Proceedings of the 29" Conference of the
International Group for the

Psychology of Mathematics Education

PME29

Melbourne, Australia
July 10-15, 2005

Volume 2
Research Reports
Adl - Fre

Editors: Helen L. Chick & Jill L. Vincent

Department of Science and Mathematics Education
University of Melbourne



Proceedings of the 29" Conference of the
International Group for the Psychology of Mathematics Education

Volume 2
Editors

Helen L. Chick
Jill L. Vincent

University of Melbourne
Australia 3010

The Proceedings are also available on CD-ROM and on-line at
http://onlinedb.terc.edu

Copyright © 2005 left to the authors
All rights reserved

ISSN 0771-100X

Cover Design and Logo: Helen Chick

Printing: Design and Print Centre, University of Melbourne

2-1i PME29 — 2005



TABLE OF CONTENTS

VOLUME 2

Research Reports

Adler, Jill & Davis, Zain & Kazima, Mercy & Parker, Diane & Webb, 2-1
Lyn
Working with learners’ mathematics: Exploring a key element of
mathematical knowledge for teaching

Afantiti-Lamprianou, Thekla & Williams, Julian S. & Lamprianou, 2-9
Tasonas
A comparison between teachers’ and pupils’ tendency to use a
representativeness heuristic

Ainley, Janet G. & Bills, Liz & Wilson, Kirsty 2-17
Purposeful task design and the emergence of transparency

Alatorre, Silvia & Figueras, Olimpia 2-25
A developmental model for proportional reasoning in ratio
comparison tasks

Alcock, Lara & Weber, Keith 2-33
Referential and syntactic approaches to proof: Case studies
from a transition course

Alexandrou-Leonidou, Vassiliki & Philippou, George N. 2-41
Teachers’ beliefs about students’ development of the pre-
algebraic concept of equation

Amato, Solange Amorim 2-49
Developing students’ understanding of the concept of fractions
as numbers

Amit, Miriam & Fried, Michael N. 2-57

Multiple representations in 8th grade algebra lessons: Are
learners really getting it?

Anderson, Judy & Bobis, Janette 2-65
Reform-oriented teaching practices: A survey of primary school
teachers

PME29 — 2005 2-1il



Arzarello, Ferdinando & Ferrara, Francesca & Robutti, Ornella & Paola,
Domingo
The genesis of signs by gestures. The case of Gustavo

Asghari, Amir H. & Tall, David
Students’ experience of equivalence relations, a
phenomenographic approach

Aspinwall, Leslie & Shaw, Kenneth L. & Unal, Hasan
How series problems integrating geometric and arithmetic
schemes influenced prospective secondary teachers
pedagogical understanding

Baber, Sikunder Ali & Dahl, Bettina
Dealing with learning in practice: Tools for managing the
complexity of teaching and learning

Baldino, Roberto R. & Cabral, Tania C. B.
Situations of psychological cognitive no-growth

Ball, Lynda & Stacey, Kaye
Good CAS written records: Insight from teachers

Banerjee, Rakhi & Subramaniam, K.
Developing procedure and structure sense of arithmetic
expressions

Bardini, Caroline & Radford, Luis & Sabena, Cristina
Struggling with variables, parameters, and indeterminate
objects or how to go insane in mathematics

Barnes, Mary
Exploring how power is enacted in small groups

Barwell, Richard
A framework for the comparison of PME research into
multilingual mathematics education in different sociolinguistic
settings

Berger, Margot
Vygotsky’s theory of concept formation and mathematics
education

2-73

2-81

2-89

2-97

2-105

2-113

2-121

2-129

2-137

2-145

2-153

PME29 — 2005



Beswick, Kim
Preservice teachers’ understandings of relational and
instrumental understanding

Borba, Marcelo C.
The transformation of mathematics in on-line courses

Brodie, Karin
Using cognitive and situated perspectives to understand teacher
interactions with learner errors

Brown, Jill P.
Identification of affordances of a technology-rich teaching and
learning environment (TRTLE)

Bulmer, Michael & Rolka, Katrin

The “A4-project”: Statistical world views expressed through
pictures

Callingham, Rosemary
A whole-school approach to developing mental computation
strategies

Cao, Zhongjun & Forgasz, Helen & Bishop, Alan
A comparison of perceived parental influence on mathematics
learning among students in China and Australia

Chan, Kah Yein & Mousley, Judith
Using word problems in Malaysian mathematics education:
Looking beneath the surface

Chapman, Olive
Constructing pedagogical knowledge of problem solving:
Preservice mathematics teachers

Charalambous, Charalambos Y. & Pitta-Pantazi, Demetra
Revisiting a theoretical model on fractions: Implications for
teaching and research

Chaviaris, Petros & Kafoussi, Sonia
Students’ reflection on their sociomathematical small-group
interaction: A case study

2-161

2-169

2-177

2-185

2-193

2-201

2-209

2-217

2-225

2-233

2-241

PME29 — 2005



Chick, Helen L. & Baker, Monica K. 2-249
Investigating teachers’ responses to student misconceptions

Clarke, David & Seah, Lay Hoon 2-257
Studying the distribution of responsibility for the generation of
knowledge in mathematics classrooms in Hong Kong,
Melbourne, San Diego and Shanghai

Cooper, Tom J. & Baturo, Annette R. & Warren, Elizabeth 2-265
Indigenous and non-Indigenous teaching relationships in three
mathematics classrooms in remote Queensland

Cranfield, Ty Corvell & Kiihne, Cally & Powell, Gary 2-273
Exploring the strategies used by Grade 1 to 3 children through
visual prompts, symbols and worded problems: A case for a
learning pathway for number

Diezmann, Carmel 2-281
Primary students’ knowledge of the properties of spatially-
oriented diagrams

Droujkova, Maria A. & Berenson, Sarah B. & Slaten, Kelli & Tombes, 2-289
Sue

A conceptual framework for studying teacher preparation: The

Pirie-Kieren model, collective understanding, and metaphor

English, Lyn & Watters, James 2-297
Mathematical modelling with 9-year-olds

Fernandez, Maria L 2-305
Exploring “Lesson Study” in teacher preparation

Fox, Jillian 2-313
Child-initiated mathematical patterning in the pre-compulsory
years

Frade, Cristina 2-321

The tacit-explicit nature of students’ knowledge: A case study
on area measurement

Francisco, John M. & Maher, Carolyn A. 2-329
Teachers as interns in informal mathematics research

Frempong, George 2-337
Exploring excellence and equity within Canadian mathematics
classrooms

2-vi PME29 — 2005



WORKING WITH LEARNERS’ MATHEMATICS: EXPLORING A
KEY ELEMENT OF MATHEMATICAL KNOWLEDGE FOR

TEACHING
Jill Adler Zain Davis Mercy Diane Parker Lyn Webb
Kazima
University of University of ~ University of University of Nelson
the Cape Town the Kwazulu-Natal Mandela
Witwatersrand Witwatersrand Metropolitan

This paper explores an element of mathematics for teaching (MfT), specifically
‘interpreting and judging students’ mathematical productions’. The research
reported draws from a wider study that includes an examination of MfT produced
across teacher education sites in South Africa. We show that this element of MfT is
privileged across sites, evidence that it is valued in teacher education practice. Its
production varies, however, enabling elaboration of this element of MfT.

INTRODUCTION

A distinguishing feature of mathematics teacher education is its dual, yet deeply
interwoven, objects: teaching (i.e. learning to teach mathematics) and mathematics
(i.e. learning mathematics for teaching (MfT)) — the subject-method tension. These
dual objects, and their inter-relation are writ large in in-service teacher education
(INSET) programs where new and/or different ways of knowing and doing school
mathematics combine with new and/or different contexts for teaching. Such are the
conditions of continuing professional development in South Africa. Post apartheid
South Africa has seen a proliferation of formal (i.e., linked to accreditation) and
informal INSET programs. Debate continues as to whether and how these programs
should integrate or separate out opportunities for teachers to (re)learn mathematics
and feaching. Programs range across this spectrum, varying in degree to which
opportunities for teachers to learn are embedded in problems of (mathematics
teaching) practice, and so opportunities for learning more of their specialized
knowledge, MfT.

In the QUANTUM research project, we are currently studying mathematics and
mathematics education courses in three mathematics teacher education sites where
the programs differ in relation to their integration of mathematics and teaching. The
goal 1s not to measure impact of these different approaches, but rather, through in-
depth investigation of practices within these courses, to understand what and how
mathematics and teaching come to be (co)produced across and within these settings.
We are thus examining practices inside teacher education. Specifically, and this is
discussed further below, we are investigating how and what knowledge(s) are
appealed to as elements of MfT come to be legitimated in pedagogic discourse.

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 1-8. Melbourne: PME. 2-1
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Our focus in this paper is on one privileged MfT practice evident across all three
sites: working with learners’ mathematical productions. Learners’ mathematical
productions, and teachers’ engagement with these, have been a prevalent theme in
mathematics education research and widely reported in PME. In this paper we
assume the importance of teachers being able to do this work. The concern, rather, is
with the mathematical entailments of this work and its elaboration in teacher
education practice. Our examination of the practices across three sites reveals that
while the notion of working with (interpreting, analyzing, judging) student
mathematical thinking is common, it emerges and is approached in quite different
ways, illuminating this element of MfT in interesting ways. Our observations are a
function of a particular analytic tool, and its underlying theoretical orientation both of
which are elaborated below. We begin with a brief discussion of QUANTUM - the
wider research project.

THE QUANTUM PROJECT

The overarching ‘problem’ under scrutiny in QUANTUM' is mathematics for
teaching (MfT), its principled description and related opportunities for teachers’
learning. We regard the mathematical work of teaching as a particular kind of
mathematical problem-solving” - a situated knowledge, shaping and being shaped by
the practice of teaching. More specifically we are concerned with the mathematics
middle and senior school teachers need to know and know how to use (i.e. the
mathematical work they do) in order to teach mathematics well in diverse classroom
contexts in South Africa; and with how, and in what ways, programs that prepare
and/or support mathematics teachers provide opportunities for learning MI{T.
Elsewhere (Adler, Davis & Kazima, 2005), we have problematised the renewed focus
on subject knowledge for teaching in mathematics education, its development from
Shulman’s seminal work on pedagogic content knowledge, how it remains
underdescribed, and how mathematics teacher education practice, as well as school
teaching practice, is a productive empirical site in the project.

In our earlier work (Adler & Davis, 2004) we exemplified a pedagogic practice
where learners are expected to engage with novel mathematics problems, and showed
that meanings can and do proliferate. The teacher has considerable mathematical
work to do as s/he navigates between varying learner responses, and what would
constitute a robust mathematical solution. S/he needs to figure out how to mediate
between these interpretations, and the mathematical notion(s) and dispositions she
would like all learners in the class to consolidate. S/he needs to figure out suitable
questions to ask learners, or comments to make. Both have mathematical entailments.

Ball, Bass and Hill (2004, p.59) describe these mathematical practices as elements of
the specialised mathematical problems teachers solve as they teach. These elements

! For more detail on QUANTUM see Adler & Davis (2004)
? We thank Deborah Ball for this description — personal communication, Adler and Ball.

2-2 PME29 — 2005



Adler, Davis, Kazima, Parker & Webb

include the ability to “design mathematically accurate explanations that are
comprehensible and useful for students” and “interpret and make mathematical and
pedagogical judgements about students’ questions, solutions, problems, and insights
(both predictable and unusual)”. They posit a more general feature, “unpacking”, as
an essential and distinctive feature of “knowing mathematics for teaching”.” We have
already noted the extensive work in the field of mathematics education on learners’
constructions of mathematical ideas and related work on misconceptions (e.g. Smith,
DiSessa, & Roschell, 1993). There has been far less attention, in our view, to the
kinds of mathematical and pedagogical judgements teachers make as they go about
their work on student productions®, hence our methodology and focus.

Our overarching theoretical orientation is elaborated in Davis, Adler, Long & Parker
(2003) and Adler & Davis (2004). Briefly, the tool emerges from our use of Basil
Bernstein’s sociological theory of pedagogy. We recruit Bernstein’s (1996)
proposition that the whole of the pedagogic device (distribution of knowledge; rules
for the transformation of knowledge into pedagogic communication) is condensed in
evaluation. In other words, any pedagogy transmits evaluation rules. Additionally,
evaluation is activated by the operation of pedagogic judgement by both teacher and
student.

In QUANTUM we are looking at evaluative events across teacher education
programs, on the assumption that these would reveal the kind of mathematical and
teaching knowledge that comes to be privileged. Figure 1 presents a network of part
of the tool’ we are using, and includes the codings we refer to in the next section. We
have highlight categories of the network pertinent to our focus in this paper. The
network reflects our dual and simultaneous focus on mathematics and teaching as
specialised activities, and how they emerge as objects of study over time in each of
the courses. Each course, all its contact sessions and related materials, were
analysed, and chunked into what we have called evaluative events. These are marked
by punctuations in pedagogic discourse, when meanings are set through pedagogic
judgement. Space limitations prevent description of the full network, and the
systematic chunking done.

3 In Adler & Davis (2004) we report QUANTUM: Phase 1. We focused on formal assessment tasks
across math and math education courses in 11 institutions in South Africa. A key ‘finding’ is that
across courses, formal assessments of unpacked mathematics in relation to teaching were very
limited.

* A very recent study by Karin Brodie (Brodie 2005) has explored teacher moves as they engage
learner thinking. Her analysis provides an important description of this work of mathematics
teaching.

> Missing here is an additional set of columns on subject positions. These are significant in their
relation to particular notions and how they unfold over time, and are the focus of a different paper.
See Adler, Davis, Kazima, Parker & Webb, forthcoming.

PME29 — 2005 2-3



Adler, Davis, Kazima, Parker & Webb

ACTIVITY

(e.g., Mathematics; Teaching)

Evaluative Event

(aimed at the production of a knowledge object)

M f i i i
emeagn  EXistence Reflection Necessity
judgement

Legitimating Mathematics ~ Mathematics  Everyday Authority Curriculum

appeals Education  experience /
knowledge

Figure 1: Network describing the movement of pedagogic judgement

Suffice it to say that for each event, we coded first whether the object was a
mathematical (M) and/or teaching (T) one, or both, and then whether elements of the
object(s) were assumed known, rather than being focus of study (and were then coded
either m or t). The additional branches in the network emerge through a
recontextualisation of Hegel’s theory of judgement (1969). We recruit from Hegel the
proposition that judgement in general, and hence pedagogic judgement in particular,
is itself constituted by a series of dialectically entailed judgements (of Existence,
Reflection, Necessity, and the Notion). Here we are working with the idea that in
pedagogic practice, in order for something to be learned, to become known, it has to
be represented. Initial orientation to the object, then, is one of immediacy — it exists
in some initial (re)presented form, and can only be grasped as brute Existence.
Pedagogic interaction (Reflection) then produces a field of possibilities for the object,
and through related judgements made on what is and is not the object (Legitimating
Appeals), so possibilities are generated (or not) for learners to grasp the object
(Necessity).’ In other words, the legitimating appeals can be thought of as qualifying
reflection. An examination of what is appealed to and how appeals are made in the
teaching of mathematics delivers up insights into how MIfT is being constituted in
teacher education.

WORK ON LEARNER MATHS ACROSS THREE COURSES

Table 1, p.8 provides summary information about the course on each site. The last
three rows provide a description of the analysis of our data set, particularly in relation
to where and how legitimating appeals are made. Each course is for in-service
teachers, and part of a larger program towards a qualification. Two courses are aimed
at Senior Secondary teachers, one at junior secondary; two are level 6

® All judgement, hence all evaluation, necessarily appeals to some or other locus of legitimation to
ground itself, even if only implicitly.
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(undergraduate) and 1 level 7 (post graduate) courses. They share similar goals (to
provide learning experiences that will enable and improve mathematics teaching),
with the Level 7 course having an additional academically oriented goal.

The Algebra concepts and methods course (Site 1) is concerned with algebraic
thinking at the Grades 7 — 9 level. The underlying assumption in this course, guided
by the teachers being primary trained, is that the teachers were unlikely to be adept in
algebraic thinking, though they would, like their learners have learned algebraic rules
as recipes. They thus needed to learn this way of thinking mathematically. They also
needed to learn how to teach this in Grade 7 — 9 classes. These dual goals were
integrated in a pedagogic practice that provides experiences for teaching/learning
algebra that model the pedagogic practice teachers could/should use in their own
classrooms. Teachers could then learn the mathematics needed and at the same time
experience how it should be taught. In each of the course sessions dealing with
patterns, teachers were given three or four possible formulae that could be generated
from a given sequence as if these were produced by learners. Teachers were asked to
visualize and explain how each different learner was thinking. In sessions dealing
with algebraic rules and operations, teachers were informed of typical learner errors
(explained as a result of learning ‘recipes’), and provided a way of dealing with these
errors. For example, in order to clarify and prevent wrong application of laws of
indices, learners could be shown how and why the rule worked (i.e. test it) through
substitution of appropriately selected (small) numbers. As indicated in Table 1,
legitimating appeals are made to mathematics and everyday life. It is interesting,
firstly, that there are moments were everyday experience is appealed to for
legitimating mathematical knowledge (specifically algebraic thinking); and secondly
when the appeal is mathematical, it is restricted to numerical examples appropriate to
learners at Grades 7 — 9.

In Site 2, The Professional Practice in Mathematics Education course provides a
structured guide to an action research project teachers are to do. One element of the
structured guide 1s what is referred to as a hypothetical learning trajectory (HLT) — a
global teaching practice that includes ways of eliciting student knowledge, generating
possible student responses, and analysing student work. As preparation for the
weekend session where this aspect of their research was in focus, teachers were
meant to bring examples from their own practice where they had elicited student
thinking and analysed it. The course materials carried reading on misperceptions.
Few teachers brought their preparation’. With only some having these available for
reflection in the session, the lecturer produced an example of an HLT based on
decimal fractions so that all teachers had some object to reflect on. In other words,
she provided a model or demonstration of an HLT and related learner productions.
Hence the coding of the legitimating appeals in relevant events in this course being
described in Table 1 as either teachers’ own experience, or a demonstration/assertion

" In all three courses, there were sessions were lecturers commented on the importance of the
teachers doing the preparation work required.
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by the lecturer (authority). The interesting issue here is that the practice that emerges
1s a function of both the assumptions in the course, and how the teachers respond to
demands on them®.

In the course in Site 3 on Mathematical Reasoning, there were 9 events, over three
sessions, with one session entirely on misconceptions. Teachers’ experience is the
initial resource called in in the introductory session — they were given a task (A
learner says that x° + 1 cannot be zero if x is a real number. Is s/he correct?) and
asked to reflect on the kinds of misconceptions their learners were likely to make as
they did the task. They were also required to read Smith et al’s paper on
misconceptions. These together begin to generate a wide field of possible meanings.
As the session progresses, the notion of misconceptions is evaluated by appeals to
research in mathematics education (classification of misconception types, empirical
and theoretical arguments), mathematics itself (complex numbers, justification as
testing single cases, justification as generalized argument), curriculum levels (at
which complex numbers can be engaged), and records of teaching (a videotape of
another teacher working with the same task). It is important to remember that this
course 1s a graduate course. Teachers are thus expected to engage teaching and
mathematics (indeed are apprenticed into) discursively. It is nevertheless interesting
that it is in this course too where advanced mathematical work is drawn on in the
production of MfT in relation to school learners’ work.

DISCUSSION

As a study set up to explore the (co)production of mathematics and teaching, we
expected legitimating appeals to shift between these two domains. We were
surprised, however, at the spread of appeal domains both in relation to mathematics,
and to teaching. Across the three courses, appeals included mathematics as would be
expected. We were interested to see how this was constrained in pedagogical practice
when teaching was being modelled. Mathematics here was then restricted to the
levels at which learners would be learning. And there were expected appeals to
mathematics education as a disciplinary field, though in effect, in only one of the
courses. Ideas about misconceptions in the other two remained at the level of
examples provided in the course notes or by the lecturer, and recognized by teachers
from their own experience. It is also of interest, that in relation to learners’ thinking,
there was only one instance of an appeal to curriculum knowledge. This was in Site 3
where learners’ responses to the task were considered relative to curriculum levels.

As emphasized at the beginning of this paper, our concern here is neither to compare
nor judge of the mathematical and teaching practices in these three courses. It is
rather to understand how and why they work as they do. Space limitations prohibit

¥ We note here that, as the course progresses, the lecturer is increasingly aware of the difficulties in the

approach, and adaptations needed for the teachers to progress with their action research.
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further discussion here. In the presentation of this work, we will reflect further on the
questions that arise from our progress so far.
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Table 1

Site 1

Site 2

Site 3

Course topic

Algebra concepts and
methods

Professional practice in
mathematics education

Teaching and learning
mathematical reasoning

Qualification

Level 6: ACE Advanced
Certificate in Education

Level 6: ACE

Level 7: Hons degree in
Math Education

Time and texts

7 X 2 hr contact
sessions; Course booklet

Distance learning:
written materials; bi-
weekly w/end sessions;
10 weeks

7 X 3 hr contact sessions;
course reader

# students

25

25

30

Comments on
teachers

Experienced elementary
teachers upgrading

initial diploma to degree
level, with qualifications
to teach through Grade 9

Experienced secondary
teachers upgrading from
initial 3 year diploma, to
degree equivalent
qualification.

