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Abstract 
 

Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines 

features of the traditional conventional paper-and-pencil testing and item-based 

computerized adaptive testing (CAT). The basic structure of CAST is a panel 

composed of multiple testlets adaptively administered to examinees at different stages. 

Current applications of CAST reply on the item response theory (IRT) and assume a 

unidimensional IRT model for scoring. This study evaluated the robustness of CAST 

when tests were constructed, administered, and scored by a unidimensional IRT model 

but item responses were multidimensional. Various conditions of multidimensionality 

were simulated in item pools, as well as different levels of content misclassification 

through manipulation of the correspondence between content area and dimension of 

items. An automated test assembly (ATA) process constructed CAST panels from the 

item pools, each representing a unique combination of multidimensionality and 

content misclassification. Administration of the panels was simulated and 

multidimensional response data were scored by the unidimensional IRT model. The 

ability scores, routing decisions, and pass-fail decisions were evaluated against “true” 

ability scores and decisions to assess the impacts of multidimensionality and content 

misclassification. Results showed that, when multidimensionality was mild as 

measured by the angle distance between item clusters, unidimensional ability 

estimates and routing decisions were not sensitive to the level of content 

misclassification in item pools. 
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Introduction 
 

 Computerized Adaptive Sequential Testing (CAST) is a test delivery model 

that combines features of traditional paper-and-pencil examination and item-based 

computerized adaptive testing (CAT).  Its basic structure consists of a panel of 

multiple stages sequentially administered to examinees.  At each stage, there are 

different groups of items called modules or testlets, and examinees are required to take 

one of the modules.  Which module an examinee takes depends on their ability 

estimates from the previous stage or stages.  That is, examinees are routed during the 

testing process and they will take different test forms, or pathways, of the 

examination, each made of a different combination of modules.  Figure 1 shows a 

CAST panel made of three stages, with one panel at the first stage, and two panels at 

both second and third stages.  Each possible combination of modules of a CAST panel 

can be assembled to meet statistical and non-statistical criteria prior to exam 

administration, which enables CAST to claim two significant benefits – the assurance 

of quality and parallelism of test forms and the control of item exposure.   The CAST 

model has produced promising results in a number of research studies and in the field 

test forms for the United States Medical Licensing Examination Step 1 in 1997 

(Luecht & Nungester, 1998, 2000; Luecht, Brumsfield, & Breithaupt, 2002; Luecht & 

Burgin, 2003). CAST was also adopted by the computerized Uniform Certified Public 

Accountants (CPA) Exams launched in April 2004 (Melican, Breithaupt, & Mills, 

2005) for the multiple choice questions (MCQ) of the tests. 

 This study is the first attempt, to our knowledge, to evaluate the robustness of 

computerized adaptive sequential testing (CAST) to the violation of the 

unidimensionality assumption.  The basic research design follows the logic of 

previous studies on CAT ability estimation with multidimensional data (e.g. 

Ackerman, 1991; Folk & Green, 1989).  First, multidimensional item response data 

are generated and then calibrated by a unidimensional IRT model.  Unidimensional 
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item parameter estimates are used to assemble CAST panels.  Second, administration 

of panels is simulated.  During the administration, item responses are generated to be 

multidimensional, while ability estimation, assuming unidimensional data, is based on 

item parameter estimates used to assemble the panels.  Finally, the estimated abilities 

are evaluated against “true” abilities to assess the impact of multidimensionality.    

 However, unlike previous studies, this study focuses on the potential capacity 

of CAST to “control” the dimensional structure of a test by prescribing the content 

specification of items in the panel assembly process.  The rationale for such a focus is 

explained as follows. 

 Traditionally, the content and the dimension of items are closely related.  Items 

from a specific content area tend to lie along one dimension in the latent trait space 

and items from a different content area tend to lie along a different dimension.  A 

typical example is a mathematics test that contains algebra items and trigonometry 

items, corresponding to an algebra dimension and a trigonometry dimension (Zhang & 

Stout, 1999).   In real tests, however, a perfect correspondence between content 

specification and statistical dimensionality rarely exists.  More often we will see items 

from the same content area lie along different dimensions, and items on one dimension 

may come from different content areas.   Because dimensionality is a statistical feature 

that secures an item response model to be monotone and locally independent 

(Nandakumar & Ackerman, 2004), the dimensionality structure may or may not 

correspond to the content specifications of a test assigned by test developers or content 

experts (for example, the ACT math test studied in Ackerman, 1991).  The reason for 

this to happen is probably because test development and dimensionality assessment 

are usually two separate processes, and items may be assigned to content areas not 

necessarily aligned with their statistical dimensions.  In this study, the statistical 

dimension represents the true identity of an item.  Hence, the content area assigned to 

the item by test developers can be either correct or incorrect.  In other words, there is 

correct classification of item content and there is misclassification of item content, 

depending on whether or not the content matches the dimension for an item. 
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 Given the above reasoning, this study tries to create three scenarios to 

distinguish between different levels of content misclassification of items while CAST 

panels are assembled.  In the first scenario, a perfect classification of items is achieved 

so that items from one content area are associated with one and only one dimension, 

and vice versa.  This is an ideal situation but not very likely to manifest in real tests.  

In the second, most realistic scenario, minor misclassification of items happens so that 

a moderate number of items from one dimension are assigned to a content area “by 

mistake”.  Put differently, items from on dimension can be associated with two content 

areas.  The third scenario, more realistic than the first scenario, stands for severe 

misclassification of item content by which most items from one dimension are 

assigned to a “wrong” content area.  

 A major advantage of CAST is to improve test form quality by offering 

adequate control over test assembly.  If test data are in fact multidimensional, and if 

the multidimensional structure reflects itself in the content classification of items, the 

test assembly process that controls content specification can be expected to maintain a 

given dimensional structure in the test.  By the same token, if test data are in fact 

multidimensional, and if the multidimensional structure fails to reflect itself in the 

content classification of items, the test assembly process will not maintain the 

dimensional structure in the test when correct content classification is mistakenly 

assumed.  Whether the dimensional structure is maintained or not should have some 

impact on ability estimation and important decisions based on ability estimates.  By 

utilizing the above three scenarios of content misclassification to evaluate 

unidimensional ability estimation from multidimensional data, this study intended to 

answer the question of the robustness of unidimensional ability estimation from a new 

perspective.  In short, this study evaluated unidimensional ability estimation in CAST 

as a function of the interaction of the level of multidimensionality and the level of 

content misclassification.   
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Method 
 

 Simulated data were used to investigate the objectives of this study.  Various 

multidimensional data were simulated corresponding to different conditions of 

multidimensionality.  For data associated with each multidimensional condition, 

unidimensional item parameters were estimated, and a content classification was 

assigned to each item.  In this manner, an item pool was created for each condition.  

The item pool was used to construct a CAST panel.  The CAST panel was then 

administered to simulees and item response data was generated under the true 

multidimensional model.  Simulees’ abilities were again estimated using the 

unidimensional model and evaluated appropriately.  The data preparation and analyses 

are depicted in Figure 2, where each box represents a major step of this study.  These 

steps are briefly described below as an overview, and more detailed descriptions of 

each step will be provided in the following sections.   

 Step 1:  Item response data were generated to mimic different two-

dimensional data conditions based on a MIRT model with two compensatory abilities.  

In order to generate item responses, item parameters for two clusters of items (Cluster 

I and Cluster II) were generated corresponding to two particular composites of the two 

dimensions ( 1θ  and 2θ ).  For each two-dimensional data condition, the following steps 

2 to 5 were carried out.  

