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In this paper the notion of “procept™ (in the sense of Gray & Tall, 1994) is extended to advanced
mathematics by considering mathematical proof as “formal procept™. The statement of a theorem
as a symbol may theoretically evoke the proof deduction as a process that may contain sequential
procedures and require the synthesis of distinct cognitive units or the general notion of the
theorem as an object like a manipulable entity to be used as inputs to other theorems. Therefore,
a theorem could act as a pivot between a process (method of proof) and the concept (general
notion of the theorem). | hypothesise that mature theorem-based understanding (in the sense of
Chin & Tall, 2000) should possess the ability to consider a theorem as a “formal procept™, and it
takes time to develop this ability. Some empirical evidence reveals that only a minority of the first
year mathematics students at Warwick could recognise a relevant theorem as a “concept™
(having a brief notion of a theorem) and did not have the theorem with the notion of its proof as a
“formal procept™. A year later some more successful students showed a concept of the theorem
as a “formal procept™ and their capability of manipulating the theorem flexibly.

INTRODUCTION

Mathematical proof is one of the most important aspects of formal mathematics. From
most mathematics textbooks we can simply see the process of a mathematical proof as
the development of a sequence of statements using only definitions and preceding results,
such as deductions, axioms, or theorems. Theoretically the process of a mathematical
proof occurs when the proof is built up and looked at subsequently as a process of
deducing the statement of the theorem from definitions and the specified assumptions. A
proof becomes a concept when it can be used as an established result in future theorems
without the need to unpack it down to its individual steps. I choose to focus on this
sequence of proof as a process of deduction becoming encapsulated as a concept of proof
in a manner that would seem natural to most mathematicians. It is noted that there are
alternative theories, for example, Dubinsky and his colleagues (Dubinsky, Elterman &
Gong, 1988) focus on the use of quantified statements as processes becoming turned into
mental objects by applying the quantifiers. Pinto and Tall (2002), in contrast, show how
some students are capable of building formal proofs by reconstruction of prototypical
imagery used in thought experiments.

ORIGINAL NOTION OF PROCEPT

Gray and Tall (1994) suggested the notion of “procept’, which was taken to be
characteristic of symbolism in arithmetic, algebra and calculus, defined in the following
terms:

An elementary procept is the amalgam of three components: a process which produces a
mathematical object, and a symbol which is used to represent either process or object.

A procept consists of a collection of elementary procepts which have the same object.
(Gray & Tall, 1994, p.120)
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The original definition was made in the context where the authors were aware of a wide
range of examples and the definition was framed to situate the examples within the
definition. In this primary consideration it is a “descriptive definition”, in the sense of a
definition in a dictionary, rather than a “prescriptive definition”, in the sense of an
axiomatic theory. However, if we consider the definition of “procept” in a prescriptive
view, it seems applicable to extend the original notion of “procept” to the notion of
formal proof, which can be called “formal procept”, by adding the following analysis.

EXTENDED NOTION OF FORMAL PROCEPT

It should be noticed that there are three components of an elementary procept: process,
object, and symbol. Now we can put the frame of Gray & Tall’s “procept”, particularly in
the form of an “elementary procept”, on the notion of formal mathematical proof. The
symbol is the statement of what is going to be proved (which can be a theorem). The
process is the deduction of the whole proof. And the object is the concept of the general
notion of proof. Therefore, a theorem, for example, which is considered as a formal
procept could act as a pivot between a process (method of proof) and the concept (general
notion of the theorem). It should be stressed that the individual is not considered to
conceive the real meaning of a theorem until the theorem has become a formal procept.
With the above interpretation we could see the role of a symbol as being pivotal not only
in elementary mathematical thinking but also in advanced mathematical thinking to allow
us to change the channel between using a symbol as a concept to reflect on and link to
other concepts and as a process to offer the detailed steps to deduce a proof. However, an
immediate argument arises. It seems that the above corollary does not always follow
because even mathematicians sometimes use certain theorems without fully
understanding their proofs. However, I find this viewpoint an advantage to our analysis,
for it simply shows that such individuals are not using theorems as formal procepts, they
only have part of the structure, usually the statement of the theorem which they then use
as an ingredient in another proof without fully understanding the fotality of the structure.
I consider the whole notion of a theorem to be grasped when the notion of proof of the
theorem is also assimilated in the individual's understanding. Some evidence here shows
that only a few students understand the notion of proof as a formal procept, but the
empirical research also shows that, over time, more students grasp the subtlety of the
idea.