Experienced secondary
teachers extending 4 year
qualification to Honours—
first level graduate study

Integration of M
and T

Mathematics and teach
integrated within a
course.

Math and math ed
courses separated, with
maths courses taught in
the Maths Department

M and T courses
Separated, each with
strong ‘eye’ on other.
Most taught by maths ed
staff. Geom taught by
tertiary math lecturer

Assumptions and
relation to
practice

Algebra is focus of
course. Algebra is taught
to teachers as they would
be expected to teach it to
Grade 7 — 9 learners.
Embedding in practice is
thus through modelling
the practice.

Improving knowledge
and practice through
systematic reflection on
own teaching
experience. Embedding
in practice is
hypothetical, assuming
teachers can generate
problems and related
records of practice

Mathematics teaching
treated as a discursive
practice, that can and
should be studied.
Embedding in practice is
studying research in the
field, and records of
practice generated from
outside of teachers
themselves.

Events, appeals
and mathematical
entailments

10 events identified;
appeals mainly to math,
restricted, however, to
the level of learners.
MIT algebra restricted to
testing rules with
appropriate numerical
examples, and so a level
of mathematical work
that remains at the level
of the learners.

4 events where appeals
are to teachers’ own
experience at the start,
and in the end to the
lecturer modelling
/demonstrating a
particular instance
(generated by the
lecturer) of an HLT and
related learner work.

9 events where appeals
are to Mathematics itself,
including advanced
mathematics (complex
numbers) and
justifications; to
curriculum (what learners
are expected to know at
what levels); to research
in mathematics
education; as well as
initially to teachers own
experience.
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A COMPARISON BETWEEN TEACHERS’ AND PUPILS’
TENDENCY TO USE A REPRESENTATIVENESS HEURISTIC

Thekla Afantiti Lamprianou, Julian Williams and Iasonas Lamprianou

University of Manchester

This study builds on a previous research on children’s probability conceptions and
misconceptions due to the representativeness heuristic. Rasch measurement
methodology was used to analyse fresh data collected when a 10-item instrument
(described by Afantiti Lamprianou and Williams, 2002, 2003) was administered to a
new sample of 754 pupils and 99 teachers. A hierarchy of responses at three levels is
confirmed for the teachers’ sample, but a hierarchy of two levels is constructed for
the pupils’ responses. Each level is characterised by the ability to overcome typical
‘representativeness’ effects, namely ‘recency’, 'random-similarity’, 'base-rate
frequency' and ‘sample size’. Less experienced teachers had a better performance on
the instrument. The educational implications of our findings are discussed.

INTRODUCTION AND BACKGROUND

This paper builds on previous work on pupils’ understandings and use of the
representativeness heuristic in their probabilistic thinking (Afantiti Lamprianou and
Williams, 2002, 2003). One of the aims of the Afantiti Lamprianou and Williams
study was to contribute to teaching by developing assessment tools which could help
teachers diagnose inappropriate use of the representativeness heuristic and other
modes of reasoning based on the representativeness heuristic. The misconceptions
based on the representativeness heuristic are some of the most common errors in
probability, i.e. pupils tend to estimate the likelthood of an event by taking into
account how well it represents its parent population (how similar is the event to the
population it represents) and how it appears to have been generated (whether it
appears to be a random mixture).

Williams and Ryan (2000) argue that research knowledge about pupils’
misconceptions and learning generally needs to be located within the curriculum and
associated with relevant teaching strategies if it is to be made useful for teachers.
This involves a significant transformation and development of research knowledge
into pedagogical content knowledge (Shulman, 1987). Pedagogical Content
Knowledge (PCK) “goes beyond knowledge of subject matter per se to the dimension
of subject matter knowledge for teaching” (Shulman, 1986, p.9). Pedagogical Content
Knowledge also includes the conceptions and preconceptions that students bring with
them to the learning. If those preconceptions are misconceptions, teachers need
knowledge of the strategies most likely to be fruitful in reorganizing the
understanding of learners. Many studies have found that teachers’ subject knowledge
and pedagogical content knowledge both affect classroom practice and are modified
and influenced by practice (Turner-Bisset, 1999).

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 9-16. Melbourne: PME. 2-9
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Along the same lines, Norman (1993) stresses that “there is little in research literature
documenting either what teachers know or the nature of their knowledge” (Norman,
1993, p.180). What is more, Hadjidemetriou and Williams (2002) found that some
teachers harbour misconceptions themselves (Hadjidemetriou and Williams, 2002).
Godino, Canizares and Diaz (n.d.) conclude in their research that very frequently
teachers do not have the necessary preparation and training in probability or statistics
in order to teach efficiently; they also concluded that student teachers may have
various probabilistic misconceptions themselves and this might affect their teaching.

Bearing that in mind, the instrument that was piloted and calibrated to the pupils in
our study mentioned above (Afantiti Lamprianou and Williams, 2002, 2003) was
now administered to a new sample of pupils and teachers. The administration of this
diagnostic instrument to the teachers aimed to investigate (a) whether teachers’
probabilistic thinking was affected by the ‘representativeness’ heuristic and (b)
whether teachers were aware of these common misconceptions or of the significance
of the representativeness heuristic. This was achieved by asking the teachers not only
to answer the items themselves, but also to predict the common errors and
misconceptions their pupils would be likely to make on each item, in the manner of
Hadjidemetriou and Williams (2002) for a similar instrument assessing graphicacy.
Finally, the results of the analyses of the teachers’ and pupils’ responses are
compared.

METHOD

Ten items were used to construct the instrument (reached at http://lamprianou.no-
ip.info/pme29/). The items identify four effects of the representativeness heuristic;
the recency effect, the random-similarity effect, the base-rate frequency effect and
the sample size effect. Most of the items have been adopted with slight modifications
of these used in previous research (Green, 1982; Kahneman, Slovic and Tversky,
1982; Shaughnessy, 1992; Konold et al, 1993; Batanero, Serrano and Garfield, 1996;
Fischbein and Schnarch, 1997; Amir, Linchevski and Shefet, 1999). Other items were
developed based on findings of previous research.

The items were divided into three parts. The first part consisted of multiple-choice
answers and the respondents were asked to choose an option. In the second part the
respondents were asked to give a brief justification for their choice by answering the
open-ended question ‘Explain why’. Part three was only available in the Teacher
version of the instrument and asked teachers to predict which common errors and
misconceptions they would expect pupils to make on each question.

Since all items had both a multiple-choice and an open-ended question, a common
item Partial Credit analysis (Wright and Stone, 1979; Wright and Masters, 1982) was
run. One mark was given for the correct multiple-choice answer and another one for
the correct explanation of the open-ended question for each of the ten items.

2-10 PME29 — 2005



Afantiti Lamprianou, Williams & Lamprianou

The calibrated instrument was administered to 754 pupils and 99 teachers from
schools in the NW England. For purposes of comparison, the same analysis (i.e. the
Rasch analysis described above) was run for the pupils’ and the teachers’ datasets.

RESULTS FOR THE TEACHERS’ SAMPLE

The results of the Partial Credit analysis for the teachers’ sample indicated that the
data-model fit was appropriate. For example, Item 6 (Random Similarity Effect) had
the largest Infit MNSQR (1.16) which is considered to be appropriate for all practical
intents and purposes of this study. The item reliability index was 0.95 with a
separation index of 4.57. Less than 5% of the respondents had fit statistics indicating
poor model-data fit and this is also acceptable for empirical data. The average ability
for the teachers was 0.46 (SD=1.01). The ability measures ranged from -3.12 to 2.45
logits. The average raw score was 8.8 (out of 20 maximum possible marks) with a SD
of 4.1 but this is difficult to interpret because of the missing responses.

Figure 1 illustrates the ability distribution of the teachers and the difficulty of the
items broken down by sub-item (e.g. 3.1 denotes the multiple choice part of item 3
and 3.2 indicates the ‘Explain why’ part of the same item). According to Figure 1, the
test and sample can be interpreted as falling into a hierarchy of three levels. At level
1, approximately -3.0 to -0.5 logits, teachers can succeed on answering correctly
questions that tested for the recency effect items (Q1, Q2 and Q3) and also the
multiple-choice parts of two Random Similarity Effect items (Q4.1 and Q5.1). At
level 2 (approximately from -0.5 to 1 logits), teachers attain higher performance and
they can explain their answers to the Random Similarity question 4.2 and also answer
correctly the Base Rate Effect questions (Q7 and Q8). Fewer teachers manage to
attain level 3 by answering the hardest Random Similarity questions (Q5.2 and Q6)
and the Sample Size effect questions (Q9 and Q10).

Overall, the inexperienced teachers were statistically significantly more able than the
more experienced teachers in the sense that they had larger average Rasch measures.
The largest difference was between the secondary inexperienced and primary
experienced teachers. The secondary inexperienced teachers were, on average, at the
borderline between Level 2 and Level 3. However, the primary experienced teachers
were on the borderline between Level 1 and Level 2.

By averaging the ability estimates of those teachers who made an error, we are able
to plot errors on the same logit scale in the table. No teachers gave responses to the
multiple-choice parts of questions 1-6 (Recency and Random Similarity effects).
Teachers who gave responses indicating the Base Rate (questions Q7 and QS)
misconceptions had a rather low ability. Answers indicating misconceptions based on
the Sample Size effect (questions Q9 and Q10) were given by a more able group of
teachers.

The teachers were not very successful in describing the most common errors and
misconceptions that their pupils were likely to make (this refers to the third part of
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the items which asked the teachers to predict the common errors and misconceptions
of the pupils on each question). Just above 50% of the teachers mentioned that they
expected the answers of their pupils on questions Q1, Q2 and Q3 to be influenced by
the negative recency effect (62.2% for QI, 51.6% for Q2, 58.5% for Q3). Around
85% of the respondents expected their pupils’ responses to questions Q7 and QS to be
influenced by the Base Rate effect (83.8% in Q7 and 86.7% in Q8). Very few
respondents, however, acknowledged that their pupils’ thinking would be influenced
by the Random Similarity effect on questions Q4 (12.1%), Q5 (9.8%) and Q6 (0%).
The percentages for the Sample Size effect were a bit larger (18.9% for Q9 and
29.6% for Q10).

Rasch A Mean
= Mean Ability of  Ability

Scale (more difficult) Teachers' groups of those
(more able) choosing

3 option
indicating
misconception
9.2
B Sample Size (Q9, Q10)
10.1
6.2

52 Random Similarity (Q5.2, Q6)

Teachers' ability distribution

Level 3

| 6.1

imilari 5 d. | "
12 5 r\|“ Random Similarity (Q4.2) econd. Inexp in
“ 3 BaseRate (Q7, Q8) Primary Inexp.| Q10
0 T2 g Second. Exper
71 81 '|‘ ar
Primary Exper.

Q8
2.2

12 2.1

3.2 Recency Effect (Q1, Q2, Q3)

Level 1

5.1
4.1 Random Similarity (Q4.1, Q5.1)
34

(less able) |:- 3 |easier)

30 25 20 15 10 5
I 1 1 I 1 I I

Number of Teachers

Figure 1: Teachers’ ability distribution and item difficulty on the same Rasch scale

When a teacher predicted successfully the common errors and misconceptions of the
pupils on a question, he/she was awarded 1 mark. For example, if a teacher predicted
successfully the common errors and misconceptions of the pupils on all questions,
he/she would receive 10 marks in total (one for each item). However, we could not
use the raw score of the teachers across all items as an indicator of their knowledge of
pupils’ misconceptions because of the large percentage of missing cases. Therefore,
we used the Rasch model to convert the raw score of the teachers to a linear scale
bypassing the problem of the missing cases. It was found that the 68 inexperienced
teachers had an average of ‘predictive ability’ (to predict the misconceptions of their
pupils) of -0.93 logits (SD=1.28). The 31 experienced teachers had an average
‘predictive ability’ of -0.18 logits (SD=1.40). A t-test showed that the difference was
statistically significant (t=-2.643, df=97, p=0.010) and that the experienced teachers
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were significantly more able to predict the common errors/misconceptions of the
pupils.

RESULTS FOR THE PUPILS’ SAMPLE

The results of the Partial Credit analysis for the pupils’ sample indicated that the
data-model fit was appropriate. The fit of Item 6 (Random Similarity Effect) had the
largest Infit MNSQR (1.26) which is considered to be appropriate for all practical
intents and purposes of this study. All other items had even better Infit MNSQR
statistics (between 0.75 and 1.08). The item reliability index was 0.99 with a
separation index of 21.65 which is an indication of a very reliable separation of the
item difficulties. Just above 5% of the respondents had fit statistics indicating poor
model-data fit and this is also acceptable for empirical data. The average ability for
the pupils was -0.83 logits (SD=1.12). The ability measures ranged from -3.93 to 3.64
logits. The average raw score was 7.5 (out of 20 maximum possible marks) with a SD
of 2.6 but this is difficult to interpret because of the large number of missing
responses or not administered items.

Rasch ions' lean Abili
Pupils’ Ability Distribution Lot %'f,?ﬁsé:ﬂ{‘; Effects e
Scale 1 choaosing Mean
B option Ability
(more able) 3 indicating  (P<0.03)
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10.2
- 7| 92 Sample Size (Q9, Q10)
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2172 T Random Similarity (Q6)
I
11 8
| - 3% Random Similarity (Q4.2, Q5.2)
|
I Qs, Q10 Girls
| : Q7,8 | Bos
2.2
| 17 3.2 ik
I 2 = Recency (Q1, Q2, Q3)
L 1 2.1 & Random Similarity (Q4.1, @5.1)
7 - Q4, Q6
41 54 Q5
3.1
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T T T T T T
q 8 g 2 9 =
B B Number of Pupils

Figure 2: Pupils’ ability distribution and item difficulty on the same Rasch scale

According to Figure 2, the test and sample can be interpreted as falling into a
hierarchy of two levels. At level 1, approximately -4.0 to -0.5 logits, pupils can
succeed on answering correctly questions that tested for the recency effect items (Q1,
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Q2 and Q3) and also the multiple-choice parts of two Random Similarity Effect items
(Q4.1 and Q5.1). At level 2 (approximately from -0.5 to 4 logits), pupils attain higher
performance and they can answer the multiple choice of question Q6, explain their
answers to the Random Similarity question Q4.2 and Q5.2 and they can also answer
correctly the Base Rate Effect questions (Q7 and Q8). Fewer pupils manage to attain
the top of level 2 by answering the hardest Sample Size effect questions (Q9 and
Q10). Almost nobody managed to give a correct response to question Q6.2.

By averaging the ability estimates of those pupils who made an error, we are able to
plot errors on the same logit scale in the figure. Most of the pupils gave responses to
the multiple-choice parts of questions 1to 6 (Recency and Random Similarity effects)
which indicated that their probabilistic thinking was affected by the
representativeness heuristic. The average ability of those pupils for items 1 to 6 was
around -2.5 logits (Q1:-3.07 to Q6:-2.36 logits) which is well below the mean ability
of the whole sample (-0.83 logits). However, the pupils who gave responses
indicating the Base Rate (questions Q7 and Q8) and the Sample Size (questions Q9
and Q10) misconceptions had a mean ability in the area of -1 logit (Q7:-1.10 to Q9:-
0.84 logits) which is near the mean ability of the sample.

CONCLUSIONS AND DISCUSSION

Having collected a fresh dataset of responses of pupils and teachers to the instrument
which we developed in a previous study (Afantiti Lamprianou and Williams, 2002,
2003), we used Rasch analysis to investigate (a) the degree to which the probabilistic
thinking of pupils and teachers suffers from the representativeness heuristic, (b)
whether the item hierarchy resulting from the Rasch analysis for pupils and teachers
would be similar, and (c) whether the teachers were aware of the common pupils’
errors and misconceptions on the items of the instrument.

The analysis of the pupils’ data showed that there is a hierarchy of two levels to
characterise their probabilistic thinking and this is in agreement with Afantiti
Lamprianou and Williams (2002, 2003). Indeed the item hierarchy was found to be
the same as the one found by Afantiti Lamprianou and Williams, although the
samples were from different schools and were collected two years apart. Pupils’
probabilistic thinking was found to be affected by the representativeness heuristic to a
great extent in the sense that few pupils managed to reach level 2 (to answer correctly
the Base Rate and the Sample Size items). The pupils found the ‘Explain why’ parts
of the Base Rate and the Sample Size items extremely difficult and very few
succeeded in answering these correctly.

The analysis of the Teachers’ responses showed that the probabilistic thinking of a
large number of respondents is influenced by the representativeness heuristic. Few
teachers were in a position to answer correctly the most difficult items testing the

Sample Size effect (Q9 and Q10).
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The item hierarchy resulting from the Rasch analysis of the Teachers’ and Pupils’
data is not the same. This may be seen by comparing Figures 1 and 2. The rank order
of item difficulties does not remain the same when the two figures are compared
(although, in absolute numbers, the differences are almost always within the 95%
error of measurement). The two hierarchies seem to be qualitatively different in the
sense that the Base Rate items were found by the teachers to be substantially easier in
comparison to the Sample Size and the Random Similarity items.

One of the most striking findings, however, was the fact that the more experienced
teachers were found to have a significantly poorer performance on the instrument
compared to the younger and less experienced teachers. One possible explanation
could be that the younger and less experienced teachers had the opportunity to
receive preparation and training on probabilities and statistics because these topics
became more widely available in the relevant teacher training courses in Universities.
This finding is in line with the suggestion of Godino, Canizares and Diaz (n.d.) who
suggested the need to increase the training opportunities for serving teachers on
issues like statistics and probabilities (Godino, Batanero and Roa, 1994; Godino,
Canizares and Diaz, n.d.).

This is notably in contrast to the other main result, i.e. that the experienced teachers’
pedagogical knowledge was superior (i.e. that the more experienced teachers were in
better position to predict the common errors and misconceptions of the pupils): this is
in the direction expected, and suggests that the methodology adopted affords the
making of nice distinctions between teachers’ subject-content and pedagogical-
content knowledge. This result reinforces the pilot work in this regard of
Hadjidemtetriou and Williams (2004).
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PURPOSEFUL TASK DESIGN AND THE EMERGENCE OF
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Janet Ainley', Liz Bills* and Kirsty Wilson'
'Institute of Education, University of Warwick, UK
*School of Education and Lifelong Learning, University of East Anglia, UK

In the Purposeful Algebraic Activity project’ we have produced a teaching
programme of spreadsheet-based tasks, using purpose and utility as the framework
for task design. Here we look in detail at the design of one of the tasks, using the
notions of visibility and invisibility to examine examples of pupils’ activity when
working on this task and the role which perceptions of purpose play in the way in
which transparency emerges.

INTRODUCTION

This paper focuses on one aspect of the Purposeful Algebraic Activity project. The
overall aim of the project has been to study pupils’ construction of meaning for
algebra in the early part of secondary education. The project takes up the challenge
set by Sutherland (1991) to create ‘a school algebra culture in which pupils find a
need for algebraic symbolism’. Central to the project is a programme of six tasks,
based on the use of spreadsheets. These tasks have been designed to offer purposeful
contexts for algebraic activity. In this paper we discuss in detail the design of one
task, and use the notion of transparency (Lave & Wenger, 1991) to examine potential
trajectories through the task, and some specific activity by pupils in response to it.

DESIGNING PURPOSEFUL TASKS

The relative lack of relevance in much of school mathematics, compared to the high
levels of engagement with mathematical ideas in out-of-school settings, has been
recognised by a number of researchers and curriculum developers. Schliemann
(1995) identifies the need for ‘school situations that are as challenging and relevant
for school children as getting the correct amount of change is for the street seller and
his customers’. However, setting school tasks in the context of ‘real world’ situations
does not provide a simple solution: there is considerable evidence of the problematic
nature of pedagogic materials which contextualise mathematics in supposedly real-
world settings, but fail to provide purpose (see for example Cooper and Dunne,
2000). Ainley and Pratt (2002) identify the purposeful nature of activity as a key
feature which contributes to the challenge and relevance of mathematics in everyday
settings, and propose a framework for pedagogic task design in which purpose for the
learner, within the classroom environment is a key construct.

' The Purposeful Algebraic Activity project is funded by the Economic and Social Research Council.
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This use of ‘purpose’ is quite specifically related to the perceptions of the learner. It
may be quite distinct from any objectives identified by the teacher, and does not
depend on any apparent connection to a ‘real world’ context. It may, of course, be
true in a trivial sense that learners construct the purpose of any task in ways other
than those intended by the teacher. In using purpose as a design principle, we have
tried to provide purposeful outcomes through the creation of actual or virtual
products, solutions to intriguing questions or explanation and justification of results.

We have also used the notion of the wutility of mathematical ideas: that is knowing
how, when and why such ideas are useful (Ainley and Pratt, 2002). Within a
purposeful task, opportunities can be provided for learners to use and learn about
particular mathematical ideas in ways that allow them to appreciate their utility. In
contrast, within much of school mathematics, ideas are learnt in contexts which are
divorced from any sense of how or why such mathematical ideas may be useful.

In addition to these two general design principles, we have been concerned to include
within the design of our tasks three other features: opportunities to exploit the
algebraic potential of the spreadsheet (Ainley, Bills & Wilson, 2004), opportunities
for pupils to engage in a balance of generational, transformational and meta-level
algebraic activities (Kieran, 1996) and opportunities to build on pupils’ fluency with
arithmetic to make links to both the spreadsheet notation and standard algebra.

