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TO PRODUCE CONJECTURES AND TO PROVE THEM
WITHIN A DYNAMIC GEOMETRY ENVIRONMENT: A

CASE STUDY
Fulvia Furinghetti Domingo Paola

University of Genoa
This paper analyses a case study of a pair of students working together, who were asked
to produce conjectures and to validate them within the dynamic geometry environment
Cabri. Our aim is to scrutinize the students’ reasoning, how the gap from perception to
theory is filled, how Cabri influences the reasoning. We have singled out a sequence of
phases in which the students pass from exploration to increasing degrees of formal
reasoning. Our study reveals, among other things, that Cabri fosters the flexible use of
methods close to analysis and synthesis.
INTRODUCTION

In this paper we report a case study concerning a pair of students who explored an open
problem within the dynamic geometric environment Cabri-Géomètre I (henceforth
Cabri). This activity has brought to the fore a variety of strategies and ways of thinking
that makes it possible to detect and to analyze how the students came to prove. By
scrutinizing the students’ reasoning we single out continuity and leaps in the transition
from perception (observation of figures in the screen) to theory.
To explain the context in which the studied activity has developed we state our ideas on
proof in classroom. In this concern a recent paper by Herbst (2002) stresses two main
issues:

As proof is intimately connected to the construction of mathematical ideas, proving should
be as natural an activity for students as defining, modeling, representing, or problem
solving. Yet, important questions that must be raised concern what it takes to organize
classrooms where students can be expected to produce arguments and proofs and what
proof may look like in school classrooms. (p.284)

In analyzing the two-column proving custom Herbst (2002) complains that, under this
method, “proving activities for students have often been closer to exercising logic to
validate obvious and inconsequential statements […], than to building compelling
arguments for the reasonableness of important mathematical ideas […].” (p.284). This
criticism may be applied also to other methods of teaching proof practiced in classroom,
which are dominated by a rote learning model. These methods push students towards
schema of proving such as those classified by Harel and Sowder (1998) as “ritual”,
“symbolic”, “authoritarian”. These schemas are far from being suitable to make the
activity of proving a meaningful activity.
Our paper refers to an approach aimed at promoting a smooth transition from
argumentation to proof, see (Furinghetti et al., 2001). The elements characterizing this
approach are the following:
• focus on the debate about the construction of theorems and proofs, with the distinction

between the problems of conforming to the standards of exposition and rigor and those of
construction, validation, and acceptation of a statement

• specification of the rules for stating a theorem and proving it
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• reflection on the environments which seem to foster the production of hypotheses and their
formulation according to logical connection

• possibility of singling out cognitive continuity between the processes of producing and
exploring the statement of a theorem and the construction of its proof, with particular
attention to the reference theories and the leaps inside a theory and among different theories

• the role of the social dimension of the learning as for knowledge on theorems and proof, with
particular reference to mathematical discussion in classroom and the modes of using various
mediators (history, technology,…).

We think that only through experimenting personally the construction of parts of a theory
(under the guidance of the teacher and in situations carefully projected) students may
give up, when necessary, the perceptive level and appreciate the meaning of theories. To
make students to construct parts of a theory means to allow them to experience the
construction of mathematical knowledge at different levels: the level of exploring within
particular cases, those of observing regularities, of producing conjectures, of validating
them inside theories (which may be already constructed or in progress). In developing
this approach we are concerned with the transition from elementary to advanced
mathematical thinking. Gray et al. (1999) have pointed out that the “didactical reversal –
constructing a mental object from ‘known’ properties, instead of constructing properties
from ‘known’ objects causes new kinds of cognitive difficulty.” (p.117)
Nunokawa (1996) has discussed the application of Lakatos’ ideas to mathematical
problem solving. In our approach to proof we are thinking something similar. We see
students as immersed in a situation similar to that termed by Lakatos (1976) pre-
Euclidean, that is to say a situation in which the theoretical frame is not well defined so
that one has to look for the ‘convenient’ axioms that allow constructing the theory. The
didactical suggestion implicit in Lakatos’ words is that it is advisable to recover the spirit
of Greek geometers. When they made proofs they were not inside a theory in which
axioms were explicitly declared. Initially antique geometry developed in an empirical
way, through a naïve phase of trials and errors: it started from a body of conjectures, after
there were mental experiments of control and proving experiments (mainly analysis)
without any sure axiomatic system. According to Szabo, this is the original concept of
proof held by Greeks, called deiknimi. The deiknimi may be developed in two ways,
which correspond to analysis and synthesis. These ideas suggest a way of realizing
cognitive continuity in our approach to proof in classroom. Also they suggest the means
to reach this objective: socialization, discussion, sharing of ideas.

