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In this paper, we discuss the (potentially positive) pedagogical role of intrinsic
limitations of computational descriptions for mathematical concepts, with special focus
on the concept of derivative. Our claim is that, in a suitable approach, those limitations
can act for the enrichment of learners’ concept images. We report a case study with a
first year undergraduate student and place this in a broader empirical and theoretical
context.

INTRODUCTION
Giraldo (2001) defined a theoretical-computational conflict to be any pedagogical
situation with apparent contradiction between the mathematical theory and a
computational representation of a given concept. We have argued that the approach to the
concepts of derivative and limit can be properly designed to prompt a positive conversion
of theoretical-computational conflicts to the enrichment of concept images (Giraldo &
Carvalho, 2002a, 2002b, Giraldo, Carvalho & Tall, 2002). In addition, we distinguish
between a description of a concept, which specifies some properties of that concept and
the formal concept definition. Descriptions commonly employed in mathematical
teaching include numeric, graphic and algebraic representations that individually involve
limitations that do not fully reflect the mathematical definition. We will argue that
suitable use of these limitations can stimulate students to engage in potentially enriching
reasoning.

RESEARCH FRAMEWORK
Our theoretical position is grounded in the theory of concept image and concept
definition (Tall and Vinner, 1981). The concept image is the total cognitive structure
associated with a mathematical concept in an individual’s mind. It is continually being
(re-)constructed as the individual matures and may (or may not) be associated with the
concept definition (the statement used to specify the concept). Barnard and Tall (1997)
introduced the term cognitive unit for a chunk of the concept image on which an
individual focuses attention at a given time. Cognitive units may be symbols,
representations or any other aspects related to the concept. A rich concept image should
include, not only the formal definition, but many linkages within and between cognitive
units.
In a strictly formal standpoint within a formal system of rules of inference, a
mathematical object is perfectly characterized by its definition, so that the definition
completely exhausts the object and, in this sense, a mathematical object is its definition.
However, the theory of concept image suggests that the teaching of a mathematical
concept must include different approaches and representations to enable learners to build
up multiple and flexible connections between cognitive units. The three main forms of
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representation for functions, numeric (tables), algebraic (formulae) and geometric
(graphs), each have their own limitations. A table can have only a finite number of entries
that does not necessarily determine the whole function, a formula may be presented in a
way that does not mention the range or domain and a physical graph can only
approximately present the information required for the formal function. Each of these is a
description that lays stress on certain aspects of the concept, but also casts shadows over
others.
The literature reveals examples of the narrowing effect (described in Giraldo, Carvalho &
Tall, 2002) of the students concept image as a result of focusing only on certain aspects,
particularly computational ones. For instance, Monaghan et al (1993) reported that
students using Derive to study calculus explained the meaning of the expression

    

† 

f ' x( ) = lim
hÆ0

f x + h( ) - f x( )
h

 by replacing     

† 

f (x) with a polynomial and referring to the

sequence of key strokes to calculate the limit. Research  in Brazil (Abrahão, 1998; Belfort
& Guimarães, 1998) reveals many instances of students accepting numeric and visual
output of technology without query, even when software limitations produce results that
clearly conflict with their prior knowledge.
However, we believe that the limitations of the various descriptions need not necessarily
lead to a narrowing of the concept image. On the contrary, such limitations have a
potentially positive role. Sierpinska (1992), for example, affirms that the awareness of the
limitations of each of the forms of representation, when they are all meant to represent
the same concept, is essential for the understanding of the concept of function. We
believe that the emphasis on theoretical-computational conflicts can lead not to a
narrowing, but to the enrichment of learner’s concept images.

THE CASE OF THE DERIVATIVE
One of the most widely used descriptions for the derivative concept in elementary
calculus courses is the following: The gradient of the function     