 Step 2: For each two-dimensional data condition, unidimensional item 

parameters were estimated from item responses generated in Step 1.  After calibration, 

items were assigned a content classification (Content A or Content B) three times, 

each resulting in an item pool, where the correspondence between the content and the 

cluster for some of the items varied.   

 Step 3: An automated test assembly (ATA) process was used to select items 

from the item pool into the CAST panel that met both content and statistical targets.  
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 Step 4: Administration of the panel to examinees was simulated based on the 

two-dimensional MIRT model used for data generation in Step 1.  Original item 

parameters and abilities were used in this process.  Examinee abilities were estimated 

under the assumption of unidimensionality with known item parameters estimated in 

Step 2.  Examinees were placed on different routes during the panel administration 

and were given a pass/fail decision based on a passing score. 

 Step 5:  Finally, examinees’ ability estimates, routing decision during the panel 

administration, and the pass-fail decision were evaluated against the “true” abilities 

and the “true” decisions.  

 In summary, the CAST panel was created using “incorrect” item parameters. 

Namely, unidimensional item parameter estimates of multidimensional response data 

were used.  However, in simulating the administration of the panel, data were 

generated using the two-dimensional model, because these were two-dimensional 

items.  Again, examinee ability levels were estimated “incorrectly” under the 

unidimensional model.    

 In an ideal and “correct” situation, two-dimensional parameter estimates 

should be used in forming the item pool; two-dimensional item parameter estimates 

should be used to construct CAST panels; and finally, two abilities should be 

estimated for each examinee after administration of panel items.  

 

Step 1: Generation of Multidimensional Data  

 

 This section elaborates Step 1 in Figure 2.  Before explaining the details of 

Step 1, the MIRT model will be described as it forms the foundation for further 

explanation.  

 

Specification of MIRT Model 
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 This study used the three-parameter logistic model with two compensatory 

abilities (Reckase & McKinley, 1983, 1991; Reckase, 1997) to simulate different 

conditions of two-dimensional data. The model is presented as 
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 Here ),( 21 jjiP θθ stands for the probability of correct response to a dichotomous 

item i by an examinee j with two abilities ),( 21 jj θθ . The parameters ia1 and 

ia2 represent, respectively, the discrimination parameters of the item i on θ1 and on θ2, 

whereas id  is the difficulty parameter of item i, and ci is the guessing parameter of 

item i. 

 In this model, each item in the test is driven by two abilities simultaneously 

and it measures a composite of θ1 and θ2.  In the two-dimensional space, the direction 

of an item composite can be determined by its angle in the θ1 and θ2 plane.  Figure 3 

shows such a space in which the line li represents the vector for item i, which is a 

composite of θ1 and θ2. The angle α is the distance of the vector from the θ1 axis.  

When α is less than 45°, the composite relies more heavily on θ1 then on θ2.  When α 

is larger than 45°, the composite relies more heavily on θ2 then on θ1.  In other words, 

as the angle α increases, θ2 contributes more to the composite.   

 By this kind of presentation, items within distinct narrow fans or clusters are 

said to measure distinct composites of abilities. The degree of multidimensionality in 

the test can be determined by three factors. 1. The angle distance between two item 

clusters, γ = β – α, where α is the angle of items in Cluster 1 from the θ1 axis, and β is 

the angle of items in Cluster 2 from the θ1 axis.  2. The number of items in each 

cluster.  3. The correlation between the two abilities (
21θθ

ρ ). This is displayed in 

Figure 4.  It can be seen that items in Cluster 1 are at angle α with the θ1 axis, and 

items in Cluster 2 are at angle β with the θ1 axis. Hence, the angle distance is the 

difference between the angles of the two clusters in the θ1 and θ2 space, namely, γ  = β 

- α.  Smaller γ indicates lower multidimensionality in the test.  The number of items in 
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each cluster also determines the degree of multidimensionality.  The larger the number 

of items within one cluster relative to the other, the lower is the degree of 

multidimensionality.  A test with equal number of items in the two clusters has higher 

degree of multidimensionality than a test with unbalanced clusters.   At the same time, 

when the other two factors are constant, smaller correlation between the two abilities 

results in higher level of multidimensionality.  

 
Specification of Data Conditions 

 As described in the previous section, three factors determine the dimensional 

structure of item response data.  In this study, three levels of γ  were considered:  

γ =30°, with α =30° and β =60°; γ =60°, with α =15° and β =75°; and γ =90°, with α 

=0° and β =90°.   In this study each item pool consisted of 1000 items.  Three 

combinations of number of items in each cluster (in the item pool) were used: NI = 500 

and NII = 500; NI = 700 and NII = 300; NI = 900 and NII = 100, where NI denotes the 

number of items in Cluster 1 and NI1 denotes the number in Cluster 2.  Two levels of 

correlation between the abilities (
21θθ

ρ ) were used, 0.3 and 0.7. These three factors 

were completely crossed producing eighteen two-dimensional conditions.  In addition, 

there was also one unidimensional condition where all items fall in one cluster 

(Cluster 1).   In total there were nineteen conditions.  

 Table 1 lists all the data conditions.  In the condition code, D1 refers to 

unidimensional data, and D2 refers to two-dimensional data.  The two-dimensional 

conditions are organized first by
21θθ

ρ , then by γ, and finally by NI and NII.  For 

example, D2E2 refers to a condition with two item clusters, where Cluster I has 700 

items and Cluster II has 300 items; the angle between the clusters is 60° and the 

correlation between θ1 and θ2 is 0.7.  

 For all two-dimensional conditions, items in the pool were randomly split into 

two clusters with appropriate numbers in each cluster.  Items in Cluster 1 were 
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simulated to be at angle α from the 1θ  axis, and items in Cluster 2 were simulated to 

be at angleβ  from the 1θ  axis. 

Simulation of Data 
 

For each data condition in Table 1, dichotomous responses of 5000 

examinees to the 1000 items were generated to embody the specified dimensional 

structure.  The simulation procedure is detailed below.  

Simulation of Unidimensional Data 

Unidimensional data were generated using the unidimensional IRT model 

given in  

        
)](exp[1
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iii ba
ccP

−−+
−+=
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Examinee abilities were sampled from the standard normal distribution. Instead of 

generating item parameters, unidimensional item parameter estimates (ai, bi, and ci) 

from one subject of the Paper-and-Pencil Uniform CPA Exams administrated from 

1999 to 2003 were used in this study.  There were originally 1286 items.  To reduce 

the impact of extreme item parameters on the analyses, 286 items were removed, and 

the parameters (a, b, c) of the remaining 1000 items were summarized in Table 2. 

For each examinee, for each item, the probability of getting the item 

correct for the examinee ( iP ) is computed using Equation 2 and compared to a random 

number from the uniform distribution with interval (0, 1). If the iP  value was greater 

than the random number, the item was considered to be answered correctly and a score 

of 1 was assigned.  Otherwise, a score of 0 was assigned.    

Simulation of Two-dimensional Data 

Two-dimensional data were generated using the MIRT model given in 

Equation 1.  The two ability values (θ1 and θ2) were sampled from a bivariate normal 

distribution with a specified value of correlation (0.3 or 07).  Two dimensional item 
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parameters were generated from the unidimensional item parameters used in the 

unidimensional data simulation as follows.  

Two-dimensional discrimination parameters of an item i were generated 

as (Kim, 1994; Yu & Nandakumar, 2001; Nandakumar, Yu, & Zhang, 2003):  

)cos(1 iii aa α= , )sin(2 iii aa α=                                       

where ia is the unidimensional discrimination parameter and iα  is the angle of the item 

vector in the θ1 and θ2 space.  For each two-dimensional data condition shown in 

Table 2, the angle was defined by the value of α for Cluster 1 and the value of β for 

Cluster 2.  The difficulty and guessing parameters were defined as: 

 ii bd = , ii cc =   

where ib  is the unidimensional difficulty parameter and ic  is the guessing parameter.  