REALIZATION OF OUR APPROACH TO PROOF
The general ideas we have previously discussed need to be adapted to the classroom
needs as well as to the present conditions of students’ learning. This requires creating
environments suitable to exploration, production of conjectures, validation of these
conjectures. To this purpose we propose to students open problems. We take as
characterization of open problems the following, see (Arsac et al., 1988):
• The statement of the problem is short, so that it can be easily understood, it fosters discovery

and all students are able to start the solution process.
• The statement of the problem does not suggest the method of solution, or the solution itself,

but it creates a situation stimulating the production of conjectures.
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• The problem is set in a conceptual domain which students are familiar with. Thus students are
able to master the situation rather quickly and to get involved in attempts of conjecturing,
planning solution paths and finding counter-examples in a reasonable time.

We think that open problems promote the devolution of responsibility from the teacher to
students. This is even truer when students work in group and participate to classroom
discussion. This situation fosters creativity, e.g. the ability to overcome fixations in
mathematical problem solving and to produce divergent thinking within the mathematical
situation (fluency and flexibility), see Haylock (1987).
Another element characterizing our approach to proof is the use of Cabri. It is widely
recognized that the exploration with this kind of software amplifies the potential of
producing conjectures, see (Santos-Trigo & Espinosa-Perez, 2002). At the same time it
stimulates to prove the validity of the produced conjectures, see (Arcavi & Hadas, 2000).
In the situation we have outlined the statements to be proved are not provided by an
authority (teachers, books), but are the result of an autonomous research and it is Cabri
which confirms that a conjecture produced by students is ‘good’. Thus the motivations to
prove are different from those found in the usual didactical situations, where the task
given to students is on the form “prove that…» The motivations we provide are similar to
those of mathematicians at work, see (Burton, 1999).

THE CASE STUDY OF ALEX AND LUCA
The experiment reported is an example of what may happen in classroom when our
approach is proposed. The class begins with a work of exploration and observation,
which leads to produce conjectures. The validation of these conjectures is performed
through the dragging text with Cabri. The way of reasoning is similar to that employed in
empirical sciences, e.g. induction, abduction, analogy. In this context the role of proof is
to explain why the produced conjectures hold within a theory (in our case Euclidean
geometry).
The experiment was carried out in a class of a Scientific Lyceum (an Italian high school
with a scientific orientation), at the beginning of the school year. The students (17 years
old) worked in small groups (2 or 3 persons per group, 8 groups) with one computer per
group. They were acquainted with exploration of open problems and had worked in group
quite regularly before the experiment. They mastered Cabri. The time allowed for the
experiment has been one hour and a half. In the following we describe the main phases of
the work of the pair composed by Alex and Luca. The report is based on fieldnotes taken
by the teacher (who acted as an observer) and on the students’ protocols.
The statement of the problem was given without the figure. Alex and Luca draw quickly
and accurately the quadrilateral ABCD and afterwards the quadrilateral HKLM using
Cabri, see Fig. 1 (all figures made by the students with the computer were in color).
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The problem:

You are given a quadrilateral ABCD. Consider the
bisectors of the four interior angles: be H  the
intersection point of the bisectors in –A and in –B, K
the intersection point of the bisectors in –B and in
–C, L the intersection point of the bisectors in –C
and in –D, M the intersection point of the bisectors
in –D and in –A.
Investigate how KHLM changes in relation to ABCD?
Prove your conjectures.

Fig. 1
PHASE 1

The students drag the vertexes A, B, C, D at random.
This is the mode of dragging called “wandering
dragging” by Arzarello et al. (2002): it is used when
one is looking for ideas. This mode may be seen as
almost static, since students drag the figures for a
while and afterwards focus on the obtained figures
kept still. During the wandering dragging they find the
configuration reported in Fig. 2 in which the points H,
K, L, M are almost coincident.

