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Studio Mathematics: The Epistemology and Practice 
of Design Pedagogy as a Model for Mathematics Learning1

David Williamson Shaffer 

A Case Study of Learning Through Professional Practices 

This paper is part of a small but growing literature on how professional practices and 
professional training can inform the creation of learning environments for younger students 
(Cossentino, 2002; Cossentino & Shaffer, 1999; Erickson & Lehrer, 1998; Hmelo, Holton, & 
Kolodner, 2000; Jacobson & Lehrer, 2000; Kafai, 1996; Kolodner, Crismond, Gray, Holbrook, 
& Puntambekar, 1998; Penner, Schauble, & Lehrer, 1998; Resnick & Ocko, 1991; Schon, 1985; 
Shaffer, 1997c, 2002a, 2002b, 2003, 2004b; Stevens, 2000). The paper describes one particular 
project in this genre, Escher’s World, as an occasion to explore one of the theories that underlies 
such work, the theory of pedagogical praxis (Shaffer, 2004a). Pedagogical praxis suggests that 
new technologies make it possible to take pedagogies developed in the context of professional 
training—pedagogies that typically emphasize participation in meaningful projects in 
epistemologically rich contexts—and adapt them for younger students. That is, pedagogical 
praxis suggests that the practices through which professionals are trained can provide 
constructive models for helping students learn from participation in personally relevant projects 
using computational microworlds.  

Escher’s World explored this theory by examining how practices from the architectural 
design studio helped middle school students understand transformational geometry through 
design activities in a computationally rich learning environment. In the Escher’s World summer 
program, 12 middle school students participated in 56 hours of design activity over a one-month 
period, leading to the installation of an exhibit of their work at the Massachusetts Institute of 
Technology (MIT) Museum. Students worked mostly (though not exclusively) with Geometer’s 
Sketchpad, a commercially available microworld designed for use in geometry classrooms.  

A key component of the theory of pedagogical praxis is that using microworlds to support 
learning through professional practices depends on the thickly authentic (Shaffer & Resnick, 
1999) adaptation of such practices: that is, pedagogical praxis suggests that students can learn 
effectively by engaging in computer-supported activities that preserve the linkages between 
pedagogy and epistemology in processes by which professionals become members of their 
community of practice. In particular, pedagogical praxis argues that a critical component of such 
adaptations is using a computational tool to make connections from the pedagogy and 
epistemology of a profession to interests of students, on the one hand, and to significant skills, 
habits, and associations from a domain of inquiry such as mathematics, on the other (Shaffer, 
2004a). The learning environment in Escher’s World was thus explicitly modeled on an 
architectural design studio course studied in depth before creating the Escher’s World program 
(Shaffer, 2003). The summer program was deliberately studio-like, attempting to use the 
Geometer’s Sketchpad to adapt the pedagogical and epistemological underpinnings of design 
                                                 
1 I would like to thank the students and program leaders of Escher’s World, and the students, faculty, and staff of the 
MIT Media Laboratory where this work began. I would also like to express my gratitude to the many colleagues 
who provided comments and criticisms on the study in the episodes of its own iterative process. 
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practices as faithfully as possible to the intellectual and social life of adolescents and to the 
cognitive demands of the domain of mathematics.  

In the discussion that follows, my goal is to use Escher’s World as an occasion to 
examine some of the mechanisms that underlie learning through pedagogical praxis. My intent is 
not to prove that Escher’s World was a “successful intervention.” It would hardly come as a 
surprise that students would learn some mathematics after participating in 56 hours of design 
activity in a mathematical microworld, and previous work (Shaffer, 1997b, 1997c, 2002b) has 
already shown that students can and do learn mathematics through microworld-based design 
activities similar to those in Escher’s World. Rather, my aim here is to uncover some of the 
processes through which middle school students developed mathematical understanding in a 
computational microworld while engaging in activities based on the practices through which 
designers are trained. I focus particularly on the interactions among three precursors to the 
development of mathematical understanding in Escher’s World: (a) enactment of specific 
participant frameworks from the design studio, (b) the autoexpressive properties of the 
computational tool being used, and (c) the articulation and transformation of students’ own 
interests through their design work.  

The approach I use to address these interactions is somewhat unusual in design research 
in the sense that I look for these precursors neither at the microgenetic level nor at the level of 
the intervention as a whole. This study takes a mesogenetic perspective on the analysis of 
learning, in which participant frameworks, tools, and interests interact over extended periods of 
time through the design process.2 I look at this level because students’ understanding of (and 
adoption of) participant frameworks, fluency with a tool, and development of interest took place 
over extended explorations in Escher’s World. Thus, following Lemke’s (2000) argument that 
different processes operate at different time scales in ecosocial systems such as learning 
environments, I hypothesize that there may be important interactions that are difficult to observe 
at the local level—or that may be observable at that level only once it is clear what to look for 
from observation at this broader horizon.  

I ground this level of analysis using design histories: accounts of students’ design work 
based on extensive field notes collected during the Escher’s World project. Although this data set 
does not afford detailed descriptions of local interactions as might be expected in a microgenetic 
account, it does make possible thick descriptions (Geertz, 1973) of design activity over time. The 
analysis is presented here in an extended case study of the work of one student in Escher’s 
World. From this case study, I draw a grounded theory (Glaser & Strauss, 1967; Strauss & 
Corbin, 1998) about the processes through which participant frameworks from the design studio, 
the microworld being used, and students’ interests interacted in Escher’s World. I then use intra-
sample statistical analysis (Shaffer & Serlin, 2004) as a means to demonstrate theoretical 
saturation for the grounded theory and to suggest that the pattern described in this case held more 
generally in the work of the 12 students in Escher’s World. Of course, the small sample size and 
methods used mean that these statistical techniques support what is fundamentally a qualitative 

                                                 
2 I describe this approach as mesogenetic because it analyzes an intermediate time scale between macro-level 
analyses of the effects of an intervention as a whole and microgenetic accounts of local interactions and the process 
of learning. 
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analysis. The claims here are about the experience of the 12 students who participated in 
Escher’s World. 

For rhetorical clarity, I depart somewhat in what follows from the usual organization of 
an empirical study. I begin by discussing the theories and prior work upon which the Escher’s 
World environment was designed and within which I frame this analysis. Part I of the Methods 
section describes the structure of the intervention and the methods for data collection and 
qualitative analysis. Part I of the Results section then presents the first case study and the 
grounded theory the results support. Following this, Part II of the Methods section describes the 
segmentation and coding of the data based on the grounded theory, and Part II of the Results 
section describes the statistical analyses. 

I conclude with a discussion of the possible implications of this study for the 
development of learning environments based on design practices. Although much work has 
already been done on this issue, the results presented here suggest that design learning is a 
complex system—perhaps more complex and more richly interdependent than has previously 
been acknowledged in adaptations of design practices for K–12 students in traditional subjects. 
The experience of the students in Escher’s World reaffirms that the practices of design can be 
powerful tools in supporting learning through computational microworlds. However, as the 
theory of pedagogical praxis argues, these results also suggest that developers of learning 
environments based on design activities may need to pay careful attention to how those 
participant frameworks are linked to the underlying epistemology of design practices.  

Background 

Microworlds, Mathematics, and the Design Studio 

In Escher’s World, students learned mathematics through technology-based design 
activities explicitly modeled on training in an architectural design studio. As such, Escher’s 
World addresses the intersection of two domains that have been studied in some depth: (a) the 
role of microworlds as tools in the development of mathematical understanding and (b) the use 
of design practices as models for the creation of learning environments for K–12 students. Each 
of these domains has a rich literature associated with it: a large body of research since Papert’s 
Mindstorms (1980) in the case of microworlds as learning tools (Bassingthwaighte, 1985; 
Clements & Battista, 1992; Gargarian, 1996; Goldman-Segall, 1991; Harel & Papert, 1991a, 
1991b; Kafai, 1996; Kafai & Harel, 1991a, 1991b; Kaput, 1992; Lehrer, Lee, & Jeong, 1999; 
Noss & Hoyles, 1996; Papert, 1993, 1996a, 1996b; Resnick, 1994, 2001; Resnick & Ocko, 1991; 
Resnick & Rusk, 1996; Shaffer, 1995, 1997a, 1997b, 1997c, 1998, 2002a, 2002b, 2003; Tinker, 
1985; Wilensky, 1995; Yelland & Masters, 1997), and a smaller but growing body of work in the 
case of design practices (Erickson & Lehrer, 1998; Hmelo et al., 2000; Jacobson & Lehrer, 2000; 
Kolodner et al., 1998; Penner et al., 1998; Schon, 1985). There is, of course, also a significant 
but still smaller body of work looking at microworld-supported design activity (Greeno, 1997; 
Kafai, 1996; Resnick & Ocko, 1991; Stevens, 2000), including earlier studies in the Escher’s 
World project showing that students can and do learn about transformational geometry through 
design activities using Geometer’s Sketchpad (Cossentino & Shaffer, 1999; Shaffer, 1997a, 
1997b, 1997c, 2002a, 2002b). The goal in this paper is thus to investigate some of the 
mechanisms through which students developed mathematical understanding through one set of 
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design studio activities using one computational microworld as a means to shed light on this 
larger body of research through the lens of pedagogical praxis. 

Mathematical microworlds. More than 3 decades of research on microworlds has 
documented the processes at work in a wide range of computational tools and a variety of 
subjects: mathematics and science in symbolic microworlds such as LOGO (Harel & Papert, 
1991b; Papert, 1980), StarLogo (Resnick, 1994), and Boxer (diSessa, 2000), or direct 
manipulation environments such as the Geometer’s Sketchpad (Goldenberg & Cuoco, 1998; 
Serra, 1997; Shaffer, 1997b, 1997c, 2002b); civics, economics and urban planning in simulations 
such as SimCity (Adams, 1998); history in games such as the Oregon Trail (Smith-Gratto & 
Fisher, 1999) and Civilization (Frye & Frager, 1996). Along the way, Papert’s (1980) theory of 
Constructionism—that students can build understanding by building computational models—has 
been extended to a more general theory that microworlds allow students to learn by engaging in 
open-ended projects that ask them to interact with a model of a complex domain in service of 
some meaningful end. 

One of the seminal concepts that has emerged from this body of research in the context of 
mathematical microworlds is that of autoexpressivity (Noss & Hoyles, 1996). Microworlds such 
as LOGO create virtual worlds in which the behavior of objects depends on explicit articulation 
of mathematical relationships (Papert, 1980). Students come to autoexpressive microworlds with 
a set of beliefs (usually implicit) about the mathematical relationships underlying a domain of 
interest. As students act in the microworld, the responses of the tool depend on the way in which 
the students articulate those relationships. Acting in the microworld thus helps students surface, 
challenge, and ultimately refine their understanding of fundamental mathematical principles. 
Noss and Hoyles (1996), for example, describe how one student came to understand ratio as a 
multiplicative (rather than an additive) relationship by developing a LOGO program to construct 
a BIGHOUSE. The program was an extension of an initial program, HOUSE. In BIGHOUSE, 
the student enlarged each of the dimensions of HOUSE by a constant amount, but BIGHOUSE 
did not behave correctly until the student was consistent in using multiplication rather than 
addition to increase the dimensions of the structure. In the process, the student came to 
understand that multiplication by a constant preserves proportion whereas addition by a constant 
does not. Noss and Hoyles coined the term autoexpressive to refer to tools whose behavior 
reflects the extent to which an idea has been represented explicitly. They argue that 
autoexpressivity plays a significant role in transforming creative activity into mathematical 
understanding. 