The generated two-dimensional item parameters are summarized in Table 3. 

To obtain dichotomous responses, for each examinee, for each item, the 

probability of getting the item correct for the examinee ( iP ) is computed using 

Equation 1 and compared to a random number from the uniform distribution with 

interval (0, 1). If the iP  value was greater than the random number, the item was 

considered to be answered correctly and a score of 1 was assigned.  Otherwise, a score 

of 0 was assigned.    

In summary, this data generation process produced eighteen 

multidimensional data sets and one unidimensional data set, corresponding to the 

nineteen data conditions in Table 1.  Each data set had 5000 examinees and 1000 

items.  

Step2: Creation of Unidimensional Item Pools  
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The following sections describe the creation of unidimensional item pools 

for different conditions. Each item in the pool is associated with two pieces of 

information: unidimensional parameter estimates and a content specification.    

 
Calibration of Unidimensional Item Parameters 

 
For each data set created in Step 1, unidimensional item parameters were 

estimated (calibrated) using the BILOG software.  BILOG (Mislevy & Bock, 1990) 

was developed for binary responses following unidimensional IRT models.  It utilizes 

a marginal maximum likelihood estimation method (MML) via iterative EM algorithm 

and Newton-Gauss (Fisher Scoring) methods.  The EM algorithm is an iterative 

procedure for finding the maximum likelihood estimates of parameters of IRT models 

in the presence of unobserved random variables.   

The IRT model that was used to generate the unidimensional data was 

assumed for the calibration of unidimensional and multidimensional data.  For each 

data set, the calibration process produced a set of item parameter estimates ( â , b̂ , and 

ĉ ). 

 

Assignment of Content Codes to Calibrated Items 

Content specification is a major input to the assembly of CAST panels to 

distribute items according to the content “blueprint” of a test in order to ensure the 

validity and parallelism of test forms.  In this study, content specification of items was 

manipulated to introduce different scenarios in the correspondence between content 

and dimensionality in the item pools.  The manipulation was intended to mimic typical 

misclassifications of content for items in real tests.   

In an ideal situation, the content and the dimensionality of an item should 

be perfectly matched.  In other words, an item is either categorized as Content A if it 

belongs to Cluster I (which is the first dimension), or as Content B if it belongs to 

Cluster II (which is the second dimension).  To create three scenarios (X1, X2, and 
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X3), each item was reassigned a content code three times.  In the scenario X1, the first 

500 items in the pool were always classified as Content A and the second 500 items 

were classified as Content B (NA = 500, NB = 500).  In the scenario X2, the first 700 

items in the pool were always classified as Content A and the second 300 items were 

classified as Content B (NA = 700, NB = 300).  In the scenario X3, the first 900 items in 

the pool were always classified as Content A and the last 100 items were classified as 

Content B (NA = 900, NB = 100).    

Among these three scenarios, only one scenario has the true specification 

of content for all its items.  For example, in the condition D2A1 first 500 items are of 

content A, and the next 500 items are of content B (NI = 500, NII = 500).  After 

reassigning the content specification of these items, the scenario X1 matches perfectly 

with the true content specification of items in the pool, whereas scenarios X2 and X3 

are misclassification of item content.  In X2, 200 items were misclassified as content 

B.  In X3, 400 items were misclassified as content B.  Another example is the 

condition D2A3, where there are 900 items of content A and 100 items of content B in 

the item pool (NI = 900, NII = 100).  After the reassignment of content, the scenario X3 

corresponds to the correct classification of content of items, while X1 and X2 

correspond to misclassification of content for 400 items and 200 items respectively. 

Table 4 shows all the conditions of Table 2 with three scenarios of content 

assignment.  Since there are 19 different conditions, each with three scenarios, there 

are 57 item pools in total.  Each item pool consists of 1000 items with parameter 

estimates ( â , b̂ , and ĉ ) and content codes (Content A or Content B).   

 

Step 3: Assembly of CAST Panels 

 
For a given scenario of each two-dimensional condition, a CAST panel 

was established by utilizing an automated test assembly program. The following 
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sections describe the process that includes choosing a panel design, deriving statistical 

targets, and assembling modules and panels. 

 
Description of the 1-2-2 Panel Design 

 
Figure 1 demonstrates a 1-2-2 panel.  This panel has five modules or 

testlets, one of medium difficulty at Stage One, two modules (medium and hard) at 

Stage Two, and two modules (medium and hard) at Stage Three.  Hence there are four 

possible routes or pathways in this panel.  The two primary routes are: Medium-

Medium-Medium (MMM) and Medium-Hard-Hard (MHH).  The two secondary 

routes are: Medium-Medium-Hard (MMH) and Medium-Hard-Medium (MHM).   

In this study each module had 20 items, thus there were 60 items on each 

route and a total of 100 items in the panel. When the panel was administered, all 

examinees would take the medium module at Stage One.  Their performance on those 

20 items would determine whether they were routed to a medium or a hard module at 

Stage Two.  When they finished the second module, their performance on the 40 items 

they took so far would determine whether they were routed to a medium or a hard 

module at Stage 3.  When they finished the module at Stage 3, their final performance 

would be estimated based on all the 60 items they had answered.  

The 1-2-2 design was chosen to resemble the model adopted by the 

Computerized Uniform CPA Exams that certify top CPA candidates in the United 

States.  For certification exams such as the CPA Exams, high measurement precision 

is required for two groups of candidates: those who are around the passing standard, 

and those who fail as they need diagnostic information on their performance.  Those 

two groups roughly correspond to the two primary pathways in a 1-2-2 panel. 

 

Derivation of the Target Test Information Function (TTIF) 

The assembly of CAST panels requires target test information function 

(TTIF) as the statistical target (van der Linden, 1998; Luecht, 1992, 1998).  The TTIF 

indicates the amount of test information desired across the latent proficiency scale.  
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The TTIF also indirectly helps control the distribution of item difficulty for each 

module in the panel.   

Because a panel is made of modules of varied difficulty, a different TTIF 

is required for each module.  In practice, however, the key to generating TTIF is to 

focus on the primary routes (Luecht, 2000) and then distribute the target information 

among the modules on the routes.  There are several strategies to create TTIF for the 

primary routes, all involving a technique that generates TTIF at specific locations on 

the ability scale.  The technique is called the Average Maximum Information or AMI 

(Luecht, 2000).  AMI is conceptually similar to simulating multiple adaptive tests 

without replacement.  It locates certain points on the ability scale where the maximum 

information is required, and then generates feasible information functions from 

available item parameters.   Because AMI is an empirical way to produce realistic 

targets based on the item pool of a testing program, it allows the testing program to 

construct many parallel test forms over time.  This study implemented the following 

AMI algorithm (Luecht 2000) to derive the TTIF for the item pools created above. 

First, a particular point on the ability scale (θ scale) is located that 

corresponds to the location for the desired maximum information of a given TIF 

assuming a normal (0, 1) distribution of θ.  For this study, the location of the 

maximum information was set at 1.0 for the hard route (θH = 1.0), and at 0.0 for the 

medium route (θM = 0.0).   

Then, for each item in the pool, item information is computed at the two 

selected locations, that is, IIFM for θM and IIFH for θH.  Next, the item pool is sorted in 

descending order by IIFM and IIFH.  After sorting, for a particular number of items 

(denoted as n, equal to the test length 60 in this case), another number (denoted as m) 

is chosen for the so-called “maximally informative replications” without replacement.   