Fig. 2
PHASE 2

The mode of dragging changes significantly. Alex and Luca decide to focus on the
internal quadrilateral HKLM. Of course, they can only act on the vertexes A, B, C, D, but
they choose a particular configuration of KHLM  (a point, a square, a rectangle, a
rhombus, a parallelogram, a trapezium) and afterwards drag the vertexes A, B, C, D so
that the quadrilateral KHLM keeps the particular configuration they have chosen. The
students report only this part of the exploration in their protocol:

To observe the changes of the figure we have considered the internal quadrilateral; that is to
say first we have observed the particular cases of the internal quadrilateral and for each case
we have looked at the changes of the external quadrilateral. With this method we have
realized that different external figures correspond to each particular case of the internal
figure: for example, when H, K, L, M are coincident, the external figure may be a square, a
right-angled trapezium, or other figures.

These students are the only ones in the classroom using this mode of dragging based on
the internal quadrilateral. This allows them to see very soon that not only squares and
rhombuses generate internal quadrilaterals, which are points (In the case of squares and
rhombuses the bisectors of opposite angles are coincident). The function of Cabri in this
phase is to support transformational reasoning. We recall that Simon (1996) describes
transformational reasoning as
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the mental or physical enactment of an operation or set of operations on an object or set of
objects that allows one to envision the transformations that these objects undergo and the set
of results of these operations. Central to transformational reasoning is the ability to consider,
not a static state, but a dynamic process by which a new state or a continuum of states are
generated. (p.201)

We stress that this phase marks a leap in the exploration. The mode of working goes back
from the final result (a particular configuration of the internal quadrilateral) to the
premises (the given quadrilateral and the bisectors of angles). This recalls the method of
analysis, which is considered by many authors an efficient method of discovery. This
method dates back to Plato and Greek mathematics. Hintikka and Remes (1974)
describes it as follows:

For in analysis we suppose that which is sought to be already done, and we inquire from what
it results, and again what is the antecedent of the latter, until we on our backward way light
upon something already known and being first in order. And we call such a method analysis,
as being a solution backwards. In synthesis, on the other hand, we suppose that which was
reached last in analysis to be already done, and arranging in their natural order as
consequence the former antecedents and linking them one with another, we in the end arrive
at the construction of the things sought. And this we call synthesis”. (p.8).

Smith (1911) explains analysis as a method to solve problems and to prove theorems. He
says that this method has several forms, but the essential feature

consists in reasoning as follows: “I can prove this proposition if I can prove this thing; I can
prove this thing if I can prove that […] until comes to the point where is able to add, “but I
can prove that.” This does not prove the proposition, but it enables [the student] to reverse the
process, beginning with the thing he can prove and going back, step by step to the thing that
he is to prove. Analysis is, therefore, the method of discovery of that way in which he may
arrange his synthetic proof. (p.161-162)

Analysis leads to a construction and synthesis shows the validity of this construction. We
note that schemas based on the triad analysis-construction-synthesis are present in the
works of ancient mathematicians; in particular, on the method of analysis is based the
development of modern algebra carried out in Viète’s In Artem Analyticem Isagoge
(1591). Gusev and Safuanov (2001) have argued that to solve problems requires various
aspects of analytic-synthetic activities, and, in particular, analysis through synthesis.

PHASE 3
This is a phase of reflection made by students on what has been observed with Cabri. The
students stop to explore. Through the reconstruction of some interesting configurations
that they have obtained with Cabri they look for invariants. They write:

We have looked for a relation among the figures obtained by means of the same internal
figure. In this search we have discovered a theorem that we have formalized in this way:
When all angle bisectors intersect in a point P, this point is the center of the circle inscribed
in the quadrilateral.

In experiments with other students we have found that after having produced a conjecture
the students continue to use Cabri to make figures which may prove the correctness of
their conjecture. Our students show a different behavior: they are already convinced
about the correctness of their conjecture and use Cabri only to refresh what they have
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done. The computer screen is no more an environment in which to conduct exploration
and to take inspiration for conjecturing; it becomes a kind of fieldnotes keeper.
Our students show to be aware of the reverse path followed in their reasoning (“We have
looked for a relation among the figures obtained by means of the same internal figure
[italic added]”). Since they are convinced of the validity of their conjecture they are
motivated to answer the question “Why the conjecture is valid?” Alex and Luca use the
words “theorem” and “formalized”, which evidence that they have definitely put
themselves inside the theoretical framework of Euclidean geometry. They seem to
perceive the function of proof as a process suitable to explain why a given conjecture is
true. There is one sentence in their writing that shows the interlacement between the
exploration (“In this search [made with Cabri]”) and the theory (“we have discovered a
theorem”).