AN EXAMPLE: THE FAIRGROUND GAME TASK

We now describe the design of the sixth and final task in our teaching programme.
The task was based on an idea which appears fairly frequently (in the UK at least) in
resources for teaching algebra in the early years of secondary school. The example in
Figure 1 is taken from the Framework for Teaching Mathematics for ages 11-14,
which forms the basis of the curriculum which schools in England have to follow
(DfES, 2001). It is from the section headed ‘Equations, formulae, identities’, for
pupils in the first year of secondary school (age 11-12).

The numberin each cell is
the result of adding the

numkbers in the two cells m+n A+p
beneath it.

m

Write an expression for the number in the top cell.
Write your expression as simply as possible.

Figure 1: The original example task

The example task given here seems to us to be limited in a number of ways. It is set
in a purely algebraic context. Although the text refers to ‘numbers’ no numbers are
given in this example (although further examples based on the same idea appear in
the sections for subsequent age groups which ask pupils to find the value of a missing
number from a pyramid array). It may be that teachers and pupils would already be
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familiar with the pyramid array from previous numerical activities, but there is no
attempt made in this example to make explicit links to arithmetic experience.

The choice of letters to represent numbers in the array is likely to suggest to some
pupils that the numbers in the bottom row are ordered, and indeed consecutive. This
task does not give any sense of the letters as variables, representing any number, and
indeed subsequent tasks based on the pyramid array are concerned with finding the
value of particular unknowns.

There is no purpose offered for the task. What is the outcome of adding numbers in
this way? And what is the benefit of writing the final expression ‘as simply as
possible’? For many pupils it would be difficult to see why m+2n+p is a simpler or
more usable expression than m+n+n+p, because they are offered no context in which
the usefulness of simplification might be apparent.

Producing a spreadsheet-based task

Despite these limitations, the pyramid array does seem to offer rich possibilities for
algebraic activity, and its cell structure lends itself well to use with a spreadsheet. The
spatial arrangement of the cells provides a visual metaphor for the repeating additive
structure of the mathematical problem, and thus offers the potential for the array to be
transparent for users: allowing them to look at the visible physical structure so that
the content of cells can be manipulated, and to look through this (transparent)
structure to get a sense of the mathematical structure which underlies it (Lave &
Wenger, 1991). However, Meira’s study of instructional devices suggests that
transparency emerges in the use of tools and symbols, rather than being an inherent
characteristic of them (Meira, 1998). Thus the design of tasks may be as significant in
the emergence of transparency as the design of tools themselves (Ainley, 2000).

In order to create a task which would offer purposeful activities, we explored the
questions which might be asked about the pyramid array, and the challenges which
might be set. If the pyramid is used for numerical activities, then one obvious group
of questions concerns the effect of changing the numbers used in the bottom row on
the subsequent rows, and the final total. Does changing the order of these numbers
alter the total? How can the highest or lowest total be achieved from any given set of
numbers? Recreating the array on a spreadsheet offers an environment in which it is
easy to explore such questions.

In our task we used the structure of the pyramid array as the basis for a game which
might be used at a school fair. The game uses a version of the array on a spreadsheet
as shown below. The player is given five numbers, which they can enter into the left
hand column in any order they like. To win, the player has to make a total (which
will appear in the cell on the far right) which is as high as, or higher than, a target set
by the stallholder. Pupils are presented with the example shown in Figure 2 on a
worksheet, with a description of the game.
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Y I O R There is a game at the schogl fair. Players are
1 4 given five numbers to enter into column A in
2 2 B any order they wish. The stallholder sets a
3 1 3 £l target number. If the number that appears on
A : 4 / L the right (column E) is the same as or higher
5 5 B 12 19 35| .
than the target number then the player wins!

Figure 2: Extract from the pupils’ worksheet

The decisions which we made in transferring the pyramid array to the spreadsheet,
and creating the game context, had a number of effects on the potential activity of
pupils working on the task.

Because of the ‘row and column’ structure of the spreadsheet, it was necessary to
change the spatial relationship of the cells from that in the original pyramid array®.
This arrangement may make it less clear which cells were added to produce the next
column. In the pupils’ worksheet for this task, the whole array of numbers is
presented, but how the array is constructed is not made explicit. We chose to rotate
the image, partly to make the spreadsheet operations more comfortable, and partly so
that pupils would not immediately associate this task with previous experiences they
may have had of working with the pyramid array. The array was enlarged to use five
starting numbers rather than three to make the challenge more realistic.

The first stage of the task is to recreate the game array on a spreadsheet, and to
explore the effects of changing the positions of the numbers in the first column, and
in particular to try to make the highest possible total which will become the target
number of the game. The next stage of the task concerns what happens when a player
wins by making the first target number. The stall holder must then offer a new set of
starting numbers, so pupils need to find a method of getting the highest total for any
set of five numbers. The final challenge is to find a way for the stallholder to
calculate what the target number should be for any set of starting numbers.

TRAJECTORIES THROUGH THIS TASK

We now discuss features of this task and the learning trajectories which we had
anticipated in relation to these, and compare these to examples of data from pupils
working on this task within our teaching programme. The teaching programme was
carried out in five classes in the first year of two secondary schools (i.e. pupils aged
11-12, representing a range of achievement). Four teachers who had been involved in
the development of the tasks used them as part of their regular teaching during the
year. For each task, pupils’ worksheets and detailed teachers’ notes were prepared.
The teachers were encouraged to introduce the tasks through whole class discussion
before pupils began work in pairs, and to bring the class together for further plenary
sessions as they felt appropriate. The pupils’ worksheets were designed to support the
pupils’ activity, but not to ‘stand alone’ in presenting the tasks. The six tasks were

* Although a closer approximation to the pyramid structure could have been produced by using alternate cells, this
would have added an unnecessary complication.
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used as three pairs during the year, with the Fairground Game task being the last in
the sequence. Classes spent two lessons of about an hour each on each of the tasks.
Most of these lessons took place in computer rooms rather than in the normal
classrooms. This had the advantage of providing enough access for all pupils to work
singly or in pairs at the machines, but had the disadvantages that pupils were
generally not very familiar with this environment, and that the layout of the rooms
was not well designed for the teacher to be able to circulate and monitor the progress
of all pairs of pupils.

During the teaching programme data was collected through fieldnotes and audio
recording of the teacher, to give an overall picture of the progress of the lesson, and
video and screen recording of one pair of pupils in each class working on each task.

Setting up the game and finding the highest total

In the first stage of the task the intended purpose was to produce a version of the
game on the spreadsheet, and then to use this to find how to get the highest total. We
anticipated that having to spot the pattern in the array of numbers and generate the
formulae to create the array on the spreadsheet would encourage pupils to attend
closely to the arithmetic structure of the game. By the time they undertook this task,
pupils were reasonably familiar with using the spreadsheet and most could enter
formulae confidently. The formulae that are required in the spreadsheet, as shown in
Figure 3, make the iterative, column to column structure of the array very clear.
However, this view of the spreadsheet was not available to pupils as they worked on
the task. The formulae have become (literally) invisible to pupils, and what they see
are the numbers in each cell changing.

A | B | © [ ® [ E ]

=A1+A2
=A2+4A3 |=B24B3
=A3+44  |=B3+B4  [=C34+C4
=A4+45  [=B4+B5  |=C4+C5  |=D4+D5s |

M| e (LD RO —
M (b | —

Figure 3: the completed spreadsheet formulae

Searching for the highest total involves repeatedly changing the values entered in the
cells in column A, and seeing the effect of this on the remaining cells in the array.
Our intention for pupils’ learning was that this would reinforce the notion of the cell
reference in a formula representing a variable: any number which may be entered into
a particular cell.

Once they had created their own version of the game, most pupils were able to
engage with exploring the effects of changing the order of the starting numbers, and
many worked systematically to identify a winning strategy. Kayleigh and
Christopher, in a low attaining set, did not immediately understand that they needed
to produce a spreadsheet made with formulae on which the game could be played. At
first they simply reproduced the array they had been shown by typing in the numbers.
After an intervention, they were able to put in the formulae, and use their game to
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explore the effects of changing the order of the starting numbers. However, they
seemed to see the purpose at this stage as getting the highest total, rather than as
finding how to get the highest total. Their attention was only on the final total, and
they did not see any reason to record how they had used the numbers to get each
result. There was no evidence that they were engaging with the notion of variable.

Finding how to get the highest total for any set of numbers

In the next stage of the task the purpose shifts to finding a strategy that will always
give the highest total. This not only reinforces the variable nature of the cell reference
by increasing the range of possible numbers, but focuses attention on the structure of
the array, and how the total is formed. Many pupils had already made a conjecture
about a method for placing the numbers to give the highest total, and using a different
set of numbers was a way of confirming their ideas.

Pupils’ offered a variety explanations for the method they had chosen. In some cases
their explanations suggest that the array of numbers on the spreadsheet became a
transparent tool which they were able to look through to see features of the
underlying arithmetic structure. We conjecture that their experience of entering the
formulae supported this as they explored the effects of changing the starting numbers.
For example, Hugo, in a middle attaining set, wrote ‘you get the highest overall
number when the two highest starting numbers are in the middle because they get
included in every sum until the overall answer’. Rupinda, in the same set, said, ‘You
have to put the largest number in the middle because when you travel through the
columns the big number will make a higher total’. In a high attaining set, a pupil said
in a class discussion ‘ the three middle numbers like carry them on and the other two
just get lost somewhere’.

Kayleigh and Christopher, in a lower attaining set, were initially motivated by a
competition to find the highest total with a new set of numbers, but still focussed on
the total rather than on a method for getting it. After some further intervention,
however, Christopher began to focus on the arrangement of the numbers, and talked
about why some gave higher totals in terms of how numbers ‘fravelled’ across the
grid. For him it seemed that opportunities to articulate his exploration were important
in allowing him to begin to look through the numbers to gain a sense of the structure
and the use of variable inputs.

Explaining the method and calculating the target number

The final stage of the task is designed to introduce purposeful use of standard
algebraic notation. The purpose is to give the stallholder a way to quickly calculate
the appropriate target number for any new set of starting numbers. Obviously this
could be done very easily using the spreadsheet array, or more laboriously by
working through the calculations by hand. However, in the context of the Fairground
game story the stallholder needs to do this calculation quickly and without his
customers seeing the outcome, and so another method is needed. To find such a
method, it is necessary to look at the structure of the array in a different way. Using
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spreadsheet formulae, the cumulative effect of the arithmetic structure is invisible
since each formula only refers to the previous column. The teachers’ notes for this
part of the task suggest that pupils should move away from the computer to find ways
of showing why their method will produce the highest total using standard notation.

Many of the higher attaining pupils were able to use letters in place of numbers and
work through the array simplifying their answers to give a expression for the total in
standard notation. Of these, some made comments in their written work that
suggested that they had appreciated the utility of the notation for showing structure.
Robin wrote, ‘Algebra helped me to find the strategy because it made it easier to see
how many letters were used and how often’, and Mandy commented ‘Algebra did
make it easier because it showed you how the numbers were added up’.

Other pupils found ways of showing the structure by working through (generic)
numerical examples. Amanpreet worked on a paper grid, using the starting numbers
3,5, 4, 6, 10 (in that order). In each cell he showed the calculation that was to be
done, but did not work out any of the results. In the final cell he recorded

3+5+5+4+5+4+4+6+5+4+4+6+4+6+6+10

He did not feel the need to collect like terms to simplify this result, but was happy
that it showed that the number on the middle position (4) was used most, and that 3
and 10 (in the first and last positions) were used least. Other pupils used the grid in
similar ways, but showing how to actually get the highest total, and some did
simplify their final calculation. Whilst these pupils seemed able to some extent to
treat the array as transparent, they had not yet fully appreciated the utility of standard
notation to express the generalised structure, or engaged with the purpose of finding a
way to calculate the total. In practice the time which teachers allowed for working on
this task was not long enough for most pupils to really address this final stage of the
task.

Faith also preferred to work with numerical examples to illustrate her general method
for finding the highest total for five numbers. However, when challenged to find a
strategy for six numbers, she went immediately to algebra, setting out a, b, c, d, e, fin
the first column and completing the grid without error to finish with 10c + 10d + a +
Se + 5b + fin the final cell. She wrote “c and d appear most often so that is where the
largest numbers should be placed’. The additional challenge of working with six
numbers may have helped her to appreciate the utility of using standard notation.

THE ROLE OF PURPOSE

In analysing these examples of pupils’ activity we see the role of purpose as
significant in shaping the focus of their attention, and thus the ways in which they
work with, and look at and through the tools involved, that is, the game array, the
spreadsheet formulae and the standard notation. For Kayleigh and Christopher, the
challenge of getting the highest total was engaging. Initially the effect of changing
the order of the starting numbers on the total was highly visible, but their lack of
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appreciation of the purpose of the exploration (i.e. finding how to get the highest
total) prevented them from also attending to the underlying structure of the array.
When his attention had been focussed on the purpose of finding a general strategy
through the teacher’s intervention, Christopher was encouraged to work with the
array and articulate his ideas in ways which seemed to make the underlying structure
more visible, so that he could describe the numbers ‘travelling’ through the array.

While some pupils were able to appreciate and articulate the utility of standard
notation for clarifying the way in which the total number was calculated, others who
were focussing on justifying their strategy for finding the highest total were happy to
use generic numerical examples, or generalised descriptions to do this. We conclude
that perceptions of the purpose of a task affect the ways in which tools are used
within it, and thus the extent to which these tools become transparent for the users.

References

Ainley, J.( 2000). Transparency in graphs and graphing tasks: An iterative design process
Journal of Mathematical Behavior, 19, 365-384

Ainley, J., Bills L. & Wilson, K. (2004). Constructing meanings and utilities within
algebraic tasks. In M. J. Hgines & A. B. Fuglestad (Eds.), Proceedings of the 28™ Annual
Conference of the International Group for the Psychology of Mathematics Education
(Vol. 2, pp. 1-8). Bergen, Norway: PME.

Ainley, J., & Pratt, D. (2002). ‘Purpose and Utility in Pedagogic Task Design’. In A.
Cockburn & E. Nardi (Eds.), Proceedings of the 26th Annual Conference of the
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17-24)
Norwich, UK: PME.

Cooper, C. & Dunne, M. (2000). Assessing Children’s Mathematical Knowledge.
Buckingham: Open University Press.

Department for Education and Skills (DfES). (2001) Framework for Teaching Mathematics:
Years 7, 8 and 9. Nottingham: DfES Publications.

Kieran, C. (1996). The Changing Face of School Algebra. In C. Alsina, J. M. Alvares, B.
Hodgson, C. Laborde & A. Pérez (Eds.), Proceedings of ICMES: Selected Lectures. (pp.
271-290) Seville S. A. E. M. ‘Thales’.

Lave, J. & Wenger, E. (1991) Situated Learning: legitimate peripheral participation.
Cambridge: Cambridge University Press.

Meira, L. (1998). Making Sense of Instructional Devices: the emergence of transparency in
mathematical activity. Journal for Research in Mathematics Education 29(2): 121-142.
Schliemann, A. (1995). Some Concerns about Bringing Everyday Mathematics to
Mathematics Education. In L. Meira & D. Carraher (Eds), Proceedings of the 19th
Annual Conference of the International Group for the Psychology of Mathematics

Education (Vol. 1, pp. 45-60). Recife, Brazil,: PME.

Sutherland, R. (1991). Some Unanswered Research Questions on the Teaching and
Learning of Algebra. For the Learning of Mathematics, 11(3): 40 — 46.

2-24 PME29 — 2005
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The main purpose of this paper is to propose a model that could describe the mode in
which people acquire the ability for proportional reasoning. The framework and the
analysed data are part of an ongoing research, in which the responses of subjects of
different ages and schoolings to different ratio- and rate-comparison tasks are
studied. A special accent is placed on the influence of number structure and context
upon proportional reasoning; the proposed model is based on a classification of
number structure reported in PME-26 and on a classification of contexts in three
categories (Rate, Mixture and Probability problems).

This paper reports part of an ongoing research on the strategies used by subjects of
different ages and schoolings when faced to different kinds of ratio comparison tasks.
In the part conveyed, we are concerned with the following question: Is it possible to
describe the way in which the ability for proportional reasoning develops? The results
reported and the ensuing proposed model are part of a larger study (Alatorre, 2004).

FRAMEWORK, PROVIDED BY PREVIOUS WORK

In the last three PME’s different parts of the research have been put forward. The
framework used in the research was presented in Alatorre (2002), an explanation of
what are the “different kinds of ratio comparison tasks” as well as a description of the
interview protocol used in the experimental part were submitted in Alatorre and
Figueras (2003), and in Alatorre and Figueras (2004) the results obtained by six
quasi-illiterate adult subjects were described. A succinct summary of these papers
will be sketched here; the reader is referred to them for a more complete account.

Among the problems calling for proportional reasoning, those in which the task is a
comparison of ratios can be classified according to three issues: context, quantity
type, and numerical structure. Figure 1 proposes a classification according to the first
one; it blends together the classifications proposed by several authors (Freudenthal,
1983; Tourniaire and Pulos, 1985; Lesh, Post and Behr, 1988; Lamon, 1993).

Rate problems: couples of expositions (Two quantities)
Mixture (One quantity)
Probability (One quantity)

Geometrical problems: couples of 2-constructs (Two quantities)

Part-part-whole problems: couples of compositions

Figure 1: Taxonomy of ratio comparison tasks according to context

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
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Examples of the first three kinds are shown in Figures 2 to 4 (geometrical problems
are not dealt with in this research).

Notebook Notebook O Notebook Notebook Notebook O
< < < < <
PN FOSN PN PPN SN @)

Figure 2. Example of a Rate problem: In which store are the notebooks cheaper?
(The round figures stand for coins)

oooo 0

Figure 3. Example of a Mixture problem: In which jar does the mixture taste
stronger? (The grey glasses contain concentrate and the clear ones
contain water). (Problem taken from Noelting, 1980)

OO0O0O0O0O0 OO0 O

Figure 4. Example of a Probability problem: If bottles are shaken with marbles
inside, in which one is a dark marble more likely to come out at the first try?

The second issue is the quantity type. Quantities can be discrete (as the marbles in
Figure 4) or continuous (as the amounts of liquids in Figure 3).

The third issue is the numerical structure. In a ratio or rate comparison there is always
a foursome: four numbers stemming from two “objects” (1 and 2), in each of which
there is an antecedent (e.g. notebooks, concentrate glasses, dark marbles) and a
consequent (e.g. coins, water glasses, light marbles). Alatorre’s (2002) framework
includes a classification of all possible such foursomes in 86 different situations that
can be grouped in three difficulty levels, labelled L1, L2, and L3; their description
will close the section dedicated to the framework.

In the previous paragraphs a description of the classification of ratio-comparison
problems was given. Here follows a classification of the strategies used by subjects in
their answers to such problems. Alatorre’s (2002) framework, as presented in
Alatorre and Figueras (2003 and 2004), is to be used. Strategies can be simple or
composed; in turn, simple strategies can be centrations or relations. Centrations can
be on the totals CT, on the antecedents CA, or on the consequents CC. Relations can
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be order relations RO (when an order relationship is established among the
antecedent and the consequent of each object and the results are compared), or
subtractive relations RS (additive strategies), or proportionality relations RP.
Composed strategies can be four forms of logical juxtapositions of two strategies.

Strategies may be labelled as correct or incorrect, sometimes depending on the
situation (combination and location) in which they are used. The most important
correct strategies are:

RP in all situations (for instance, saying in Figure 2 that in side 1 the
notebooks are cheaper because they cost $0.50, whereas in side 2 they cost
$0.67; or saying in Figure 3 that side 2 has a stronger taste because if three
times as much juice was prepared in jar 1 it would need the same three
concentrate glasses that are in jar 2, but twelve water glasses, which are more
than the two of jar 2; or saying in Figure 4 that in both bottles a dark marble is
equally likely, because side 1 is twice as much as side 2, or because in both
sides there are three light marbles for every pair of dark ones);

RO in situations where one of the antecedents equals its consequent, or where
one of the antecedents is less than its consequent and the other is more than its
consequent (for instance, in Figure 3, saying that jar 2 has a stronger taste
because it has more concentrate than water, whereas jar 1 has more water than
concentrate);

In some situations, some composed strategies that can be considered as
theorems in action (TA, see e.g., Vergnaud, 1981) (for instance, saying in
Figure 3 that jar 2 has a stronger taste because it has more concentrate and
fewer water glasses than jar 1); there are overall 14 TA’s.

Incorrect strategies are:

CT in all situations (for instance, saying in Figure 4 that a dark marble is more
likely in bottle 1 because it has altogether more marbles than bottle 2);

CA in most situations (for instance, saying in Figure 2 that side 2 is cheaper
than side 1 because it has more notebooks than side 1);

CC in most situations (for instance, saying in Figure 4 that a dark marble is
more likely in bottle 2 because it has fewer light marbles than bottle 1);

RO in most situations (for instance, saying in Figure 2 that in both sides the
notebooks are equally cheap because both have more notebooks than coins);

RS in all situations (for instance, saying in Figure 4 that a dark marble is more
likely in bottle 2 because it only has one more light marble than dark ones,
whereas in side 1 there are two more);

Most composed strategies.