The “maximally informative replications” works in the following way:  

for the item pool sorted by IIFM and IIFH, a total of mn×  most informative items are 

selected at the two locations for maximum information, θM and θH.   This process 

mimics using an adaptive item selection algorithm to build m non-overlapping test 
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forms of length n that are maximally informative at the two θ points.   In general a 

larger m makes the derived information targets more robust (Luecht, 1992).  In this 

study, m was fixed to 5, so 60 × 5 = 300 most informative items were selected from a 

pool of 1000 items.   

Then, the total information of the selected items is computed at a series of 

θ points and then divided by m to obtain the mean TTIF for each primary route:  

       
m
I

TTTIF
mn

i ki
kjjk

∑ ×

=== 1
)(

)(
θ

θ .   

where j = H, M, corresponding to the two primary pathways, and k =1, …, 61, 

representing 61 equally spaced points from -.3 to +.3 on the θ scale.   

For a panel of equally sized modules at each stage, such as the panels in 

this study, TTIFHk and TTIFMk   are divided by the number of stages (3 in this case) at 

each θ point (θk, k = 1, …, 61), which results in two different TTIF for Stage One, 

TIFH(1)k and TIFM(1)k.  Then the two information values are averaged at each θ point to 

produce a single target TTIF(1)k for Stage One, i.e. ∑= 2/)1()1( kjk TTIFTTIF .   

At the final step, the total-test-length TTIF (TTIFHk and TTIFMk) is 

multiplied by the percentage of items at Stage Two and Stage Three.  Let the total test 

length be n, and the length of the first stage be n1, the percentage is p = (n – n1) / n, 

and the TTIF for Stage Two and Stage Three is then TTIF’ = p (TTIFjk).   After adding 

the TTIF of Stage One, TTIF(1)k, to the TTIF of Stage Two and Stage Three (TTIF’), 

the full-length target for each primary route is obtained.  That is, TTIFMk = TTIFMk’ + 

TTIF(1)k for the medium route, and TTIFHk = TTIFHk’ + TTIF(1)k for the hard route.    

After the primary-route TTIF is obtained, it can be divided by the 

proportional size of the stages to get TTIF for each module along the route.  Because 

IRT test information is additive, TTIF of a route can be broken apart as easily as they 

can be put together.  When modules have the same number of items, the divider is 

simply the number of stages.  In this study, it was TTIFMk / 3 for each medium module, 

and TTIFHk / 3 for each hard module.  
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For each item pool in this study, the above procedure derived the TTIF for 

the five modules in the 1-2-2 panel as part of the input to the following test assembly 

process.  

Assembly of Modules and Panels 

To build test forms for CAST, an automated test assembly (ATA) process 

selects items from an item pool into modules at the different stages of a panel.  The 

selection simultaneously satisfies both statistical and non-statistical constraints.  

Technically, the assembly can be viewed as a multiple-objective function, constrained 

optimization problem.   This study used a heuristic designed for large-scale test 

assembly called the normalized weighted absolute deviation heuristic (NWADH) 

(Luecht, 2000) implemented in a DOS-based shareware CASTISEL (Luecht, 1998b).   

CASTISEL uses the NWADH heuristic to build multistage tests that 

satisfy multiple statistical objectives, such as TTIF for each module, and limited 

content specifications.  The current version of the software allows for only one level of 

content classification such as in this study.  The program requires four input files: an 

item bank file, a target test information file, a content constraint file, and a command 

file.    

The item bank file stores the IRT parameters and content codes of each 

item.  In other words it represents the item pool.  The target test information file hosts 

the TTIF derived for each module of a panel.  The content constraint file specifies how 

the items are distributed among content areas.  Unlike the TTIF required for each 

module, the content distribution is controlled for the panel as a whole.   CASTISEL 

uses a “partitioning algorithm” (Luecht & Nungester, 1998) to allocate the total-test 

content requirements to the different stages in the panel.  The modules at the same 

stage are constructed to satisfy the same partition of content.   The command file 

contains the syntax for the program, specifying data input and controlling how the 

panel should be built, such as the number of items in each module, the number of 

modules at each stage, and the number of stages in the panel.   
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CASTISEL delivers several output files.  Among them the item sequence 

file provides the sequence numbers of the items selected for each module.  In other 

words, it represents an assembled panel.   

From each item pool described in Table 3, the CASTISEL program was 

used to select five modules, each of 20 items, and assemble them into a 1-2-2 panel.   

The distribution of content in the panel followed the same ratio of Content A and 

Content B items in the item pool.  In other words, if an item pool had 700 items in 

Content A and 300 in Content B, the panel of 100 items assembled from the pool 

would have 70 items from Content A and 30 from Content B.   

This study assembled one panel from each item pool to ensure the quality 

of the panel.  The assembly of multiple panels was not attempted, because the current 

version of CASTISEL is unable to build simultaneously multiple panels with 

equivalent quality from the same item pool.   As a panel corresponds uniquely to an 

item pool that also uniquely represents an item pool in Table 4, each panel was 

identified with the corresponding item pool in the rest of the paper.  For example, the 

panel D2A2/X1 refers to the panel built from the item pool representing the X1 

scenario under the D2A2 data condition.   

Step 4: Simulation of Panel Administration 

 
After a panel was assembled, the study simulated its administration to 

examinees by generating responses by 1000 simulees to the 100 items selected into the 

panel. For two-dimensional data, although panel construction was based on 

unidimensional item parameter estimates, two-dimensional data were simulated using 

the MIRT model to reflect the true nature of data.  

In order to create a sparse data matrix, a full item response matrix was 

generated first without any missing data.  Then the full matrix was transformed into a 

sparse one by substituting missing values for the responses to items not supposed to be 

answered by some examinees.   
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Item responses were generated to be either two-dimensional or 

unidimensional.  If a panel was assembled from an item pool associated with a two-

dimensional condition, the response data were made two-dimensional.   For such a 

panel, the two-dimensional item parameters (a1, a2, d, and c) of the 100 items were 

identified, and 1000 pairs of ability values (θ1 and θ2) were sampled from a bivariate 

normal distribution where 
21θθ

ρ  was fixed to 0.3 or 0.7 depending on the specification 

of the condition.    

For the unidimensional condition, the unidimensional ability θ was 

sampled from the univariate standard normal distribution. The unidimensional item 

parameters of the 100 items in the panel were identified from Step 1.  Item responses 

were generated also by the unidimensional IRT model. 

The transformation from a full response matrix to a sparse matrix was 

realized by estimating ability score in the first two stages and routing the examinees to 

different modules based on the estimates.  At the end of Stage one, ability estimate 

(θ̂ ) was computed based on the 20 items in the first medium module for all 1000 

examinees.  If θ̂  was greater than or equal to 0.5 (the midpoint between the two 

targets where the TIF was maximized for each primary route), the examinee was 

placed on the hard route for Stage two.  Otherwise the examinee was routed to take 

another medium module.  Because examinees would not have answers to the items in 

the module they were not routed to, responses to the items not seen were replaced by 

missing values.  Similarly, at the end of Stage two, ability score was computed based 

on examinees’ performance on their first 40 items.  Again, ifθ̂  was greater than or 

equal to 0.5, examinees were directed to the hard route at Stage three, otherwise to the 

medium route.  As these examinees would not have answers to the module they did 

not take, their responses to the items in that module were changed to missing values.  

By then, most examinees would have stayed in their original route (MMM or MHH), 

but a few of them could be shifted from the medium to the hard (MMH), or vise versa 
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(MHM).  At the end of Stage Three, the ability of examinees was estimated for the last 

time based on all the 60 items they answered. 

It should be noted that, at each of three Stages, unidimensional ability was 

estimated under the assumption that item parameters are known. The item parameters 

used in the ability estimation were those stored in the item pools to assemble the 

panels.  

