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OF DERIVATIVE
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The ability of students to interpret from, represent mathematical problems in, and
interact with, a number of differing representations appears to be a crucial part of
understanding mathematical concepts. Here we consider the role of representation in
student understanding of derivative and present an outline framework for determining its
influence. Analysis of questionnaires and interview data from case studies of two students
on the basis of the framework revealed qualitative differences in their understanding of
derivative and its associated concepts, and suggesting that representational fluency may
be a key marker for this difference in thinking.
Since mathematical objects are conceived with the support of tools such as language,
symbols, graphs, and artefacts, it has been considered (Brown, 2001) that representation
cannot be divorced from the process of mathematical understanding. For example, an
important indication of emerging understanding is the capability of the learner to
represent a problem in a number of different ways, allowing them to approach solutions
from different perspectives (Sigel, 1999). Indeed it has been suggested (Cifarelli, 1998)
that problem solving success may be due to the ability to build appropriate
representations of the problem, using these to construct meaning for the given problem
situation. In addition, the ability to perform mathematical operations is contingent on the
ability to recognise the syntax and rules of production in a chosen representational system
(Hiebert & Lefevre, 1986) and to interact with representations according to these rules
(Thomas & Hong, 2001). However, each representational form will support and enhance
differing aspects of mathematical thinking and learning, and hence the formation of
integrated multiple representations for the same phenomenon, or representational fluency
(Lesh, 2000), is most likely to encourage meaningful understanding.
One crucial variation in thinking which interacts with the formation of representational
ability is the process/object duality of mathematical conceptions described in the
literature. While the ideas vary somewhat depending on the researcher’s perspective, it is
generally agreed that a dynamic process can become viewed as a static object (Sfard,
1991). This occurs, in the words of Dubinsky (1991) via reflective abstraction, and
encapsulation of the process as an object. In this present research we have considered a
theoretical perspective on possible differences between action (or procedural), process
and object views of derivative, and how these might be characterised in terms of their
relationship to graphical, algebraic and tabular representations.

A REPRESENTATIONAL FRAMEWORK OF KNOWING DERIVATIVE
Other recent research has tried to categorise student activity associated with derivative.
For example, Kendal and Stacey (2000) have developed a Derivative Competency
Framework that enables the monitoring and comparing of student achievement in
differentiation across three representations (symbolic, graphical and numerical).
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However, that framework concentrates on the solution processes employed by students
and the relationship of these to the representations, analysing these in terms of the
activities of formulation, interpretation and translation (and combinations). Our
perspective here is that it would be useful to construct a framework allowing student
understanding to be related to qualitatively different dimensions of knowing and to
representational ability. We describe below five dimensions of knowing arising from a
process-object theoretical approach to advanced mathematical thinking, and then present
the framework in matrix form, describing possible abilities of students within the
different representational modes (symbolic, graphical and numerical).
Five Dimensions of Knowing
We have attempted to describe a classification of knowing (and understanding) in terms
of the representational abilities which they mediate. The five dimensions of knowing we
have identified are: procedure-oriented, process-oriented, object-oriented, concept-
oriented and versatile. It is important to state that these are not claimed to be mutually
exclusive categories; we are trying to describe the dominant perspective of an individual.
• Procedure-oriented knowing —can successfully obtain an answer by following a

sequential set of rules (a procedure), which may or may not be meaningful for them, to solve
a given problem. Procedural knowing is not always meaningless and limited to an application
of known procedures (Hiebert & Lefevre, 1986). It includes the ability to interpret and
represent a problem in a particular representational system, and to know when and how to use
the procedure (Skemp, 1976).

j. Process-oriented knowing—the learner has condensed and interiorised a procedure in its
totality. Rather than being step-oriented and sequential it is global and holistic. The learner
has an idea of what process may be used to solve a given problem and when it is appropriate.
It includes the ability to describe and reflect on procedures without necessarily performing
them (Cottrill et al., 1996).

k. Object-oriented knowing —a process can be operated upon as an object. The learner can
reflect on the process, but can also generate a mathematical entity out of it. They can perceive
a representation as portraying an operation and the result of the operation.

l. Concept-oriented knowing—the level where the learner has created a ‘bigger picture,’
comprising schemas containing procedures, processes, and objects arranged in a relational
manner. The learner with concept-oriented knowing can provide answers to why certain
procedures and processes work, is able to create conceptual links across representations and
relate process and object tools used in solving problems.

m. Versatile knowing—the learner has a sufficiently wide range of the four types of knowing
described above to enable choice in problem solving, along with sufficiently developed
metacognitive ability to choose an appropriate perspective at any given point in time, and
ability to move fluently between the chosen perspectives as required.