The three difficulty levels mentioned before refer to which correct strategies may be
applied. L1 consists of all the situations where, in addition to RP, other correct
strategies may be used. In L2 and L3 only RP can be used; the difference among
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them is that L2 consists of situations of proportionality (both ratios or rates are the
same), and L3 consists of situations of non-proportionality. An example of L1 is the
array of Figure 3; an example of L2 is Figure 4; and an example of L3 is Figure 2.

METHODOLOGY

A case study was conducted in Mexico City with 23 subjects, aged from 9 to 65 and
with schooling from O (illiterate adults) to 23 (PhD). Each one was interviewed for a
time between 60 and 90 minutes; the sessions were videotaped. Two of the subjects
are in fact one, Sofia, who was interviewed twice: when she was aged 10 and 12.

During the interviews, subjects were posed several questions in each of 10 sorts of
problems, which were 4 Rate problems (of which the juice problem of Figure 2), 2
Mixture problems (of which the notebook problem of Figure 3), 2 Probability
problems (of which the marbles problem of Figure 4), and two forms of partitions
problems as controls (one fraction and one pizza problem).

Each of the ten problems was posed in different questions according to numerical
structure. Fifteen such questions were designed, five in each of the difficulty levels
L1, L2, and L3; all the problems could be posed in each of them. To each subject all
of the problems were posed in some of the 15 numerical questions, covering at least a
couple of the questions of each level. Each time, the subjects were asked to make a
decision (side 1, side 2, or “it is the same”) and to justify it.

A total of 2518 answers was thus obtained; 2049 (81%) of them were classified using
the strategies system described above, and the rest either consisted of a decision
without a justification (9%), or had a justification that was only a description (4%), or
consisted of solution mechanisms different from the strategies described before (6%).
Two phases of analysis were undertaken: quantitative and qualitative.

QUANTITATIVE ANALYSIS

In order to make a quantitative analysis

possible, one point was given to all

correct strategies, and 0.5 point was 90 1

given to answers that could be jg

incomplete  expressions of  correct 60 |

theorems in action. Also, 0.5 point was 50 —&—Rate
given to all non-classifiable answers that | = 40| — - ®- - Mixture
fulfilled the following conditions: correct 30 1 —&— Probability
decision and either no mechanism or a 207 - -O-- - Partitions
mechanism that could eventually become 18 ]

correct (such as arithmetic or geometric 0 1 s
approximations). Then, for each group of Difficulty levels

answers (e.g., for each subject) a score

was obtained, and expressed as a

: Figure 5. Scores according to context
percentage of the answers in that group. & &
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A first approach consists of verifying that the categories labelled L1, L2, and L3 are
indeed difficulty levels. As Figure 5 shows, L3 is, in all of the context types, the most
difficult (i.e., the one with lowest scores), and L1 the easiest (highest scores). Except
for the Rate and the Partitions (control) problems, L2 has intermediate scores. Figure
5 also allows a comparison of the different context types. The Rate problems are the
easiest ones, and the Probability problems are the most difficult ones. Mixture
problems are as easy as Rate problems only in level L1, and in levels L2 and L3 lay
between Rate and Probability problems.

In a second approach the behaviour of the 23 subjects in the three levels (across all
contexts) is studied. The 23 subjects can be classified in four groups, as shown in
Figure 6, where the age (child = younger than 15, adult = older than 15) and the
schooling of the subjects within each group are also described.

100 - 100 + 100 + 100 -

90 4 90 - 90 A 90 4

80 4 80 4 80 - 80

70 A 70 70 A 70 A

60 - 60 - 60 - 60 +

50 4 50 50 A 50 4

40 | 40 - 40 1 40 -

30 4 30 4 30 A 30

20 4 20 A 20 A 20 -

10 4 10 A 10 10 4

0 T T A— 0 T T 1 0 T T 1 0

LI L2 L3 LI L2 L3 LI L2 L3 L1 L2 L3
GROUP A GROUP B GROUP C GROUP D
P S MS P S MS P S MS P S MS
Child 1 0 1 1 1 2 0 0
Adult 2 0 0 1 1 3 1 2 1 2 1 3

Figure 6. Four groups of subjects
(P=Primary school or less, S=Secondary school, MS=More than Secondary School)

Group A consists of three subjects in primary school, a child and two adults. For
them Level L1 was fairly easy, level L3 was very difficult, and level L2 was almost
as difficult as L3. Groups B and C consist of assortments of young and adult subjects
of all schooling levels; they all find level L1 rather easy and level L3 rather difficult;
the difference between Group B and Group C is that in the former the difficulty of
level L2 lies midway between those of L1 and L3, whereas in the latter it is equal or
even smaller than that of L1. Finally, group D consists of six adult subjects in the
three schooling stages, who had good results in all three levels L1, L2, and L3.
Among these subjects a necessary (but not sufficient) condition for belonging to
Group A was very little schooling, and a necessary (but not sufficient) condition for
belonging to Group D was some age (the youngest of these subjects was aged 16).
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An interesting case is that of Sofia, interviewed at ages 10 and 12, because a small

longitudinal study can be carried out
with her data. Figure 7 shows that when
aged 10 Sofia belonged to Group B, and
her development over two years took
her to Group C. She had an increase in 20
her scores in all three levels, which was . | |
small for L1 and much greater in L2 L1 L2 L3
and L3.

100 -
80

60 - —e— Soffa, 12 y.o.
40 —o— Sofia, 10 y.o.

QUALITATIVE ANALYSIS Figure 7. Sofia’s results

The strategies used by the subjects of
the four Groups described before differ in some ways.

e In Group A subjects use the correct order relations RO and Theorems in
Action (TA) that are applicable in L1, but almost never use the proportionality
relations RP. This explains their failure at levels L2 and L3, where they use
mainly incorrect centrations.

e Subjects in Group B also use correct RO and TA in L1. They use RP almost
only in the proportionality situations of L2, and then again only in some cases
of L2 (mainly in Rate problems); they seldom use RP in the non-
proportionality situations of L3. The strategies that account for the incorrect
answers are mainly centrations.

¢ In Group C subjects use widely RP in L2, and they even use RP in some L1
questions (although still using correct RO and TA). They still use mostly
incorrect strategies in L3, mainly centrations and the additive strategies RS,
especially in the most difficult Probability and Mixture problems.

e Subjects of Group D can use RP in all kinds of situations. Some of the
subjects go so far as to use exclusively RP, even in LL1. The scarce incorrect
answers are due to centrations, RS and arithmetically mistaken attempts at RP.

A DEVELOPMENTAL MODEL

The quantitative and qualitative analyses conducted permit the construction of a
model that describes how the subjects grow in their ability to respond correctly to
ratio comparison tasks. Subjects in groups A, B, C, and D (in that order) have
increasingly higher global scores (respectively 40%, 60%, 68%, and 76%); they also
use increasingly correct and sophisticated strategies. If one adds the fact that Sofia
evolved from Group B to Group C, it can be postulated that within a given context,
these groups correspond to stages or moments that occur in that order, as shown in
Figure 8.
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It may be hypothesized that before responding like Group A, which is the first
moment, subjects could go through a moment zero where all three levels are equally
difficult (i.e., very young children). Then the first ability to develop is the use of non-
proportionality correct strategies RO and TA, which are only useful in level L1 (first
moment). After that the ability to use the proportionality relations RP in
proportionality situations (L2) would slowly grow, first almost without any change in
the non-proportionality situations (second moment), and only when the ability to use
RP in L2 equals the ability to use RP or RO or TA in L1 would the ability to use
proportionality relations in the non-proportionality situations L3 start to develop
(third moment). In the last stage this last ability equals that of the other two levels
(fourth moment).

—a— fourth moment
—=— third moment
—e— second moment

—=a— first moment

---0--- moment zero

L1 L2 L3

Figure 8. Developmental model

This development, however, is only within a certain kind of context. The whole
process would start first with the Rate problems, which are the easiest ones, then with
the Mixture problems and finally with
the Probability problems, which are the | 100,
most difficult ones. Thus, at a given
instant a person is in different stages or

80 -

moments regarding his/her response to 60 —e—Rate
different kinds of problems. For —0O— Mixture
instance Flor, who is one of the | *°° —4— Probability

subjects in Group D, is in the first 20 |
moment in the Probability problems, in
the third moment in the Mixture 0
problems and in the fourth moment in
the Rate problems (see Figure 9).

Figure 9. Flor’s results

PME29 — 2005 2-31



Alatorre & Figueras

CONCLUSIONS

It has been said before that it is easier for children to solve ratio comparison tasks in
proportionality situations than in non-proportionality ones. However, if one considers
that other strategies apart from the proportionality relations can be correct, some non-
proportionality situations can be easier (for children as well as for adult subjects) than
the proportionality ones. But it is the ability to adequately solve the proportionality
situations that can trigger the ability to solve the non-proportionality situations where
only the proportionality strategies may be applied.

It has also been said that proportional reasoning is highly context-dependent. This
paper has shown that Rate problems are the easiest to solve and Probability problems
are the hardest, with Mixture problems between them.

The data obtained from this group of 23 subjects suggest that their ability for
proportional reasoning evolves in the form described by the proposed developmental
model. It can be conjectured that the model could describe this evolution for other
subjects as well. This would in particular entail that only people with very little
schooling would be at the first stage of this development, and that only people above
a certain age would be at the last stage. In turn, this could imply that neither the
school nor life are sufficient conditions for the development of proportional
reasoning, but that both can be considered as catalysts for the process.
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REFERENTIAL AND SYNTACTIC APPROACHES TO PROOF:
CASE STUDIES FROM A TRANSITION COURSE

Lara Alcock Keith Weber
Graduate School of Education, Rutgers University, USA

This paper aims to increase our understanding of different approaches to proving.
We present two case studies from an interview-based project in which students were
asked to attempt proof-related tasks. The first student consistently took a referential
approach, instantiating referents of the mathematical statements and using these to
guide his reasoning. The second consistently took a syntactic approach, working with
definitions and proof structures without reference to instantiations. Both made good
progress on the tasks, but they exhibited different strengths and experienced different
difficulties, which we consider in detail.

INTRODUCTION

Writing proofs in advanced mathematics requires the correct use of formal definitions
and logical reasoning. However, both mathematicians and mathematics educators
have argued that intuitive representations are also necessary for reasoning to be
effective (Fischbein, 1982; Thurston, 1994; Weber & Alcock, 2004). This paper
highlights the fact that definitions and formal statements can be treated as strings of
symbols that may be manipulated according to well-defined rules, or as formal
characterizations of meaningful objects and relationships between these, and that
either treatment can be the basis for productive reasoning. It is related to the work of
Pinto and Tall (1999), who argue that one can extract meaning from a definition by
logical deduction, or give meaning to it by refining existing mental images. We say a
proof attempt is referential if the prover uses (particular or generic) instantiation(s) of
the referent object(s) of the statement to guide his or her formal inferences. We will
speak of a proof attempt as synfactic if it is written solely by manipulating correctly
stated definitions and other relevant facts in a logically permissible way.

We report two case studies from a project designed to investigate whether students
think about the referents of mathematical statements while attempting proofs. In one
case the student produces proofs referentially and in the other, syntactically. The
specific purposes of examining the case studies are: 1) to show that students in
transition-to-proof courses can take two qualitatively different approaches to proof
writing, 2) to demonstrate that students taking each approach can be at least
somewhat successful in writing proofs, and 3) to highlight what particular difficulties
students have when using each approach.

RESEARCH CONTEXT

In this exploratory study, eleven students were interviewed individually at the end of
a course entitled “Introduction to Mathematical Reasoning”, the aim of which is to
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facilitate students’ transition from calculation-oriented mathematics to more abstract,
proof-based mathematics. It is designed to provide exposure to techniques of
mathematical proof, as well as to content on logic, sets, relations, functions, and some
elementary group, number and graph theory. The study aimed to 1) investigate the
degree to which students at this level tended to instantiate mathematical objects while
working on proof-oriented tasks, 2) discern any possible correlation between such a
tendency and success at this level, and 3) identify purposes for which students used
their instantiations. The participants were asked to complete three tasks, two of which
involved producing proofs and one of which involved explaining and illustrating a
provided proof. They were then asked to reflect upon their usual practices when
trying to produce and read proofs.

This paper will exhibit data from the proof production tasks. These were presented to
the students in written form, and are reproduced below.

Relation task
Let D be a set. Define a relation ~ on functions with domain D as follows.
f~g if and only if there exists x in D such that f(x) = g(x).

Function task

Definitions: A function fR—R is said to be increasing if and only if for all x, ye R, (x>y
implies f{x)>f(y)). A function fR—R is said to have a global maximum at a real
number c if and only if, for all xe R(x#c implies f{x) < f(c).)

Suppose f is an increasing function. Prove that there is no real number ¢ that is a global
maximum for f.

The participants were presented with these tasks one at a time on separate sheets of
paper, and were asked to describe what they were thinking about as they attempted to
answer. They worked without assistance from the interviewer until they either
completed the task to their own satisfaction or became stuck. At this point the
interviewer asked them about why they had taken specific actions and/or about why
they now found it difficult to proceed. These questions focused on the student’s
choice of actions and conceptions of their own difficulties rather than on conceptual
understanding or logical reasoning per se.

The interviews were transcribed, and the authors independently identified episodes in
which the student used an instantiation and characterized the purpose for which this
was used. It became clear that some students took a consistently referential approach,
always instantiating in response to a question, and other students took a consistently
syntactic approach, almost never instantiating. This was particularly evident in the
more successful students. This paper will focus on two students, Brad and Carla, both
of whom obtained A’s on their midterm examination, and made substantial progress
on the tasks in these interviews. Brad instantiated in response to all of the interview
tasks. In contrast, Carla never did so. Since they were both articulate in reflecting
upon their own strategies, they provide good material for us to see how each
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approach has distinct advantages and disadvantages. It is worth noting that Brad and
Carla had attended the same class and so had been exposed to the same lectures, the
same homework assignments etc.

REFERENTIAL APPROACH: BRAD
Response to relation task

Brad read the relation task and, after an initial comment that he was “trying to think
what the question’s asking”, he announced,

B: Alright, I'm just going to like write out some examples. To try and...like, set a D.
And then...yes, write out a function or two. I don’t know if that’s going to help me.

He wrote the following on his paper:
D={1,3,5} foo=x* g(x)=x
He then said,

B: Would this be an example? Like where f of x is equal to 1, and g of x is equal to
l...and since x is 1, like 1 is in the domain, fis related to g?

He went on to recall that an equivalence relation should be reflexive, symmetric and
transitive. In reasoning about reflexivity and symmetry he spoke about f and g as
though these stood for general functions, but referred back to his instantiation in
which f(1)=g(1) as if to confirm his thinking.

B: So...so okay if it’s reflexive, then...f of x should be equal to f of x. Or there should
be x in D with, so that f of x is equal to f of x. Okay. That’s all ’'m going to say!
Laughs. And...that’s true. Because 1 is equal to 1. Symmetric, is um...x — f implies
— f1is related to g implies g is related to f. So...so this is really the g, there’s an x in
D such that f of x is equal to g of x. g is related to x — ah, f, when there’s an x in D
such that g of x is related to f of x. Pause. So...writing...implies that g
of...writing...yes. Because if...because x one, f of x is equal to g of x, then the
same x in D that g of x must be equal to f of x.

In reasoning about transitivity, he no longer referred to his instantiation, and made an
error based on implicitly assuming that the value of x for which f{x)=g(x) is the same
as the value for which g=h.

B: And then transitive. f, g, and g is related to some 4, then f is related to h. So fis
related to g is...x in D such that f of x is equal to g of x. And g related to % is
there’s an x in D such that g of x is related to...is equal to /& of x. So then...x is in
D in both cases. And if x is equal to g of x and g of x is equal to & of x, f of x must
be equal to A of x.

The interviewer did not attempt to correct Brad’s answer, but instead asked him what
role his example had played for him. Brad said,

B: Um, I guess it just...gives you something concrete [...] because this is really
general. And you can’t really put your hands on this. You know I can’t like, get a
grasp of it.
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It appears important to Brad to feel that he can “grasp” the concepts in the question,
and he seemed to achieve this to his own satisfaction. However, he did not maintain
explicit links between this example and the general argument, and did not spot his
own error in this case.

Response to function task

Brad’s response to the function task began in a similar way. He again commented
that he was trying to understand the question, and stated:

B: And I’m going to take an example to make sure I’'m doing it right.

He wrote the following, along with a small sketch graph of f(x)=x:

Jlo=x x=2 f(2)=2 y=3 f(3)=3
After overcoming some confusion caused by the fact that the notation was not used in
the standard y=f(x) format, Brad suggested a proof tactic.

B: ...Ithink we can do this by contradiction. Assume that...assume that um...if fis an
increasing function then c...ah...then there is...a ¢? For which there is a max. And
then prove that that can’t happen. And then, so that’ll prove it.

He began to work on this idea, but without a very good command of how the
variables could be set up to make an argument on this basis.

B: Alright so, if there is...a global max...writing, mumbling...f of ¢ is greater than
both fof x and f of y.

After some struggle, he considered a graphical instantiation:

B: D’'m just trying to see it by looking at the graph. How I can relate it. Like, the two
terms interrelate. Why...because I can’t even see — I want to know why, there can’t
be one [...] like know why it can’t be and then try to prove.

When the interviewer asked him to talk through his thinking, he said,

B: Alright. I'm thinking that in the definition of increasing, there’s never going to be
one number that’s the greatest. There’s always going to be like, a number greater
than x. Because it’s, because it’s increasing. So there’s always going to be some
number greater than the last. So if x is greater than — that’s what I assumed here. x
is greater than y, then there’s going to be some x plus 1, that is going to be greater
than y plus 1, so that f of x plus 1 is going to be greater than f of y plus 1. Or
something like that. Where like, it’s just going to change.... So then, there can’t be
some number, you know that...if it’s increasing there can’t be some number that’s
greater than all of them. Or, some fof c.

In our view Brad seemed to have a reasonable idea that for any number in the
domain, one can always take a greater number, whose image under the function will
be greater than that of the original. However, he did not have good control over the
way in which the definitions, and in particular the variables x,y and ¢, could be used
to express this argument.
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In reflecting upon the function task, the interviewer commented that Brad had spent
quite a lot of time thinking at the beginning before writing anything, and asked him
what he was thinking in that time. Brad once again indicated that he was using
examples to grasp the concepts.

B: ...I didn’t, I never heard of a global maximum. I don’t think we learned about
increasing, but I’'m not sure. I don’t remember learning about it. So I wanted to
teach it to myself first. And, I want to teach myself by examples, you know. And I
was kind of starting to understand a bit more when I was trying to, in trying to
grasp — I grasped increasing, it seemed like, okay. But then I was trying to grasp the
global max.

The interviewer then asked what happened when Brad stopped thinking about
examples and wrote “if f is an increasing function”. Brad replied,

B: ...it doesn’t tell you, proof by induction or proof by contradiction, and so...I’m just
trying to think of a way that I can prove it. Like, take what’s here and then prove it.
So then, and then I was just going to write down what, a claim or like what we
knew.

Summary

It seems that Brad used examples at the following junctures in his work:
1. To initially understand or grasp the concepts in a given question.
2. To decide on a type of proof to use.
3. To fall back to for more ideas when stuck.

This referential approach served him reasonably well in these respects, affording him
a sense of understanding and an ability to decide how to proceed. What it did not
seem to afford him was the ability to use this insight to write a full and correct
general argument. He did not seem to use his examples to effectively guide his
manipulation of the symbolic notation at the detailed level. In fact, his reflective
comments on his proof-writing strategies suggest that he was not trying to do this,
relying on his knowledge of standard types of proof to provide this structure:

B: ...I start out by forming an example to, you know, get a strong grasp of what
they’re asking me. And then, ah, probably play around with like, maybe do a few
examples, so I can see what it’s — actually maybe how I could prove it, which
method of proof I should use. And then once I find a method, proceed from there
[...] because it seems like in all the different types of proofs we’ve done, there’s
always some kind of structure. [...] Then you can structure it the way you’ve
normally done it before.

SYNTACTIC APPROACH: CARLA
Response to relation task

Carla responded quickly to the relation task. She listed the properties of an
equivalence relation, and went on to draw a conclusion.
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C: Oh...okay. It’s transitive, symmetric, and reflexive. Writing. So to prove that it’s
transitive...um...pause...if x is in D, f of x is...equal to g of x. f of x is equal to f of
x, so f is related to g. So it’s reflexive...um...symmetric is...if f is related to g,
then...f of x is equal to g of x, so g is related to f as well...so...symmetric. And
transitive is...f is related to g, that means f of x is equal to g of x, and g is related
to...a I guess...so g of x is equal to a of x. So it’s transitive as well. So...yes. It’s
an equivalence relation.

She made an error similar to Brad’s by not giving due consideration to the existential
quantifier. The interviewer then asked whether she would write anything else if she
were going to hand this in for homework. Carla said yes and elected to provide an
answer for symmetric. She wrote:

Symmetric YES if f~g, then f{x)=g(x)

if fix)=g(x), then g(x)=f(x)

thus g~f, so if f~g, then g~f thus it is symmetric.
As in Brad’s case, Carla did not spot her own error.
Response to function task

Carla’s response to the function task began in a similar way, with reading of the
question followed by immediate writing.

