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GUESS MY RULE REVISITED
David W. Carraher   Darrell Earnest
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We present classroom research1 on a variant of the guess-my-rule game, in which nine-
year old students make up linear functions and challenge classmates to determine their
secret rule. We focus on issues students and their teacher confronted in inferring
underlying rules and in deciding whether the conjectured rule matched the rule of the
creators. We relate the findings to the tension between semantically and syntactically
driven algebraic reasoning.

FROM SEMANTICS TO SYNTAX
There are diverse approaches to algebra depending upon the relative mix of modeling,
generalized arithmetic, mathematical structures, functions, and other considerations.
Clearly, not all approaches will be equally appropriate for the young learner. It stands to
reason, for example, that if algebra is introduced to elementary students as the
syntactically-guided manipulation of formalisms (Kaput, 1995), many young learners are
going to be left behind. We find compelling the evidence that children's early
mathematical learning benefits from reasoning about rich contexts, from thinking about
relations between quantities, from trying to solve word problems. This general approach
to mathematics is shared by many schools of thought and research traditions (Vergnaud,
1985; Schwartz, 1996; Davydov, 1991; Smith, )2. It has led us to highlight modeling and
mathematization in developing learning tasks during our three year longitudinal
investigation of Early Algebra learning among 70 second to third grade students in
greater Boston. The mere names of tasks we developed—the Heights Problem, the Piggy
Bank Problem, the Best Deal, Phone Calling Plans—reveal our bias in grounding early
algebra activities in rich situations about which students had considerable intuition and
prior experience.
But early on we came to realize that certain representational tools—tables, number lines,
graphs, and algebraic-symbolic notation, for example—were going to assume
increasingly important roles in our students' mathematical lives. And the students clearly
were not going to invent these notational systems on their own.  This led us to elaborate
activities in which special mathematical representations would become the object of
direct discussion and reflection over the course of many lessons. It has been encouraging
                                                  
1 The authors wish to thank the National Science Foundation for support through grant #9909591,
"Bringing Out the Algebraic Character of Arithmetic", awarded to the first author and Analúcia
D. Schliemann, of Tufts University.
2 Carpenter and Franke (2001) have built a program of Early Algebra instruction and research
based on the premise that open sentences can constitute the main point of departure for
introducing algebra into the early mathematics curriculum. Although we take a different view, we
follow their work with interest, and find it noteworthy that our work in theirs draws inspiration
from the groundbreaking work of Davis (1966-67), among others.
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to see students incorporate tables, number lines, and graphs into their repertoire of
"spontaneous" representations.
The case for algebraic-symbolic notation, however, has been somewhat different. We
found that our students generally used algebraic notation to describe functions that they
had come to identify through reflecting upon rich situations. However, we saw little
evidence that such notation was exerting an influence on the course of their thinking.
They seemed to be merely using the notation to register what they had concluded.
We realize that, as many have noted, at some point students will have to be able to reason
directly upon and with the written notation. When should this transition occur? Will the
prior emphasis upon richly contextualized reasoning militate against this progression
towards notation and syntactically driven reasoning? What sorts of situations are likely to
promote this new form of reasoning? What issues must students contend with along the
way?
The Guess My Rule game suggested itself as a promising context for getting students to
focus on written algebraic notation as an object of discussion because students would
have to compare expressions written by the rule makers with those posed by the rule
guessers and decide whether certain variations express the same or different underlying
rules.
The Guess-my-Rule game has often been used in mathematics education at different
grade levels as a way to introduce children to linear functions (see, for example, Davis,
1967, 1985; Carraher, Schliemann, & Brizuela, 2001, 2003; Schliemann, Carraher, &
Brizuela, 2003). This activity essentially provides students with values from a function's
domain (input) and the corresponding value from the range (output); based on the data,
students try to infer the function. In order to play the Guess My Rule game, students must
accept that: 1) each input must result in a single output; and 2) a function is consistently
used for all values of the solution set, that is, the rule cannot change. Children in younger
grades enjoy participating in this guesswork, even though they may not be fully aware of
the teacher's role in moving the discussion towards the recognition of linear functions.
Davis (1967) refers to children's experience in Guess My Rule as "readiness-building for
functions" and makes a case for initially allowing students to figure out how to solve
functions through their own means.