From a consideration of these theoretical levels the Representational Framework of
Knowing matrix in Table 1 was constructed. It describes general criteria, along with brief
examples of the kind of representational abilities that might be associated with thinking
about derivative and differentiation in that domain.
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Representations
Dimensions Symbolic Graphical Numeric/Tabular
Procedure-
oriented

M a n i p u l a t e  s y m b o l s
according to rules e.g.
d (x n )

dx = nx
n-1

Calculate from graphical
forms. e.g. the gradient of a
tangent at a point or a chord
from two given points

Use procedures to obtain
numerical results from
tables. e.g., interpolation
for approximating an
average rate of change

Process-
oriented

Interpret the meaning of
symbols dy

dx
, ¢ f (x) , ¢ y  as a

differentiation process

Have a pointwise approach
derivative of graphs e.g. can
draw the graph of a derived
function given the graph of a
function.
Can understand second
derivative as rate of change of
gradient.

Understand and apply
r a t e  o f  c h a n g e ,
di f ferent ia t ion and
gradient processes in a
tabular setting. e.g., use
f (x + h)- f (x )

h
 for small h

from a table.

Object-
oriented

Operate on the symbols dy
dx

,
¢ f (x) , ¢ y  as objects, e.g.,

assign meaning to d dy
dx

Ê 
Ë 

ˆ 
¯ 

dx

Interpret nth derivatives as
functions

Interpret derivative graphs as
representing functions

Operate on graphs as an entity
e.g., relate the derivatives of
f (x)  at x = m  and  f (x - a)  at 
x = m + a  "x

Interpret a table of
values as representing a
discrete approximation
to a continuous function
e.g., transform a table of
values for y = f ( x ) to
y=f(x-a), for all x.

Concept-
oriented

Relate the differentiation procedures, and processes applicable in one representation to
each other and to relevant concepts.

Make procedural and conceptual connections between corresponding differentiation
procedures, processes and objects in different representations.

Identify and operate on conceptual objects such as derivative and function presented in
different representational forms.

Versatile Have sufficiently well-formed differentiation procedure-, process-, object- and concept-
oriented knowledge to be able to identify and use appropriate objects, processes and
procedures in their various representational manifestations.
Choose appropriate representational system perspectives to solve a differentiation problem.
Move seamlessly and fluently between the chosen perspectives as required.

Table 1. The Matrix for a Representational Framework of Knowing Derivative.
METHOD
The case studies reported on here describe two male Form 7 students (aged 18 years),
James and Steven, from a private and a public school, respectively. Both schools are
situated in high-level socio-economic catchment areas in Auckland, New Zealand. The
two students are part of a larger study of understanding of derivative currently taking
place with students from four schools where the teachers agreed to ‘integrate’ graphic
calculators in their calculus teaching. The students were selected on the basis of a test
given to their respective classes, with James selected from among the higher achievers,
and Steven from the lower achievers. Each of the two subjects completed a pre-test, a
pre-intervention interview, a module of work on derivative using the TI-89, a post-test,
and a post-intervention interview. The pre-intervention interviews were video-taped,
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while the post-intervention interviews were audio-taped. Both interviews were
transcribed and the data analysed together with the results of the tests.
RESULTS
On the pre-test James scored 12.5 (2nd highest) and Steven 3 out of 31. However, it was
clear by the second interview that Steven and James not only differed in test scores, but
more importantly had qualitatively different types of thinking about derivative. For
example, Steven, though appearing to be confident with his rules of differentiation has
difficulty understanding what derivative and differentiation are. When asked if he
understood what a derivative is he stated “Hmm..I know how to do that. I don't know
how to describe it. Let's say it's related to graphs." Asked what the derivative gives you
he replied "I don't know really." He recognises that he has had problems with his
understanding and recall of the subject, "I did differentiation. I understood it. I haven’t
done it since a little of last year…I’m not sure how much I remember. I hardly remember
doing it.” It seems that his understanding of derivative is iprocedural and he does not see
derivative as a process, or as an object resulting from a differentiation process.
One major disadvantage of a procedural approach occurs when procedures are incorrectly
remembered, or used in an inappropriate context. This was apparent when Steven was
asked to differentiate the function presented algebraically as y = (x2 + 4x)23 in the
second interview. His responses given aloud included “First rule: rearrange the cube root,
so you have [writes an answer]. Yeah, that’s right. And then I’ll expand that out first.
So…[continues writing]…then I expanded the bracket out…so then I’ll use the chain
rule.” While it may appear that Steven was confident that he had the correct procedures to
employ to solve the problem (namely expansion and the chain rule), we can see from his
written work (Figure 1) that he has errors in both the bracket expansion and in the
differentiation procedure.