The above data generation, ability estimation, and routing was replicated 

200 times for each panel.   Each replication sampled a different set of 1000 θ1/θ2 pairs 

for two-dimensional data, or a different set of 1000 θ values for unidimensional data.    

Step 5: Evaluation of Ability Estimation, Routing Decision, and Pass-fail Decision 

 
Item responses generated for the panel administration simulated in Step 4 

were either two-dimensional or unidimensional.  However, ability estimation during 

and after the panel administration assumed unidimensional data and used the item 

parameters estimated by a unidimensional IRT model.   This study evaluated the 

ability estimation from three perspectives - how well θ̂  retrieved its “true” value; how 

correctly examinees were routed during the panel administration; and how accurately 

examinees were classified as passing or failing the exam given a particular passing 

score. 

Evaluation of Ability Estimation 

The main objective is to compare the estimated ability (θ̂ ) with the “true” 

ability. For unidimensional data, the true ability Tθ was the single ability value used to 

simulate item responses of each simulee during the data simulation process in Step 4.  

For two-dimensional data, since two abilities generated the item responses, Tθ  was 

defined as a weighted linear combination (WLC) of θ1 and θ2 used to simulate two-

dimensional item responses for each simulee in Step 4, i.e. 2211 θθθ wwT += . 
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There is no widely accepted definition of “true” ability as a combination 

of θ1 and θ2, especially when the two-dimensional structure in item responses was 

determined simultaneously by multiple factors as in this study.  In this study the 

weights ( 1w and 2w ) were assigned to reflect the proportions of items in two content 

areas (Content A and Content B) specified by the assembly process for a given panel.  

Thus for a real test the weights would reflect the emphasis on different content areas 

specified by test developers for that test.  The WLC then would symbolize the 

“expected” or “desired” content-based composite score from the perspective of test 

development.  

Hence, if a panel was assembled with 50 items from Content A and 50 

items from Content B, then w1 = 0.5, w2 = 0.5.  If a panel was assemble with 70 items 

from Content A and 30 items from Content B, then w1 = 0.7, w2 = 0.3.  If a panel was 

assembled with 90 items from Content A and 10 items from Content B, then w1 = 0.9, 

w2 = 0.1.   As one can recall from Section 3.4.3, the ratio of Content A and Content B 

in the panel followed the same ratio of Content A and Content B items in the item 

pool.  The above combinations of 1w and 2w therefore reflected the content specification 

of the item pools listed in Table 4.  From Table 4 one can infer that the panels ended 

with /X1 always had w1 = 0.5 and w2 = 0.5, the panels ended with /X2 had w1 = 0.7 

and w2 = 0.3, and the panels ended with /X3 had w1 = 0.9 and w2 = 0.1.    

The evaluation of how well Tθ was recovered by θ̂  was accomplished 

using three methods.  The first is the Pearson correlation (
θθ ˆ

T
r ) between Tθ  andθ̂ .  A 

larger correlation indicates better recovery of Tθ byθ̂ .  The second is the root mean 

square difference (RMSD) between θ̂  from Tθ , which is defined as  

 ∑
=

−=
J

j
TjjJ

RMSD
T

1

2
, )(1 θθθθ

)
) .   



 22

where J stands for the total number of examinees.  A smaller RMSD indicates better 

recovery of Tθ byθ̂ .  The third method is a graphic display that plots θ̂  against Tθ  

across the ability scale (-3 to +3).  In this plot, the Y-axis provides the scale for 

both Tθ andθ̂ , and the X-axis represents the simulees ordered by Tθ  from the lowest 

value (the left end of the X-axis) to the highest value (the right end of the X-axis).  For 

each simulee, the values ofθ̂ and Tθ  are plotted.  There are two lines in the plot, one 

smooth ( Tθ ) and the other zigzagged (θ̂ ).  The line ofθ̂  either goes above or below 

the line of Tθ  at each point on the X-axis.  The “scattering” or deviance around the Tθ  

line indicates the size of error in ability estimation.    

Evaluation of Routing Decision 

This study applied two methods to evaluate the accuracy of routing 

decisions.  First, a two-by-two table was computes for routing decisions at the end of 

Stage one and Stage two; and the proportion of simulees falling into each cell of the 

table was computed.  Second, a chi-square ( 2χ ) statistics was used to examine 

whether there was agreement between the decisions based on θ̂  and Tθ .  

 As described in Step 4, simulees are routed twice during the 1-2-2 

panel administration, first time (initial routing) at the end of the Stage One, and second 

time (final routing) at the end of Stage Two.  Each time simulees can be placed on the 

hard (H) route or the medium (M) route based on their performance on the items they 

had taken.  Routing decisions were made based both on Tθ  (true routing) and onθ̂  

(estimated routing).  Thus for each replication of a given panel, at the end of Stage 

One and Stage Two, the following two-by-two frequency table can be formed between 

the two routing decisions (on Tθ and onθ̂ ):  
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Routing Decision Based on Tθ  Routing Decision 
Based on θ̂  To Hard Route To Medium Route 
To Hard Route A B 
To Medium Route C D 

In this table the cell A contains the number of simulees placed on the hard 

route by both Tθ andθ̂ .  The cell B contains the number of simulees placed on the 

medium route by Tθ but on the hard route byθ̂ .  Similarly cells C and D hold the 

frequency, respectively, of simulees placed on hard route by Tθ but on the medium 

route byθ̂ , and of simulees placed on the medium route by both Tθ andθ̂ .  In other 

words, the cells A and D represent the agreement between true routing and estimated 

routing.  

At the end of Stage One and Stage Two, a given simulee was coded as 

“Correct” if the estimated routing matched the true routing (corresponding to cells A 

and D in the above table).  Otherwise the routing was coded “Wrong” (corresponding 

to cells B and C in the above table).  Because routing was performed at the end of two 

stages for each simulee, routing codes fell into one of the following four categories: 

“Correct-Correct”, “Wrong-Correct”, “Wrong-Wrong”, and “Correct-Wrong”, where 

the first word referred to the initial routing and the second word to the final routing.  

Chi-square test is the second method to evaluate routing decisions. The 

purpose is to assess the level of agreement between routing decisions based on Tθ and 

onθ̂ .  The null hypothesis tested is that the routing based onθ̂  was independent from 

the routing based on Tθ .  A large 2χ  value would reject the null hypothesis and testify 

that there is significant correlation between the two decisions.   

For each replication of a panel, a chi-square test was run twice against the 

two-by-two frequency table shown above, first for the initial routing, and then for the 

final routing.   
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Evaluation of Pass-fail Decision 

Similar to routing decisions, the pass-fail status of simulees can be 

determined based on Tθ  (true status) and onθ̂  (estimated status), both against a passing 

score of 1.0 on the θ scale.  The passing score of 1.0 is chosen because it is the point 

on the θ scale where the test information function (TIF) for the hard route of the panel 

was maximized.   The pass-fail decision for an examinee can be “correct” or 

“incorrect”.  A pass-fail decision is “correct” when the estimated status based on θ̂  

matched the true status based on Tθ , and “incorrect” when these two statuses did not 

match.   

For a panel of unidimensional data or two-dimensional data, the accuracy 

of pass-fail decisions is evaluated by the type I and type II errors.  In this study, a type 

I error occurred when an examinee who should have failed passed the exam, and a 

type II error occurred when an examinee who should have passed failed.    