C: So...I’m thinking the way to prove this is using contradiction. So, I would start out
by assuming...there exists...a c...for which...f of x is less than f of ¢, when x is not
equal to c¢. Okay. Pause. So now I'm trying to use the definition of increasing
function to prove that, this cannot be. Um...so there exists a real number for which f
of x is less than f of c, for all x...and there’s...f...is an increasing function...for...all
x...y in R, x greater than y implies f of x greater than f of y. Mm...pause...I guess
what I'm trying to show is if x is in reals, and they are infinite...for all x...there will
be...some function f of ¢ greater than f of x. Long pause. So...there exists...an
element...in R...greater than c¢. Um...for x...because...f is an increasing
function...f of x will be greater than f of c. Um...a contradiction...so that...there is
no c for which fof ¢ is greater than f of x...for all x.

Despite successfully producing a proof, she commented that “it seems a bit flaky”.
When asked why, it seemed she lacked a sense of meaning.

C: I don’t know, it just doesn’t make sense for me. It, it feels like, I just, it’s just
proved systematically, without being able to imagine what’s going on. So that’s
why it feels flaky.

When asked what made her decide to prove by contradiction, Carla answered that she
had used the form of statement to decide upon an appropriate proof structure.

C: Because, in class, whenever we have some statement which says... “there is...no
such number”, or “there exists no such number”, then we assume there is, such
number. And then we go on to prove that that would cause a contradiction, thus, it
doesn’t exist. So it was just, something...automatically ingrained, when I see those
couple of words, I think contradiction.
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She found it rather difficult to describe how she moved from this point toward
finding a link between what was given and what should be proven. What is
interesting is that she was not referring to instantiations as she did this, as revealed by
her later definite negative answer to a leading question from the interviewer.
I: Did you have any sort of picture in your head for this one?
C: No, no...not really. I mean I know what a global maximum is from calculus...I
mean I’ve done these sort of things so many times. But I didn’t imagine any, any
sort of function. Something that would have a maximum. [...] Really...I guess I did
it very systematically and theoretically, because I just stepped — this is the rule, and
do it through.
Summary

Overall it seems that Carla takes a syntactic approach to proving, beginning by
writing down assumptions and using knowledge about standard forms of words to
decide upon a structure for the proof. This is confirmed by her later reflective
comments. When asked about any general strategies she had for writing proofs, she
said,

C: Um, I just start with a claim...I usually don’t have anything in my head beforehand.
I start off with what I know, and then I assume, what they’re talking about, that I
should use, in that case. And then I just try to work off of there. And I try to imagine
what my goal is, and kind of work from both sides, to the center.

When asked more specifically about the first things she does, she stated that she
“thinks of a method to use” and went on to explain how she identifies an appropriate
one:

C: If it’s something that has to be proven for all...numbers in such a set, then I use
induction. And...for instance, if uniqueness is supposed to be proven, I always
assume there’s two different numbers that produce the same result. Or something to
that extent. And use contradiction. Or, for there exists no number such that, I say
yes, assume there is and then use contradiction.

This basic strategy still stands when she does not immediately know which technique
to use.

C: 1 would try out just different ones and see which one gets me the farthest. [...] We
don’t really know many methods, so it’s not that difficult, to get one right.

This last comment indicates that this syntactic approach affords Carla the ability to
answer most of the questions she encounters in this transition course. What it does
not appear to afford her is a sense of meaningful understanding of her answers, unlike
that which Brad appears to obtain by reference to examples. Indeed, Carla expressed
a discomfort with the use examples in proving, both as counterexamples and as a
basis for constructing general arguments (the latter at least in graph theory).

C: I could never grasp the, just concept of giving a simple counterexample, any old
thing. And those were usually the easiest problems on the exam. And I would
always get zeros on them. Because I tried to disprove it in a general manner. And, |
guess I’'m just not, I don’t trust examples, but...
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C: ...even if I have convinced myself that that proof would be true, and it would
happen in certain examples, it wouldn’t help me in writing out the proof itself.
Because it has to hold for all graphs, and...I don’t know how to explain it. I have
trouble...generalizing graphs.

It is not clear whether she has over-adopted the maxim “you can’t prove by example”
or is simply unable to generate a proof based on examining an example.

DISCUSSION

Compared with the majority of the interview participants, both Brad and Carla were
doing well in the class, and made good progress on the interview tasks. However,
they worked differently: Brad took a consistently referential approach, and Carla a
consistently syntactic approach. The referential approach afforded Brad a strong
sense of meaningful understanding and a way to decide on an appropriate proof
framework, but left him sometimes lacking an ability to coordinate the details of a
general argument. The syntactic approach afforded Carla a systematic way of
beginning a proof attempt and deciding on an appropriate proof framework, and
pursuing this at the detailed level. However, it left her sometimes lacking a sense of
meaning as well as confidence in situations in which examples could be useful.

We suggest that these different approaches deserve attention if we wish to help
similar students build on their strengths. It would probably be more productive to
help Brad describe his examples formally than to reject the examples in favor of a
rigid approach to formal work; likewise, to allow Carla to keep using her syntactic
strategy as a first approach, but to increasingly recognize situations in which
examining examples can be useful. However, we also note that both students seem to
have an underdeveloped notion of how to use examples and syntax fogether to
construct a proof. Hence we suggest that those taking either approach could benefit
from instruction that emphasizes the detail of links between formal statements and
proofs and their referent objects and relationships.
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TEACHERS’ BELIEFS ABOUT STUDENTS  DEVELOPMENT OF
THE PRE-ALGEBRAIC CONCEPT OF EQUATION
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Pre-algebraic content has recently been introduced in primary education. One
question that is worth examining is to what extend does the teachers’ views of the
complexity of algebraic tasks match the actual students’ difficulty. In this report we
focus on teachers” beliefs about the students” difficulty to handle simple equations.
Ninety-three 6" grade students completed a test with 14 tasks, while 50 teachers
rated the items according to difficulty. It was found that teachers could only partially
predict students understanding and reasoning. Contrary to teachers™ perceptions, the
students could manage word equations and story problems easier than they could
handle tasks represented by pictures and diagrams. This mismatch needs to be
addressed to help teachers organize productive learning activities.

Introduction

Beliefs constitute one of the three basic components of the affective domain, the
other two being emotions and attitudes (McLeod, 1992). Beliefs might be defined as
one’s personal views, conceptions and theories (Thompson, 1992). The importance of
the construct lies in findings that teachers’ behavior is primarily determined by their
belief system rather than by their own knowledge. Experience and prior knowledge
are also important, but beliefs act as the “driving forces” in shaping the structure and
content of their practices in the classroom.

The teachers’ beliefs shape the type, content and representation format of the
activities used in the classroom. As Hersh (1986) put it, “one’s conceptions of what
mathematics is affects one’s conceptions of how it should be presented” (p.13). As
Nathan & Koedinger (2000a) mention, “teachers’ beliefs about students’ ability and
learning greatly influence their instructional practices” (p. 168). More specifically,
their previous study of teachers’ beliefs has revealed that teachers consider students’
ability to be the characteristic, which has the greatest influence on their planning
decisions. Furthermore, Borko & Shavelson (1990) have found that teachers
generally report that information about students is the most important factor in their
instructional planning. Raymond (1997) presented a visual model depicting the
relationships between mathematics beliefs and practice. She found a direct
relationship between mathematics beliefs and mathematics teaching practice.

Recently, the mathematics education community has given more emphasis on
studying the teachers’ beliefs on specific aspects of mathematics teaching, while little
attention has been paid on studying beliefs about the students’ ability on developing
specific mathematical content. The Professional Standards for the Teaching of
Mathematics (NCTM, 1991) proposes that teachers must be more proficient in
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selecting mathematical tasks to engage students’ interests and intellect. For
successful learning outcomes, it is necessary for mathematics teachers to have strong
mastery of mathematics content, mathematics pedagogy and knowledge of children’s
mathematical thinking. Thus, it is important to study how the teachers’ beliefs guide
them to take into consideration these variables during instructional decision making.

In this study we examine teachers’ beliefs about the ways students’ develop the
concept of equation in the elementary school. This concept has traditionally been
taught at middle and high schools. Elementary school teachers’ preparation did not
include any training on the teaching of pre-algebraic concepts.

The early development of algebra concepts

During the last decade, there has been an effort internationally, to “algebrafy” the
mathematics curriculum from as early as the pre-kindergarten years. That is, to
introduce algebra content into the elementary school curriculum. According to the
National Council of Mathematics (NCTM, 2000):

by viewing algebra as a strand in the curriculum from pre-kindergarten on, teachers can
help students build a solid foundation of understanding and experience as a preparation
for more-sophisticated work in algebra in the middle grades and high school (p. 36).

The question though is “What might mean to suggest that algebra should start that
early?” Kieran and Chalouh (1993) “consider as pre-algebraic the area of
mathematical learning in which students construct their algebra from their arithmetic”
(p- 179).

The difference between arithmetic and algebra is in the way questions and problems
are expressed. The position of the unknown quantity in a problem statement
determines the type of the equation and the required procedure for its calculation.
Therefore, we consider the position of the unknown quantity to have a significant
effect on the difficulty level of mathematical problems in an early algebra
curriculum. For the purposes of this study, we consider as arithmetic equations those
that the unknown quantity is the result (at the end), i.e. 32 + 25 = T and as algebraic
equations those that the unknown quantity is at the start, i.e. | + 25 = 57.

Additionally, another factor that influences the difficulty level of mathematical
problems is the representation format. Specifically, according to the developmental
theories of Piaget, for each new concept studied, students use concrete objects to
solve problems, next they use pictures, icons or diagrams and finally they use abstract
symbols. This sequence of learning must be used for each new major concept that is
introduced to elementary school children.

Furthermore, we anticipate that another factor that influences the difficulty level of
mathematical tasks is the number of quantities in a problem situation; the difficulty
level increases with the number of quantities. Thus, a problem with two quantities
(i.e., the number of beads Mary and John have) is less difficult than a problem with
three quantities (i.e., the number of beads Mary, John and Peter have).
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This study has focused on teachers’ beliefs about a specific topic of the mathematics
curriculum for the elementary grades. In particular, we studied the teachers’ beliefs
on the development of an early algebra concept. Since, MacGregor and Stacey (1999)
suggest that one of the five aspects of number knowledge that are essential for
algebra learning is understanding equality, this study has given emphasis on the
ability of 6™ graders to solve arithmetic and algebraic equations in different problem
contexts and on the teachers’ beliefs about the factors that affect the difficulty level
of the equations.

The research questions were: (1) Which factors do teachers’ of 5" and 6™ grades
believe that influence the difficulty level of arithmetic and algebraic equations that 6™
graders are expected to solve? (2) How do teachers’ beliefs compare to students’
responses on different types of arithmetic and algebraic equations?

METHODOLOGY

The student questionnaire was made up of 14 mathematical tasks and students were
asked to complete it in 40 minutes. The tasks included were designed according to
the factors considered to affect the difficulty level of problems, as mentioned in the
previous section. Table 1 refers to the specifications of each type of task used with a
sample from each type. The first factor considered was the position of unknown
quantity. Problems with the result as unknown quantity are considered arithmetic
equations, whereas those with start unknown quantity are considered algebraic
equations. The second factor considered was the representation format of the
equations. Five formats were used: pictures, diagrams, word equations (verbal
equations with no context), story problems (verbal equations with context) and
symbolic equations where a geometrical shape represented the unknown quantity.
The third factor considered was the number of quantities/variables in the equation.
Problems were designed with either two or three known quantities and one unknown.

The teacher questionnaire was made up of the same mathematical tasks that were
included in the student questionnaire. Teachers were asked to sequence them by
giving a value of 1 to 14 (1 for the easiest and 14 for the most difficult) in order to
evaluate the level of difficulty of each task. They were given a week’s time to
complete the questionnaire at their own time.

The student sample consisted of 93 grade 6 students from two urban schools in
Nicosia and the teacher sample consisted of 50 grade 5 and 6 teachers in urban and
rural elementary schools in Nicosia district. Their teachers administered the student
questionnaires. The teachers read aloud the directions to them, supervised the
completion of the questionnaires without giving any additional information, collected
them and returned them to the researchers the next day.

The data were analyzed using the statistical package SPSS. The 14 mathematical
tasks were ordered according to the percentage of students who successfully
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answered the problem. The same tasks were also ordered according to the average
value of level of difficulty teachers had given in the questionnaire.

RESULTS

The reliability indices (Cronbach Alpha) for student and teacher questionnaires were
0,67 and 0,83 respectively. Both exploratory factor analyses for each of the student
and teacher data confirmed the factors-variables used to design the mathematical
tasks included in the two questionnaires.

The students’ performance in the early algebra problems showed that none of the
problems was very difficult for them. The percentages of students’ successful
responses to the problems were from 98% to 61%. The easiest problems for them
were the symbolic equations with 2 quantities, the word equations with 3 quantities,
the start unknown story problem with 3 quantities and the result unknown picture
with 2 quantities. The problems with medium difficulty for the students were the
symbolic equations with 3 quantities, the result unknown story problem with 3
quantities and the start unknown picture with 3 quantities. More difficult tasks were
the four result and start unknown diagrams with 2 or 3 quantities.

Overall, teachers’ believed that the algebraic equations were more difficult than the
arithmetic ones. They systematically ordered problems with result unknown quantity
with a smaller value of difficulty level than those with start unknown quantity, for
each representation format of the problems. Additionally, they ordered problems with
2 quantities with a smaller value of difficulty level than those with 3 quantities for
each representation format. As for the representation format of the problems, teachers
believed that the easiest tasks for the students were the symbolic equations. Next,
they believed that diagrams with 2 quantities were more difficult, along with the
result unknown diagram with 3 quantities, the symbolic equations with 3 quantities
and the result unknown word equation and story problem with 3 quantities. Finally,
teachers believed that the most difficult problems for 6™ graders were the start
unknown diagram, picture and word equation with 3 quantities.

Figure 1 presents the way students performed, considering the representation format
of the problems, starting from the ones that students found the easiest. They were
able to successfully complete symbolic equations with 2 quantities more easily than
word equations. Those were easier than story problems and next were the symbolic
equations with 3 quantities. Students faced difficulties solving the equations, which
were presented pictorially and diagrammatically.

Figure 2 presents the way teachers ordered the problems according to how difficult
they believed they were, starting from the easiest ones. They believed that symbolic
equations were the easiest tasks for the students. Next were the diagrams and the
symbolic equations with 3 quantities and the pictures. Teachers believed that the
most difficult tasks were those represented verbally, either in a word equation format
or in a story problem format.
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Symbolic equations Symbolic equations

2 quantities 2 quantities

Symbolic equations

@oblems

3 quantities

>
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Symbolic equations
3 quantities

Word equations

Comparing the above two figures, one can understand that there is an agreement on
the level of difficulty of the symbolic equations with 2 and 3 quantities, whether they
are arithmetic or algebraic ones. Next though one can notice a disagreement between
the students’ performance and the teachers’ beliefs on the level of difficulty for
diagrams, word equations and story problems. Although teachers believed that
diagrams and pictures were easier than story problems and word equations, the
students’ performance manifested the opposite direction. Word equations and story
problems were less difficult for them than pictures and diagrams. This finding shows
that students were able to respond in a better way to equations at the pre-algebraic
level, which were represented verbally than pictorially.
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CONCLUSIONS

Teachers’ beliefs about the difficulty level of early algebra problems indicate their
conceptions on the ways that their students are able to respond to them. Teacher
decision making about planning and structuring the content of their teaching is
greatly influenced by their beliefs on the difficulty of the activities they include in the
classroom. The tasks need to be according to the cognitive developmental stage of the
students. For these reasons, the accuracy and relevance of teachers’ beliefs on a
specific topic of the curriculum influence the ways of teaching and, consequently, the
learning outcomes.

The results showed that 5™ and 6™ grade teachers were able to correctly predict the
level of difficulty between arithmetic and algebraic equations in different
representation formats. This finding is in agreement with previous research outcomes
(Carpenter, Fennena & Franke, 1994; De Corte, Greer & Verschaffel, 1996) that
problems with result unknown quantities are easier than problems with start unknown
quantities.

On the contrary, teachers’ beliefs have been found to be discrepant from the students’
performance about the level of difficulty of differently represented equations. The
representation format is a very important factor to consider when selecting tasks and
activities for teaching concepts. As the data showed, students were able to perform
better at verbal problems overall, whereas teachers believed that these tasks were
harder than pictorial ones. This finding is in line with Nathan & Koedinger (2000a)
who mention, “these differences have a significant role on how teachers perceive
students’ reasoning and learning” (p. 184). Consequently, when tasks are not in
accordance with the cognitive level of the students, they are not able to respond
successfully to the requirements of the lessons. This may affect their interest,
participation, performance and attitude toward mathematics and their mathematical
ability.

Teachers’ beliefs have been found to follow the ways that this particular
mathematical content is presented in the textbooks used in Cypriot schools today.
This finding verifies what Nathan and Koedinger (2000b) had concluded.
Consequently, it seems essential to include tasks and activities in the mathematics
textbooks that are represented in pictorial, diagrammatical and verbal formats. Thus,
students will be able to develop the concept of algebraic equation in a natural way as
early as the elementary school, in such a way that will help them extend their
knowledge later on to the symbolic formats required for further algebra study.
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Appendix 1

Mathematical task Position of Representation No of '
unknown format quantities
Find the value of (J. Result Picture 2
B
Find the value of || Start Picture 3
£
J&l..- L5
JEAN
Find the value of . Result Diagram 2
.-'u%:usl.:*fs - "Ib.‘l.‘oo - ||::!L:I:
i ] o a3
Find the value of . Start Diagram 2
| 0 o 1
Zwt%o?\oq — Kdmld Kc%éeq
Find the value of A. Result Diagram 3
I+ i Mo ki —f— ki —]
ASU;@O[G Asugpd KM%OU I'o?ppl
Find the value of A. Start Diagram 3
/N e km s ki —
/\O[[.Uld ﬂizakfptd.hlﬂoou A}\dgnpu Moo@\wm
Chris played with his taws. At the beginning, he Result Story problem 3
had 32 taws. At game 1 he lost 12. At game 2
he won 8. How many did he have at the end?
Steve bought a cheese-pie from the school Start Story problem 3
canteen for 30 cents and an orange juice for 25
cents. He was left with 45 cents in his pocket.
How much did he have at the beginning?
When I multiply 5 by 4 and add 3, what number Result Word equation 3
do I get?
I think of a number A and multiply it by 3. Next Start Word equation 3
I'add 2 and I get 14. What is number A?
Find the value of I. 24 + 8 =1 Result Symbolic 2
Find the value of 0. 0 +7 =30 Start Symbolic 2
Find the value of A. 28— 16 +8 =A Result Symbolic 3
Find the value of 0. 0 + 25 - 12 =33 Start Symbolic 3
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DEVELOPING STUDENTS’ UNDERSTANDING OF THE
CONCEPT OF FRACTIONS AS NUMBERS
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Universidade de Brasilia, Brasilia, Brazil

Research has shown that many students have not fully developed an understanding
that fractions are numbers. The purpose of this study was to investigate the effects on
the understanding of fractions as an extension to the number system of a teaching
programme focusing on mixed numbers. Significant differences were found in favour
of the programme with greater emphasis on mixed numbers. The study suggests that
a programme involving multiple representations for mixed numbers may help
students realise that fractions are numbers.

INTRODUCTION

While students may have some facility with fractions, many of them appear not to
have fully developed an understanding that fractions are numbers (e.g., Kerslake,
1986, Domoney, 2002 and Hannula, 2003). Kerslake (1986) emphasises the need for
students to understand fractions at least as an extension of the number system. Her
report presents some of the difficulties 12 to 14 year old students have in connection
with fractions. The suggestion is made that many of those difficulties occur because
students see fractions as only parts of a shape or quantity and not as numbers. The
part-whole model was the only interpretation familiar to all students who took part in
her study. Kerslake thinks that the problem starts in primary school when fractions
are first introduced merely as parts of geometric pictures. She argues that school
practice does not give enough hints to students that fractions are numbers. The work
with graphs, algebraic equations and number patterns usually involves only integers.

Research has also shown that students have difficulties in identifying the unit in part-
whole diagrams showing more than one unit (e.g., Dickson et al., 1984). When a
fraction greater than one is represented in a diagram like the one in Figure 1, many
students respond 7/10 rather than 7/5. Similar problems arise when separate part-
whole diagrams are used to illustrate addition of two proper fractions (Figure 2) or

when the total is greater than one unit (Figure 3).
:
12

7 2 3 5 .7
J— —_ - 5 4+ - ==
10 3+4 = 2 8 8 16
i : Figure 3
Figure 1 Fioure 2 &

In the CSMS investigations, Hart (1981) noticed that diagrams sometimes helped in
the solution of problems with fractions, or were used to check whether the answer

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 49-56. Melbourne: PME. 2-49
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found was feasible. However, the process of interpreting a part-whole diagram often
involved: (1) counting the number of pieces which were shaded, (i1) counting the total
number of pieces, and (ii1) then writing one whole number on top of the other. In the
interviews, just after the students answered the fraction shaded in a part whole
diagram for 3/5, they were asked to give the fraction not shaded. Hart reports that few
subtracted the fraction shaded from one (1 — 3/5) they often used again the counting
process just mentioned. It may be here conjectured that those students gave the
correct fractions without realising the connection between the fraction 5/5 and the
whole number 1. In fact, this counting process of naming a fraction does not require
the application of any concept of fractions as parts of a whole. The fraction is
interpreted as a pair of whole numbers. Research has also shown that students have
difficulties in identifying a proper fraction in a number line showing two units instead
of one unit of length (e.g., Kerslake, 1986 and Hannula, 2003). A common
misconception is to place the fraction 1/n at (1/n)th of the distance from O to 2. So the
identification of the unit in number lines seems to be as problematic to some students
as in part-whole diagrams.