HIERARCHY OF THE DEVELOPMENT OF SYSTEMATIC PROOF

Chin and Tall (Chin & Tall, 2000) postulated a hierarchy running through the
development of systematic proof, in stages consisting of concept image-based, definition-
based, theorem-based, and compressed concept-based. These stages show successive
compressions of knowledge in the sense suggested by Thurston (1990). The first stage,
which is concept image-based sees the student having a concept image of a particular
concept built from experience, but very much at an intuitive stage of development. The
transition to definition-based involves the first compression. From amongst the many
properties of the concept-image, a number of generative ideas are selected and refined
down to give the concept-definition. During the definition-based stage, the definitions are
used to make deductions, all of which are intended to be based explicitly on the
definitions. Many students, however, remain in the concept-image based stage, basing
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their arguments not on definitions and deductions, but on thought experiments using
concept images (Tall & Vinner, 1981; Vinner, 1991). Bills and Tall (1998) introduced the
term ‘formally operable’ definition (or theorem), proposing that:

A (mathematical) definition or theorem is said to be formally operable for a given
individual if that individual is able to use it in creating or (meaningfully) reproducing a
formal argument. (Bills & Tall, 1998, p.104)

Tracing the development of five individuals over two terms in an analysis course,
focusing on the definition of “least upper bound”, they found that many students never
have operable definitions, relying only on earlier experiences and inoperable concept
images. Furthermore, it was also possible for a student to use a concept without an
operable definition in a proof using imagery that happens to give the necessary
information required. Thus, we already know that the development from the concept-
image based stage to the compressed notion of operable definition is a difficult one for
many students. Even so, they are then expected to move on to the next, theorem-based
stage, when theorems that have been proved by the process of proof are now regarded as
being compressed into concepts of proof, to be used as entities in the process of proving
new theorems. For this to be fully successful, I hypothesise that students who have
developed mature theorem-based understanding should possess the ability to consider a
theorem as a “formal procept”. I further hypothesise that individuals with this capacity to
use theorems flexibly as processes or concepts are developing a compressed concept level
of mathematical thinking that enables them to think with great flexibility and conceptual
power.

EMPIRICAL STUDY

In the cross-sectional probe, 277 first year mathematics students, following a course in
one of the top five ranked mathematics departments in the UK, responded to a
questionnaire on equivalence relations & partitions” when just having learned the topic
for several weeks. Thirty-six out of these 277 students were interviewed. In the
longitudinal probe, fifteen selected students answered the same questionnaire and were
interviewed during the first term in their second year. Their marks for the first year study
are widely distributed — three are over 80, four between 70 to 79, four between 60 to 69,
one between 50 to 59, and three between 40 to 49. This presentation is focused on two
questions in the questionnaire which are generally designed to examine how the students
manage to apply a relevant theorem to make their deductions. The plan of the study is to
obtain a global perspective of the first year mathematics students’ general understanding
of some relevant theorems, then to investigate whether and how the students’
understanding improves.

“EQUIVALENCE RELATION” AT THE THEOREM-BASED LEVEL

The following question is designed to examine if the students improve their
understanding from the definition-based level to theorem-based level:

A relation on a set of sets is obtained by saying that a set X is related to a set Y if there is a
bijection f: X—=Y. Is this relation an equivalence relation?
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It is necessary to note specially that the following theorem, which can be directly
applicable to this question, had been taught before the topic of “relations” was introduced
in the lecture:

(1) The identity map is a bijection.
(2) The composition of bijections is a bijection.
(3) The inverse of a bijection is a bijection.