Figure 1. An example of Steven's procedural errors.
A similar problem emerged when he was asked to differentiate the function
q = 3m2 -

7
m3 , where his answer was dm

dq
= 6m -

7
3m2 . He seemed to be confused by the

unfamiliar symbols and so used the symbol dm
dq

 instead of dq
dm

. In addition he exhibited a

poor knowledge of the procedure for differentiating powers. When his mistakes were
pointed out, he responded: “It’s not actually mistakes. So, just like that…” H i s
confidence seems to be based on his level of “knowledge of the procedure”, since he
knows this has worked well in previous problems.

In contrast when James was asked how he would explain derivative to himself he gave a
conceptual answer related to a graph, saying that:

† 

x 2 + 4x( )
2Ê 

Ë 
Á 

ˆ 
¯ 
˜ 

1
3

= x 4 + 4 x 2( )
1

3

¢ y =
1
3

x 4 + 4 x 2( ) 4 x 3 + 8x( )
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Well, derivative is sort of like…it is the graph of the gradient of this other graph …I think
it’s more a fact that it’s the gradient at a given point on the graph. That makes more sense
when I think about it. So, yeah, but the graph gets you just all of these with the
corresponding x-y, why makes it a lot easier to read.

However, he was also able to see it as a function in its own right generated by a process,
and as a rate of change, commenting that "They're all functions in their own respect…It's
… rate of change." This provides evidence of both process- and object-oriented knowing.
One of the areas where characteristics distinguishing procedural (action) or process
thinking about derivative from object thinking can occur is regarding appreciation of

¢ f (x) and  dy
dx

 as objects. Seeing dy
dx

, with its two apparent parts, as a single entity can

prove difficult. Indeed it has previously been noted that some students find difficulty in
the transition from the representation, f¢(x) to dy

dx
. Chinnappan and Thomas (2001, p.

158), for example, record the words of a student who said “I couldn't do dy
dx

, and as soon

as I hit university, it changed…     ¢ f (x)  was, I mean, that's what I worked with. I liked
that… I got completely stumped… and it took me a long time to figure it out, but once I
did it was great, like a revelation.”
Previously (Delos Santos & Thomas, 2001) we found that only 45% of 22 students could

make any interpretation of dy
dx

 in z =
d( dy

dx
)

dx , and only 1 thought that it had anything to do

with rate of change or gradient of a tangent. In agreement with Thomas (2002) we believe

that this is because students perceive 
    

d2 y

dx2
 as a repeated application of the differentiation

process, but are unable to see 
d (

dy
dx

)

dx  this way, thus they meet a cognitive obstacle. This
latter form appears to require one to see the application of the differentiation process to
the derivative object dy

dx
, and this gave us a starting point for an investigation of a

difference in thinking. In the context of the framework there is a distinction between the
former process-oriented view and the latter object-oriented perception in the algebraic
domain.
In the second interview, at the end of the study, when asked to describe his understanding

of a number of symbolic forms, James spoke of 
d (

dy
dx

)

dx  as “The differential of…I don’t
know. Hold on, hold on…or derivative of first derivative, derivative with respect to x,
second derivative. So it’s a rate of change, derivative of y with respect to x…aha, aha..

rate of change…’cause the ‘d’ is ‘delta’…interesting stuff”, while 
    

d2 y

dx2
 was "the second

derivative of the function y … the derived function of the first derived function which
gives the nature of the turning point". They were clearly not the same to him. In contrast
Steven found the former too difficult, saying “I’m not sure… I got confused by that, over
this side. Sort of keeps me…” This was not probed any further since he appeared irritated
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by his lack of insight, lacking a relevant contribution from his concept image of
derivative.
For dy

dx
 James referred to it as the "gradient function…the first derivative of the function

y with respect to x, and that it is used to find points, stationary points on the graph and
turning points." Asked about     ¢ f (x)  he replied that it is "the first derivative, which is what
we use in gradient, same as derivative of y with respect to x…kinda similar [to dy

dx
], sort

of interchangeable." When asked why he thought that there are two symbols used to
represent derivative he said dy

dx
 "could be graphical because y is involved…the function y

on the vertical axis and that is defined by what x is doing", while     ¢ f (x)  "could not be as
much like graphical". However, he still is a little confused, as seen in his remark that
"    ¢ f (x)  is not implying the gradient of the graph…[it is] implying the derivative of the
function f (x) …even though they both imply the gradient." Clearly there is a
representational aspect here to James' thinking. He associates dy

dx
 more with the graphical

representation and     ¢ f (x)  more with the algebraic, even though it can be used to find the
gradient of a function. This reinforces our view that the context in which symbols are first
met has a strong influence on the way we think about them. In spite of this James has a
concept-oriented perspective across the representations. He talks about concepts such as
derivative, stationary points, turning points, gradient, axes, graphs, etc in a manner which
portrays a richer conceptual structure than Steven.
In contrast with James' view Steven has a noticeably different perspective on the
symbols. When asked about dy