† 

f (x) at     

† 

x0  is the slope of
the tangent line to the graph of f at the point ( )( )00 , xfx . However, as Vinner (1983) and
Tall (1989) observe, the notion of tangency in students’ concept images is often strongly
linked to geometry problems about the construction of tangent lines to circles. The
approach to those problems focuses on global geometric relationship of the curve and the
line, particularly, on the number of points of intersections. Thus, the idea of being
tangent—to “touch” in one single point—is featured in opposition to the idea of being
secant—to “cut” in two points. This leads to a narrowing of the concept image of a
tangent that is not consistent with the notion of tangent in infinitesimal calculus.
An alternative to the traditional approach, based on the notion of local straightness, has
been proposed by Tall (e.g. Tall, 2000). This is grounded on the fact that the graph of a
differentiable function ‘looks straight’ when highly magnified on a computer screen. Tall
claims that local straightness is a primitive human perception of the visual aspects of a
graph, deeply related to the way an individual looks along the graph and apprehends the
changes in gradient, that is suitable as a cognitive root for the concept of derivative.
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However, the notion of local straightness is also a description for the concept of
derivative, since it comprises limitations that can trigger theoretical-computational
conflicts. For example, floating point approximations made by computer software may
cause unexpected results, as the one shown on figure 1. It displays the process of local
magnification of the curve 2xy =  (in the neighborhood of (1,1)) run by software Maple.
Until a certain stage of the process, the curve does look like a straight line, but afterwards
(for graphic window ranges lower than 610- ) it becomes polygonal.

Figure 1. A theoretical-computational conflict observed on the local magnification
process.
Theoretical-computational conflicts like this are deeply related to the fact that a finite
algorithm is being used to describe an infinite limit process. These intrinsic limitations
may lead to narrowed concept images, if computational descriptions are over-used.
Nevertheless, our hypothesis is that a suitable approach, where theoretical-computational
conflicts are not avoided, but highlighted, can prompt the positive conversion of these
same limitations: they can make for the enrichment of concept images, by underlining
that the notion of limit, in the sense of infinitesimal calculus, is beyond computers
accuracy, no matter how good it is, or, more generally, any finite accuracy.

A CASE STUDY
The experiment reported in this section is part of a wider study, in which six first year
undergraduate students from a Brazilian university were observed in personal interviews
dealing with theoretical-computational conflict situations from different natures. We
summarize the responses of one of the participants, Antônio (pseudonym) to four
interviews, concerning the concept of derivative (translated from Portuguese).
Interview 1: Participants were given a few general questions concerning their
conceptions about functions, continuity and differentiability.
Antônio was asked how could he decide whether a function is differentiable or not, given
the algebraic expression. He stated that a function would be differentiable if he could
apply known formulae to evaluate derivatives. Afterwards, he was asked how he could
decide about the differentiability if the graph of the function on a computer screen was
given, instead of the expression. He stated that he would zoom the graph in to have a
more careful view, but it would be impossible to be sure, as computers are not flawless.
Interview 2: Participants were asked to gradually zoom in the graph of the function

2xy =  around the point (1,1) using the software Maple, and simultaneously explain what
they were observing. They would obtain screens similar to the ones shown on figure 1.
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At the beginning, Antônio declared he would see something similar to the tangent straight
line, as he zoomed in on the graph. When the software started to display a polygonal for
the curve, he claimed that the computer was wrong, as this was not the expected result.
After thinking for a while, he explained the computer’s error:

Antônio: It’s because the computer hasn’t got idea what it’s doing. It’s kind of messing
up the points. […] As the computer sketches the graph by linking the points
and these points are results of approximations, so it links without thinking. It
links the points, and whatever it gets will be the graph for it, as it doesn’t
know what goes on.

Interview 3: Participants were asked to zoom in the
graph of the blancmange function around a fixed
point using the software Maple, and explain what
they were observing. The blancmange function is
defined in the interval [0,1] as the sum of an infinite
series of modulus functions and is continuous but
nowhere differentiable (figure 2). However, a finite
truncation of the series was being used to draw the
graph so that the function displayed was non
differentiable at a finite set of points, rather than
everywhere. The students were familiar with the
functions and its properties, as they had studied it
previously on calculus lessons.
Antônio started by explaining the construction of the blancmange function. He showed
good comprehension of the process:

Antônio: […] You are taking a number and multiplying it by   

† 

1
2 , taking that one and

multiplying by   

† 

1
2 , by   

† 

1
2 . So, it’s a geometric progression with rate   

† 

1
2 . […]

Then, it’s the sum of a geometric progression. The sum of a geometric
progression is a limit, then it converges to a point. […] Then each point there
is a geometric progression, it’s the limit of a convergent geometric
progression. It’s there. So you might say the curve is a sum of sums of
geometric progressions. [he means the union of sums]. It’s well defined.

He then started the process of local magnification and explained that, as the curve was
not differentiable, the graph would become more wrinkled as he zoomed in. As the
algorithm used a finite truncation of the series, it did not looked more wrinkled, as he
expected, but quickly acquired a straight aspect. Antônio showed great surprise, and
asked the reason for the unexpected result. After listening to our explanation, he
commented:

Antônio: Oh, I see. You could sum a few more steps, but not until infinity.