This involves compression of the proofs of (1), (2), (3) (as processes) into useable
concepts (theorems).

In the cross-sectional probe, only a small percentage of the students (13%, 36 out of 277)
tried to apply the above theorem to make their deductions. Nearly a half of the students
(132 out of 277) still went back to examine the definitions step by step to answer this
question (they were categorised as "definition-based"). More than a half of these thirty-
six students (14 out of 36) only briefly referred to the theorem without giving more
detailed interpretation. That is these fourteen students could only state the theorem but
seemed not able to unpack its meaning. For these fourteen students, the notion of proof
cannot be considered as a formal procept yet because they did not seem to know the
process (method of proof) but only the brief concept (statement of theorem). In addition,
it should be noticed that, within the thirty-six interviewees (six out of these thirty-six
interviewees were categorised as “theorem-based”), thirty-three expressed that they had
impression of the relevant theorem. It seems to suggest that most of the students should
know or, at least, have some kind of impression of this relevant theorem, even though the
majority did not manage to apply the theorem to the practical question.

In the longitudinal probe, twelve out of fifteen were able to apply the theorem in the
second year, whilst only three were categorised as “theorem-based” in the first year. As
was found in the cross-sectional probe, the students’ concept images of this topic were
not solid at that time. Although most of the students seemed to know the relevant
theorem, they did not really have a clear idea how to apply it to this practical problem.
JULSON (68% for his first year study) was an example offering a definition-based
response (as follows) but he vividly expressed in the first year interview — “I remember
I learned it [the theorem] in the lecture a couple weeks ago, but I’'m sorry I haven’t put it
in my head yet.”

Alurasys A.:C_]'()(—;vx .= sk e sl X
ALy x=v Ll by [ =<
- T = . L :/ - PURRN o Yz .
AL [ A 3f Eivez, U S5 € > (JULSON 68%, 1* year)
Compared with their former responses, the quality of these fifteen students’ deductions
seems to indicate that the notion of the theorem had become more workable in their
concept images. JULSON’s recent response (classified as “theorem-based”) could offer
us some evidence.
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In the second year, JULSON not only stated the theorem but also explained how the
theorem can be proved (in the interview). Thus he clearly showed that the notion of proof
of this theorem had become a “formal procept” in his concept image as he knew both the
statement of theorem (as general concept) and the method of proof (as process).

The following quoted conversations recorded in the interview with DIAHUM might offer
us some more delicate insight into how the successive moves — from informal to
definition-based, then on to theorem-based conceptions — happened with the individual.

DIAHUM (48% for his first year study) gave the following response (classified as
"informal definition-based") in the first year:
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He cleared up what he meant in his response as follows:

I was trying to apply the definition of equivalence relation to make the answer more
formal. But | don’t think my answer was formal enough because | didn’t really know how
to apply the definition even though I can remember it. And another problem is | can’t
recall the definition of bijection. What | can remember is a bijection is one-to-one and
onto. That means the two sets have the same number of elements (he explained later that
this idea was from what he learned at A-level).

He also expressed that he knew the theorem which is directly relevant to this question in
the interviews. But the theorem seemed to be something only in his understanding in a
theoretical manner rather than in his intuition which can be freely referred to at any time.