Mathematical understanding. Mathematical understanding is, of course, not a singularly 
defined concept. Some scholars argue that mathematical understanding is inextricably connected 
to the use of particular mathematical tools—that is, rather than learning about mathematical 
objects and operations in some general sense, students learn how to solve particular kinds of 
mathematical problems using particular mediational means, whether graphing calculators, 
computational microworlds, or algorithms instantiated with traditional pencil and paper 
(Engestrom, 1999; Pea, 1993; Wertsch, 1998). Work on the situated nature of mathematical 
understanding and the difficulties in transferring mathematical understanding developed in the 
classroom to other settings supports this view of mathematical understanding as highly 
contextual and tool-dependent (Boaler, 1993, 1996; Lave, 1988; Light & Butterworth, 1992; 
Nunes, Schlieman, & Carraher, 1993). 
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Despite these caveats, work on mathematical microworlds typically focuses not only on 
mathematical understanding that students manifest using the microworld, but also on forms of 
mathematical thinking students are able to accomplish in other contexts after working in the 
microworld—what Salomon, Perkins, and Globerson (1991) describe as the effects of the tool as 
distinct from the effects with the tool. For example, prior work has shown that there are effects of 
activities such as those used in this study: in previous studies, students were able to define 
symmetry relations, notice symmetry in other contexts, and use visual problem-solving strategies 
when responding to word problems using paper and pencil more often and more effectively after 
participating in Escher’s World–like activities (Shaffer, 1997b, 1997c, 2002b).  

The mechanisms through which such transferable mathematical knowledge develops are 
not entirely clear. It may be that mathematical understanding consists of abstract representations 
encoded in formal schema that describe classes of mathematical objects and operations, and the 
relations that exist among them (Bassok & Holyoak, 1989; Novick & Holyoak, 1991). 
Alternatively, mathematical understanding may be represented by a web of connections between 
ideas rather than abstract schema—a view of mathematical understanding as concrete instances 
connected by a rich set of associations that make them broadly applicable (Noss, 1994; Noss, 
Healy, & Hoyles, 1996; Noss & Hoyles, 1996; Wilensky, 1991).  

In this study, the focus is not on demonstrating that students developed mathematical 
understanding that they could apply in a new context—in this case, a paper-and-pencil test of 
transformational geometry—although the results will show that students’ scores did improve on 
such a test following the workshop. Nor is the focus on the kind of mathematical understanding 
that they developed—whether abstract schema or a richly elaborated network of embodied 
experiences—except to say that whatever the nature of the understanding they developed, it was 
understanding that could transfer to the relatively distinct task of answering questions on a 
traditional geometry test. Rather, my aim here is to explore the linkages among tool, practice, 
and interest in this particular environment that led to the development of mathematical 
understanding that students were able to apply elsewhere.  

Uncovering those linkages, in turn, requires identifying a local proxy measure for the 
development of tool-independent mathematical understanding: evidence that working in the 
microworld has led to some form of mathematical thinking that students will be able to apply in 
contexts beyond the microworld. To that end, in what follows I look at students’ ability to 
formulate mathematical conjectures during, and as a consequence of, their design activity. 
Conjectures are, of course, an important form of mathematical thinking. Although often 
discussed as a first (and perhaps necessary) step to experimentation and ultimately formal proof 
(Cox, 2004; Lindquist & Clements, 2001), conjectures are also significant in their own right 
because one important part of mathematical understanding is the ability (and motivation) to form 
inferences about general principles from specific observations (Cantlon, 1998; Davis & Hersh, 
1982; Fitzgerald, 1996; Gruber & Voneche, 1995; National Council of Teachers of Mathematics, 
1989, 1991). Here, however, I am not looking at conjectures as ends in themselves or as 
precursors to more formal mathematical deduction; rather, I use them as a proxy measure for 
mathematical understanding that students will be able to mobilize in other situations independent 
of the microworld and practices within which those understandings developed. 
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Because conjectures in this sense are indicators of mathematical thinking rather than 
measures of mathematical thinking, I do not focus in what follows on conjectures as elements of 
formal mathematical discourse (Gee, 1990, 1992)—that is, as statements judged within the 
framework of formal mathematical literacy (Sfard, 2002). Rather, I posit a broader category of 
mathematical talk that includes any form of claim about general properties of mathematical 
objects, operations, or relations separate from their instantiation in the particular tool being used. 
Such claims might be descriptions of some abstract principle derived from practical experience 
or descriptions of an intuition about the nature of some mathematical relationship: for example, 
if—as happened in Escher’s World—a student, as a result of his or her design activity, explains 
that rotating things means putting them into a circle, or that dilation changes an object’s size 
without changing its shape or position, or that repeated rotation of an object creates a blurred 
circle whereas repeated translation of an object produces a blurred line. That is, I posit a class of 
mathematical conjectures, formal or informal, that are independent of the microworld. In what 
follows, I refer to this kind of mathematical thinking as conceptual insights about mathematics, 
and I argue that understanding when and how students develop such insights is one important 
part (though certainly not the only important part) of understanding how appropriately 
constructed microworlds might be useful tools for supporting development of mathematical 
thinking through design activities. 

Design and the design studio. Schon (1985) and Simon (1996) describe design as an 
iterative process. The designer is asked (or chooses) to address a particular issue. A solution is 
proposed. Strengths and weaknesses of the solution are analyzed, and based on this analysis, the 
designer refines the original approach. The new solution is again analyzed, and so the process 
continues until the analysis of one of the iterations suggests that it is a satisfactory way to resolve 
the issue for the intended audience (typically the client, in the case of a practicing architect, or a 
jury of experts, in the case of an architect in training). The iterations or episodes in the design 
cycle are thus characterized by design goals, design moves, and satisficing (Akin, 1986; Schon, 
1985; Simon, 1996). Design goals are the recognition of some problem, sub-problem, condition, 
or issue that needs to be addressed—a desired outcome for a given design episode, which may or 
may not be explicitly articulated and may or may not include a plan for addressing the particular 
issue at hand. Design moves refer to the series of steps taken to understand and or resolve the 
initial issue—to express the design goal through design activity. Satisficing refers to the 
development of some insight into the nature of the initial problem that suggests a conclusion, an 
end to the exploration, and/or a more interesting issue to pursue in subsequent work. Satisficing 
may or may not include resolving the initial design problem; for example, the designer may 
decide that the problem is intractable under the given conditions and decide to take a radically 
different course of action. Thus, satisficing is a more generic resolution to design activity than 
solving a problem in the traditional sense.  

Design students are trained to carry out this iterative process in the design studio. The 
design studio can trace its roots back more than a century to the École des Beaux-Arts in France 
(Chafee, 1977). The focus of a designer’s training today still follows the Beaux-Arts tradition of 
open-ended projects and a variety of structured conversations that culminate in a public 
presentation of work (Akin, 1986; Anthony, 1987; Coyne & Snodgrass, 1993; Crowe & Hurtt, 
1986; Frederickson & Anderton, 1990; Gaines & Cole, 1980; Mitchell, 1994; Rowe, 1987; 
Schon, 1985, 1987, 1988). In the design studio, students work on individualized projects with 
expressive goals. They are asked to convey a personally meaningful idea through the product of 
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their design work—to “say something” with their designs to a particular audience (Shaffer, 
2003). In this sense, the studio enacts a principle of learning discussed by Dewey (1915; 1958) 
and Parker (1894/1969) more than a century ago. Parker described how attention and expression 
are inseparably connected: creating an expressive product is an integral part of understanding 
any new experience—a principle rearticulated by Papert (1980; 1991; 1996a) in his theory of 
Constructionism. Dewey argued that understanding develops during expressive activity when 
students overcome systematic resistances in the medium of expression—what in more recent 
years might be described as constraints (Norman, 1993)—if those obstacles are relevant to the 
expressive goal. As students solve recurring problems they encounter in a particular medium, 
they learn something about the nature of the medium and about the problems they are solving. 
DiSessa (2000) and Lehrer, Lee, and Jeong (1999) add that working successfully in a medium 
also implies developing a sense of audience. Having a sense of audience requires understanding 
and accepting a set of standards against which work is judged—or developing such standards 
(Erickson & Lehrer, 1998). 

In the design studio, students are supported in the process of progressively coordinating 
their expressive intentions with the standards of their profession through a participant framework 
(Goffman, 1981; O'Connor & Michaels, 1996) known as the desk crit, or simply crit. Crits are 
extended conversations between designer and critic (expert or peer) over a design-in-progress: a 
loose but nevertheless structured interaction in which the critic works to understand what the 
student is trying to do with his or her design by asking probing questions; the critic then helps the 
student develop the design idea by offering suggestions, validating existing design choices, 
pointing out potential problems, or working on a piece of the design together. Schon (1985) 
studied the desk crit process in some depth and argued that the crit is central to the development 
of a student’s ability to design thoughtfully, functioning as a zone of proximal development 
(Vygotsky, 1978) in which students progressively internalize a design process they can first carry 
out only with the help of others.  

Pedagogical Praxis 

Prior work thus suggests there is good reason to expect that the development of 
conceptual insights about mathematics through design activity in a computational microworld 
would involve interaction among the autoexpressive properties of a tool, crits between students 
and peers or experts, and the ideas students were interested in and able to express through the 
design process. But even after having identified such key practices and principles, orchestrating 
these elements into a coherent whole remains a challenge.  

Brown and Campione (1996) argued that educators need to develop coherent 
environments—contexts for learning that not only include sound pedagogical practices, but also 
align those practices with a set of underlying principles. Successful curricula, they suggested, 
function as coherent systems, and many failed attempts to implement curricula have been the 
result of seeing what should be a coherent whole as a set of isolated parts—the “Chinese menu 
. . . one from Group A, one from Group B” approach to curriculum design and implementation 
(p. 314). Any successful implementation of a curriculum depends, they argued, on a clear 
articulation not only of surface procedures, but also of the underlying principles of learning that 
lead to the creation of the particular pedagogical strategies (p. 291). 
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In past decades, we have learned a great deal about principles of learning such as the 
value of autoexpressivity, the effects of participant frameworks such as the desk crit, and the role 
of students’ own expressive desires in the development of understanding. One approach to 
creating pedagogical coherence, explored by many designers of thoughtfully innovative learning 
environments, is to articulate a set of learning principles and then design activities and 
assessments based on those principles (Bransford, 1994; Brown & Campione, 1996; Enyedy, 
Vahey, & Gifford, 1997; Goldenberg, 1996; Goldman-Segall, 1997; Hmelo et al., 2000; Jackson, 
Stratford, Krajcik, & Soloway, 1996; Jacobson & Lehrer, 2000; Kafai, 1996; Kolodner et al., 
1998; Resnick, 1994; Scardamalia & Bereiter, 1996). A challenge of this approach is that the 
number of principles and practical constraints multiplies quickly. Designing an environment that 
simultaneously addresses a complex system of requirements can be daunting.  