PHASE 4
Alex and Luca are ready to prove the conjecture produced. They abandon Cabri and use
paper and pencil, also for drawing the figure on which their proof is based. [Fig. 3
reproduces accurately the drawing made by students with paper and pencil].
The proof is not complete and precise, but it may become acceptable with few
amendments. In this phase it is clear that the mode of communication is changed. The
focus has shifted from the facts observed in the screen to their justification in Euclidean
geometry. The transition from the computer to paper and pencil marks the transition to
the synthetic mode of proving (via the construction of Fig. 3).

Fig. 3. (Made by students with paper and pencil)

We try to prove: to this aim we use two
straight lines through the center which
are perpendicular to two adjacent sides
of the quadrilateral.

Hypothesis: P Q ^ B C P O ^ D C
–OCP=–QCP
Thesis: PQ = PO (radius of the circle)

Proof
We consider the triangles POC  and
PQC . We must prove that they are
congruent. We know that the angles
– PQC and – P O C  are right and
congruent; also we know that –QCP
and –OCP are congruent. Since PC is
common to the two triangles, POC and
PQC are congruent for the fourth

criterion of triangles congruence. In particular, PQ and PO are congruent, so that they are two
radiuses of the circle inscribed in the quadrilateral ABCD.

PHASE 5
Alex and Luca have sketched their proof. Since the statement of the problem given to
them required studying the variation of HKLM in relation to the variation of ABCD, they
change the statement just proved by them to emphasize the relation of dependence
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We take a step backward: we have observed that the only common element among the figures
obtained through a particular configuration of HKLM (H, K, L, M coincident) is the theorem
that we have just proved. We know the theorem stating that a quadrilateral may circumscribe
a circle when the sums of its opposite sides are equal (AB+CD=AD+BC). Hence we may say
that H, K, L, M are coincident when AB+CD =AD+BC.

Even if our students are working with paper and pencil, they refer explicitly also to the
exploration with Cabri (“we have observed”). This confirms the interlacement of
exploration and proof. We note that the original property based on the inscribed circle is
visual and was obtained with a construction, while the property AB+CD=AD+BC is the
consequence of a theorem. Thus the final statement is expressed in a form (“…when
AB+CD=AD+BC”) that hides the steps through which students arrived to the statement.
Definitely the students are in the synthetic mode of reasoning inside the Euclidean theory.

PHASE 6
Alex and Luca have produced, proved, and stated in a formal way a conjecture. Now they
go back to the original problem given by the teacher to look for other results. Again they
use Cabri to explore, in a way more systematic than that used initially. As done in the
phase 1, they start from the external configuration ABCD. This coming back to
exploration evidences the cognitive continuity between the phases of exploration,
production of conjectures and proof. But they have to stop: the time is over.

FINAL COMMENTS
We summarize the steps of students’ reasoning from conjecture to proof:
• Reading the terms of the problem and translating it in the graphical language: the role of

Cabri is central in interpreting correctly the statement
• Wandering dragging in search of inspiration for producing a conjecture: this mode is close

to empirical methods used in experimental sciences. This is a moment in which creativity has
to be present: Cabri amplifies the students’ creativity.

• “Aha!” moment: a property is discovered. This provokes a leap in the way of dealing with the
problem. The mode of using Cabri is reversed: instead of going from the given quadrilateral
ABCD to the resulting quadrilateral HKLM, our students start from HKLM and investigate on
the facts that may have this quadrilateral as consequence. They apply a method recalling
analysis.

• Dragging with Cabri to search a way for proving the conjecture: this is a phase in which the
students need to reflect. Cabri provides many situations and the students have to find those
suitable to their purpose, since, as Poincaré (1899) has observed, it is not enough to produce
right situations, you have to choose among all possible situations. The way of thinking here is
close to the analytic method.

• “Aha!” moment: the students make a construction that inspires the statement of a theorem.
Again we feel that Cabri has amplified the students’ creativity. Here we have another leap in
the students’ reasoning. The method they follow is mainly synthetic. This leap is marked by
the use of paper and pencil instead of Cabri.

• Inside the Euclidean theory: the students are able to produce a new theorem through
deduction from an Euclidean theorem.

In the strategies applied by our students it is remarkable the presence of methods close to
analysis and synthesis, as well as the role of the construction as a pivot between the two
methods.
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