After thinking for a few minutes, he proceeded, with increasing excitement:
Antônio: But it [the computer] can’t make infinity. […] Hey! I think that nothing could

make! […] It can’t add until the infinite! There will be always an infinity
missing. And nothing can represent the infinity, as a whole, but we can show
that it goes to that place, that it tends to that. That’s the infinite. […] It’s

Figure 2. The blancmange.
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impossible to represent it, not on the computer, not on a sheet of paper, and
not in anything else! The computer only represents things that a human being
knows.

Interview 4: Participants were asked to investigate the differentiability of the functions:

    

† 

v1 x( ) =
x sin(1/ x), if x ≠ 0

0, if x = 0

Ï 
Ì 
Ó 

 and

    

† 

v2 x( ) =
x2 sin(1/ x), if x ≠ 0

0, if x = 0

Ï 
Ì 
Ó 

For that purpose, they were given the graphs of the curves     

† 

y = x sin(1/ x)  and

    

† 

y = x2 sin(1/ x) sketched by Maple in a neighborhood of the point (0,0) (figure 3).

Figure 3. The curves     

† 

y = x sin(1/ x)  and     

† 

y = x2 sin(1/ x).

Antônio said at first that both the functions should be differentiable, as the formulae he
knew applied to the algebraic expression. He then started to zoom in the first graph
around the origin, and the curve progressively looked more smudged. Antônio argued
that again it should be due to an interpolation error, but the function v1 should have a
derivative. Afterwards, he repeated the process for the second graph. He commented:

Antônio: Look, when it gets closer to 0 it kind of tends to an area. But it’s not. We can’t
see it, but it’s the joining of two curves with […] the oscillation tends to zero,
that’s why we cannot distinguish.

We asked Antônio to conclude about the differentiability. He said:
Antônio:  If it were     

† 

sin(1/ x ) , without anything else, they wouldn’t be. They wouldn’t be
differentiable at 0, because     

† 

sin(1/ x )  wouldn’t be defined. But, for these
functions the point (0,0) exists, so it’s the joining of two curves there. […]
Hey, wait a minute! I think 1v  is not [differentiable], do you know why?
Because at 0, it’s shaped by the joining of the two straight lines,   

† 

y = x  and
  

† 

y = -x . […] When it gets closer to that point the parts approach each other
within those lines! They will meet each other at that point, right? But it’s a
rough joining, it’s kind of a corner. […] The other one [    

† 

v2] is different, it’s a
smooth joining. Here, the parabolas shape the curve, not the lines, that’s the
difference. For that reason, I think that one has a derivative and the other
hasn’t, 1v  has and 2v  has not. […] But I can’t be doubtless sure just looking
at the graph. Let me think.
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Antônio concludes that the only way to be sure would be using the definition of
derivative. He has a little difficulty in evaluating the limits, but reassures himself that it
would be the only safe way, even if he could not do it.

DISCUSSION
Since the first interview, Antônio clearly expressed his preference for algebraic
description. He states that the criteria for deciding about the differentiability of a function
must be based on formulae. Moreover, he appears to be aware of the limitations of
computational algorithms. Such mental attitude gave him means to quickly grasp the
cause of the unexpected result on interview 2. In this sense, the theoretical-computational
conflict involved (represented in figure 4) did not operate as an actual conflict, since it
was almost immediately solved by the student.
THEORY
The curve is differentiable therefore it
can be approximated by straight lines.

COMPUTATIONAL DESCRIPTION:
The curve does not look like a straight
line when magnified

Figure 4. The theoretical-computational conflict in interview 2.
On the other hand, in interview 3 a theoretical-computational conflict (represented in
figure 4), played a central role on Antônio’s reasoning. In fact, Antônio’s enthusiasm
suggests the conflict actually triggered a new idea for him: it is not possible to represent
the concept of infinite by any physical means. Moreover, he points out the reason for  the
impossibility: infinity can never be attained. The theoretical-computational conflict leads
Antônio to grasp not only the limitations of the computational description, but of other
forms as well; and to figure out a conceptual distinction between finite and infinite.
THEORY
The curve is not differentiable, therefore it
cannot be approximated by straight lines.