Pedagogical praxis takes a different and potentially powerful approach to creating 
coherent contexts for learning. Pedagogical praxis suggests creating learning environments for 
K–12 students by adapting existing learning practices rather than designing from first principles. 
Building on the work of Lave and Wenger (Lave, 1991; Lave & Wenger, 1991; Wenger, 1998), 
pedagogical praxis argues that different communities of practice (for example, different 
professions) have different epistemologies: different ways of knowing, of deciding what is worth 
knowing, and of adding to the collective body of knowledge and understanding. In the context of 
professional activities, these ways of knowing are constituted in practice, and the processes of 
professional training are designed to link praxis and epistemology through pedagogical activity. 
Pedagogical praxis thus takes a learning practices perspective (Hall & Stevens, 1996; Schwartz 
& Sherin, 2002), using the ways in which professionals are trained as a model for learning 
environments.  

As Brown and Campione (1996) might argue, this adaptation cannot merely be ad hoc 
borrowing. Rather, the adaptation has to preserve the essential epistemological principles of the 
original. Resnick and I have suggested the concept of thick authenticity to describe such 
environments (Shaffer & Resnick, 1999). We argue that authenticity is a form of alignment 
between student activities and some combination of (a) goals that matter to the community 
outside the classroom, (b) goals that are personally meaningful to the student, (c) ways of 
thinking within an established domain, and (d) the means of assessment. Thickly authentic 
learning environments create all of these alignments simultaneously—for example, in the design 
studio when personally meaningful projects are produced and assessed according to the 
epistemological and procedural norms of an external community of practice. 

The model of pedagogical praxis is to create such environments by (a) uncovering the 
principles embedded in existing learning practices of a profession (a problem of cognitive 
anthropology and descriptive ethnography), (b) developing or adapting technologies to help 
students participate in these practices (a problem of engineering and technology development), 
and then (c) creating experimental learning environments designed to develop skills and 
understanding through participation in the pedagogy of a community of practice (a problem of 
program design and action research). 

In Escher’s World, this meant studying in some depth the learning processes in an 
architectural design studio and then using the Geometer’s Sketchpad to adapt those practices for 
middle school students. I close this section of the paper by describing briefly the ethnographic 
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study of a design studio that guided the development of Escher’s World (Shaffer, 2003). Part I of 
the Methods section of the paper then describes the way in which this model was adapted for 
middle school students and the tool that was used to make the adaptation possible. 

Ethnography of a Design Studio 

The pedagogy of Escher’s World was based on a study of the Oxford Studio, a mid-level 
architecture studio for undergraduate and graduate students taught at the MIT School of 
Architecture and Planning.  

The Oxford Studio was quite unlike a typical K–12 class room. Eleven students had more 
space for their own individual drafting areas than most K–12 schools provide for a class of 25–
30 students. The studio had access to an additional meeting space the size of a typical seminar 
room and a large open space for formal presentations of student work. The pace of work in the 
Oxford Studio was also quite unlike that in a traditional class. Class met from 2:00 to 6:00 p.m. 
3 days a week, but this was more of a rough guideline than a fixed schedule. Students and 
teaching staff routinely came to studio before or after 2:00 p.m. depending on the work they had 
to do on a particular day, and the studio was busy through the night and on weekends as project 
deadlines approached. At any given time in the studio, students and teachers might be discussing 
projects around a seminar table, or students might be working individually—or checking email, 
or stepping out for a cup of coffee, or meeting with faculty or peers in a desk crit.  

By the standards of a traditional K–12 classroom in the United States, the Oxford Studio 
was thus an extreme example of an open learning environment. One might even be tempted to 
call it chaotic. But the large blocks of relatively unscheduled time and the flexibility of the 
routine made it possible to hold extended conversations about and around students’ emerging 
design projects. The seeming chaos of the Oxford Studio made possible the participant 
framework of the desk crit.  

The focus of the Oxford Studio was the design of a new business school for Oxford 
University in Britain. Each student was asked, over the course of the semester, to develop, 
present, and defend his or her solution to this broad design challenge. To guide students in 
accomplishing this end, the semester was organized around a series of six assignments, each of 
which focused on a particular aspect of the overall design goal. A typical assignment included a 
summary of the assignment’s requirements, an explanation of the reason for the particular 
assignment, a description of the professor’s expectations, and almost always discussion of 
examples of work for students to use as models. After this initial introduction, students began 
working on their response to the assignment. As questions came up, as students ran into 
problems in their emerging designs, or as students finished some stage of their design process, 
they would sign up for desk crits with the professor or with a teaching assistant. 

Crits usually lasted somewhere between 20 and 40 minutes in the Oxford Studio and had 
a loose but clear and quite consistent structure. In the desk crit, the student (a) explained his or 
her design goal to the critic, (b) described the design moves undertaken to that point, and then (c) 
presented a particular issue or decision that needed to be satisficed. The critic typically (a) asked 
clarifying questions about the design goal and design moves, (b) discussed with the student 
problem areas in the existing design (which may or may not have been the issues identified by 
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the student), and then in some cases (c) co-designed possible next steps to the problem for the 
student to consider.  

The goal of the critic was to understand what the student was trying to do with his or her 
design and then to help him or her develop that design idea. To this end, crits in the Oxford 
Studio were characterized by a number of specific interactional forms, including validation of 
work done and suggestions for further avenues to explore, all orchestrated by the most prominent 
interaction of asking questions about the design in progress. The professor in the Oxford Studio 
described having a crit with students as “trying to get into their head” and “help them flesh out 
their own ideas, their own perceptions,” with the role of the critic being to help students “focus 
on a generative idea” and “unlock the door to make the whole thing better” by asking them “to 
start anticipating [problems] now before they complete their design.” In other words, probing 
questions about the design goal, design moves, and future directions were a key component of 
the crit process in the Oxford Studio. Crits thus formed a conventional configuration of 
communicative activities and roles—a participant framework (Goffman, 1981; O'Connor & 
Michaels, 1996)—within which student and critic interacted in the Oxford Studio.  

Based on feedback from crits, students returned to their projects, perhaps signing up for a 
desk crit again before presenting the assignment, perhaps asking for a desk crit with a teaching 
assistant. Periodically within each assignment, work was discussed publicly in pin-ups, with 
students literally pinning their work up on the wall of the presentation space and presenting it to 
the group for question, comment, and suggestion—in effect, a crit with the class acting 
collectively as critic. The results of this iterative process were assessed in the Oxford Studio 
primarily through reviews or juries: formal group discussions in which students displayed their 
work, presented their plans, and received feedback from professionals outside the studio. 

It is worth highlighting here that in the Oxford Studio (as in most design studios) the 
iterative process of design guided by desk crits and public presentations of work was aligned 
with and orchestrated by a critical feature of the epistemology of architecture: that design ideas 
reflect an individual interpretation of an architectural problem. Students in the Oxford Studio 
were presented with design challenges that had an infinite number of potential resolutions. Their 
task in the semester was to develop a unique solution, to understand that solution, and to convey 
in words, diagrams, and models how the solution they chose met the demands of the original 
problem. The idea they developed was of their own choosing—as long as they could, with help 
from desk crits, develop a design based on that idea in a coherent way and defend their rationale 
to the larger community of architects in practice. 

The Oxford Studio thus suggested a number of key features that Escher’s World would 
need to preserve to create a thickly authentic adaptation of practices from the design studio for 
middle school students. The most central were that in the Oxford Studio students worked on 
projects (a) in depth, (b) in a series of iterative design episodes, (c) over an extended period of 
time, (d) in an open environment, (e) for public presentation, (f) which were motivated by 
compelling exemplars, (g) discussed in desk crits, and (h) over which students exercised 
significant creative control. A long list of guidelines, to be sure. However, it is important to note 
that these guidelines for Escher’s World were not “principles” for the development of a learning 
environment in the usual sense. Rather, they were attempts to describe explicitly some key 
aspects of the Oxford Studio that helped align pedagogy and epistemology, and therefore critical 
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structures we needed to preserve in adapting the practices of the design studio for younger 
students. Following the theory of pedagogical praxis, we were using a computational microworld 
to create a thickly authentic simulation of existing professional learning practices using these 
features as explicit markers, rather than designing de novo based on a set of abstract principles or 
isolated and reassembled pedagogical forms. 

Methods, Part I 

This section of the paper describes the adaptation of a design studio for middle school 
students using the Geometer’s Sketchpad, a commercially available mathematical microworld 
designed for use in geometry classrooms. For rhetorical clarity, I begin with a description of 
Sketchpad, as it is difficult to describe the activity structure without referring to the technology 
that anchored the work students were doing. Following this explanation of the computational 
microworld, I provide an overview of the curriculum and daily schedule of the Escher’s World 
summer program, including an overview of one day of design activities. I explain the key 
differences between practices in the Oxford Studio (and design studios more generally) and those 
in Escher’s World, and end this first part of the Methods section of the paper by explaining the 
processes through which we collected data and compiled the design histories that form the bases 
of this qualitative analysis. Later in the paper (in Part II of the Methods section), I describe a 
formal coding scheme for the data that I used as the basis for quantitative analysis. 

Geometer’s Sketchpad and the Medium of Dynamic Geometry 

My explanation of Escher’s World as a design environment starts with a description of 
the software tool students used to create mathematical images. The Geometer’s Sketchpad is an 
example of a dynamic geometry environment (Goldenberg & Cuoco, 1998; Hoyles & Noss, 
1994) in which Euclidean objects such as points, lines, circles, arcs, and polygons can be 
manipulated. In Sketchpad, these objects can be created as independent entities (e.g., a “free 
point”), or they can be constructed using mathematical relationships. One can construct a point at 
the intersection of two lines, for example, or construct Line b perpendicular to Line a and 
passing through Point C. When any object in the Sketchpad environment is moved (by clicking 
with a mouse and dragging), the other objects in the Sketch move as needed to preserve the 
constructed mathematical relationships, and the image is updated continuously in real time to 
reflect those changes. In this sense, the geometry is dynamic: Sketchpad preserves mathematical 
relationships under dynamic transformation. However, independent objects do not react in this 
way. Only mathematical relationships that were explicitly constructed are preserved. 