In the second year, he responded in terms of the relevant theorems as follows:
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Although he did not use the term “identity” to mention the bijection mapping from the set
X to itself, he could precisely write down the composition of two bijections whilst some
others mentioned it in the wrong order. In addition, he could explain the idea to prove the
theorem in the interview. When being asked why he answered in this way this time, he
gave the following explanation:

Well, | think it’s fairly natural for me to make the deduction like this. When | faced the
question, the theorems burst upon my head and | just wrote down the proof.
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DIAHUM’s case seems to suggest that he cannot freely apply a formal conception until it
is assimilated in his concept image as an embodiment. When DIAHUM could only recite
the formal definition of equivalence relation but was still struggling with the implication
of it, it is natural for him to consult the relevant ideas he learned at school to make his
first deduction because they were more embodied and secure in his concept image.
Having a year of time to digest all these notions, the theorem, which he only knew about
before, had been assimilated into his concept image as a formal procept that he could
recall intuitively in the second test.

SUB-SUMMARY

In the students’ (written or oral) responses, we can see that most students seemed to apply
the relevant theorem directly to this practical question in the second year whilst most of
them only gave a definition-based response in the previous year. This kind of result is
consistent with the successive move from definition-based conceptions to theorem-based
conceptions over time during which the ideas are being used formally (Chin & Tall,
2000). From the improved quality of the students’ deductions, I consider, at least for
some students, the notion of proof of the theorem seemed to have become a “formal
procept” in their concept images. They only appeared to know the general concept
(statement of the theorem) but not the process (method of proof) of the notion of proof of
the theorem before. But, a year later, some students seemed to be able to unpack the
notion of the theorem to the proof process and to apply the theorem to the question more
flexibly.

LINKAGE BETWEEN “EQUIVALENCE RELATIONS” AND “PARTITIONS”
(AT THE COMPRESSED CONCEPT-BASED LEVEL)

Theoretically the notion of “equivalence relations” is linked to the notion of “partitions”
as there is a theorem stating that “an equivalence relation can produce a partition of a set
and vice versa” which is always formulated as the conclusion of the topic. The following
question is asked in order to examine whether the students appreciate the idea practically.

Write down two different partitions of the set with four elements, X={a,b,c,d}. For the
first of these, please write down the equivalence relation that it determines.

In the cross-sectional probe, the students’ reponses to this rather easy question with only
four elements in the set reveal that only few students (sixty-one out of 277) show there is
a workable linkage between the two notions in their concept images. The others gave two
correct partitions with incorrect or without corresponding equivalence relations, or
incorrect partitions with incorrect or without corresponding equivalence relations, or
totally wrong answers. However, all the thirty-six interviewees said that they knew there
is a theorem linking the two notions “equivalence relations” and “partitions” together,
whether they appreciated it or not. It seems fairly clear that being aware of the statement
of a theorem does not mean that the theorem is operable in one's concept image. I
consider that the notion of proof has not become a “formal procept” yet, since the
students could only remember the statement of the theorem as general concept but did not
have the access to proof as process, the method of proof. Thus they could still not apply
the theorem to this practical problem in the first year.
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In the longitudinal probe, there were only five out of the fifteen subjects being able to
apply the idea of the relevant theorem by successfully giving two correct partitions with a
correct corresponding equivalence relation in the first year, and the number increased to
eleven in the second test. As to the other four students, three gave two correct partitions
without corresponding equivalence relation and one even failed to offer two correct
partitions without giving any corresponding equivalence relation. Please note that all the
fifteen expressed that they remembered they had seen, in the lecture, the theorem which
links the two notions together.

HELTON, getting 61% for his first year study, can be a representative of those who
failed to offer a correct response before but solved the question successfully in the second
test. In the interviews, he expressed that he could just remember the theorem without
really understanding the meaning of it. But when preparing the examination, he studied
how the theorem is proved and then grasped the idea of the theorem. Thus he could
simply solve the problem in the second year. However, MAUHAM (71% for her first
year study), offering two correct partitions without giving the corresponding equivalence
relation twice, is someone who confessed that he only recited the statement of the
theorem and had no idea how the theorem can be proved.