 
 

Summary of Results 
 

The results for panels with unidimensional item responses are included in 

Tables 5 through 8.  One can see that for unidimensional data, the correlation between 

estimated and “true” abilities was high ( θθ ˆ
T

r
 > 0.96) and their RMSD was low (around 

0.27). Among the four routes of the panel, the two primary routes (MMM and MHH) 

had higher accuracy in ability estimation than the two secondary routes (MMH and 

MHM).   For each panel, about 90% of routing decisions were correct and more than 

92% of pass-fail decisions were correct.   For pass-fail decisions, both type I and type 

II errors were below 4%. 
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Results for two-dimensional data are presented graphically in Figures 6 to 

14.  Results indicate that, in general, the angle difference between the two item 

clusters (γ) was a decisive factor.  When the angle distance between the two item 

clusters were relatively small (γ = 30° or 60°), Figure 6 and 7 show that larger 

correlation ( θθ ˆ
T

r
) and smaller RMSD between θ̂ and Tθ  were observed in the X1 panel, 

regardless how items in the item pool for that panel were distributed between the two 

clusters, or to what extent the content of items was misclassified.   The characteristic 

of the X1 panel is that the two content areas had equal number of items.  The only 

exception to the above observation was the D2B3 condition where γ = 60° and 90% of 

items in the item pool were in the first item cluster (i.e. dimension).  For this 

condition, the X2 panel had larger θθ ˆ
T

r
 and smaller RMSD than the X1 and X3 panels. 

When the two item clusters were most widely apart in the two-dimensional space (γ = 

90°), results of θθ ˆ
T

r
 and RMSD favored the panels where fewer items were 

misclassified in content.  For this level of γ, how wellθ̂  recovered Tθ  was positively 

related with the level of correct content classification of items in the item pool.  For 

each data condition with γ = 90°, the panel with zero misclassification of content 

always had the highest θθ ˆ
T

r
 and the lowest RMSD.   The “scattering” or deviance 

around the Tθ  line, indicating the size of error in ability estimation, are displayed in 

Figures 8, 9 and 12 and confirm above findings. 

Similar results were found with the routing decisions for panels of two-

dimensional data (Figures 11 and 12).  When γ = 30° or γ = 60°, the X1 panel for each 

two-dimensional condition always had the highest proportion of correct routing 

decisions (again except for D2B3 where the X2 panel had the highest proportion).  

When γ = 90°, the panel without any content misclassified items had the highest 
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proportion of correct routing decisions.  Chi-square analyses on the agreement 

between the routing decisions based on θ̂  and those based on Tθ further revealed the 

above results.   

Evaluation of pass-fail decisions for two-dimensional data led to the 

following findings (Figures 13 and 14).  On average, about 92% of the decisions were 

correct, almost as good as that for unidimensional data.  In particular, there were 

eleven panels where less than 90% of the pass-fail decisions were correct, eight 

with 21θθ
ρ

= 0.3, and three with 21θθ
ρ

= 0.7.  In all these eleven panels, content was 

misclassified for either 200 items or 400 items in the item pool.   Across all panels 

approximately 8% of the pass-fail decisions were incorrect.  These incorrect decisions 

were either of type I error or of type II errors.  The two types of errors had very 

different characteristics as discussed below. 

The type II error was defined as the proportion of examinees failed who 

should have passed.  For all two-dimensional data conditions, the smallest type II error 

was observed in the X1 panel, and the largest type II error was found in the X3 panel.   

Type II errors also increased as the angle distance between the two item clusters 

increased.  Thus panels with γ = 90° had larger type II errors than panels with γ = 60° 

which, in turn, had larger errors than panels with γ = 30°.  Larger type II errors were 

observed in panels with 21θθ
ρ

= 0.7 than in the corresponding panels with 21θθ
ρ

= 0.3. 

The type I error was defined as the proportion of examinees passing who 

should have failed.  Results showed that type I errors behaved very differently from 

type II errors.   First, panels with larger γ had smaller type I errors.  Smaller type I 

errors were observed in panels with γ = 60° than in panels with γ = 30°, and even 

smaller errors were observed in panels with γ = 90°.   Second, panels with 21θθ
ρ

= 0.7 
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had smaller type I errors than the corresponding panels with 21θθ
ρ

= 0.3.   Finally, the 

size of type I errors was directly related with the level of correspondence between 

content and dimension of items.  For each two-dimensional data condition, the 

smallest type I error was always observed in the panel without any content 

misclassification.    

Results also showed that both types of errors were confined only to the 

two hard routes, MHH and MMH, particularly to the MHH route.  This observation 

applied to both two-dimensional data and unidimensional data. 

In summary, results of this study suggest that, given a particular level 

of 21θθ
ρ

, the angle distance between the two item clusters (γ) determined howθ̂  was 

related to Tθ .  When γ was relatively small (30° or 60°), θ̂  seemed to be the simple 

average of θ1 and θ2, or 21 5.05.0 θθθ +=T .   This was true regardless of how many 

items were in each of the two clusters, or how many items were misclassified between 

the content and the dimension in an item pool.   When Tθ was defined differently, i.e. 

21 3.07.0 θθθ +=T  or 21 1.09.0 θθθ +=T , θ̂  failed to represent Tθ  well enough, even 

though the weights of θ1 and θ2 may actually reflect the proportions of items between 

the two clusters in the item pool, i.e. there was no misclassification of content in the 

item pool.   When γ was large (90°), θ̂  and Tθ  were related in a different manner.  For 

this level of γ, θ̂  recovered Tθ  very well if Tθ was defined in such a way that the 

weights of θ1 and θ2 correctly reflected the proportions of items between the two 

clusters in the item pool.  That is, Tθ was best recovered in the panels without any 

misclassified content.  In these panels the content specification of items truly 

corresponded to the dimensional structure of the test.      
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The above relationship between θ̂  and Tθ  was revealed in θθ ˆ
T

r
, RMSD, 

and graphic displays of θ̂  against Tθ .  This relationship between θ̂  and Tθ  also 

determined the results when routing decisions based on θ̂  were evaluated against 

routing decisions based on Tθ .   

 

 

 
Discussion 

 

One can conclude that, when multidimensionality in the item responses 

was not severe as measured by the angle distance between the two item clusters, 

unidimensional ability estimates and the routing decisions based on the estimates were 

not sensitive to the level of content misclassification in the item pool.  In this case, 

panels without any content misclassification did not necessarily have ability estimates 

more highly correlated with their “true” values, and for that reason, these panels did 

not necessarily have more correct routing decisions than the panels with content 

misclassification.    

One can also conclude that, only when multidimensionality in item 

responses was severe in terms of the angle distance between the two item clusters, the 

quality of unidimensional ability estimates and routing decisions became sensitive to 

the level of content misclassification in the item pool.  In this case, panels without any 

content misclassification had more accurate ability estimates and routing decisions 

than panels with content misclassification.    

However, in both cases discussed above, results of this study are assuring 

because they indicate that content misclassification does not necessarily affect the 
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unidimensional ability estimation and routing decisions of CAST.  For all the panels 

without content misclassification, and for about half of the panels with some content 

misclassification, both the alignment between estimated and “true” abilities and the 

agreement between the routing decisions based on estimated and “true” abilities were 

comparable to the panels of truly unidimensional data.   

On the other hand, results of pass-fail decisions give a different message.  

For pass-fail decisions, type I errors were the smallest for panels without any content 

misclassification, regardless of the level of multidimensionality in the data.  For 

certification and licensure examinations, the type I error (as defined in this study) is 

much more important than the type II error.  This is because passing an unqualified 

candidate poses serious damage to the public interest.  Although content 

misclassification, to some degree, is not a serious concern for θ̂  to recover Tθ , it plays 

a significant role in the accuracy of pass-fail decisions.  From this perspective, content 

misclassification should be sufficiently controlled by a testing program that uses 

CAST for certification or licensure purpose.   