Sketchpad is thus autoexpressive in the sense that Noss and Hoyles (1996) describe: the 
behavior of objects depends on the explicit articulation of mathematical relationships because 
Sketchpad distinguishes between objects that are drawn and those that are constructed. Figure 1 
shows two shapes made using the Sketchpad program. The first (a1) was drawn as a square. It 
looks like a square, but when its vertices are moved (a2, a3), it undergoes continuous 
deformation, revealing that it was constructed as an arbitrary quadrilateral whose vertices were 
moved into position to make it look square. The second shape (b1) was constructed as a square 
using perpendicular lines and a circle (see Figure 2 for construction details). As a result, when its 
vertices are moved (b2, b3), it changes size and orientation but remains a square because of the 
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mathematical relationships among its parts. Put in simpler terms, if you construct a square in 
Sketchpad, it will always remain a square, no matter what else happens in the design. If you just 
draw a square, it may or may not keep the shape you intended as you change the design. 

a3

b3b2

a2a1

b1
 

Figure 1. Constructing versus drawing in Sketchpad.  
Square a1 was drawn in Sketchpad: it looks like a square, but when vertices are moved (a2, a3), 
the square does not hold its shape. Square b1 was constructed using parallel and perpendicular 
lines and a circle (see Figure 2 for details of the construction). When the vertices are moved (b2, 
b3), the figure can change size and orientation but is mathematically constrained to remain a 
square. 

 
 

B 

A C 

D 

 

Figure 2. Constructing a square in Sketchpad. 
One method for constructing a square in Sketchpad is to make segment AB, then to construct lines 
perpendicular to AB through points A and B. The circle with center at A and radius of length AB 
gives point C. Constructing a line perpendicular to AC through point C gives point D, the final 
vertex of the square. 
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Adapting the Design Studio Using the Geometer’s Sketchpad 

Content. Among the many mathematical relationships built into the Geometer’s 
Sketchpad are the fundamental mappings of transformational geometry: reflection, rotation, 
translation, and dilation. The properties of these mappings are a part of the traditional geometry 
curriculum, although they are typically given less emphasis than the process of formal proof, 
congruence theorems, and constructions (Schoenfeld, 1989). Escher’s World introduced middle 
school students who had not yet taken a formal course in geometry to (a) the definitions and 
properties of the fundamental Euclidean objects (point, line, segment, ray, circle, arc); (b) 
concepts of curvature and angle; (c) the Euclidean properties of parallel and perpendicular lines; 
(d) the fundamental transformations of translation, rotation, dilation, and reflection; and (e) the 
process of fractal recursion. 

In the Geometer’s Sketchpad, these mathematical concepts are instantiated in dynamic 
imagery: mathematical ideas appear as relationships that determine the behavior of images on the 
computer screen. Thus, students could explore mathematical principles through the creation of 
compelling designs. The work of M. C. Escher (1971; 1982; Schattschneider, 1990), famous for 
its playful use of deep mathematical structure to achieve powerful artistic effect, inspired both 
the name and the activities of Escher’s World. Since freehand curves are not part of the 
traditional cannon of Euclidean objects (and therefore not primitives in the Sketchpad 
environment), designs made in Sketchpad tend towards abstract compositions, typically with 
clean lines and idealized forms, reminiscent of work by artists such as Calder (1989; 1993), 
Kandinsky (1992), Klee (Geelhaar, 1973; Klee, 1961), Lewitt (1975; 1978; 1992a; 1992b), Miró 
(1972), and Mondrian (Blotkamp, 1994; Fauchereau, 1994). Thus, in addition to mathematical 
principles, students in Escher’s World were also introduced to design principles of form, 
negative space, color, depth, and balance suitable to the analysis and production of such works 
(Arnheim, 1974). 

Activities. In developing activities to let students explore these concepts, we tried to 
create a structure that would preserve the essential features of the design studio as articulated in 
the Oxford Studio. Following the Oxford Studio model, activities were organized into a 
cumulative sequence of design explorations (see Table 1 for a list of mathematics and design 
topics and activities). As in the Oxford Studio, each exploration began with a set of exemplars. 
Exemplars were followed by an activity using traditional materials, and discussion in a pin-up of 
this work in traditional materials highlighted the mathematical concepts students would be 
working with in a particular exploration. Students were then shown how to use the software to 
instantiate the mathematical relationship that had come up in their work with traditional 
materials, and were given a design challenge. A pin-up of work on the first challenge focused on 
emergent design properties, and a revised challenge asked students to work simultaneously with 
mathematical and aesthetic criteria. Each assignment ended with a public discussion of work in a 
final pin-up. The schedule for a typical day of design work is shown in Table 2. 

In the 3rd day of the 3rd week, for example, activities focused on the mathematical 
concept of dilation and the design principle of balance. The day began with students’ cutting out 
a shape of their own choosing from construction paper and figuring out how to make the same 
shape at one-half size. Designs were shown in a pin-up, and the various methods students used 
were discussed. Students were shown how to construct dilations using Sketchpad. The group  
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Warm-up Activity 1 Activity 2 Math concepts
Design 

concepts

Monday
Use compass make 
circle and square

Draw square with 
circles

Draw square with 
as few curves as 
possible

Circles, arcs, 
curvature

Marks, shapes, 
perceptual 
elements

Tuesday
Use straight lines to 
draw curve

Draw ball using 
lines

Clarify salient 
feature of ball

Lines Interpretation

Wednesday

Thursday
Make composition 
using squares

Make a connected 
series of images

Refine images to 
highlight design 
progression

Parallel and 
perpendicular lines

Iterative process of 
design

Friday

Monday
Trace repeated 
motif on acetate 
squares

Create motif and 
translate by 2 
vectors

Use translated motif 
to create negative 
space

Translation Negative space

Tuesday
Make motif that 
looks the same in a 
mirror

Create a design 
using 1 motif and 2 
mirror lines

Use color to reveal 
structure of mirror 
design

Mirror symmerty Effects of color on 
design

Wednesday

Thursday
Create 2- and 4-fold 
rotation using 
acetate

Create a design 
with n -fold rotation

Create static design 
w/multiple 
rotocenters

Rotational 
symmetry, angles

Movement and 
dramatic tension

Friday

Monday

Tuesday

Wednesday
Duplicate motif at 
1/2, 1/4 size

Duplicate motif at 
several scales

Static, balanced 
image from 
previous design

Dilation Balance

Thursday
Arrange duplicate 
motifs into 
composition

Scaled motifs with 
other transformation

Show same relation 
in motif and whole

Composition of 
functions, recursion

Structure

Friday

Monday

Tuesday

Wednesday

Thursday

Friday

Week 1

Week 2

Week 3

Week 4

Field trip

Charette: refine one design from the week for pin-up and discussion

Field trip tp museum

Prepare design for review

Design review with external reviewers

Watch film

Begin work on final project

Plan installation with curator

Final exhibition

Continue work on final project

Complete final project

Install gallery

 
Table 1 
Schedule of Topics and Activities for the Escher’s World Summer Program 
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9am Students arrive, check-in discussion

Warm-up activity

Group discussion of warm-up, and intro to 
GSP functions

10am

Break with snack

11am Pin-up and discussion of activity 1

12noon

Check-in discussion, students depart

Work on activity 1

Pin-up and discussion of activity 2

Work on activity 2

 
Table 2 
Schedule of a Typical Day of Design Work in the Escher’s World Summer Program 

discu
mobiles and an installation by Lewitt (1992b). Discussion of master works was followed by 

ssed “master works” relevant to the design challenge, including three Calder (1993) 

presentation of the first design challenge: students were asked to make an interesting 
composition using multiple dilations of one or more shapes and a single vanishing point (see 
Figure 3).  

 
Figure 3. Student work in Escher’s World: A design using multiple dilations. 

T riodically 
with program leaders or peers for technical help with the software or for desk crits about their 
emergi

e 
the 

he initial design phase lasted approximately 50 minutes. Students consulted pe

ng designs. After the initial design explorations, each student presented his or her work-
in-progress in a pin-up. During the pin-up, students looked at additional exemplars, including 
works by Klee (Geelhaar, 1973) and Escher (1982). The design challenge was revised to includ
additional criteria—in this case, the idea of balanced composition. Students were asked to use 
same set of dilated objects to make one balanced and one unbalanced composition. Students 
worked on the revised challenge for just over an hour, with desk crits continuing throughout. The 
day ended with a pin-up of students’ final products.  
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As in the Oxford model, explorations in Escher’s World built upon one another, leading 
to increasingly public presentations of students’ designs (see Table 1). Activities in the 1st week 
led to a charette—a rapid exploration of a complete design project—in which students took a 
day to produce a design using the concepts and techniques they had encountered up to that point. 
At the end of the 2nd week, students prepared a design for review by professors of architecture 
and graduate design students who came to the studio for a day; for many students, these designs 
became the basis for their final museum piece. By the end of the 3rd week, work was focused on 
developing a final design for exhibition in the museum. 

Because students in a design studio typically work on individual projects in their own 
personal workspace, students were given their own desks with individual computers—the same 
desks, in fact, that were used by students in the Oxford Studio. We also used the meeting, pin-up, 
and review spaces from the Oxford Studio, and preserved the high expert/learner ratio of the 
Oxford Studio, with three program leaders (two graduate students and one undergraduate) for 12 
students. 

Constraints. Although we were most fortunate to be able to use the space of an authentic 
design studio, we were obviously forced to make compromises in designing this activity 
structure to accommodate the practices of the Oxford Studio to the needs of middle school 
students in a summer program. One immediate issue was that the temporal structure of the 
studio—usually used with undergraduate and graduate students in architecture—needed some 
adaptation for middle school students. Students in the Oxford Studio worked at various hours of 
the day (and night), particularly in the days leading up to a final review. This was not practical 
with middle school students. Students came to Escher’s World as a summer program from 9:00 
a.m. to 1:00 p.m. every weekday for 4 weeks. Six days were spent on field trips, on installing the 
final museum exhibit, or on other non-design activities. As shown in Table 1, a total of 14 days 
was modeled as described above on the practices of the Oxford Studio, though with the addition 
of morning and afternoon check-in times and a snack break.  

A second issue of timing was that although 56 hours of design activity is quite a 
substantial amount of time by the standards of a traditional middle school class, it is brief 
compared to the 300–400 hours of design work that take place over the course of a semester in a 
typical design studio course. Design explorations in Escher’s World were thus compressed 
relative to an architectural design studio, and the number of iterative cycles between initial 
conception and final project was necessarily abbreviated. This posed challenges in the design of 
activities, but it also worked well for middle school students who had no previous design 
experience, and thus needed help organizing their work in extended blocks of time. 