Although part-whole diagrams are thought to be misleading and a possible inhibitor
of the development of other interpretations for fractions (e.g., Kerslake, 1986), Pirie
and Kieren (1994) present how 10 year old Katia achieved “a new understanding” (p.
174) of addition of unrelated fractions (halves and thirds) by drawing part-whole
diagrams (pizzas) for the fractions and later dividing both into sixths. There is also
some agreement that fractions should be introduced as parts of a whole (e.g., English
and Halford, 1995). Probably because it is the first aspect of fractions met in a child’s
life. So more research needs to be done about how a move from the part-whole aspect
to the aspect of fractions as numbers could be achieved (Liebeck, 1985 and Kerslake,
1986). This move was the focus of the present research.

THEORETICAL FRAMEWORK AND RELATED LITERATURE

English and Halford (1995) have developed a psychological theory of mathematics
education which combines psychological principles with theories of curriculum
development. They discuss the importance of representations and analogical
reasoning in helping students construct their mathematical knowledge from prior
knowledge. Yet the choice of representation and the actions to be performed upon it
can have important consequences for mathematical learning. Some representations
can even obscure or distort the concepts they are supposed to help students learn.
Certain representations like fictitious stories such as “mating occurs only between
fractions, so mixed numbers - 1% - become improper fractions - 7/4 ...” may help
students remember procedures but do nothing to develop conceptual understanding
(Chapin, 1998, p. 611). Some important pedagogical and physical criteria for
selecting representations are suggested in the literature (e.g., Skemp, 1986 and
English and Halford, 1995), but only the pedagogical versatility criterion will be
discussed in this paper.
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Skemp (1986) advises teachers to choose versatile representations which can be used
to construct long-term schemas. Such schemas are applicable to a great number of
mathematical concepts and so make the assimilation of later concepts easier than a
short-term schema which will soon require reconstruction. English and Halford
(1995) call the criterion of selecting versatile representations “the principle of scope”.
They consider the part-whole model to be a representation with scope as it can
illustrate many fraction concepts and operations. The idea is to use the same type of
representation to communicate several concepts and operations which are related
among themselves. It is not just a matter of economy, but of allowing more
relationships to become exposed.

Bell et al. (1985) think that some misconceptions may result from new concepts not
being strongly connected with the student’s previous concepts. On the other hand,
some other misconceptions may result from ‘“the absence of some actually essential
detail of the knowledge-scheme which has been overlooked in the design of the
teaching material” (p. 2). Therefore, certain misconceptions may also be related to
instructional constraints which may result in students’ construction of a schema in a
more limited way. Naming improper fractions (Figure 1) or adding the numerators
and denominators in addition of fractions (Figures 2 and 3) may be the result of a
more limited schema for fractions. The student may see fractions merely as a pair of
two whole numbers, one written on top of the other. In order to develop a conceptual
knowledge of rational numbers, students should be able to both differentiate and
integrate whole numbers and fractions. Yet versatility of a representational model
does not imply uni-embodiment. It seems important to use several models for each
concept, but two or more related concepts, whenever possible, should be represented
together so that their relationship becomes clear. An example which concerns the
present study involves using multiple representations to work simultaneously with
whole numbers and fractions in order to highlight the relationships between those two
sets of numbers.

METHODOLOGY

The purpose of the study was to investigate the effects on the understanding of
fractions as an extension to the number system of a teaching sequence for fractions
which places emphasis on fractions of the type n/n (n # 0) and on mixed numbers
since from the beginning of the instruction. The study was also concerned with ways
of helping students to move from the part-whole aspect to the aspect of fractions as
numbers. Each of two teaching sequences was administered to a group of around 60
students of 11 years of age drawn from six schools in England (Amato, 1989). Group
X used multiple representations (contexts, concrete materials, pictures and diagrams,
spoken languages and written symbols) to represent proper fractions and mixed
numbers from the beginning of instruction. Group Y used multiple representations to
represent only proper fractions at the beginning of instruction. However, at the end of
instruction part-whole diagrams for mixed numbers were also presented.

PME29 — 2005 2-51



Amato

Some cheap concrete materials which are used to teach place value with whole
numbers, like coloured plastic straws, can easily be extended to fractions and
decimals through cuts of the unit. For example, the number 135% can be represented
with straws as in Figure 4. Hundreds, tens and units can be represented together with
fractions of those units in both enactive and iconic ways. This type of representation
may help students to visualise fractions and decimals as an extension to the right side
on a place value system and so as an extension to the number system. The
terminology employed in some textbooks does not seem to help students to associate
fractions with an extension to the number system. When learning about whole
numbers, they read words like units, tens, hundreds, etc. However, when learning
about fractions, the word “unit” is substituted by the word “whole”. So not many
attempts are made to associate fractions with the previously learned numbers by an
appropriate use of language.

Hundreds Tens Units pieces

I
Il |

4

Figure 4

Part-whole diagrams can also be helpful in the development of the concept of
fractions as numbers if used in a way that highlights the unit and the connections
between fractions and whole numbers. Soon after working with concrete materials
and part-whole diagrams for fractions less than one unit (e.g., 1/4, 2/4 and 3/4, Figure
5), diagrams for fractions equal to one unit (e.g., 4/4, Figure 6) and mixed numbers
(e.g., 2 units and 3/4, Figure 7) are presented.

Nlw
Slw

4
. 4 or 1 2
Figure 5 Figure 6 Figure 7

The presence of whole unsliced units in those diagrams may help some students
realise that the proper fractions in the mixed number notation are numbers smaller
than one. Often mixed numbers are introduced much later in the book or in one of the
following books and together with improper fractions. The equivalence between the
two notations is usually presented with the help of diagrams where all the “wholes”
are cut into equal pieces (Figure 8). This kind of representation does not seem to
emphasise the two units as much as when they are not cut (Figure 7).
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Figure 8

In this study, not only fractions were added in similar manner to that of whole
numbers but also the “carrying” process was extended to fractions in a way that
reinforces the relation between fractions of the type n/n and the whole number 1. So
the study was concerned with ways of helping students to move from the part-whole
aspect to the aspect of fractions as numbers and it sought to answer the question:
“Does the use of mixed numbers from the beginning of instruction concerning
fractions help the development of the concept of fractions as numbers?”

The main activities included in both teaching sequences were:

(1) representing numbers with straws and recording in figures the number being
represented with pictures of straws;

(2) counting forward and backwards with fractions: (a) shading diagrams to represent
numbers, (b) recording in figures the number being represented with diagrams, and
(c) following in figures only a counting number pattern;

(3) using part-whole diagrams for recording the number being represented by the
shaded part and the missing number (unshaded part);

(4) using part-whole diagrams to represent three-dimensional divisible units and to
help solving sharing problems with whole numbers for both dividend and divisor;

(5) adding fractions: (a) adding fractions in a similar algorithm to the one used for
whole numbers (vertical position), and (b) recording resulting fractions of the type
n/n as the whole number “1”;

(6) multiplying a whole number by a fraction: (a) using part-whole diagrams for
changing multiplication into repeated addition and to help combining fractions that
together would be equivalent to one unit or a whole, (b) changing multiplication into
repeated addition only in figures, and (c) using multiplication tables in a way similar
to that which is used when a whole number is being multiplied by another whole
number (the sequence of products would form a number pattern); and

(7) Working with number lines associated with the idea of measuring.

The teaching sequences were evaluated by a pre-test, an immediate post-test and a
five weeks delayed post-test. The questions on the tests involved the use of fractions
in number contexts similar to those in which whole numbers are often used. The
questions were extracted from the tests in the projects “Concepts in Secondary
Mathematics and Science” (Hart, 1981) and “Strategies and Errors in Secondary
Mathematics” (Kerslake, 1986). Covariance analyses were performed on the scores
of each post-test, and in both cases, the scores on the pre-test were used as covariate.

PME29 — 2005 2-53



Amato

SOME RESULTS

The types of activities, the fractions and the quantity of items involving fractions on
the worksheets were the same for both groups X (mixed numbers) and Y (no mixed
numbers). However, group X spent more time on the worksheets (about 4%2 hours)
than group Y (about 4 hours). This was expected as group X had at the beginning of
instruction three extra worksheets revising place value with whole numbers. Also
when group X worked with mixed numbers at the beginning of instruction, they not
only had to count pieces and write fractions but also to count units and write whole
numbers. A sample of 148 students took the pre-test and started the instructional
sequences. Eight of them did not manage to finish 10% of the sequence. On the days
when the immediate and delayed post-tests were administered, totals of nine and
eleven students were absent respectively. Therefore, the experimental sample was
composed of 120 students who had done the three tests and finished 90% of the
teaching sequence.

Analysis of covariance with one regression line was used to investigate the effects of
using mixed numbers from the beginning of instruction on the acquisition of the
concept of fractions as numbers and to allow for initial differences between the
experimental groups on the pre-test score. First, it was used to test the operational
hypotheses and employed the score on the immediate post-test as the dependent
variable. In a second instance, covariance analysis was used for both re-testing the
hypotheses and investigating the achievement over time of the two groups. In the
latter case the delayed post-test was taken as the dependent variable. The main
variable which were thought to relate to the dependent variable in both instances
were the pre-test score. The operational hypothesis was tested with differences at the
.05 level considered significant.

The majority of students did not perform well on the pre-test. More than 90% of the
experimental sample scored less than half of the maximum possible score in the pre-
test. It could be noticed that some students had little knowledge about fractions,
especially their notation. They could easily talk about halves and quarters but
questions like “How do I write one quarter in figures?” were asked in the pre-test and
in the initial worksheets. The effect of “Mixed Numbers from the Beginning of
Instruction” was significant in both the immediate post-test (scores without covariate
adjustment: F = 13.56 and p = .000 and scores adjusted for pre-test scores: F = 10.73
and p = .001) and in the delayed post-test (scores without covariate adjustment: F =
15.01 and p =.000, and scores adjusted for pre-test scores: F = 12.88 and p = .000).

Student teachers’ understanding of the concept of fractions as numbers has also been
found to be limited (Domoney, 2002). More recently, I have been using the idea of
focusing on fractions of the type n/n and mixed numbers since the beginning of
instruction with student teachers (Amato, 2004a). The idea has proved to be effective
in helping them overcome their difficulties in relearning rational numbers
conceptually within the short time available in pre-service teacher education (80
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hours). I have greatly reduced the number of activities for place value and operations
with whole numbers alone. However, through activities involving multiple and
versatile representations for concepts and operations with mixed numbers and
decimals (e.g., 35%+26% or 24.75-12.53), student teachers have been provided with
many opportunities to: (a) revise whole numbers as the representations for mixed
numbers and decimals include a whole number part, and (b) make important
relationships between rational numbers interpretations and between operations with
whole numbers and operations with fractions and decimals. I am also using a similar
program to help Brazilian 10 year olds construct rational numbers concepts and the
connections among whole numbers, fractions, decimals and percentages.

CONCLUSIONS

Significant differences were found in favour of those students who used mixed
numbers from the beginning of instruction. Students’ understanding of fractions as an
extension to the number system appear to benefit from the use of multiple
representations for fractions equal to one unit (n/n) and mixed numbers. It was not
difficult to teach the mixed number notation at the beginning of instruction soon after
the students had learned the notation for proper fractions. It was interesting to note a
student using his fingers to find the solution to ‘“2% + 2%”. He represented 2%2 by
showing 2 whole fingers and Y2 of the third finger. He then covered the other half
with his second hand and hide the fourth and fifth fingers behind the palm of his hand
and said “2%2”. After that he showed the 2%z fingers which were hidden and said “plus
2% makes 5”. The process of adding whole numbers with fingers was extended
naturally to the addition of mixed numbers with halves. In order to understand
fractions as an extension to the number system, students need a variety of experiences
with fractions equal to one unit and mixed numbers as well as with numbers between
zero and one unit.

Kerlake’s suggestion (Kerslake, 1986) that the geometric part-whole interpretation of
fractions inhibits the understanding of fractions as numbers and other interpretations
of fractions appears to be justified. Part-whole diagrams may be interpreted as a
particular way of representing two whole numbers and not as a representation of a
single number. The relationship between one whole shape and the whole number 1
may not be recognised by some students. On the other hand, the type of part-whole
diagrams used to represent mixed numbers in the activities performed by the students
who participated in the present study were seen as beneficial to the understanding of
fractions as an extension to the number system. The presence of whole unsliced units
in those diagrams may have helped students realise that the proper fractions in the
mixed number notation were numbers smaller than 1.

Mixed numbers are often used in everyday life: traffic signs (e.g., 3% miles), recipes
(e.g., 12 pints of milk) and ages (e.g., 9%2 years). Using decimals in such instances
would be more complicated language. To Liebeck (1985) the concept of mixed
numbers arises naturally from measuring objects (e.g., 1 metre and 2 tenths of a
metre). She thinks that recording a length between 1m and 2m as 1%2 m is a strong
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“hint” that there are numbers between two consecutive whole numbers. Approaches
such as “l + V4 can be written as 1% “ and “3%2=3 + Y2 =6/2 + 1/2 =77/2” (p. 33) are
too formal for the introduction of mixed numbers and improper fractions
respectively. Hannula (2003) found that mixed numbers were much easier to locate
on a number line than proper fractions. Yet little emphasis appears to be given to
mixed numbers. Many textbooks introduce fractions first with pictures of real objects
where pieces are missing and then with geometric part-whole diagrams, but normally
only fractions “less than one whole” (proper fractions) are presented. Few textbooks
work extensively with fractions “equal to one unit” (n/n with n # 0) and mixed
numbers. These fractions may provide the initial link between fractions and whole
numbers.
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MULTIPLE REPRESENTATIONS IN 8" GRADE ALGEBRA
LESSONS: ARE LEARNERS REALLY GETTING IT?

Miriam Amit & Michael N. Fried
Ben Gurion University of the Negev

The potential benefits to be gained from multiple representations in mathematics
education, both where the representations are constructed by learners and where
learners use standard representations, have long been recognized. In this paper,
qualitative data from 8" grade lessons on linear equations are produced questioning
how well this potential, in the case of standard representations, is realized in a real
learning environment.

INTRODUCTION

The general case for multiple representations in mathematics education hardly needs
defending anymore—most of us have long been persuaded of the central place of
multiple representations in problem solving and in the understanding of mathematical
ideas (thorough discussions can be found in, for example, Goldin, 2002; Schultz &
Waters, 2000; Kaput, 1999; Greeno & Hall, 1997; Janvier, 1987). This paper,
therefore, does not aim to adduce further evidence for the importance of multiple
representations, nor to challenge it. Rather, we wish to look at the practical question
of how ideas about multiple representations are realized in real classrooms. Do
teachers succeed in creating learning environments in which they and their students
share an understanding of why multiple representations of mathematical ideas and
problems ought to be entertained? Are students truly reaping the potential benefits
from lessons explicitly designed with multiple representations in mind?

These questions are in fact quite complex for they concern not only students’ ability
to work with multiple representations as prescribed in documents such as the NCTM
Principles and Standards (NCTM, 2000), but also their interpretations of the
meaning and value of what they are doing when they use multiple representations. In
the present paper, we can only hope to leave readers with the sense that they ought
not be complacent about these practical questions and their complexities, even while
they are thoroughly convinced of the correctness of the theory. To this end, based on
data from an 8" grade classroom studying systems of linear equations, we shall show
that it can happen that in a learning environment where multiple representations have
been fully taken into account by a well-informed teacher learners may, nevertheless,
fail to grasp the idea of multiple representations and why they are important. Given
the allowable length of the paper, we shall give most of our attention to one particular
interview, though others could have served as well.

But before we present this data and discuss their significance, we need to
circumscribe our treatment of multiple representations. For the word ‘representation’
itself has multiple meanings in mathematics education, a fact that made discussions
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in the original 1990-1993 PME working sessions on representations at once difficult
and rich (see Goldin, 1997). But with respect to classroom practice, it is possible to
distinguish two main tendencies concerning multiple representations. One points
towards students constructing their own representations, both in pure mathematical
contexts and in situations where mathematics is applied to non-mathematical or real-
life situations. The other points towards students using or adapting standard
representations, particularly, algebraic, graphic, tabular, and verbal representations.
Of course, these tendencies are not exclusive. Both tendencies are evident in the
NCTM ‘representation standard’, which stipulates that “Instructional programs from
prekindergarten through grade 12 should enable all students to—

e create and use representations to organize, record , and communicate
mathematical ideas;
e select, apply, and translate among mathematical representations to solve problems;
e use representations to model and interpret physical, social, and mathematical
phenomena” (NCTM, 2000, p.67)
In many classroom situations, especially where standard material is taught, it is the
second tendency, that is, towards multiple representations of a standard kind, that
naturally dominates (this is true even where the means of presenting the
representations are not entirely standard as in Schultz & Waters (2000)). In this case,
what the teacher aims towards is chiefly the ability to select, apply, and translate
among different representations; this, in turn, demands that learners understand the
meaning and value of representations. In this paper, we shall be concerned only with
this second tendency.

RESEARCH SETTING AND METHODOLOGY

The research setting for the results to be presented here is the Learners’ Perspective
Study (LPS), which is an international effort involving nine countries (Clarke, 1998;
Fried & Amit, 2004). The LPS expands on the work done in the TIMSS video study,
which exclusively examined teachers and only one lesson per teacher (see Stigler &
Hiebert, 1999), by focusing on student actions within the context of whole-class
mathematics practice and by adopting a methodology whereby student
reconstructions and reflections are considered in a substantial number of videotaped
mathematics lessons.

As specified in Clark (1998), classroom sessions were videotaped using an integrated
system of three video cameras: one viewing the class as a whole, one on the teacher,
and one on a “focus group” of two or three students. In general, every lesson over the
course of three weeks was videotaped, that is, a period comprising fifteen consecutive
lessons. The extended videotaping period allowed every student at one point of
another to be a member of a focus group.

The researchers were present in every lesson, took field notes, collected relevant class
material, and conducted interviews with each student focus group. Teachers were
interviewed once a week. Although a basic set of questions was constructed

2-58 PME29 — 2005



Amit & Fried

beforehand, in practice, the interview protocol was kept flexible so that particular

classroom events could be pursued. In this respect, our methodology was along the
lines of Ginsburg (1997).

This qualitative methodology was chosen in general because the overall goal of LPS
1s not so much to test hypothesized student practices as it is to discover them in the
first place. In this particular instance, however, a qualitative methodology was also
necessary because, as we remarked above, our investigation of multiple
representations in the classroom involved to a great degree teachers’ and students’
interpretations of the meaning and intent of the classroom activity, as can be seen
schematically in the following figure:

Teachers’ pedagogical —p Teachers’ classroom
knowledge & interpretation of presentation

research-based recommendations

/

Students’ interpretation of —_— Students own understanding
teachers’ pedagogical strategy and performance

The specific case that formed the basis for this paper was a sequence of 15 lessons on
systems of linear equations taught by a dedicated and experienced teacher, whom we
shall call Danit. Danit teaches in a comprehensive high school whose direction in
mathematics education is along the lines of the NCTM standards approach; Danit
herself is well-informed about the educational issues involved. The 8" grade class
Danit teaches is heterogeneous in ability and multiethnic.

DATA

As mentioned above, Danit is a teacher who, partly through her own interest and
partly through the educational framework embodied in the national curriculum, is
familiar with new developments in mathematics education. Thus, in constructing her
lessons on systems of linear equations, she quite consciously introduces different
representations relevant to them. Danit goes back and forth between representations
in a way that keeps them always in play and in a way that gives her lessons a flow
describable as ‘turbulent’, albeit carefully controlled turbulence (Fried & Amit,
2004). Her desire that students think about the idea of different representations, that
they suggest to the students different approaches to mathematical problems and
different ways of conceiving mathematical ideas, that the students do not see them
merely “...as though they are ends in themselves” as Greeno & Hall put it (1997, p.
362), is evident in the way Danit makes a transition from the symbolic representation
of an equation in two unknowns to a graphical representation. Referring to the
equation x+y=6 written on the board, she begins as follows:
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[min 35]Who is willing to tell me what is written here in Hebrew? I want a translation
[with emphasis] into Hebrew, not just “x plus y equals six”!...You’ve seen this [i.e. an
equation like this] in your book, and you know to do with them [referring to exercises
given in the last lesson]—now translate it into Hebrew [i.e. into your spoken language].

After some discussion, she finally lets the students know what she is up to:

[writes: “Two numbers whose sum is six’] Find me two numbers whose sum is six. In the
language of algebra, we say, ‘x plus y equals six’. [min. 37] Today, we’re going to learn
to translate this into another language [our emphasis]; we’re going to sketch this, that is,
what is written here, x+y=6, I don’t have write in the language of algebra, I don’t have to
say it in words: I can sketch it.