SUB-SUMMARY

The result of this question appears to parallel the former question in many instances. All
the students sensed the relevant theorem linking the two notions together but only a few
could practically apply the theorem to the question in the first year. A year later, some
students’ understanding had progressed to reach a more mature theorem-based level. The
theorem was no longer a “general concept” only but also a “process” which suggests the
method of proof to make the whole notion of proof of the theorem as a “formal procept”
in their concept images. However, only trying to recite the statement of a theorem
without understanding the notion of proof of the theorem is not helpful for improving the
student's understanding.

DISCUSSIONS AND CONCLUSIONS

The proceptual encapsulation in advanced mathematics seems to be slightly different
from that in simple arithmetic (Gray & Tall, 1994), in which pupils appear to build up the
notion of proceptual structure from encapsulating various processes, to obtaining the
concept, then on to forming the procept of a symbol. The empirical data of this
presentation reveal that most students, at the university level, seem to have the product
(the statement of a theorem) first, then to develop the notion of proof if possible. There is
evidence that being stuck in processes of calculation seemingly prevents pupils from
obtaining the concept (e.g. Blackett, 1990, Gray & Pitta, 1997). However, the use of the
computer to carry out the process, and so enable the learner to concentrate on the product,
significantly improves the learning experience (Gray & Pitta, op. cit.; Gray & Tall, op.
cit.). This kind of evidence suggests that concentrating on the product first, then to
develop the notion of procept is possible and also helpful for improving student's
learning.

The notion of formal procept is applicable to trigonometry and calculus. Many
trigonometric formulae and theorems, for example, Mean Value Theorem and
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Intermediate Value Theorem, in calculus can be seen as formal procepts. If the students
only recite the product (the statement of the theorem) without understanding the idea of
the proof, they could not be able to apply these formulae or theorems to solve practical
problems flexibly. Besides, when more and more formulae and theorems are learned, the
less able students will become trapped in reciting all these products which increase the
burden upon an already stressed cognitive structure.

The empirical evidence presented in this paper gives us confidence to make a conclusion
that the notion of procept of Gray & Tall can be extended to advanced mathematics. At
the beginning, most students just have the product (the brief notion of the theorem) in
their concept images only. But they cannot grasp the essence of the theorem and have
more flexible thinking until they perceive the notion of proof of the theorem. Therefore,
the ambiguity of process and product represented by the notion of formal procept also
provides a more natural cognitive development at the university level which gives the
students enormous power to develop more flexible mathematical thinking.

References

Bills, L. & Tall, D.O. (1998). Operable definitions and advanced mathematics: the case of the
least upper bound. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22" Conference of
the International Group for the Psychology of Mathematics Education, 2, 104-111.

Blackett, N. (1990). Developing understanding of trigonometry in boys and girls using a omputer
to link numerial and visual representations. Unpublished dotoral dissertation, University of
Warwick, UK.

Chin, E-T. & Tall, D.O. (2000). Making, having and compressing formal mathematical concepts.
In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24" Conference of the International
Group for the Psychology of Mathematics Education, 2, 177-184.

Dubinsky E., Elterman & Gong. (1988), The student’s construction of quantification. For the
Learning of Mathematics 8(2), 44-51.

Gray, E.M. & Pitta, D. (1997). Changing Emily’s images. Mathematics Teaching, 161, 38-51.

Gray, E.M. & Tall, D.O. (1994). Duality, ambiguity and flexibility: a proceptual view of simple
arithmetic. Journal for Research in Mathematics Education, 26(2), 115-141.

Pinto, M.M.F. & Tall , D.O. (2002). Building formal mathematics on visual imagery: a theory
and a case study. For the Learning of Mathematics, 22(1), 2—-10.

Tall, D.O. & Vinner S., (1981). Concept image and concept definition in mathematics, with
special reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169.

Thurston, W.P. (1990). Mathematical Education. Notices of the American Mathematical Society,
37, 844-850.

Vinner, S. (1991). The role of definitions in teaching and learning mathematics. In D. O. Tall
(Ed.), Advanced Mathematical Thinking (pp. 65-81). Kluwer: Dordrecht.

2—220