Participant structures. In light of these adaptations, we took particular care to preserve 
as faithfully as possible two key participant structures of the Oxford Studio: desk crits and public 
presentations of work in pin-ups and design reviews. All of the project leaders had either 
participated in design studio courses as students or teaching assistants or participated in the 
ethnographic study of the Oxford Studio. The project staff practiced giving desk crits before the 
beginning of the program, observing and critiquing performances with the aim of faithfully 
rendering the roles and interactional structure of desk crits as enacted in the design studio 
tradition. Similarly, we developed a standard format for pin-ups, modeled on the practices of the 
Oxford Studio, in which students presented their work and others were invited to comment using 
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the same general interactional forms of the desk crit. External reviews were conducted by 
architects, professors, and advanced graduate students, as was the case in the Oxford Studio.  

Participants. We recruited students by mailing flyers to local youth organizations and 
school district offices. advertising a summer workshop in computers, mathematics, and design 
leading up to an exhibit at the MIT Museum. Three hundred flyers were distributed, and 
responses were screened for age (12–14 years) and prior mathematics coursework (we admitted 
only students who had not yet taken a formal course in Euclidean geometry as typically taught to 
eighth- or ninth-grade mathematics students). The first eight applications received from males 
and seven applications received from females that met the screening criteria were accepted. 
(There were considerably more male than female applicants.) In the end, 12 students (7 males 
and 5 females) attended the entire program. Three students dropped out in the first few days, one 
due to health reasons and two due to family travel plans. (They had apparently never intended to 
complete the program.) Although the applications were not purposefully selected for diversity, 
the program wound up with a mix of students from urban (6/12) and suburban (6/12) areas in and 
around Boston. There were two African American students, two Asian students, two Latino 
students, and six White students. The majority of the students (11/12) had recently completed 
Grade 6, 7, or 8 in a local public school. One student was home-schooled. The program was 
designed and run by the author, with assistance from a graduate student in the MIT Department 
of Architecture and an MIT undergraduate student majoring in design. Two of these program 
leaders were male, and the other female. All three workshop leaders were present throughout the 
program. 

Data Collection 

Data for Escher’s World was collected in two ways. The main source of data was field 
notes documenting student work and student thinking during the program, compiled into design 
histories: illustrated records of students’ design activity over the course of the program. Students 
also completed pre-workshop, post-workshop, and follow-up interviews to document 
mathematics learning, providing an outcome measure for work in the program.  

Design histories. Understanding how students developed conceptual insights about 
mathematics through design activity required a fairly comprehensive record of students’ work 
and thinking through extended design activity. It was not practical to use think-aloud protocols 
for 12 students through 56 hours of work; nor did we feel it would be reliable to interview 
students only at the end of the program—or even at the end of each 4-hour day—about what they 
did and what they were thinking. Instead, the principal source of data for this study was 
extensive field notes based on in situ clinical interviews (Denzin & Lincoln, 1998; Ginsburg, 
1997; Gruber & Voneche, 1995) conducted during desk crits.  

As described above, desk crits begin with a description of the history of a design: the 
student describes his or her design goal and the design moves that he or she has taken to reach 
that goal. Next, the student and the critic talk about problems in the current state of the design 
and discuss possible solutions. In an ideal desk crit, the critic also has a chance to ask about the 
design understanding that the student developed and incorporated into the design-in-progress. In 
practice, desk crits take place at critical points in students’ design work, and desk crits in 
Escher’s World thus provided an opportunity to gather information about and insight into 
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students’ design processes and design thinking in an ongoing way. As part of the training in the 
conduct of desk crits described in the Ethnography of a Design Studio section above, program 
leaders practiced using desk crits as clinical interviews in this sense. During the workshop, 
program leaders wore tie-clip microphones to record their desk crit conversations. At the end of 
each day, each of the program leaders was responsible for using these recordings to write up a 
detailed account of all of his or her desk crit conversations—usually a summary of the comments 
of critic and student in each of the exchanges in the discussion, with verbatim excerpts for key 
points. (Unless specifically described otherwise, all excerpts quoted in the results sections that 
follow were from these verbatim quotations of student comments.) These summaries were 
supplemented by images from the student’s designs, illustrating the critical moments in the 
student’s work.  

At the conclusion of the program, these field notes were combined into a single design 
history for each student: that is, the three different (and often overlapping) accounts of a 
student’s design work from the field notes of the program leaders were combined into a single 
illustrated description of the work of each student in the program. These design histories are not 
comprehensive in the sense that they do not represent a complete recording of students’ design 
work. However, the design histories do give a detailed account of students’ work over an 
extended period of time. As such, they provide the foundations for thick descriptions (Geertz, 
1973) of students’ design work that shed light on how students learned mathematical ideas 
through design activity in Escher’s World.  

Interviews. Each student had a pre-interview immediately before the program, a post-
interview immediately after the program, and a follow-up interview 3 months after the 
conclusion of the program. The protocol for these interviews was based on previous work 
documenting change in students’ mathematical thinking as a result of design activities similar to 
those used in the Escher’s World summer program (Shaffer, 1997b, 1997c). As part of these 
interviews, students took a test of 18 questions about transformational geometry appropriate to 
the topics covered in the Escher’s World program and compiled from geometry textbooks 
(Aichele et al., 1998; Manfre, Moser, Lobato, & Morrow, 1994; Moise & Downs, 1971; 
Rubenstein et al., 1995a; Rubenstein et al., 1995b; Serra, 1997). Topics for the test included 
identification of parallel and perpendicular lines, mirror lines, rotational symmetry and 
rotocenters, and questions about translation and dilation, composition of functions, congruence 
and similarity, proportion, and angle measure. (See Figure 4 for a sample question, and 
Appendix A for a copy of one form of the test.). Three control questions on fractions and algebra 
(topics not addressed during the program) were also included. Three forms of the test were 
produced with isomorphic problems. Forms were randomized for pre-, post-, and follow-up-
interviews.  

Data Analysis, Part 1 

Design histories. As described in the Background section above, design is an iterative 
process that takes place through a series of design episodes characterized by a design goal 
(recognition of some initial problem, sub-problem, condition, or issue that needs to be 
addressed), design moves (steps taken to understand and or resolve the initial issue), and 
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What rigid motions will move triangle P 
onto triangle Q in the drawing below? 

3

2 1

1

3

2

P

Q

 

Figure 4. Sample geometry question used in student interviews. 

satisficing (development of some insight into the nature of the initial problem that suggests a 
conclusion, an end to the exploration, and/or a more interesting issue to pursue).  

Design histories from students in Escher’s World were thus segmented into design 
episodes, and those episodes were analyzed within a grounded theory framework (Glaser & 
Strauss, 1967; Strauss & Corbin, 1998). Using the constant comparative method, design episodes 
were examined for emergent themes and patterns relevant to the questions framing the study. In 
particular, analysis focused on the relationships among students’ interest in expressing particular 
ideas, the autoexpressive properties of the tool, interactions between students and program 
leaders in desk crits, and the development of conceptual insights about mathematics.  

Test scores. Results of paper-and-pencil math tests in pre-, post-, and follow-up 
interviews were compared using paired t-tests. 

Quantitative analysis. As described in the introduction, design histories were also coded 
and analyzed using intra-sample statistical analysis (Shaffer & Serlin, 2004). The coding scheme 
for and results from that analysis are described in the second part of the Methods and Results 
sections below.  

Results, Part I 

The results from this study of Escher’s World are described in two parts. In this first part 
of the Results section, I briefly present test scores from pre-, post-, and follow-up interviews to 
show that students did learn mathematics in Escher’s World. I then present an extended case 
study of the work of one student in Escher’s World, Hallie,3 which I use to describe a grounded 
theory about the processes through which participant frameworks from the design studio, the 
autoexpressive properties of the Geometer’s Sketchpad, and students’ interests interacted in 
Escher’s World to support the development of conceptual insights about mathematics. Following 
this extended case study, in the second part of the Methods and Results sections, I describe a 
coding scheme based on this grounded theory and use statistical analysis to further support the 
theory developed in the case studies. 

                                                 
3 All names used in this paper are pseudonyms. 
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Test Scores 

Previous work has shown that students learned concepts in transformational geometry 
when they used the Geometer’s Sketchpad to engage in design activities similar to those in 
Escher’s World (Shaffer, 1997b, 1997c, 2002b). That students would learn some mathematics 
during 4 weeks of work in Escher’s World is thus hardly a surprising result—although it is one 
worth confirming, since understanding how students developed mathematical understanding is 
reasonably predicated on knowing that they did so.  
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Figure 5. Pre-, post-. and follow-up test scores. 
Scores on a paper-and-pencil test of transformational geometry knowledge rose significantly between pre-
and post-interviews (mean pre = 58%, mean post = 72%; p < .01). Gains were stable in final interviews 3 
months later (mean final = 72%). 

As shown in Figure 5, students’ scores on paper-and-pencil tests of transformational 
geometry knowledge rose significantly between pre- and post-interviews (mean pre = 58%, mean 
post = 72%; p < .01). These gains were stable in final interviews 3 months later (mean final = 
72%). Scores on the three control problems about algebra were not different among pre-, post-, 
and follow-up interviews (p > .50 for all three comparisons). Students reported developing some 
kind of mathematical understanding in 17% of their designs (42/242), and all students described 
having conceptual insights about mathematics at some point in the program. Student designs 
clearly became more sophisticated in their use of design principles and mathematical 
relationships through the Escher’s World program (see Figure 6).  

Thus, it seems that, as we might have expected, students did learn about transformational 
geometry through their work in Escher’s World. In the next part of the paper, I present a case 
study of one student’s work to develop a grounded theory as to how that mathematical 
understanding developed.  
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Early Work  Final Image 

 

→ 

 

→ 

 
Figure 6. Two students’ early work and their final drawings. 

Hallie’s Story 

Hallie was a soft-spoken young woman, slight, shy, and somewhat awkward among her 
peers in the program. She appeared to be in transition: not quite comfortable with the students 
who talked about Legos and going to the movies with their parents, not quite comfortable with 
the students who were interested makeup and dating. What follows is a brief version of how 
Hallie—who spoke so softly that it was difficult at times to hear her—found a voice, both 
literally and mathematically, through the design activities of Escher’s World. 

In the process of describing Hallie’s work in Escher’s world, I hope to show that Hallie’s 
interactions with program leaders in desk crits, her interactions with the autoexpressive features 
of Sketchpad, and the development and expression of her interests in design and mathematics 
were intimately intertwined with the process of transforming design activity in the computational 
microworld into conceptual insights about mathematics. That is, I hope to use Hallie’s story to 
show how the enactment of design processes in service of expressing ideas that Hallie found 
interesting supported her development of mathematical understanding in a computational 
microworld.  

Working without explicit goals: “I’m just fiddling around.” The first day of the 
Escher’s World program began with a design challenge to make a straight-edged figure (such as 
a square) out of curved lines (circles or arcs). Students looked at sample solutions (see Figure 7), 
and were also shown how to construct a circle using the software tool.  
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Figure 7. Two examples of drawing a square using circles that students were shown on 
the first day of Escher’s World. 