OVERVIEW OF CLASS AND THE RULES STUDENTS CHOSE
The following data come from a 90 minute classroom of 18 students in third grade; data
from three other classes will be analyzed elsewhere. The students were already somewhat
familiar with algebraic notation for functions. However, they had partaken in limited
discussions about equivalent expressions for functions or about operating on functions.
After several examples, students broke into 'groups' of one to four to make up their own
rule. They made considerable efforts to ensure that other groups did not eavesdrop and
discover their choice of rule as they were choosing it. After they chose their rule, they
completed a table with input values of their choosing and the respective output values.
As students formulated their rules in groups, they discussed which combinations of
operations and addends would result in a tricky rule yet one they could manage. Further,
they openly discussed the importance of choosing a single rule that would account for all
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the data. All the groups applied their rule to inputs of 1 through 10, and several included
higher, landmark numbers, such as 50 or 100.
In the following section, we will summarize the discussions from one of our four
classrooms using Table 1 to provide an overview.

Group 1's rule: N¥7 - 3
Table 1 (above) summarizes3 the results of the activity during which each group of
students generated a number of examples of input and output (with the input often
coming from the guessing students) and challenged their classmates to guess their rule.
For example, group 1 decided to use as their secret function, n¥7 –3. When given 4 as an
input number, they correctly told the class that 25 would be the output. One of the
classmates conjectured that the rule was n¥5 +5. This was a reasonable candidate; it is a
local solution, that is, it matches the data for that particular instance. When the next
input-output pair is given, a student among the guessers suggests that the rule is n¥5 +7.
This is a local solution that does not accord with the first data pair, (4, 25).  Likewise a
local solution, n¥6, is proposed for the ordered pair (3, 18). The final guess, n+7, at first
perplexed us. After David wrote the input of 3 above the input 4, the list of inputs was
ordered as counting numbers. Joey noticed that each successive output increased by 7.
N+7 may not correctly describe the function; however, it captures something about the
pattern of outputs: 18, 25, 32, 39.
The class does not solve the function, which is revealed by the rule makers before passing
the floor to Group 2.

Group 2: What Counts As a Solution?
Group 2 secretly chose as their rule "N ¥  5 ¥  4 + 1". One of the guessing students
suggests one million as input; the rule makers correctly reveal that the output will be
twenty million and one. Cristian immediately raises his hand and says "I know it! I know
it!" His conjecture is “N times twenty plus one”. A dialog ensues regarding whether
Cristian has discovered the rule used. One of the creators of the rule, Joseph, sounds out a
rasping buzzer noise4 that signals the student has given a wrong answer.

The teacher notes that Cristian's answer happens to be consistent with the data pair. At
this point Joseph maintains that Cristian got it wrong but "got it right in a different way".

Group Functions Examples Guesses Local solution

                                                  
3 For simplicity we represent here students’ conjectures through standard mathematical notation even
though they were spoken; many of the spoken conjectures were annotated by the teacher on large paper;
rule makers also wrote down their rules.
4 The allusion is to a television game-show contestant being informed that his answer is incorrect.
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1
Melissa,
Alanna,
Nancy,
& Maria