dx
 he immediately responds in a process-oriented way,

saying "I must differentiate." Pressed for what it stands for he responds "Differential of y
over differential of x" and appears unable to proceed further. His comments also stress
the importance of context to meaning, since when asked why he thinks both dy

dx
 and

    ¢ f (x)  are used he replies "if there's no y or x in the equation then you can't put one there,
so you'll have   ¢ f . It is a purely instrumental, context-dependent decision for him.
We decided to examine the students thinking further by taking them into uncharted
waters, presenting them with unfamiliar algebraic constructions. While both of the
students had used composite functions previously and were familiar with the form f(g(x)),
we employed the unusual notations f ( ¢ f (x)) and ¢ f ( ¢ f (x)) to access their thinking. For
the first of these Steven responded "the original function times the differential of the
original function", and proceeded to illustrate this by multiplying the function
    f (x) = 2x2 +1  by its derivative 4 x. He followed through consistently for the second
describing it as "the differential times the differential" Thus when faced with an
unfamiliar representational form Steven's recourse is to interpret the contiguous
arrangement of f and   ¢ f  (and later of   ¢ f  and   ¢ f ) as a known operation or process,
namely multiplication. James on the other hand displays the ability to think of the symbol
    ¢ f (x)  as an object, what he calls the derivative function. He states that "this might be the
first function here of the derivative function" and in order to elaborate further, he tried to
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interpret the symbol using specific functions, of the form f (x) = xn , showing that he is
able to take     ¢ f (x)  and treat it as an object, applying the function f to it. He wrote

† 

f (x) = x 2       ¢ f (x) = 2x
f ( ¢ f (x)) =  (2x)2  =  4 x 2

  and  

† 

f (x) = x 3       ¢ f (x) = 3x 2

f ( ¢ f (x)) =  (3x 2)3  =  27x 3

and using the graphic calculator sought to generalise this, getting nnx n-1( )n , and saying
“this is always gonna happen…variable x to a power, an even power”. Moreover, he
provided a graphical interpretation saying that “It’s going away…it’s always gonna be
steeper than this original function…it’s gonna be steeper…it’s also gonna be concave
up”. Interestingly, when asked to describe ¢ f ( ¢ f (x)) he said “that does imply second
derivative”. Hence instead of applying the same composite function thinking he had only
seconds previously he now saw this as the second derivative     ¢ ¢ f (x) . It seems possible
that this could be the result of a strictly linguistic interpretation of the symbolism.
Reading ¢ f (x)  as f-dashed of x, may cause one to read ¢ f ( ¢ f (x)) as f-dashed of f-dashed
of x. This in turn leads to James statement that “It’s the derived function of the first
derived function.”, and hence the second derivative. Whatever the case it again stresses
the importance of context in student thinking about symbolic forms. In this case even in
the same algebraic representation the student treats expressions with f( ) and f’( ) in quite
different ways.
CONCLUSION

We recognise that we have only just begun the process of providing evidence for the cells
in our matrix of understanding of derivative and more work will come later. However we
believe that, based on the data obtained from the two students we can summarise some of
the characteristic differences between them that relate to the framework:

• Steven displays primarily procedure-oriented thinking in contrast to James’ often
concept-oriented approach. e.g., James sees dy

dx
 and     ¢ f (x)  in terms of concepts; Steven as an

instruction to carry out a differentiation procedure.
• Notation is often linked to representations, e.g., dy

dx
 is seen as graphical and     ¢ f (x)  as

algebraic.
• Interpretation of a representation appears to be anchored in the context of first exposure
and this influences current interpretation of new representational forms. The introduction of
new representations should be integrated with previous forms. This is shown in the need to
make explicit links between dy

dx
 and     ¢ f (x) .

• 
d (

dy
dx

)

dx  and 
    

d2 y

dx2
 are not perceived as the same by a procedure-oriented thinker. The former

requires an object-oriented perspective on derivative.
• Procedure-oriented thinking is more easily forgotten, and it is more difficult to monitor
solutions, as Steven’s example shows. Concept-oriented thinking is more flexible, allowing
different perspectives from other representations to be related to solutions and to inform
conjectures, as we see from James’ work.
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• Concept-oriented thinking is more extensible into new areas. e.g., James coped well with
f ( ¢ f (x))by applying the composite function concept, whereas Steven invented a procedure.

Since the ability of a student to understand conceptually may be anchored in the ability to
represent an object in different forms, and to relate representations to the object and to
other representations of the object, the student who has more representations may have
more strategies that can be applied to the problem, and thus, more solution paths. This
research suggests that developing richer representational ability could provide a useful
means to move from procedure-oriented towards concept-oriented understanding.
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