Hallie’s response to the challenge was first to draw the outline of a square “by hand” and 
“by eye” (see Figure 8). 4 After talking with program leaders in desk crits and seeing the work of 
her peers in pin-ups, Hallie began to use straight lines as guides for her drawing (the rightmost 
image in Figure 8). Hallie’s work on these first design challenges shows progressively more 
sophisticated use of the idea of curvature and properties of arcs. In her second image, for 
example, she uses a single circle with large radius to form one straight side of a square; in the 
final image she uses arcs to wrap around the bottom vertices of the triangle. But at this early 
stage, Hallie showed little evidence of thinking explicitly about these issues. About the second 
image she said only, “I just wanted to use little circles.” When asked why she chose a triangle for 
the final design, she replied: “It was a simple shape. I’m just fiddling around.” 

Constructing an image to express an idea: “I want the bottom lighter.” The next day, 
students were asked to make an image of a ball. The challenge was twofold. First, the images of 
this round object were to be made using only straight lines. Second, and perhaps more important, 
the designs were supposed to convey an interpretation of some aspect of the ball that was of 
interest to the designer: for example, its weight, the texture of its surface, or the way it bounces.  

       

Figure 8. Hallie’s responses to the challenge of drawing straight edges with curves. 

                                                 
4 As described above in the Methods section, unless specifically indicated otherwise, all quotations are taken from 
student comments recorded verbatim in field notes. Thus, the description of Hallie’s drawings as having been made 
“by hand” and “by eye” were her own. 
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Looking at Hallie’s response to this second challenge, we can already begin to see a 
change in her work. After making one drawing of a ball in compression as it was “bouncing off 
of a ceiling” (see Figure 9), Hallie found herself struggling to get the artistic effect she wanted. 
She called over a program leader and in the course of the desk crit explained: “I want the bottom 
lighter . . . not lighter, more open, not really there. . . .” As Hallie and the critic explored the 
drawing, they talked about her design goal and also about the underlying construction of the 
image. 

 
Figure 9. Hallie’s original image of a ball bouncing off a ceiling. 

What they discovered was that Hallie had used a circle as a guide for the line segments 
that made up the ball. Hallie had used the software to hide the circle, but its position was still 
determining the location of the line segments in the image (see Figure 10)—that is, each of the 
line segments that made up the ball had been constructed with a point on the circle as one of its 
endpoints. Hallie realized that by dragging the center point of the circle, she could change the 
radius of the circle and spread out the segments on the lower edge of the ball; having been 
constructed with an endpoint on the circle, the segments moved when the shape of the circle 

 

 

Control Point

 
 

Figure 10. Hallie’s exploration of a sketch 
Hallie and a critic explored the underlying construction of a problematic image (left), enabling Hallie to 
realize her design goal in a final design (right). The middle sketch is a reconstruction—the labeling of the 
center point was added, and several line segments were removed for clarity. 
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changed. Armed with this discovery, Hallie returned to the design with both a clear goal and a 
means to manipulate the image. Hallie spent the remainder of her working time adjusting and 
reconstructing the design so that, as she said of her final image, “when it goes out, it’s sort of . . . 
motion,” representing the movement of the bouncing ball. 

Developing explicit design goals: “Exploding negative space.” The next week, Hallie 
was working on a design challenge involving rotation and created an image with vibrating white 
space at the center of the design that she and a peer called “explosive” (see Figure 11). Hallie 
was excited by the effect but was not sure what to do with the idea. In a desk crit, one of the 
program leaders suggested that she try to figure out how to make the effect more dramatic. 
Following the desk crit, Hallie began a series of carefully conducted explorations into the 
workings of “exploding negative spaces.” She made a set of designs—some 20 in all—
empirically determining the factors that make a rotated shape look explosive: a “nice pointy 
shape,” “enough” points, a dark color (see Figure 12). The idea of exploding negative space was 
a topic that Hallie returned to consistently in the following days, and ultimately became the 
subject of her final project.  

 
Figure 11. Hallie discovered that it was possible to create an “exploding negative 
space” (the vibrating white space) at the center of a rotated image. 

Overcoming an obstacle: “You need to rotate it more times to keep it pointy.” For her 
final project, Hallie decided to make “rings of explosions” using the same shape in each ring—as 
if a real object were exploding, she said, sending off shards in all directions. However, as she 
began to work on the final image, she ran into trouble. Hallie was able to make an explosion in 
the inner ring or the outer ring, but not both. When the points of the shapes in the inner ring 
made an exploding negative space, as in Figure 13, the points on the outer shape were too far 
apart to create the visual effect she wanted. When the points on the outer ring gave the right  
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Figure 12. Hallie explored the factors that make an exploding negative space 
from a rotated shape. 

effect, the points on the inner ring blurred into a continuous curve with no vibrating effect. As 
Hallie had done earlier in designing the bouncing ball, she called over a program leader when 
she had trouble getting her design to behave as she wanted it to in Sketchpad. 

 
Figure 13. Hallie and a critic used this image to explore the nature of rotation.  
Hallie was frustrated that she could not make an exploding negative space in both rings 
simultaneously. During a desk crit, she realized that she needed to rotate the underlying shape by 
a smaller angle in a large circle to keep the distance between objects the same (and thus create 
the vibrating effect) in both rings 

Hallie’s first explanation for the problem was that there was something wrong with the 
shape she had chosen—after all, she had conducted an extensive series of explorations, and knew 
that the shape of the polygon used in the rotation was one of the important factors in creating 
exploding negative space. The program leader asked Hallie how she had made the two rings. 
Hallie explained that she had taken a single shape and rotated it by 9 degrees repeatedly until it 
completed a circle. Then she had translated the original shape to where she wanted the second 
ring to be and rotated the image of the translation by the same amount around the original 
rotocenter to make the second ring. The program leader suggested that they look at whether the 
shape of the polygon was the problem by changing the color of one of the polygons on each ring 
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of the exploding design so they could watch carefully as they changed its shape dynamically (see 
Figure 13). As they moved the points that determined the shape of the polygon Hallie had 
translated and rotated to create her design, she saw that the problem was not with the shape. 
Seeing the two polygons—one in the inner ring and one in the outer ring—move relative to their 
rotated images (the polygons next to them in the rings), Hallie realized that the problem was in 
rotating the polygon by the same amount in both the inner and outer rings. “Oh,” said Hallie, 
“you have to rotate the outside one more times—less degrees—[because] they’re farther 
apart. . . . It’s a bigger circle, [and] with a bigger circle you need to rotate it more times to keep it 
pointy.” With this mathematical insight about the relationships among the size (radius) of a 
circle, the angle of rotation (subtended angle), and the distance between object and image (an arc 
or chord length), Hallie was able to complete her project. The final image (see Figure 14) is of a 
negative space explosion sending shapes flying off in all directions. 

 

 
Figure 14: Hallie’s final image for the museum exhibit was a series of concentric 
explosions in the negative space of the image. 

Learning Mathematics Through Design in a Microworld: A Grounded Hypothesis 

Hallie’s story thus illustrates the importance of desk crits, the autoexpressive properties 
of Sketchpad, and the transformation and expression of Hallie’s own interests—and the linkages 
among these aspects of her design work—in her development of conceptual insights about 
mathematics. Questions about and co-exploration of emerging designs in desk crits helped 
clarify mathematical issues implicit in her work. The Geometer’s Sketchpad encouraged such 
conversations by providing a medium that created a dynamic representation of mathematical 
constraints and relations and gave autoexpressive feedback on the impact of decisions and 
actions within that structure. Hallie learned about rotation by trying to instantiate a particular 
design idea using the affordances of the Sketchpad environment—and by participating in a desk 
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crit with a program leader when she couldn’t get her design to work. The motive for pursuing 
such conversations came from the expressive nature of the endeavor; indeed, one way to read 
Hallie’s story is as the progressive development of her interest and ability to master “exploding 
negative space.” The development of that interest was, in turn, supported by interactions with 
program leaders in the participant framework of the desk crit. Hallie’s design history, in other 
words, shows that (a) interactions within the participant frameworks of design helped Hallie turn 
design activity into mathematical understanding; (b) opportunities for such interactions arose 
when the tool did something unexpected and Hallie needed to figure out what went wrong; and 
(c) this ability to be surprised and desire to fix what went wrong came about when Hallie had 
developed a commitment to expressing a particular idea. Mathematical understanding in Escher’s 
World thus appears to have arisen from complex interactions among elements of design practice 
during explorations in a mathematical microworld—a grounded theory I support in the next 
sections using statistical techniques. 

Methods, Part II 

The strength—and ultimately the validity—of this claim about how interactions among 
participant frameworks, autoexpressivity, and expressive goals supported conceptual insights 
about mathematics clearly depend on the richness of the qualitative data collected on the work of 
the 12 students in the Escher’s World summer program. However, it is also possible to code the 
design histories and use intra-sample statistical analysis (Shaffer & Serlin, 2004) to support this 
grounded theory. Intra-sample statistical analysis is a technique for applying quantitative 
methods to qualitative data by using observations rather than individuals as the random effects 
unit in statistical analyses. Participants in the experiment are treated statistically as fixed effects, 
and the resulting conclusions generalize within the observations, rather than to a larger 
hypothetical set of “students like those in the experiment,” as would be the case in a more 
traditional quantitative approach. That is, because students are treated as fixed effects in the 
model, the results of such an analysis apply only for the particular group of learners in the study. 
However, using observations as units of analysis makes it possible to identify statistically 
significant patterns of activity within sets of observations such as design histories. Intra-sample 
statistical analysis is thus useful for testing the hypothesis that a grounded theory describes a 
pattern that holds true more generally in the observed data, and thus for inferring that further 
observations would have shown the same pattern identified in the existing data. In this way, 
intra-sample statistical analysis can provide a warrant for theoretical saturation of a grounded 
theory. 

Coding 

As part of the qualitative analysis, design histories from Escher’s World were divided 
into design episodes, with each episode characterized by a design goal, design moves, and 
satisficing. The grounded theory that emerged from qualitative analysis of the design histories 
was that students developed conceptual insights about mathematics during design explorations 
through a combination of explicit design goals, the autoexpressive affordances of Sketchpad 
during design activity, and interaction with program leaders during satisficing. Codes were 
developed to reflect each of these categories as follows:  
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• Conceptual insights about mathematics (CI). Episodes were coded for CI when in the 
satisficing phase of the design episode a student reported a conceptual insight about 
mathematics as a result of his or her design activity—specifically, when a student made a 
statement that was (a) about one of the mathematical concepts covered in the curriculum of 
Escher’s World (see Table 1 above); (b) about a general property of that mathematical 
concept not specific to the instantiation of the concept in Sketchpad; and (c) a claim that the 
student had recognized this general property in the context of his or her current design 
exploration. So, for example, the following statements were coded as CI: “the mirror line 
creates symmetry, and symmetry creates equal parts on both sides, which makes it balanced”; 
“when you rotate something it’s actually in a circle—you can rotate it a lot of [ways] and it 
will always make a circle”; “with a bigger circle you need to rotate it more times to keep it 
pointy”; “when you’re closer to the center, if you rotate by the same amount, the same size 
shape is more cramped because there is not as much room closer to the center—it’s just like 
if you go in space and you trace the area of your property out and trace it onto the 
atmosphere it gets a lot bigger because it’s farther from the center point and everything gets 
more spread out and stretched out”; “if you need something repeated and repeated and 
repeated you can almost always . . . [make a] transformation for it.” 