N¥7-3 4‡ 25
5‡32
3‡18
6‡39

n¥5 +5
n¥5 +7
n¥6
n+7

¸
¸
¸
˚

2
Joey,
Joseph,
& Adam

N¥5¥4+1 1,000,000‡
20,000,001
1‡21
2‡41
…‡61
…‡81
…‡101

n¥20+1

n¥20+1

¸*

¸*

3
Omar,
Kevin,
&
Anthony

K¥2-2 5‡8

100‡198
0‡-2
2‡2
3‡4
4‡6
6‡10
7‡12

15‡28

[n+] 3
[n]+3

KK+2
[K] ¥2-2
K¥2-2
K+K-2

¸

˚
¸
¸
¸*

4
Matthew

[N] +50-20 92‡122
0‡30
1‡31 N + 8 + 22

N+30

¸*
¸*

5
Cristian

C¥3+2-4+5 -1000‡-2997
0‡3
1‡6
2‡9
3‡12
4‡15

N¥2+997

N¥3
N¥4+1
Y¥3+3

˚

˚
˚
¸*

*expression is not identical to the expression of the rule makers.
Table 1. Summary of secret functions, examples presented in class, and conjectures made
by students.
After David leads the students through an additional data pair, Joseph continues to insist
that Cristian was wrong. Joey now concedes that Cristian has solved the problem. By the
end of the discussion, Joey and Joseph seem to believe that there are two ways to look at
the issue. And indeed there are: Cristian's expression is not identical to theirs;
nonetheless, it seems to work.
David writes the rule-as-created, N ¥5¥ 4 + 1, on chart paper. To encourage them to see
the rules as equivalent, he asks the students to find another way to express the part, ¥5¥4;



2—177

they respond correctly, “times twenty”, and David writes ¥20 under the factors. In the
end, Joseph and Joey, rule makers, agree that Cristian’s rule works but take different
stances on the issue of correctness. (Adam, the third rule-maker has not expressed his
view.)

Joseph: He got it wrong, but he got it right in a different way.
Joey: He solved it right, but he did it in a different way.

Group 3: Is K + K the same as K ¥ 2?
Group 3 choose as their secret rule K ¥ 2 –2. The first input-output pair, (5, 8), is written
in mapping notation as 5‡8 on the chart paper. Joseph, now in the role of a conjecturer,
says emphatically “three” while Joey says “plus three”. Briana raises her hand and
answers that the rule is “plus three”. We transcribed their answers in Table 1 as “[n+] 3”
and “[n]+3”, employing brackets to indicate which parts were editorially inserted by us.
David realizes that Briana’s rule makes no explicit reference to the variable. So he
introduces the letter B (students often prefer to work with the initial letters from their
own name) as a means of completing the expression of the rule:

David: Who thinks they know the rule? Briana…

Briana (hand raised): Plus three?
David: So if you start out with B (writes “B‡” on chart paper), B becomes what? What’s the

rule, that you think it is? What should we do to the B? [Another student quietly says,
“plus three] …According to your rule, Briana,

Briana: Three

David: No…Is three always the answer? So…we’ve got to do something with the B. What do
we do to the B? You said it’s plus three, right? [Briana nods in agreement.] So
actually, your rule, Briana, is B plus three (as he completes writing B ‡  B +3). So
that’s Briana’s rule. Let’s see if this works.

When going through the next input, 100, David asks what Briana’s rule would predict the
output to be. Several students answer, “103, ” and David agrees and Briana confirms by
nodding her head. When the rule-makers reveal that their answer is 198, Briana, turns
with perplexed surprise to the student sitting beside her. David himself is surprised and
he asks to peek at the rule written on the makers’ sheet; he confirms that they have
correctly given the output. When Briana acknowledges that her rule did not work, David
clarifies that “it only worked for the first one.” In this way he calls attention to the fact
that a conjecture might work locally (case 1) without working globally.

David (summarizing): So we can actually say that this was a good guess but it is wrong,
because it doesn’t work for both of them.

The rule-makers proceed to supply the class with additional information, namely the
outputs for inputs of 0, 2, 3, 4, 6, and 7. Joey notes with interest, the pattern of the output:
“It’s going in a pattern: 2, 4, 6, 8.”
Someone says aloud, “How do you count by twos?”, apparently meaning to say “what
rule would yield a pattern that increases by twos?”
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Maria conjectures that the rule is “K K plus two”, which David transcribes as “K K +2”
and asks, “What is KK? K times K or K plus K?” While Maria is thinking, Cristian
suggests “times two, minus two”, a correct answer, although it leaves the variable
implicit. We represented his answer in Table 1 as: [K] ¥2-2.  In the classroom, David
writes K ‡ on the board while asking “K becomes….?”. A couple students [possibly
Joseph and Joey, once again] respond: “…K times 2 minus 2”.
Going back to Maria’s answer “K K plus 2”, David pursues the issue of the identity of “K
+ K” and “K ¥ 2”. David now realizes that it may not be clear to the students that K¥2
and K+K are interchangeable. He pursues the issue a bit, using N as a variable, but there
is no convincing evidence that the students truly accept the identity, n¥2 = n+n, in written
or spoken form.