The significance of this study is twofold.  First, it is first known 

assessment of the robustness of unidimensional ability estimation and ability-related 

decision makings in the Computerized Adaptive Sequential Testing (CAST) when test 

data are truly multidimensional.  Second, and more importantly, it is the first study 

ever that evaluates the joint implications of both multidimensionality and content 

misclassification in the item pool.  The content specification of items in a real test may 

not reflect accurately the underlying dimensional structure of the test.  Whenever there 

is disagreement between the dimension and the content of items, one can say that 

misclassification of content has been introduced into the item pool.  When 
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misclassified content specification of items is used as an explicit criterion for test 

construction, as in the assembly of CAST panels, the unidimensionally-estimated 

ability scores and related decisions on examinees may fail to represent the scores and 

decisions expected based on the content specification in the item pool.  This study 

suggests that the above concern is legitimate, and its consequence may be severe when 

it involves the pass-fail decisions on examinees.   

As for any study that uses simulated data, the findings of this study are 

restricted by the prescribed multidimensional data conditions and the levels of content 

misclassification.  Items from a real test may as well belong to more than two 

dimensions or two content areas.  The findings are also restricted by the definitions of 

“true” ability in two-dimensional item responses.  Another limitation involves the 

restraints imposed by the automated test assembly program used in this study.  As we 

know, CASTISEL is not capable of selecting multiple panels with parallel 

characteristics from a single item pool.  As a result, only one panel from each item 

pool was analyzed.  The observations made by this study may not be sustainable when 

multiple panels are created from an item pool.  Another problem is the lack of clear 

quantification of multidimensionality when it is controlled by several factors 

simultaneously.  A good measure of multidimensionality in data will be helpful to 

make the results more interpretable.  For example, a dimensionality assessment 

(DIMTEST or DETECT, for example) can be performed on item response data, and 

the estimated degree of multidimensionality can be related to the results of this study. 
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Table 1: List of Data Conditions 
 
Data Type Correlation  

(θ1, θ2) 
Angle Distance 
γ a 

Number of Items  
Cluster I /Cluster II 

Data Condition 

Unidimensional  N/A N/A 1000/0 D1 
     
Multidimensional .3 30° 500/500 D2A1 
   700/300 D2A2 
   900/100 D2A3 
  60° 500/500 D2B1 
   700/300 D2B2 
   900/100 D2B3 
  90° 500/500 D2C1 
   700/300 D2C2 
   900/100 D2C3 
 .7 30° 500/500 D2D1 
   700/300 D2D2 
   900/100 D2D3 
  60° 500/500 D2E1 
   700/300 D2E2 
   900/100 D2E3 
  90° 500/500 D2F1 
   700/300 D2F2 
   900/100 D2F3 
a γ is the difference between β (Cluster II) and α (Cluster I) , i.e. γ = β - α. 
 

 

 

 

Table 2: Summary Statistics of Original Unidimensional Item Parameters (N=1000) 

 
Parameter Mean S.D. Max Mean 
a 0.63 0.22 1.25 0.25 
b -0.09 1.04 2.5 -2.50 
c 0.23 0.06 0.35 0.10 
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Table 3: Summary Statistics of Generated Two-dimensional Discrimination 
Parameters 
 
Data Condition Item Cluster N Parameter Mean S.D. Max Min 
D2A1/D2D1a I 500 a1 0.55 0.19 1.08 0.22 
   a2 0.32 0.11 0.62 0.13 
 II 500 a1 0.32 0.11 0.62 0.13 
   a2 0.55 0.19 1.08 0.22 
D2A2/D2D2a I 700 a1 0.56 0.19 1.08 0.22 
   a2 0.32 0.11 0.62 0.13 
 II 300 a1 0.31 0.11 0.60 0.13 
   a2 0.53 0.18 1.04 0.22 
D2A3/D2D3a I 900 a1 0.55 0.19 1.08 0.22 
   a2 0.32 0.11 0.62 0.13 
 II 100 a1 0.30 0.11 0.59 0.13 
   a2 0.52 0.19 1.02 0.22 
D2B1/D2E1a I 500 a1 0.61 0.21 1.20 0.24 
   a2 0.16 0.06 0.32 0.07 
 II 500 a1 0.17 0.06 0.32 0.06 
   a2 0.62 0.21 1.21 0.24 
D2B2/D2E2 a I 700 a1 0.62 0.21 1.21 0.24 
   a2 0.17 0.06 0.32 0.07 
 II 300 a1 0.16 0.06 0.31 0.06 
   a2 0.59 0.21 1.16 0.24 
D2B3/D2E3 a I 500 a1 0.62 0.21 1.21 0.24 
   a2 0.17 0.06 0.32 0.06 
 II 500 a1 0.16 0.06 0.30 0.07 
   a2 0.58 0.21 1.14 0.25 
D2C1/D2F1a I 500 a1 0.63 0.22 1.24 0.25 
   a2 0.00 0.00 0.00 0.00 
 II 500 a1 0.00 0.00 0.00 0.00 
   a2 0.64 0.22 1.25 0.25 
D2C2/D2F2a I 700 a1 0.64 0.22 1.25 0.25 
   a2 0.00 0.00 0.00 0.00 
 II 300 a1 0.00 0.00 0.00 0.00 
   a2 0.61 0.21 1.20 0.25 
D2C3/D2F3a I 900 a1 0.64 0.22 1.25 0.25 
   a2 0.00 0.00 0.00 0.00 
 II 100 a1 0.00 0.00 0.00 0.00 
   a2 0.60 0.21 1.18 0.26 
a: Statistics are the same for these two conditions.  



 35

Table 4: List of Data Conditions after Content Assignment 
 

                 (To be continued) 
a γ is the difference between β (Cluster II) and α (Cluster I) , i.e. γ = β - α. 

Data Type Corr.  
(θ1, θ2) 

Angle 
Distance γ a 

Num of Items 
Cluster I / II 

Data 
Condition 

Num of Items  
Content A/B 

Item Pool 
(Panel) 

Unidimensional N/A N/A 1000/0 D1 1000/0 D1/X1 
     500/500 D1/X2 
     700/300 D1/X3 
       
Two-dimensional  .3 30° 500/500 D2A1 500/500 D2A1/X1 
     700/300 D2A1/X2 
     900/100 D2A1/X3 
   700/300 D2A2 500/500 D2A2/X1 
     700/300 D2A2/X2 
     900/100 D2A2/X3 
   900/100 D2A3 500/500 D2A3/X1 
     700/300 D2A3/X2 
     900/100 D2A3/X3   
  60° 500/500 D2B1 500/500 D2B1/X1   
     700/300 D2B1/X2 
     900/100 D2B1/X3 
   700/300 D2B2 500/500 D2B2/X1 
     700/300 D2B2/X2  
     900/100 D2B2/X3 
   900/100 D2B3 500/500 D2B3/X1 
     700/300 D2B3/X2 
     900/100 D2B3/X3  
  90° 500/500 D2C1 500/500 D2C1/X1  
     700/300 D2C1/X2 
     900/100 D2C1/X3 
   700/300 D2C2 500/500 D2C2/X1 
     700/300 D2C2/X2 
     900/100 D2C2/X3 
   900/100 D2C3 500/500 D2C3/X1 
     700/300 D2C3/X2 
     900/100 D2C3/X3  
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Table 4 (continued): List of Data Conditions after Content Assignment 
 

a γ is the difference between β (Cluster II) and α (Cluster I) , i.e. γ = β - α. 