• Autoexpressive challenges (AE). Episodes were coded for AE when during design moves a 
student expressed surprise or concern that designs did not behave as expected because he or 
she had drawn rather than constructed the design or part of the design. For example, the 
design episode in which Hallie was unable to adjust the lines on the bottom of the bouncing 
ball and the episode in which she realized she was having a problem keeping her “pointy 
shapes” close together in the inner and outer rings of her final design were both coded for 
AE.  

• Desk crits (DC). Episodes were coded for DC when a student participated in a desk crit with 
a program leader during satisficing. A key element in determining which interactions with 
program leaders qualified as desk crits for the purposes of coding was evidence that as part of 
the interaction the critic asked probing questions about the student’s design goals and design 
moves, characteristic of the desk crit participant framework.  

• Explicit design goals (DG). Episodes were coded for DG when a student explicitly described 
the intent of his or her design activity. For example, statements such as “I wanted something 
to go in and out,” “I wanted the [viewer] to focus on one of [the circles], so instead of just 
seeing a square, they’ll see all the things that make it up,” and “I wanted to express the 
negative space of . . . rotation” were all coded for DG.  

Two additional codes were developed to account for possible alternative hypotheses. One 
code accounted for the possibility that it was not the autoexpressive properties of using 
Sketchpad that helped students develop conceptual insights about mathematics, but rather the 
process of encountering problems with the tool and seeking help more generally. A second code 
accounted for the possibility that it was not the participant framework of desk crits that helped 
students, but any form of help from program leaders. Specifically: 

• Learning the tool (LT). Episodes were coded for LT if during their design moves students 
needed help using features of the tool when those problems were not related to the 
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autoexpressive properties of Sketchpad—for example, if a student needed help figuring out 
the sequence of selections and menu commands to rotate a polygon around a point. 

• Other interactions (OI). Episodes were coded for OI when they contained interactions with 
program leaders during the satisficing phase of students’ design work that did not take on the 
framework of a desk crit—for example, if a program leader praised a design without 
engaging in questions about the design goal and design moves. 

Each episode was coded by recording the presence (or absence) of activity representing 
each category above. Resource constraints made it impossible to have multiple coders examine 
the data, but during coding, design episodes were randomized, and identifying information 
suppressed. Each design episode was checked twice in the process of coding. Three additional 
descriptive codes were added to each episode. One indicated which student had participated in 
the design episode. A second recorded on which of the 13 days of design work the episode took 
place.5 The third recorded which of the 242 student designs begun during Escher’s World the 
particular design episode was a part of. 

Intra-Sample Logistic Regression 

Quantitative analysis focused on the grounded theory that explicit design goals (DG), the 
autoexpressive properties of Sketchpad (AE), and desk crits during satisficing (DC) interacted to 
support the development of conceptual insights about mathematics (CI) in Escher’s World. 
Specifically, the hypothesis tested was that DG, AE, and DC—and their interactions—would be 
significant predictors of CI during students’ work on a design. 

For each design, episodes were summed to create a score for each code for the 
exploration as a whole. Because the outcome variable CI was discrete and had a very narrow 
distribution (most of the design explorations had 0, 1, or 2 episodes with insights), it was recoded 
into a categorical variable indicating the presence or absence of conceptual insights about 
mathematics during the exploration, and a logistic model was used for the analysis. 

Coded design explorations were, of course, repeated observations of design activity by a 
small number of students over time. As described above, intra-sample statistical analysis uses a 
fixed-effects regression model to account for the systematic effects of students’ unique skills, 
interests, abilities, and inclinations over multiple observations. Accordingly, individual designs 
were used as the units of analysis, with dummy variables for each student6 in the regression 
model to control statistically for the intercorrelation due to repeated sampling.  

Results, Part II 

Over the 13 days of design work in Escher’s World, students worked collectively on a 
total of 242 designs. Students worked on an average of 23.6 designs each (see Table 3), and 
designs had an average of 2.9 design episodes (min = 1, max = 13, S.D. = 2.2). We can thus infer 

                                                 
5 The day of the design review, although part of the 14 days of activity explicitly modeled on the Oxford Studio, was 
removed from this analysis because students were not creating designs. 
6 Eleven dummy variables were actually used. The 12th would have been redundant in the model. 
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that the average length of time working on a design was approximately 50 minutes, and the 
average length of a design episode was 15–20 minutes, although some explorations were much 
shorter (as short as 1–2 minutes) and some were spread over considerably more time.7 An 
average of 3.6 designs for each student led to conceptual insights about mathematics. As shown 
in Table 3, all of the actions described by potential predictors in the regression model were 
present in at least 33% of the design episodes, and all but two were present in more than 60% of 
the episodes, suggesting that no single type of action uniquely led to the conceptual insights, 
which occurred in 17% of all episodes.  

% of all
Min Max designs

Total 15 31 23.7    (4.46) 100%
Concep. insights about math (CI) 1 9 3.6      (2.43) 17%
Explicit design goal (DG) 8 26 15.8    (5.02) 69%
Autoexpressive challenges (AE) 10 22 14.3    (3.47) 61%
Learning the tool (LT) 2 20 7.9      (4.64) 33%

 Mean (S.D.) 
Designs per student

 
Table 3 
Descriptive Statistics for Codes of Student Designs 
Maximum, minimum, mean, and standard deviations for the number of designs per student 
coded for outcome variable and predictors in the regression model in at least one episode; 
also, percentage of designs overall with at least one episode coded, by category.  

A set of logistic regression models was used to test the hypothesis that explicit design 
goals (DG), autoexpressive properties of Sketchpad (AE), and desk crits during satisficing (DC) 
interacted to support the development of conceptual insights about mathematics (CI) in Escher’s 
World. Model 0 in Table 4 shows that both the number of episodes in a design and the time in 
the program when the design occurred were statistically significant predictors of CI. Thus, in 
addition to dummy variables for each student, both the number of episodes in a design and the 
time in the program when the design occurred were included as controls in subsequent models. 

Models 1 and 2 in Table 4 show that desk crits (DC) and explicit design goals (DG) were 
statistically significant predictors of conceptual insights about mathematics (CI). Models 3 and 4 
show that the control variables for other interactions with program leaders (OI) and problems 
encountered while learning to use features of the tool (LT) were also statistically significant 
predictors, although encountering problems using non-autoexpressive features of the tool made it 
less likely that students would develop conceptual insights about mathematics.  

Model 5 shows that, on their own, the autoexpressive properties of Sketchpad (AE) were 
not a statistically significant predictor of CI; however, Models 5a and 5b show that when either 
desk crits (DC) or explicit design goals (DG) and the relevant interaction are added to the model, 
AE becomes a statistically significant predictor.8 This suggests that—as described in the 

                                                 
7 Timing information was not recorded in the design histories. Given the method of the data collection, such 
numbers would have been only rough approximations. 
8 In Model 5b, the coefficient for AE is not statistically significant, but the statistical significance of the interaction 
term suggests that the predictor is significant as well when the interaction is included in the model. 
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qualitative analysis—the autoexpressive properties of Sketchpad were significant in conjunction 
with desk crits and/or explicit design intent.  

Model

 Number 
of 

episodes 
 Day in 

workshop 
Desk crits 

(DC)

Explicit 
design 
goal    
(DG) 

 Other 
inter-

action (OI) 

 Learning 
tool      
(LT) 

Auto-exp. 
challenge 

(AE)  AE x DC  AE x DG 

Cox & 
Snell 

Pseudo 
R^2

0 1.2* 1.4* 0.12
1 1.1 1.1 1.5* 0.13
2 0.8 1.1 1.7** 0.15
3 1.1 1.1* 1.6* 0.13
4 1.3* 1.1* .6* 0.13
5 1.2 1.2* 1.0 0.12
5a 0.8 1.1 3.2** 1.9* .7** 0.19
5b 1.0 1.1 2.3** 1.7 .8* 0.16
6 0.8 1.1 3.8** 1.5* 2.1* .3** 2.3** .6** + 0.26

* p <.05    ** p <.01   + indicates term removed in stepwise regression

Covariates

Dependent variable = Concepual insights about mathematics (CI)

 
Table 4 
Odds Ratios From Fixed-Effects Logistic Regression on Student Designs 
Odds ratios show the increase (or decrease) in likelihood that a student would develop a conceptual insight about 
mathematics in a design based on predictors drawn from the qualitative analysis. 

A final model was constructed using all of the predictors and including interactions of all 
predictors with AE. A stepwise logistic regression with backwards elimination for the predictors 
and interactions was used to remove redundant terms, and results are reported in Table 4 as 
Model 6. 

The result of Model 6 is illustrated in Figure 15, which shows that autoexpressivity, desk 
crits, and explicit design goals are all statistically significant predictors of conceptual insights 
about mathematics. The significance of the interaction terms in the various models (and in the 
final model) suggests that, as shown in the qualitative analysis, it is not merely the presence of 
these elements of design activity, but the combination of these elements that contributed to the 
development of conceptual insights about mathematics during students’ design work in Escher’s 
World. The final model also suggests that participation in the participant framework of the desk 
crit was more likely to help students develop conceptual insights about mathematics than other 
forms of interaction with program leaders. 

Intra-sample statistical analysis thus supports an inference that the grounded theory—
developed through qualitative analysis and described in Hallie’s case study—reflects a more 
general pattern in the design histories of students in Escher’s World. 

Discussion 

My aim in this study has been to explore the mechanisms through which students 
developed conceptual insights about mathematics in Escher’s World, an environment created 
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Figure 15. Graphical representation of results from the final logistic regression model of CI.  
Autoexpressivity, desk crits, and explicit design goals are all statistically significant predictors, and the graph 
shows the increased (or decreased) likelihood of CI for each predictor. For example, the model shows that 
students were 2.3 times more likely to develop CI if they encountered an autoexpressive challenge using 
Sketchpad in their design work compared to not encountering such a challenge; similarly, they were 3.3 times 
less likely to develop CI if they had problems learning to use features of the tool.  

using the theory of pedagogical praxis (Shaffer, 2004a). In the discussion that follows, I briefly 
summarize the grounded theory developed from the design histories in Escher’s World. I discuss 
two ways in which this theory extends previous work on learning through design activity in a 
computational microworld, and relate these findings to the theory of pedagogical praxis. After 
considering some of the limitations of Escher’s World and of the analyses presented here, I 
conclude by suggesting some possible implications of this work for other efforts to incorporate 
design practices and computational microworlds into activities for younger students. 