Thus, besides referring to different kinds of representation, Danit uses words such as
‘language’ and ‘translation’ which refer to the meaning of representation and to
moving between representations. She wants the students to know what
representations and the act of representing are all about.

In our focus group for that lesson were two boys, Oren and Yuri. By asking them
simply “What was the lesson about?”” we hoped to find out in the interview whether
they grasped Danit’s message as well as her words. Yuri answered “How to solve
equations with a number line” [both Yuri and Oren, as well as many of the other
students we interviewed, tended to refer to the coordinate system as ‘the number
line’—an interesting fact in itself!]. Oren’s answer was somewhat more revealing:

Oren: We learned [min 2] [glances at the whiteboard] about, um, well, equation
exercises [sic] with two unknowns we started to learn and how to solve
them. And, also we learned about the number line and we connect that
with equations.

Two observation can be made here. First, Both boys spoke about using the ‘humber
line’ to solve equations. Danit did speak about solutions of equations in two
unknowns and used yet another representation, a tabular representation, to bring out
the pairs of numbers that solve the equation; however, at this point she did not
present the graphical representation as a means of solving the equation but as a way
of seeing the equation in a different light. This tendency was strikingly illustrated in
the next lesson, where in the video of the lesson, two girls (that day’s focus group),
are seen to continue carrying out only the arithmetical calculations of finding y for a
given x, without ever mentioning the graphic representation of the linear relation—
and that, just when Danit has been emphasizing aspects of the graphic representation
to the whole class!

The second observation is that Oren described the content of the lesson by means of
simple conjunctions—this and this and this and this—it is a fragmented account
containing the facts of the story but not its theme. Even where he does use the word
‘connect’ (lechaber), he is still only reporting factually what Danit has said: indeed,
in the previous lesson she said that she would ‘link’ (lekasher—which is synonymous
to lechaber) everything together in the lesson we are looking at now. Here, Oren’s
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glance at the whiteboard is telling: he has to remind himself what the lesson was
about by looking at what Danit wrote rather than looking at his own thoughts. We
shall return to this point in a moment.

Pushing our original question a little further, we asked what Danit tried to accomplish
in her lesson and whether she succeeded in achieving her goals. Oren again
emphasized the word ‘connect’, and both Oren and Yuri agreed heartily that Danit
did truly achieve her lesson aims:

Interviewer: What do you think the teacher tried to accomplish in this lesson?

Oren: She tried to connect [for] us, because before we studied the number line in
a separate lesson and equations in the second lesson, so in my opinion she
tried to connect [for] us, how the number line is connected to equations.

Yuri: To equations.

Interviewer: Do you think she succeeded in her goal?
Yuri: Yeah, I think so.

Oren: In my opinion, yes [min 5].

They seem to have grasped what Danit was trying to do, at least they know the right
words to use. But just a couple of minutes later, while discussing one of the exercises
they worked on in the class and for which they had asked Danit for help, Yuri
described the general procedure, which involved substituting a value for x in the
equation, say, x+y=6 (Danit’s example), solving for y, finding the point (x,y) on the
‘number line’, and then repeating the process for another value of x. Yuri describes
the procedure in a very disjointed way, and soon afterward, both Yuri and Oren admit
that they did not understand the point of the lesson:

Yuri: ...Jolve it a few times so that the numbers, the unknowns, will be different
and afterwards see it on the number line—so it will be a straight line, sort
of, that it will be correct—that I didn’t understand—she explained it to
me.

Interviewer: [to Oren] Did you have the same question?

Oren: Yeah, exactly. I also was a bit mixed up about the teaching, because I
understood, but I didn’t understand, it was hard for me to connect with
[sic] the number line and the equations.

Yuri: Yeah.

Oren: The teaching [presumably, “The teaching wasn’t clear to me”].
Interviewer: [to Yuri] Why didn’t you ask him [Oren]?

Yuri: Because he asked [Danit] too.

Oren: I really [with emphasis] didn’t understand either.

It turns out that Oren and Yuri do not truly see the point of the graphic representation.
For them, drawing the graphs does not show them equations from a different
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perspective; for them, drawing the graphs is a redundant exercise. At one point
during the video of the lesson, which we watched together with Oren and Yuri, Yuri
says ‘Boring!’. We asked what he was referring to. He said drawing the axes. Oren
agreed and added, “It takes time.” Asked if the problem was that they had to use a
ruler, Yuri expanded and said, “Yeah, drawing the numbers and checking and putting
down the points—it’s easy but it takes time. Because of that.” From their point of
view, ‘solving’ the equations has weight; drawing the lines was just another task
given to them by Danit, a task which could just be easy or hard. This was a typical
attitude in Danit’s class. For instance, when on another day we asked Annette and
Chanita about why they need the ‘number line’, the ‘axis’, neither could say why.
And when we pressed them, and asked why they didn’t ask the teacher, the exchange
was as follows:

Interviewer: Chanita, tell me, why didn’t you ask the teacher why? [min 14]
Annette: [Answering for Chanita] It wasn’t () interesting.
Interviewer: Sorry?

Annette: Because it’s no so interesting why you need the axis—we just solve, and,
that’s it, we go home [everyone chuckles]

Later in the interview, both Chanita and Annette answered that that lesson contained
just exercises. And when asked what they thought would be in the next lesson,
Chanita answered, laughing, that “She [Danit] said [our emphasis] in the next lesson
we would stop drawing [graphs].” So, like Yuri and Oren, Chanita and Annette see
no intrinsic value in pursuing the graphical representation of the linear relations. If
Danit decides they should do it or not do it, so be it—but better if she decides not to!

This brings us back to Oren’s glance at the whiteboard to answer what the lesson was
about. Although Danit is at pains to make the students themselves think about the
notion of representation, they take their cues from her; her authority is enormous (see
Amit & Fried, in press). This could be seen when we asked the students about why
the points representing the solutions of a linear equation lie on a straight line. The end
of that exchange was as follows:

Interviewer: [Referring to the equation (x-y)/7=(2y-x)/2, which was similar to an
equation Danit had written on the board earlier just as an example of an
equation in two unknowns] Is it possible, in your opinion, that this won’t
be a straight line?

Yuri: I don’t know...to check I need to get [lit. do] some results [of calculations]
[min 60] but I think that it will come out a straight line.

Interviewer: Why?

Yuri: If the results are right then, well, I don’t know exactly, sort of that’s what
the teacher said, so it has to come out a straight line [our emphasis].

Interviewer: It’s because the teacher said so?
Yuri: I don’t know, no—I can’t explain it—I don’t know.
Interviewer: I see, she said it is a straight line, and you believe her? [the boys laugh]
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Oren: Yes.
Yuri: [Sarcastically] No, she’s lying.
CONCLUDING DISCUSSION

To summarize, what we see in the case of Yuri and Oren—and, as we suggested in
the introduction, they were not atypical—is that despite Danit’s conscious attempts to
organize her lessons with eye to representations, Yuri and Oren do not appear to
understand them as showing different mutually reinforcing views of linear equations;
they do not see the line as a representation but as a solution method, which for them
at this stage only means finding the value of y for a given x.

It may be because they expect the graphic representation to be a solution method,
rather than a bona fide representation, that they think of the graphic representation as
redundant. But whatever the reason, in none of our interviews did we find indications
that students appreciated the graphic representation as complementary to the
algebraic representation of linear relation. On the other hand, they seem to grasp that
Danit attached importance to the different representations, and, accordingly, they
produce statements in line with her approach. These statements, moreover, are
sometimes convincing enough to deceive and, therefore, can mask the students’ lack
of true sympathy with and understanding of what the teacher tries to instil in them.

The division between the teacher’s intention of what she was doing and the students’
interpretation of what was expected of them (see the figure in the second section)
might, then, be one reason why the students in this class did not seem to get the idea
that representations are to be selected, applied, and translated. But, of course, this
only begs the question. We need to ask why, in the first place, there was this gap, why
these students seemed able only to give lip service to Danit’s emphasis on
‘connecting’ and ‘translating’ representations.

One possibility may be the absence of mediating elements, that is, not just the
presence of different representations said to be connected but ‘connectors’ as well.
Formally, such connectors between representations are isomorphisms, and Powell
and Maher (2003) have suggested that students can themselves discover
isomorphisms. But in fact what allows learners to connect representations may have
much more variety. Thus, Even (1998), speaking about multiple representations of
functions, argues that the flexibility and ease with which we hope students will move
from representation to representation depends on what general strategy students bring
to mathematical situations, what context students place a problem, what previous
underlying knowledge students possess, and perhaps other things as well. In other
words, the efficacy of multiple representations in the classroom needs more than the
multiple representations themselves. Thus, Even writes:
“...concluding that the subjects who participated in this study had difficulties in working
with different representations of these functions is not enough. Much more important is
to understand how these subjects think when they work with different representations of
functions” (p.119)
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It might be then that we need to be more willing to treat multiple representations as a
terminus ad quem than as a terminus a quo, that is, it may be that we have to
challenge a multiple representations approach as a framework to begin with in
teaching and think of as a distant goal that may not be achieved until the learner has
had considerable experience in kinds of thinking that potentially link representations.
This conclusion, if it is valid, is sobering for educators who want to promote multiple
representations by presenting many representations all at once. But a sobering
message such as this may be what is needed for learners to begin and reap truly the
potential benefits of multiple representations.
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REFORM-ORIENTED TEACHING PRACTICES: A SURVEY OF
PRIMARY SCHOOL TEACHERS

Judy Anderson and Janette Bobis
The University of Sydney, Australia

In line with international recommendations, reform-oriented approaches have been
promoted through the Working Mathematically strand of the curriculum for primary
school children in New South Wales. Evidence suggests that teachers engage
differently with these recommendations depending on their knowledge and beliefs
about the role of working mathematically in learning mathematics. Through a self-
report survey, this preliminary investigation identified the use of reform-oriented
practices. Many teachers reported using such practices and actively plan learning
experiences that incorporate a range of processes including reasoning and
communicating. However, some respondents appeared to be more informed than
others.

INTRODUCTION

Recent curriculum documents typically promote reform-oriented approaches and
recognise the importance of engaging students in worthwhile mathematics through a
range of processes. For example, the Standards of the National Council of Teachers
of Mathematics [NCTM] (NCTM, 2000) includes problem solving, reasoning and
proof, communication, connections, and representations. Similar processes are
included in the latest mathematics syllabus for primary school students in New South
Wales [NSW] (Board of Studies NSW [BOSNSW], 2002). The Working
Mathematically strand incorporates five interrelated processes — questioning,
applying strategies, communicating, reasoning and reflecting.

These processes underpin problem solving; a life skill that is universally considered
central to the mathematics curriculum (NCTM, 2000). When such processes are
successfully implemented, learning experiences “allow learners to think and create
for themselves ... discuss their interpretations and develop shared meanings”
(Sullivan, 1999, p. 16). The teacher’s role is not trivial (Schoen, Cebulla, Finn & Fi,
2003). The teacher needs to choose tasks that engage students in higher order
thinking and sustain engagement (Henningsen & Stein, 1997), help students make
links between mathematical ideas (Askew, Brown, Rhodes, Johnson & Wiliam,
1997), and meet the needs of the full range of students in classrooms.

Given the centrality of working mathematically in the new mathematics syllabus
(BOSNSW, 2002), and the assertion that not all teachers have embraced it
(Hollingsworth, Lokan, & McCrae, 2003), it is critical to explore the extent to which
it is being adopted and integrated into teachers’ practices. It is also essential to
identify cases of exemplary practice and to provide advice to teachers about the
issues that might constrain their efforts to implement the reform elements of this new
syllabus.
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SITUATING THE RESEARCH IN AN INTERNATIONAL CONTEXT

It has been argued that the use of non-routine problems and problem-centred
activities form the basis of classroom activity in a reformed or inquiry-based
classroom (Clarke, 1997; Schoen et al., 2003). There has been substantial advice to
teachers to teach problem-solving skills and to use problems as a focus of learning in
mathematics (Wilson & Cooney, 2002). Such advice has been accompanied by
considerable efforts through preservice and inservice programs to change teaching
practices from more traditional approaches to contemporary or reformed methods
(e.g., Schifter, 1998).

Investigations into the implementation of reform, or standards-based curriculum
(NCTM, 2000), have been undertaken in the United States over recent years. Two
studies have particular relevance for this investigation. Schoen et al. (2003) used
observation criteria for reform-teaching practices that include open-ended questions,
time to learn from investigations, as well as pair and small-group work. Ross,
McDougall, Hogaboam-Gray and LeSage (2003) developed a 20-item survey based
on nine dimensions of standards-based teaching that include several aspects of the
focus of this study (student tasks, discovery, teacher’s role, interaction and
assessment). While the survey was found to have reliability and validity, the authors
advise the use of observations to confirm teacher self-report data.

While teachers may have good intentions and plan to implement reform-oriented
approaches, there is evidence that teachers in Australian contexts have not responded
to this advice (Hollingsworth et al., 2003), with the suggestion that the culture of
schooling and particular teachers’ beliefs hinder the implementation of problem-
solving approaches in classrooms (McLeod & McLeod, 2002; Stigler & Hiebert,
1999). There is a significant body of research indicating that teacher’s knowledge and
beliefs about the discipline of mathematics, teaching mathematics, and learning
mathematics impact on classroom practice (Wilson & Cooney, 2002). In particular,
Stigler and Hiebert (1999) argued that the differences between American and
Japanese approaches to teaching mathematics could be explained by differences in
teachers’ beliefs.

However, it has also been determined that other constraints can impact on teachers’
efforts to implement the working mathematically processes. In her investigation of
reform in primary schools involved in the Count Me In Too professional development
program, Bobis (2000) noted teachers’ concerns about time, availability of resources
and classroom management issues. Similarly, a study into primary school teachers’
problem-solving beliefs and practices by Anderson, Sullivan & White (2004)
identified several constraints including assessment and reporting practices, parent’s
expectations, students resistance to new approaches, system requirements of
curriculum 1mplementation, and large-scale testing regimes. Jaworkski (2004, p. 18)
describes such demands as “sociosystemic factors” suggesting that teachers have to
regularly grapple with the tensions and issues that arise in their contexts.
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One particular issue for teachers is planning reform-oriented experiences that
maintain engagement and cater for the needs of all students (Henningsen & Stein,
1997). There is evidence from the TIMSS 1999 Video Study (Hollingsworth et al.,
2003) that teachers plan to use different teaching strategies to teach higher achieving
students compared with lower achieving students. However, even with higher
achieving students, there was little use of higher-level processes or opportunities for
reasoning as emphasised in the Working Mathematically strand. While teachers
generally support reform-oriented teaching (Anderson et al., 2004), they appear to
have difficulty operationalising it (Ross et al., 2003).

It is possible that teachers may not have an image of what this reform approach looks
like in practice, or it may be that particular contextual factors interfere with their
intentions. An ongoing concern of the problem-solving research has been the need for
descriptions of classrooms where effective practice is occurring with an
exemplification of the key role of the teacher (e.g., Clarke, 1997). Identifying
successful teachers and providing rich descriptions of their efforts might support
implementation for others, particularly if these teachers are able to overcome
militating factors.

To investigate the implementation of reform-oriented teaching in NSW classrooms,
the research questions for the study include:

1. Which reform-oriented teaching practices do primary school teachers report
using?

2. Which particular teaching practices do primary teachers report using for each
of the five processes of working mathematically?

3. What knowledge and beliefs distinguish teachers who successfully implement
Working Mathematically?

4. How do teachers who successfully implement Working Mathematically cater
for the needs of all students in the classroom?

Previous research suggests that teacher self-report surveys provide a relatively
accurate picture of classroom practice but that there are some aspects of practice—
particularly in the case of working mathematically—that cannot be easily measured
in this way (Ross et al., 2003). For this reason, a combination of survey, interview
and case study (including classroom observations) approaches were utilised in the
study to explore teachers’ understandings of working mathematically and their
implementation of the various processes of the strand. Only results from the survey
component will be discussed in this paper.

METHODOLOGY - SEEKING THE EVIDENCE

A survey was used to determine whether teachers’ practices reflect those advocated
in reform-oriented curriculum materials produced locally (e.g., BOSNSW, 2002) and
internationally (NCTM, 2000). In particular, it focused on specific teaching strategies
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associated with each of the five processes of the Working Mathematically strand in
the Mathematics K-6 Syllabus (BOSNSW, 2002).

There were three main parts to the survey. Part A was designed to collect essential
background information about respondents and their school contexts. Part B was
adapted from the Ross et al. (2003) instrument for measuring the extent to which
primary teachers implement reform-oriented teaching practices. It contains 20 Likert
items with a 5-point response scale ranging from Strongly Agree to Strongly
Disagree. To guard against response bias, seven of the items were worded so that
their scoring would be reversed. Ross et al. (2003) provide evidence of the
instrument’s reliability and validity. Using Cronbach’s o, a measure of internal
consistency, they obtained a reliability coefficient of o = 0.81 in two independent
studies. Part C of the survey contained four open-ended questions that explicitly
focussed on teaching practices associated with working mathematically.

The aim of the survey was to produce a tentative picture of teacher beliefs and
commitment to reform-based teaching practices, and to distinguish teachers—
specifically those reporting the incorporation of working mathematically into their
teaching—for inclusion in the interview component of the study. Approximately 100
surveys were sent to 12 primary schools located in the Sydney, metropolitan area that
had been identified as supporting reform-oriented approaches. Descriptive statistics
were used to analyse the items on the survey requiring quantitative responses (Parts
A and B). The open-ended items in Part C were analysed according to emergent
themes.

RESULTS

Forty surveys were returned. Background information provided by teachers (Part A
of the survey) indicated that there was a fairly even representation from each of the
grade levels from Kindergarten to Year 6. Similarly, there was an even spread of
years of teaching in each of the groups 1-5, 6-10, 11-15, 16-20, and 21 and beyond.

To assist analysis of Part B of the survey, the percentage of teachers indicating that
they agreed (including strongly agreed), were unsure, and disagreed (including
strongly disagreed) with each statement in the survey was calculated. While there is
insufficient space to report the results for each item, we have selected some for
discussion to support our analysis and complement the data provided in the open-
ended response component of the survey. It must be emphasised, that we intended to
use the information gained from the quantitative component as ‘tentative’, providing
starting points for further exploration in the interview and observation components of
the project.

As a whole, respondents seemed to be very well aware of what the reform-based
movement recommends regarding the teaching and learning of mathematics. For
example, 97.5% of respondents indicated that they agreed or strongly agreed with
Items 1 and 3 (“T like to use maths problems that can be solved in many different
ways”, and “when two students solve the same maths problem correctly using two
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different strategies, I have them share the steps they went through with each other”
respectively).

Contrary to the general trend of responses, which were consistent with views
expressed by reform-oriented curriculum documents, only 19.7% of respondents
disagreed with Item 16 (“I like my students to master basic mathematical operations
before they tackle complex problems”). This type of response is contrary to current
curriculum documents that advocate the teaching of mathematics through or via
problem-solving approaches (e.g., BOSNSW, 2002). Whether teachers are aware of
such recommendations or simply disagree with them, it is clear that the majority of
our respondents report not implementing such practices. More information on this
1ssue may be gained during the interview component of the study.

Related to this view of mathematics, a quarter of teachers responding to the survey
indicated that they considered “A lot of things in maths must simply be accepted as
true and remembered” (Item 15). Similarly, 27.5% of respondents indicated their
agreement with Item 19: “If students use calculators they don’t master the basic
maths skills they need to know”. Both these responses are indicative of a more
traditional view of mathematics. That is, mathematics is seen as little more than a
series of facts, rules and procedures that must be learned.

While teachers rarely used the ‘unsure’ category, two statements attracted high
percentages of responses in this category. 30.7% of respondents indicated that they
were unsure of Item 12 (“Creating a set of criteria for marking maths questions and
problems is a worthwhile assessment strategy”) and 27.5% were unsure of Item 18
(“Using computers to solve maths problems distracts students from learning basic
maths skills”). The reasons for the higher than expected percentages of ‘unsure’
responses for each of these items, will be explored in follow-up interviews.

Part C required respondents to list the “specific teaching strategies” they use for each
of the five processes of Working Mathematically. Descriptions of three of these
processes are presented in Table 1 with samples of teachers’ responses.

Process Description of the Process (BOSNSW, | Sample Teacher Response
2002a, p. 19)

Questioning Students ask questions in relation to Children work together in groups and
mathematical situations and their solve maths problems, which
mathematical experiences. encourage them to ask questions. (23)

Reasoning Students develop and use processes for | Provide opportunities to compare and
exploring relationships, checking contrast results of an investigation —
solutions and giving reasons to support | expect/encourage explanation of
their conclusions. process/product (3)

Reflecting Students reflect on their experiences Building upon known concepts, using
and critical understanding to make skills to extend understandings.
connections with, and generalisations | Applying knowledge to everyday
about, existing knowledge and situations (18)
understanding.

Table 1 Sample responses to three processes in Working Mathematically
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The majority of the 31 teachers, who responded to Part C, seemed to be familiar with
each process and the associated teaching practices recommended in reform
documents. However, some respondents appeared to be more informed than others.
To 1identify those teachers, an adaptation of the Schoen et al. (2003, p. 236)
observation criteria for reform teaching practices was used to rate the responses.
These criteria (presented below) were used to make holistic judgements about
participants’ reported level of implementation of reform-oriented practices.