Data Type Corr.  
(θ1, θ2) 

Angle 
Distance γ a 

Num of Items 
Cluster I / II 

Data 
Condition 

Num of Items  
Content A/B 

Item Pool 
(Panel) 

Two-dimensional  .7 30° 500/500 D2D1 500/500 D2D1/X1 
     700/300 D2D1/X2 
     900/100 D2D1/X3 
   700/300 D2D2 500/500 D2D2/X1 
     700/300 D2D2/X2 
     900/100 D2D2/X3 
   900/100 D2D3 500/500 D2D3/X1 
     700/300 D2D3/X2 
     900/100 D2D3/X3  
  60° 500/500 D2E1 500/500 D2E1/X1  
     700/300 D2E1/X2 
     900/100 D2E1/X3 
   700/300 D2E2 500/500 D2E2/X1 
     700/300 D2E2/X2  
     900/100 D2E2/X3 
   900/100 D2E3 500/500 D2E3/X1 
     700/300 D2E3/X2 
     900/100 D2E3/X3  
  90° 500/500 D2F1 500/500 D2F1/X1  
     700/300 D2F1/X2 
     900/100 D2F1/X3 
   700/300 D2F2 500/500 D2F2/X1 
     700/300 D2F2/X2  
     900/100 D2F2/X3 
   900/100 D2F3 500/500 D2F3/X1 
     700/300 D2F3/X2 
     900/100 D2F3/X3  
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Table 5: Correlation (Standard Deviation) a between θ̂ and θT for Panels with 
Unidimensional Data 
 
Panel Correlation (Std.)  

Stage 1 
Correlation (Std.)  

Stage 2 
Correlation (Std.)  

Stage 3 
D1/X1 0.85 

(0.025) 
0.94 

(0.016) 
0.96 

(0.022) 
D1/X2 0.87 

(0.021) 
0.94 

(0.037) 
0.96 

(0.027) 
D1/X3 0.87 

(0.031) 
0.94 

(0.029) 
0.97 

(0.018) 
a Correlation and standard deviation are based on 200 replications. 

 

Table 6: Correlation (Standard Deviation) a, between θ̂ and θT by Route for Panels 
with Unidimensional Data 
 

Correlation (Std.) Panel Route Nb 
Stage 1 Stage 2 Stage 3 

D1/X1 MHH 481 0.60 
(0.031) 

0.80 
(0.028) 

0.88 
(0.017) 

 MHM 70 0.11 
(0.053) 

0.68 
(0.063) 

0.80 
(0.063) 

 MMH 42 0.17 
(0.065) 

0.55 
(0.054) 

0.75 
(0.055) 

 MMM 404 0.73 
(0.026) 

0.90 
(0.034) 

0.94 
(0.027) 

D1/X2 MHH 448 0.53 
(0.029) 

0.79 
(0.032) 

0.87 
(0.022) 

 MHM 55 0.04 
(0.048) 

0.54 
(0.051) 

0.78 
(0.047) 

 MMH 60 0.36 
(0.055) 

0.60 
(0.051) 

0.69 
(0.044) 

 MMM 439 0.75 
(0.038) 

0.90 
(0.041) 

0.94 
(0.035) 

D1/X3 MHH 466 0.55 
(0.026) 

0.83 
(0.025) 

0.89 
(0.020) 

 MHM 50 0.08 
(0.049) 

0.74 
(0.044) 

0.84 
(0.045) 

 MMH 63 0.16 
(0.066) 

0.46 
(0.051) 

0.81 
(0.055) 

 MMM 429 0.74 
(0.039) 

0.88 
(0.028) 

0.94 
(0.027) 

a Correlation and standard deviation are based on 200 replications. 
b Numbers of examinees have been rounded to integers.  They may not add up to 1000 due to 
 averaging over replications. 
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Table 7: Proportions of Correct and Incorrect Final Routing Decisions for Panels with 
Unidimensional Data 
 
Panel Final Routing Decision a Proportion % (Std.) b,c 
D1/X1 Correct 90.3 (.054) 
 Wrong 10.1 (.031) 
D1/X2 Correct 90.9 (.049) 
 Wrong 9.2 (.029) 
D1/X3 Correct 89.1 (.050) 
 Wrong 10.8 (.033) 
a Final routing decisions (based on θ̂ ) are evaluated against “true” routing decisions  
(based on θT) at the end of Stage 2. 
b Proportions are averaged over 200 replications. 
c Proportions may not add up to 100% due to averaging over replications. 
 
 
 
 
 
 
Table 8: Results of Pass-Fail Decisions for Panels with Unidimensional Data  
 

Proportion (Std.) c,d Panel True 
Status a  

Estimated 
Status b 

Error 
All MMM MHH MHM MMH 

D1/X1 Pass Pass  14.1 (.04) 0 (0) 29.0 (.06)  0 (0) 2.3(.02) 
 Fail Fail  78.1 (.06) 100 (0) 55.0 (.07) 100 (0) 95.5(.07) 
 Pass Fail Type II 4 (.02) 0 (0) 8.1(.03) 0 (0) 2.3(.01) 
 Fail  Pass Type I 3.8 (.02) 0 (0) 7.9(.02) 0 (0) 0(0) 
D1/X2 Pass Pass  11.8(.03) 0 (0) 26.3(.04) 0 (0) 1.9(.01) 
 Fail Fail  81.6(.05) 100 (0) 59.2(.05) 100 (0) 97.4(.08) 
 Pass Fail Type II 3.6(.02) 0 (0) 7.8(.02) 0 (0) 1.6(.02) 
 Fail  Pass Type I 3(.02) 0 (0) 6.7(.02) 0 (0) 0(0) 
D1/X3 Pass Pass  14.1(.04) 0 (0) 30.3(.04) 0 (0) 2.0(.02) 
 Fail Fail  79.9(.07) 100 (0) 57.1(.05) 100 (0) 97.1(.07) 
 Pass Fail Type II 2.9(.02) 0 (0) 6.0(.03) 0 (0) 1.7(.02) 
 Fail  Pass Type I 3.1(.03) 0 (0) 6.7(.02) 0 (0) 0.04(.00) 
a True Status is the pass-fail status based on θT at the end of Stage3. 
b Estimated Status is the pass-fail status based on θ̂ at the end of Stage 3. 
c Proportions are based on 200 replications. 
d Proportions may not add up to 100 due to averaging over replications.
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Figure 1 
Diagram of a 1-3-3 CAST Panel 

(Adapted from Luecht & Nungester, 2000) 
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Figure 2 
Major Steps of Data Preparation and Analysis 
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Figure 3 
Vector Representation of Items in a Two-Dimensional Space 

 

 

 Figure 4 
Vector Presentation of Item Clusters in a Two-Dimensional Space 
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Figure 5 

Diagram of a 1-2-2 CAST Panel 
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Figure 6 
Correlation between θ̂  and θT for panels with two-dimensional data  
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Figure 7 
RMSD between θ̂  and θT for panels with two-dimensional data  
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Figure 8 
Deviation ofθ̂  from θT for panels of two-dimensional data: 

21θθ
ρ  = 0.3 and γ = 30° 
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Figure 9 
Deviation ofθ̂  from θT for panels of two-dimensional data: 

21θθ
ρ  = 0.3 and γ = 60° 
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Figure 10 
Deviation ofθ̂  from θT for panels of two-dimensional data: 

21θθ
ρ  = 0.3 and γ = 90° 
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Figure 11 
Proportions of correct final routing decisions  

for panels with two-dimensional data 
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Figure 12 
Chi-square statistics on the independence between estimated routing decisions and "true" routing decisions
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Figure 13 

Type I and Type II errors in pass-fail decisions for the two-dimensional data  
(

21θθ
ρ = 0.3) 

Note: The panel with asterisk has the perfect match between content and dimension  
for that data condition. 
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Figure 14 
Type I and Type II errors in pass-fail decisions for the two-dimensional data  

(
21θθ

ρ = 0.7) 
Note: The panel with asterisk has the perfect match between content and dimension  

for that data condition. 