A Pattern of Activity in Escher’s World  

Both qualitative and quantitative analyses of students’ design histories suggest that there 
was a pattern of activity that led to mathematical understanding in Escher’s World: desk crits, 
autoexpressive features of the microworld, and students’ own interests systematically contributed 
to the development of conceptual insights about mathematics. Hallie’s design history exemplifies 
the pattern. We saw that significant learning took place when Hallie was trying to achieve 
particular design effects: apparent motion in an image of a ball bouncing off of the ceiling, or 
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rings of exploding negative space made from rotations of isomorphic polygons. In each case, 
Hallie became frustrated when implementation of her design idea in the software did not behave 
as she expected. She called for help, and the desk crits that followed explored how mathematical 
relationships could be used to achieve her design goals. For example, when Hallie wanted to 
make her image of a ball bouncing off the ceiling look more open on the bottom, the resolution 
to the problem involved uncovering how her design had been constructed. When Hallie was 
working on her final image with progressive rings of exploding negative space, it was through 
uncovering and then making sense of the underlying construction of the drawing that Hallie 
came to understand something about the relationships among arc, radius, and angle. 

Epistemology and Practice 

That crits, autoexpressivity, and interest would play a role in mathematical learning in 
Escher’s World is hardly surprising, as each of these elements of design activity in a 
computational microworld has been shown in prior work to influence learning. In the pedagogy 
of design, desk crits support reflective thinking, and their function as a zone of proximal 
development for young designers has been well established (Schon, 1985, 1987; Shaffer, 2003). 
Studies of microworlds have demonstrated that autoexpressive mathematical tools can support 
mathematical thinking through creative activity by encouraging students to think explicitly about 
mathematical issues in their work (Noss & Hoyles, 1996). Dewey (1915; 1938) argued over a 
century ago that the motivation to solve problems in the context of tasks such as design activities 
comes from the alignment of those tasks with students’ own interests—an idea reiterated in the 
more specific context of activity in a computational microworld by Papert (1980).  

Although the elements of the pattern of activity identified in Escher’s World have thus 
already been described in the literature, the qualitative and quantitative results of this study make 
two important additions to research on learning through design activities in computational 
microworlds. First, Escher’s World shows the affordances of design pedagogy and 
computational microworld intimately intertwined in the development of conceptual insights 
about mathematics, creating a complex system in which activity, motivation, and interaction led 
to the development of mathematical understanding in this particular context. In Escher’s World, 
conceptual insights about mathematics emerged from the relationships among students, their 
program leaders, and a computational microworld—and from the ways in which those 
relationships came to systematically develop and incorporate desires for self-expression, feelings 
of frustration, and ritualized forms of critique, turning interactions between intent and obstacle in 
the context of expressive activities into opportunities for mathematical development. Hallie’s 
story and the quantitative analysis suggest that all of these elements were important in the 
process of mathematical learning, and show that it was a complex interplay among—not merely 
the presence of—desk crit, autoexpressive tool, and interest that supported the development of 
conceptual insights about mathematics in Escher’s World. 

A second important point is that this integrated system of practice in Escher’s World was 
orchestrated by and around a key epistemological principle of design—namely, that design ideas 
represent unique solutions to problems that express individual perspective through design 
activity. As in the Oxford Studio, desk crits in Escher’s World supported reflective thinking by 
providing a structure of recurring questions about the relationship between design goals and 
design moves. In desk crits, critics repeatedly asked students: What are you trying to say (or 
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show) here? How are you trying to show that? Do you think the result shows that? Why or why 
not? The impetus for students to engage with those questions in crits was the autoexpressive 
behavior of their dynamic designs in Sketchpad—an impetus that similarly arose in the context 
of explicit design goals. Because Sketchpad distinguishes in a dramatic way between designs that 
are drawn and those that are constructed, working effectively in Sketchpad meant asking: What 
mathematical relationships will produce the effect I want? That question, in turn, was motivated 
by one of the fundamental questions in the practice of design: What would I like this design to 
say? And, coming full circle, that question was an internalization of one of the central questions 
of the desk crit: What are you trying to say (or show) with this design? In Escher’s World, the 
reciprocal interplay among participant framework, medium of expression, and activity structure 
was focused on the development of individual expression.  

The result of this epistemologically focused interaction among participant frameworks, 
goals, and activities of Escher’s World was a reflexive system of design activity—mediated by 
an autoexpressive tool and the participant framework of the desk crit—that iteratively clarified 
and made explicit students’ expressive intentions and understanding of mathematical concepts 
relevant to those intentions: expressive intent led to drawing, which led to surprise and 
frustration, which led to discussions of intent and construction, which led to explicit 
mathematical insights and more explicit intent, which led to more sophisticated design work, and 
so on through the cumulative activity structure of the design studio. 

In other words, understanding in Escher’s World came from applying both the practices 
and the epistemology of design to student work in Sketchpad, and the results from Escher’s 
World thus support a key claim of pedagogical praxis: that the effective use of microworlds to 
support learning through professional practices depends on preserving the linkages between 
practice and epistemology in professional pedagogies. In this sense, Escher’s World was a 
thickly authentic adaptation of practice, and a demonstration of the potential power of such 
adaptations as a method for developing effective learning environments using computational 
microworlds. 

Limitations 

There are clearly significant limitations to this account of student learning in Escher’s 
World. First and foremost, we were quite fortunate to have the opportunity to adapt design 
practices for middle school students in the same physical space used for graduate design studios; 
further adaptation (and further research on the effects of such adaptation) would be needed 
before this kind of program would be widely applicable. Second, both the qualitative and 
quantitative analyses presented here focus on a specific and limited operationalization of the 
concept of mathematical understanding as marked by conceptual insights about mathematics. 
That is, my choice to look at how students developed explicit conjectures about mathematical 
objects and relations limits the implications that might be drawn from this work. For example, it 
is possible (and even plausible) that tacit mathematical understandings, mathematical intuitions, 
and implicit (as opposed to declarative) understanding of mathematical procedures may depend 
less highly on explicitly reflective conversations such as those found in desk crits. 

A third issue is that the use of design histories affords only a particular type and level of 
analysis for mathematics learning through design activities. As Lemke (2000) suggests, it is 
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likely that other analytical techniques, looking at patterns of activity at larger or smaller scales, 
would add significantly to the account presented here. More generally, there were clearly 
processes at work in Escher’s World that are not addressed in this study. The account here 
presents very little about the thinking or motivation of the program leaders in conducting desk 
crits, for example, or the role of public presentations of work in developing student interest. 
These (and other) issues played an important role in students’ design activity, and in the 
development of their mathematical understanding, but are not well represented in the data 
collected for this study. Moreover, the particular method of data collection used—field notes 
based on recorded desk crits—may have overemphasized the importance of interactions with 
program leaders in the students’ design work and mathematical thinking.  

Finally, and perhaps most obviously, the qualitative grounding for both the case studies 
and the statistical techniques used means the results presented here do not generalize beyond 
these students in a formal sense. 

Implications 

Bearing these caveats in mind, the grounded theory developed from the work of these 
students may still address some significant issues in the design of learning environments. In 
Escher’s World, design learning was a coherent system that linked participant frameworks from 
the practice of design and a mathematical microworld within an expressive activity structure. It 
mattered that students were working on projects that gave them significant autonomy to express 
their perspective on the design challenges at hand. Other studies have explored elements of 
design practice in the context of activities for K–12 students (Greeno, 1997; Hmelo et al., 2000; 
Kafai, 1996; Kolodner et al., 1998; Resnick & Ocko, 1991; Stevens, 2000). The work of the 
students in Escher’s World suggests that adopting elements of design practice in isolation, and/or 
separated from the epistemological framework that organizes activity in the design studio, may 
be less than ideal. Desk crits may not work well for solving traditional mathematics problems—
or even design-like challenges—that provide only one right answer, or a limited range of 
acceptable answers. Autoexpressive tools may not scaffold reflective thinking effectively 
without coherent participant frameworks such as the desk crit, aligned with the underlying 
epistemology of design, to help students turn obstacles encountered during design activity into 
opportunities for learning.  

At the very least, this work shows that existing design pedagogy provides a useful image 
of what a design-centered computational learning environment might look like in other contexts, 
and that mesogenetic analysis of design histories based on field notes provides a window into the 
learning practices and processes at work in such environments. It shows the importance of—and 
the richness of—interactions among participant framework, autoexpressive tool, and expressive 
activities in the development of mathematical understanding through design activity. As the 
theory of pedagogical praxis suggests, this work shows that there may be critical linkages 
between epistemology and practice at the heart of effective computer-mediated design-based 
learning for younger students—and perhaps at the heart of effective computer-mediated learning 
activities based on other professions as well. 
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Appendix A 

Form A 
Geometry Questions 

 
 
 
1. How many pairs of parallel lines are there in the figure below?            . 
 
 
 How many pairs of perpendicular lines are there?                 . 
 

 
 
 
 
 
 
 
 
2. Can you estimate the size of angles without using a protractor? Match the angles on 

the left side with the appropriate angle range (in degrees) on the right side. 
 

 

 
  (1) (2) (3) 

A.  between 105 and 90 
B.  between 90 and 75 
C.  between 60 and 30 
D.  between 30 and 0 
 
 

 
                  .                  .                  . 
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3. How many mirror lines does this hexagon have?                 . 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
4. Which of the following pairs of figures are congruent? 
 

 
 
  Congruent? Congruent? Congruent? 
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5. What is the scale of the dilation in the figure below? 
 
 

 
 
 

 
 
 
 
 
 

                . 
 
 
 
 
 
 
 
 
 

6.  What type(s) of symmetry does the letter N have?                  . 
 
 
 

A) Mirror symmetry with a vertical mirror line 
B) Mirror symmetry with a horizontal mirror line 
C) Rotation symmetry 
D) Translation symmetry 
E) No symmetry 
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7.  What rigid motions will move triangle P onto triangle Q in the drawing below? 
 
 
                    . 
 

3

2 1

1

3

2

P

Q

 
 

 
 

A) Rotation 
B) Translation 
C) Reflection 
D) Reflection and Translation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 What rigid motions will move triangle R onto triangle S in the drawing below?  
 
 

4

4

6

5
6

5

S

R

                    . 
 
 
 
 

A) Rotation 
B) Translation 
C) Reflection 
D) Reflection and Translation 
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8.  What is the measure of the angle shown at the center of the circle in the regular 
hexagon below?                . 

 
 
 

 
 
 
 
 
 
 
 
9. If the small rectangle on the right is similar to the large rectangle on the left, what is 

the length of the side marked with a “?”?                 . 
 
 

?

12

5

4
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10. Find the answer to the following problems: 
 
 
 

    =⎟
⎠
⎞

⎜
⎝
⎛ +−

3
1

2
11                   . 

 
 
 
 
 
 
 
 
 
 
 
 
 
    ( ) ( ) =++−++ 321321 222                   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
    if 16153 =+x , then x=                  . 
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