Group 4 (Mathew): [N] + 50 - 20
On the basis of the input output data (see Table 1) Cristian conjectures that Mathew’s
rule is N + 8 + 22. Others take the rule to be N +30. Matthew states his rule as “+50 –20”
yet seems comfortable with the mapping, formulation, “N ‡ N +50 –20”, encouraged by
David. Once again, there is a discrepancy between the maker’s and conjecturers’
expressions. David tries to argue that the various formulations express the same
underlying rule because they can all be simplified to N +30. Students may not be fully
convinced by his points, but in a sense they are being encouraged, through this and other
examples, to accept the general notion that expressions that look different may be
interchangeable.

Group 5 (Cristian): C¥3+2-4+5
Cristian, wishing as he typically does, to provide the class with a very challenging
problem, suggests using –1000 as the initial input, yielding –2997 as output. Only a
couple of students are following the discussion at this point; it is late in the class and a
negative input is a bit strange for them. After going through a number of input-output
pairs, students suggest N¥3, N¥4+1, and Y¥3+3 as possible answers. The final conjecture
is consistent with Cristian’s rule, although, once again, it is expressed in a different form.
Since this discussion is a bit rushed (class is ending and David wants two remaining
groups to at least state their rules), it is not fully clear whether some students believe that
discovering the rule requires using the same letter adopted by the rule-makers.

The precise letter chosen was an issue in other classrooms, as the following dialogue
from another class shows, after a discussion in which a student conjectured that the rule
was A ‡ A¥5 –3.

 (Ruler-makers come up to the front and write on the chart paper: K¥5-3)

Teacher: Okay. They’re saying that their rule is K¥5-3. Is that the same thing [as A¥5-3]?

Student: That’s what I said!

[Erica points at the letter “A” in Albert’s iteration of the rule]

Erica: Yeah, but the letter!
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Student: The letter’s different!

Teacher: Does it matter if you start with a K?

Assorted students: No! No!

Teacher: And the K becomes K times 5 minus 3? Is that the same as doing this? (pointing to
Albert’s rule)

Students: Yes!

Teacher: So they’re really the same rule. (To Erica) So I would say that Albert solved it, right?
Erica: Yeah. Paul got it right too, he said the same thing.

By the end of this interaction, Erica accepts the teacher's statement that Albert got it right,
and adds that Paul, another student who concurred with Albert, is right as well. At issue
was the idea that letters in algebraic expressions are arbitrary placeholders.

DISCUSSION
There was some evidence that third grade students from an urban public school with a
prior background in early algebra activities based on functions and modeling could begin
the transition from semantically driven to syntactically driven algebraic reasoning. We
would hope to see students taking part in more prolonged and in depth debates about
equivalent functions and identities. Furthermore, although students may initially find
persuasive the fact that two rules produce the same output from a set of input values,
eventually they need to abandon this approach and move towards proving the functions
are equivalent. The discussion about ¥4 ¥5 simplifying to ¥20 exemplifies this sort of
shift. But graphing the data may prove useful in lending meaning to the rules and
(dis)proving their equivalence. Ultimately, we want students to be able to operate on
equations in ways that preserve the solution set without having to resort to thinking about
the original situations that gave rise to the equations. This does not mean that students
should abandon, once and for all, semantically driven reasoning, for it may prove useful
in other contexts, even some that entail the use of advanced mathematical reasoning. We
look forward to encountering additional research that explores the transition and tension
between semantically driven and syntactically driven mathematical reasoning.
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