symbol statement without any brackets involved, it would be

11423 =¥+  and with the convention that multiplication is carried out before addition,
then this would make it a statement not ordered left-to-right and the statement would be
correct. However, the same would have been true with the first statement and by far the
majority of students placed a left-to-right ordering on the operations.
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Word statement and notation statement Left-to-right
ordering

Non left-to-
right ordering Unsure

Two plus one times three equals nine
8231 =¥+

20
14

(correct)

8
16

(wrong)

1
0

Four times two add three equals twenty
14432 =+¥

24
26

(wrong)

5
4

(correct)

0
0

Three plus two times four equals eleven
10324 =¥+

14
11

(wrong)

15
19

(correct)

0
0

Key:  ‘Correct’ conventional answer (if word statements were written in symbols without
brackets).

Table 1: Different readings of three word statements and structurally equivalent notation
statements

I could see little difference in the structure of the two statements which makes this last one
stand out as being more ambiguous than the first. So I looked at the statements which
appeared prior to this final one. There were four statements each of the form:

NUMBER operation NUMBER equals NUMBER operation NUMBER
In fact these were the only occurrences of statements where there was not a single
number on one or the other side of the word equals. In such situations, the word equals
can break up the flow of left to right by creating a new beginning after the word equals.
These questions were invariably answered with success and so the students were able to
read the statements as having a break in the flow and a new beginning part way through.
This is exactly what is required in order to interpret three plus two times four equals
eleven as correct, by having a new beginning with two times four, rather than carrying out
the initial three plus two. Thus I conjecture that a number of students had become
practised at making such a mental break in statements and could see a way of creating a
break in the final statement to make that statement correct.
In the sheet of statements written in formal notation, each statement was structurally
equivalent to the statements on the word sheet. Table 1 also shows the statements which
appeared on the notation sheet underneath their equivalent word statements. There are
several possible interpretations of the figures for these notation statements. One
interpretation is that since the sheet with statements written in formal notation was
completed immediately after the word statement sheet, any awareness of the possibility
of breaking the flow from left-to-right might be carried into these statements, hence the
increased number of students opting for a non left-to-right ordering. Another
interpretation is that students were more aware of conventions of order when reading
formal notation than when reading a word statement, and so generally more students
agreed with the conventionally correct interpretation. Either way, it is still the case that
more students decided upon a non left-to-right ordering in the last statement. Again, the
four statements before this last one on the notation task sheet were of the format

dcba ƒ=⊕ (where ⊕  and ƒ stand for some operation) which students almost
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universally answered correctly and which ‘enforced’ a break in a strict left-to-right
ordering.

SUMMARY
Learning to use formal notation involves not only developing meaning for symbols but
also developing meaning for the positioning of those symbols in relation to other
symbols. The symbols within an algebraic equation and their relative positions produces
a visual impact which affects the way those equations are manipulated when re-arranging
the equation. In particular, brackets have a visual effect of holding symbols together and
these are unlikely to be separated until other manipulations have first been carried out
effectively to make the brackets disappear.
Equations where operations are carried out on both sides of the equals sign provide a
source of examples whereby a natural left-to-right reading is broken up by the equals sign
and a new beginning is established. Early data gained raises the issue of whether students
experiencing such enforced breaks might carry over that experience to consider such
breaks and new beginnings in equations where the convention is not a strict left-to-right
ordering of the operations involved. An additional pedagogic benefit of students meeting
equations with operations on both sides of the equals sign is that such examples can help
to prevent the otherwise self-perpetuating practice of both students and teachers always
following equals with an ‘answer’.
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