COMPUTATIONAL DESCRIPTION:
The curve looks like a straight line
when magnified

Figure 5. The theoretical-computational conflict on interview 3.
The theoretical-computational conflict involved in interview 4 was slightly more intricate
than the ones observed previously, as figure 6 illustrates. In addition to that, the
differentiability of the function could not be established by a careless use of the
differentiation algebraic formulae, against Antônio’s former dominant criteria. However,
the confrontation of computational and algebraic descriptions—suggesting different
conclusions—impelled him to follow another strategy: he states that the differentiability
of the function could only be doubtless concluded by means of the formal definition.
THEORY
One of the curves is differentiable
and the other is not.

COMPUTATIONAL DESCRIPTION:
Both  of  the  curves  seem
to be differentiable

Figure 6. The theoretical-computational conflict on interview 4.
Antônio’s mental attitude towards conflict situations contributed to the results reported in
this paper. The outcomes of the interviews summarized above suggest that the conflict
have acted as positive factor for the enrichment of Antônio’s concept image of derivative
and related notions. Nevertheless, other participants show quite different behaviors. In



2—451

some cases, the conflicts do prompt students to engage into a rich reasoning. In others,
the conflicts are barely noticed by students, as they are quickly solved (like Antônio did
on interview 2). But some students very often cannot cope with theoretical-computational
conflict situations at all. This obstacle can be due to a more general attitude towards
technological devices, transcendent to their use as learning environments. The global
results of the investigation in which this experiment is comprised are currently being
analyzed. One of our aims is to understand more clearly in which situations conflicts do
have a positive role for the enrichment of learners’ concept images, in particular, in
which sense and in which extent learners’ previous attitudes and background determine
that role.
The main goal of this work is to put forward an alternative model of approach, not purely
grounded on formalism nor purely on imprecise representation forms. This propose does
not mean to undervalue of the formalism, in relation to the imprecise. On the contrary,
through the emphasis of limitations and differences, we intend to prompt the
development of rich concept images, as well to stress the central role of the formal
conceptualization on the construction of a mathematical theory.
References
Abrahão, A. M. C. (1998). O comportamento de professores frente a alguns gráficos de funções

    

† 

f : R Æ R  obtidos com novas tecnologias. Dissertação de Mestrado, PUC/RJ, Brazil.

Barnard, A. D. & Tall, D. O. (1997). Cognitive units, connections, and mathematical proof.
Proceedings of the 21st  PME Conference, Lahti, Finland, 2, 41-48.

Belfort, E. & Guimarães, L.C. (1998). Uma experiência com software educativo na formação
continuada de professores de matemática. Anais do VI Encontro Nacional de Educação
Matemática, São Leopoldo, Brasil, II, 376-379.

Giraldo, V. (2001). Magnificação local e conflitos téorico-computacionais. Exame de
qualificação, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio de
Janeiro, Brazil.

Giraldo, V. & Carvalho, L. M. (2002a). Local Magnification and Theoretical-Computa-tional
Conflicts. Proceedings of the 26th PME Conference, Norwich, England, 1, 277.

Giraldo, V. & Carvalho, L. M. (2002b). Magnificação e linearidade local: novas tecnologias no
ensino do coneito de derivada. Tendências em Matemática Aplicada e Computacional, in
press.

Giraldo, V.; Carvalho, L. M & Tall, D. O. (2002). Theoretical-Computational Conflicts and the
Concept Image of Derivative. Proceedings of the BSRLM Conference. Nottinghan, England,
37-42.

Monaghan, J. D., Sun, S. & Tall, D. O. (1993). Construction of the limit concept with a computer
algebra system. Proceedings of the PME Conference. Lisbon, Portugal, 3, 279-286.

Sierpinska, A. (1992). On understanding the notion of function. In Harel, G and Dubinsky, E.
(Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy, MAA Notes 25,
(pp.23-58). Washington DC: MAA.

Tall, D.O. (2000). Cognitive development in advanced mathematics using technology.
Mathematics Education Research Journal, 12 (3), 210-230.



2—452

Tall, D.O. (1989). Concept Images, Generic Organizers, Computers and Curriculum Change. For
the Learning of Mathematics, 9 (3), 37-42.

Tall, D.O. & Vinner, S. (1981). Concept image and concept definition in mathematics with
special reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.

Vinner, S. (1983). Conflicts between definitions and intuitions: the case of the tangent
Proceedings of the 6th PME Conference, Antwerp. 24-28.