1. The teacher uses open-ended questions to facilitate student thinking and
exploration.

2. Students monitor their own work instead of always seeking out the teacher as
the authority.

3. Students are given enough time to learn from investigations.

4. Class organisations (i.e., whole-class presentation or discussion, pair or small-
group work, and individual work) match expectations for each part of the
lesson.

5. Pairs or small groups of students work collaboratively.
Manipulative materials are available.

7. The teacher focuses on understanding of the big mathematical ideas by
questioning understanding and using problem-solving strategies.

N

Using these criteria, the response of each participant to the open-ended question was
judged as excellent, good, fair, or poor according to the number of criteria that were
explicitly addressed. From this, the responses of two participants were rated as
excellent, five as good, 17 as fair, and 7 as poor. The responses from those teachers
who were rated as fair or poor were either limited in information, repetitive in the
practices employed, or suggested that more traditional practices were typically used.
For example, an experienced teacher of a Year 3/4 class reported that she uses a
“whole class focus first then one to one — needs lots of examples and practise,
concrete material or practical applications” for Applying Strategies. This individual
focus was repeated for Reflecting with the additional strategy of “sometimes we meet
as a group at the board and discuss”™ for “students who are experiencing difficulties or
simply don’t understand”. These comments were consistent with her responses to the
reform-oriented practices in Part B of the survey. Again, this data provides tentative
information as respondents may not have given much thought to their responses or
they may not have had sufficient time to think deeply about their practice. However,
this process helped to identify participants for the interviews and classroom
observations.

Ten survey respondents (25%) indicated their willingness to participate in the follow-
up interview component of the study. Data from all parts of the survey were
considered to develop initial ‘profiles’ of these teachers so as to determine which
teachers we should include. Eight of these teachers had profiles that were very
closely aligned with the practices recommended by reform-oriented documents. All
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eight indicated that they explicitly planned for Working Mathematically either all of
the time or at least for approximately 70% of their mathematics lessons. Interestingly,
the three teachers with profiles considered to be closest to reform-oriented practices,
teach at the same school. The interview component will hopefully reveal if there are
any contextual factors operating at the school that may contribute to such a result.

The responses of the other two teachers who volunteered to participate in the
interview component of the study were among those respondents who showed least
consistency or familiarity with reform-based practices. One teacher indicated that she
did not explicitly plan for Working Mathematically, while the other indicated that she
planned for approximately 90% of her lessons. Again, what this planning actually
entails will be explored further in the interview component of the study.

DISCUSSION AND FURTHER RESEARCH

Considered together, the qualitative and quantitative data gained from the survey
provide tentative information (Wilson & Cooney, 2002) and a starting point from
which we can now continue to explore aspects of teachers’ practices. It would appear
that the majority of these teachers support reform-oriented teaching approaches that
promote working mathematically in primary classrooms, particularly in a self-report
survey. While most responses were consistent for both sections of the survey, a
careful reading of the open-ended responses suggests that this may not be what is
implemented in practice. Further exploration through interviews and observations is
required before in-depth claims can be made.

The next step in our project is to explore particular teacher’s practices in detail to
form a picture of the successful implementation of working mathematically for all
students and how teachers confront the sociosystemic factors operating in school
contexts. As Wilson and Cooney (2002, p. 131) propose

in-depth studies of individuals emphasise the value of telling stories about teachers’
professional lives and what shapes those lives ... good stories are not simply descriptions
but are grounded theoretical constructs that have the power to explain what 1s described.

The knowledge gained from this project has the potential to impact on the
implementation of working mathematically in classrooms. It will clarify for teachers
what working mathematically actually looks like and provide models of best practice.
It will present teachers with evidence that all students are able to participate in
challenging experiences regardless of their performance on tasks that assess basic
skills in mathematics. It will provide teachers with strategies to cope with the
tensions and issues that may impede implementation of the Working Mathematically
strand.
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This paper highlights the role of gestures in communicating and particularly in
thinking in mathematics. The research interest is on the relation between the use of
gestures and the birth of new perceivable signs. This link is shown through the
description of a concrete example, referring to a discussion among 8th grade
students around a geometrical problem in 3D, to be solved without the use of devices
and paper and pencil. It is interesting to observe the progression in the construction
of the solution, obtained with the introduction of new signs from gestures, and at the
end even of a common tool used by children, the plasticine.

INTRODUCTION

In the last years psychologists have shown a deep interest on the analysis of gestures
and their role in the construction of meanings. More recently, gestures became also
relevant in the field of mathematics education, in order to show a strong relation not
only with speech, but with the entire environment where the genesis of mathematical
meanings takes place: context, artefacts, social interaction, discussion, and so on.
Since math is an abstract matter, it often requires signs to be made somehow
perceivable by students, the abstract becoming more and more concrete to them.
Many times students need to see, to touch, and to manipulate, and as a consequence,
the environment plays a crucial role in learning math.

This paper shows the link between the use of gestures and the birth of new
perceivable signs through a concrete example. To reach this aim, we use a theoretical
framework made of different components, coming from mathematics education,
psychology, neuroscience and semiotics, and presented at the Research Forum on
gestures at the current PME (Arzarello et al., 2005). Three parts constitute the paper.
We sketch some ideas of the theoretical framework in a first paragraph. The second
paragraph presents an example of a protocol analysed through our theoretical tools.
In the last part, conclusions and further problems are introduced.

THE THEORETICAL FRAMEWORK

Some researchers form psychology and mathematics education claim that gestures
play an active role in thinking, intending communicating and thinking not as
mutually exclusive functions (McNeill, 1992; Goldin-Meadow, 2003). So gesturing is
useful to listeners to communicate, and to speakers to think. To exemplify, just think
of people speaking on the phone: they are completely conscious of the fact that their

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
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interlocutor is not in front of them, but all the same they gesture, as well as the
listener would be there. Even a subject alone, doing an activity such as studying,
could gesture to give expression to her thoughts. Briefly speaking, we can gesture for
ourselves or for others, and gesture is both a mean of communication and of thinking.
Gesture in fact can contribute to create ideas:

According to McNeill, thought begins as an image that is idiosyncratic. When we speak,
this image is transformed into a linguistic and gestural form. ... The speaker realizes his
or her meaning only at the final moment of synthesis, when the linear-segmented and
analyzed representations characteristic of speech are joined with the global-synthetic and
holistic representations characteristic of gesture. The synthesis does not exist as a single
mental representation for the speaker until the two types of representations are joined.
The communicative act is consequently itself an act of thought... It is in this sense that
gesture shapes thought. (Goldin-Meadow, 2003; p. 178)

Within the perspective of psychology, we refer to the so-called Information
Packaging Hypothesis (IPH): Alibali, Kita & Young (2000) describe it as the way
gesture 1s involved in the conceptual planning of the messages. IPH concerns the so
called representational gestures (Kita 2000), namely the iconic and the abstract
deictic gestures: an iconic gesture represents an entity or a phenomenon, a movement,
a shape, and so on; a deictic gesture points to an object (Mc Neill, 1992). This object
can be a physical thing or an abstract entity, so deictic gestures can be divided in
concrete or abstract (Kita, 2000). According to the IPH, the production of
representational gestures seems particularly important, since it helps speakers
organise spatio-motoric information into packages suitable for speaking. In such a
sense gesture explores alternative ways of encoding and organising spatial and
perceptual information. Spatio-motoric thinking (constitutive of representational
gestures) provides an alternative informational organisation that is not readily
accessible to analytic thinking (constitutive of speaking organisation). Analytic
thinking is normally employed when people have to organise information for speech
production. On the other side, spatio-motoric thinking is normally employed when
people interact with the physical environment, using the body (interactions with an
object, locomotion, imitating somebody else’s action, etc.). This kind of thinking can
be applied even to the virtual environment that is created as imagery.

Gesture can be discussed also from a neuroscientific point of view. In fact some
studies from neuroscience argue that there is no inherent distinction between thought
and movement at the level of the brain; both can be controlled by identical neural
systems (Ito, 1993). Therefore, concepts and ideas can be manipulated just as they
were body parts in motion. The ‘motor system’ is thus a complex computational
network that controls and directs the brain’s circuitry or internal symbols: counting,
timing, sequencing, predicting, planning, correcting, attending, patterning, learning
and adapting (Leiner et al., 1993). Indeed, gestures that accompany language may
facilitate thought itself. With the embodied mind Seitz (2000) introduces a fresh
paradigm for thinking about the relation of movements to thoughts, in which the
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boundaries between perception, action, and cognition are porous. Thought, action,
and perception are indissolubly tied. Thinking of embodied activities, although
humans may be best characterised as symbol-using organisms, symbol use is
structured by action and perceptual systems that occur in both natural environments
and artifactual contexts: “[...] body structures thought as much as cognition shapes
bodily experiences.” (Seitz, 2000).

From another viewpoint, gestures can be seen as signs, as pointed out by Vygotsky
(1997: 133):

A gesture is specifically the initial visual sign in which the future writing of the child is
contained as the future oak is contained in the seed. The gesture is a writing in the air and
the written sign is very frequently simply a fixed gesture.

As a consequence, semiotics is a useful tool to analyse gestures, but within a wider
frame, which involves also their cultural and embodied aspects. Such a wider analysis
has been developed in mathematics education with the introduction of the notion of
semiotic means of objectification (Radford, 2003) that produce the so-called
contextual generalisation: a generalisation referring still heavily to the subject’s
actions in time and space, within a precise context, even if he/she is using signs who
could have a generalising meaning. In contextual generalisation, signs have a twofold
semiotic nature: they are becoming symbols but are still indexes. We use these terms
in the sense of Pierce (1955): an index gives an indication or a hint on the object, like
an image of the Golden Gate makes you think of the town of S. Francisco. A symbol
1s a sign that contains a rule in an abstract way (e.g. an algebraic formula).

In light of the results stated above, our research hypothesis is that meanings
construction is supported by a dynamic evolution in the use of gestures and by their
role in generating new signs. In this paper, such an evolution is pointed out by the
social activity of the students in a geometric context, where the main components are:
the hands that shape geometrical figures, and the fingers that point to or trace
geometrical entities (sides, angles, faces, vertices, etc.) related to the solution of the
problem.

THE CASE OF GUSTAVO: SIGNS ARISING FROM GESTURES

In the following example, some students of the 8" grade in an Italian middle school
are working in group to solve a geometric problem. The task is to find the solid figure
that fills in the 3D hole obtained if two congruent regular squared-based pyramids are
placed (on the same plane) with two sides of the bases touching each other (Fig. 1).
The pupils are asked to not use any kind of concrete
support, as drawings, paper and pencil, computers, etc.
On the contrary, they are required to get the solution ‘in
their mind’, simply imagining and discussing together
about it (the tetrahedron ABCD in Fig. 1). The teacher
in the classroom observes the work without interfering
if not necessary. The students work in a big group

Figure 1
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around some desks, in order to pay attention to what each other is doing or saying.
During their curriculum they have already met regular tetrahedrons, as belonging to
the family of pyramids (a regular pyramid with congruent faces and triangular basis).

The following analysis is based on the video recorded by a moving camera. In the
course of the discussion, gestures are used in a massive and social way. Gestures are
our data, and they are analysed to figure out the dynamics of the pupils’ solution
processes and communication acts. In particular, we will show the emergence of
signs (arising from gestures) that can be seen, touched and manipulated (not simply
imagined) by the students. These observations fit with the hypothesis stated above.

Since the beginning of the work, the actions of the group seem
to occur principally around two pupils: Sara and Gustavo. In
Fig. 2 Sara is the girl with long hair and eyeglasses on the right
of the reader, and Gustavo is the boy on the left, with short hair.
It is Gustavo who leads the game: he allows his mates to
approach the solution and his gestures guide them and their B
gestures. Figure 2

Three phases appear to characterise the dialogue of the students. First, the pupils need
to re-construct the geometry of the given configuration. Gustavo performs a lot of
gestures to imagine what he has in mind and makes it visible: fingers running along
or pointing to Sara’s hands open as they were the two close faces of the pyramids
(Fig. 3a, 3b); hands closing the hole in the attempt of figuring out the unknown solid
(Fig. 3¢, 3d); fingers tracing sides of the solid itself (Fig. 3e, 3f).

g ! &

Figure 3

This is an exploration phase in which the students share a space of communication,
that over the desks, where they can freely move, gesture, show. We can call it gesture
space. To Gustavo, such a space represents something more: it is already a space of
action and production, other than of communication (APC Space - Action,
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Production and Communication - Arzarello, 2004). At the moment pupils need an
investigation of this kind; spatio-motoric thinking is essential, since gestures are the
only available means for them to understand the problem. Imagination alone is not
sufficient to figure out the geometric entities, especially the one to be found.

Gustavo’s gestures (performed in front of his body over the desks, Fig. 4) start to
acquire a symbolic characterisation. Recalling Peirce’s terminology, they are still
indexes of figures (in that his hands in motion represent sides, faces, solids), but start
becoming symbols when referring to the virtual world where these entities live and
being used as really existing objects by Gustavo.

T " g
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|

Figure 4

At this point, Gustavo has got the solid in his mind, as highlighted by his words:
Gustavo: It’s a triangle, but with a thickness. It’s a solid of pyramid.

A new phase begins here: in order to allow his mates to see the shape of the unknown
solid, new signs are necessary, with a more concrete nature than the previous
gestures. Their emergence is marked by a change of the gesture space, more visible.
The (real) desks now represent the new space: in it, Gustavo’s index finger traces
some virtual segments to explain his solution to the others (Fig. 5).

Gustavo: It is in this way, in this way, and then in this way.
l == o~ 5 .

These segments are imaginary inscriptions, but used as if they were real, and so can
be deleted (by hand in Fig. 6), just as geometric lines drawn on paper are erased by
means of a rubber (the term inscription comes from Sfard & McClain, 2002).
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Figure 6
This is a conjecture phase, but the explanation is not yet satisfactory to the group.
The dialogue goes on among the pupils with an exchange of some sentences:

Gustavo: It is made of two triangles with the bases below, and two triangles with
the bases above.

Sara: But, it’s a solid. It [the problem] tells a solid, one!

Gustavo: Yeah, it is a solid, made of two triangles placed with the bases below,

which are those starting in this way and going up, and two triangles with
the bases above that are those going in this way [see Fig. 7]

Figure 7
Lucy: And how does it call?
Gustavo: I don’t know, but that’s it.
Sara: No, no, because above they have skew sides.
Gustavo: No, it doesn’t matter!

Let us observe that along the discussion, a conflict appears into the whole group: the
opposite behaviour of the triangles above and below. Gustavo’s metaphor on such
triangles (expressed both in his words and gestures) is not useful to accept the shape
of the searched solid. Hands are not enough. To overcome the obstacle, something
different is to be used: something really existing, that can be effectively seen,
touched, manipulated. Again, the emergence of new signs is strong. At this point a
last phase of production begins: a tool enters the scene, as Gustavo claims:

Gustavo: Guys, we got a tool! [he takes a piece of plasticine by the hands of a
group mate]

Other than gestures, plasticine is stable, motionless and concrete: it is real, visible and
manipulable. By plasticine, students are able to check their conjectures, to make the
solution apparent, to create it. Figure 8 shows just some moments of this final phase.
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Figure 8
Somebody: It’s a thing made in this way, it’s strange [Fig. 8a]
Lucy: Try to put it [Fig. 8c]
Sara: But it is a pyramid with triangular basis.

All the geometric entities are visible; the tetrahedron itself is visible. In terms of
Radford’s words, students have objectified new knowledge: now they know that the
solid solving the original task is a “pyramid with triangular basis”.

SOME CONCLUSIONS

In the previous example we have described the activity of some students solving a 3D
geometry problem. We have pointed out that their understanding grows up around the
gestures of Gustavo, who is early able to imagine the solid solving the task, and in the
same time has to explain it to the group mates. We have seen the way these gestures
mark the birth of new perceivable signs: the virtual segments drawn by Gustavo’s
forefinger on the desks, and the solids shaped by the use of plasticine.

The relevant point of the activity is the evolution of gestures in generating signs. At
first, Gustavo’s gestures have an iconic function in that their shape resembles their
referents (the geometric solids they express), but they become indexes (in the sense
of Pierce) in his communicative attempt of transferring knowledge to the others. The
indexical gestures acquire a symbolic function later, when they are used as existing
objects of a virtual geometric world and in relation with the genuine geometric
objects (e.g., think of the metaphor of the “two triangles with the bases below, and
two triangles with the bases above”). This relation consists in a piece of theoretical
knowledge. Particularly, when the students identify the unknown solid as a pyramid
also their utterances have a two-fold nature: an indexical one and a symbolic one, in
encoding information according to the theory at their disposal.

The most significant moment of the activity arises from the use of plasticine, here a
tool expressing three different functions. First, plasticine has an iconic function for
Gustavo, who wants to show the solution of the task, as well as his mates want to see
it. Secondly, it is an index in being manipulated and seen; in these terms, it is a sign
useful to make sense of the solution. But it also has the germs of a symbolic function
in itself, because it is shaped in a theoretical knowledge, still vague if only supported
by the previous gestures and metaphors. Gustavo and the group need to understand
those relations. The discovery of the solid as a pyramid happens at this point.
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We can interpret this last moment using the theory of instrumentation of Rabardel
(1995) within a fresh viewpoint. According to Rabardel, an artefact becomes an
instrument in the hands of a subject, by activating different schemes of use; in these
terms, the instrument prompts the genesis of meanings. To our students plasticine is
already an instrument: they are able to use it, and they have acquired the
corresponding instrumentations. As a consequence, the role of plasticine is different
from that of an artefact becoming an instrument; in a certain way, the situation is
exactly opposite. Our students (especially Gustavo) take an instrument they have and
know, with its schemes of use, and, through their perceptuo-motor information about
it, they add new schemes of use in order to solve the problem. According to our wider
frame developed for the Research Forum (see Arzarello et al., 2005), the whole
dynamics can be identified as a SPO (Serial Process of Objectification) in that the
situation evolves by the successive production of signs (through gestures and words,
and schemes of use).
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STUDENTS’ EXPERIENCE OF EQUIVALENCE RELATIONS
A PHENOMENOGRAPHIC APPROACH

Amir H. Asghari & David Tall

University of Warwick

This paper is based on a doctoral study in which we studied ‘lay’ students’
understanding of equivalence relations through individual task-based interviews. We
report a conceptual gap between “the everyday functioning of intelligence and
mathematics” as to equivalence relations.

INTRODUCTION

It is “an abstraction, a basic mathematical concept, that includes the way species,
phonemes, numbers and many other concepts in many parts of life are best thought of...the
name of the concept is “equivalence relation”...it is one of the basic building blocks out of
which all mathematical thought is constructed.” (Halmos, 1982, pp.245-246)

An equivalence relation is “one of the ideas which helps to form a bridge between the
everyday functioning of intelligence and mathematics”. (Skemp, 1977, p.173)

In this paper we consider /ay students’ understanding of the notion of equivalence
relation. In particular, we report one gap (or two!) between “the everyday functioning
of intelligence and mathematics”. Despite the fact that the tasks(see below) used do
not relate to a formal educational setting, we also suggest that it will be useful to pay
attention to these gaps in our standard practice of teaching the notion of equivalence
relation, in which, as Skemp says (ibid, p.137), “we start with everyday examples
before defining it mathematically™.

LITERATURE

Surprisingly, despite the fact that equivalence relation is one of the most fundamental
1deas of mathematics, students’ conceptions of it have attracted little attention as a
research subject. An exception is a series of papers by Chin & Tall (2000, 2001 and
2002) in which they considered the cognitive growth of “equivalence relation” and
“partition” at a time when students have been given the definitions and have been
expected to operate in an increasingly “theorem-based” manner (ibid, 2000, p.2).
However, as a result of working with students already being exposed to the formal
treatment of equivalence relations and partitions the focus of the papers inevitably is
on the far end of the bridge, i.e. students’ understanding and usage of the formal
concepts. Thus, in a sense, we furthered their study by investigating the opposite end
of the bridge, i.e., informal conception of equivalence relations and partitions. In the
discussion of the results we will briefly link these studies together.
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METHODOLOGY

The study is based on a detailed phenomenographic analysis of twenty verbatim
transcribed audio-taped interviews with students with varied background experience
(see also, Asghari, 2004a, 2004b). The participants comprised four middle school
students, four high school students, one first year politics students, one first year law
student, six first year mathematics students, two second year physics students, one
second year computer science student, and one postgraduate student in mathematics.
None of them had any formal previous experience neither of equivalence relations
nor of the related concepts used to formulate the definition. In a one-to-one
phenomenographic interview, each student was introduced to a set of tasks that were
designed having the standard definition of equivalence relations in mind (see below).
The interviews had a simple structure; the tasks were posed in order, but the timing of
the interviews and questions were contingent on students’ responses.

Such a varied range of interviewees remind us of a ‘pure phenomenography’ in
which “the concepts under study are mostly phenomena confronted by subjects in
everyday life rather than course material in school.” as compared to ‘developmental
phenomenography’ in which the concepts under scrutiny are confined to a formal
educational setting and the purpose of the study is to help the subjects of the research,
or others with the similar educational background to learn (Bowden, 2000, p.3).
However, in the case of a concept as basic as an equivalence relation, the line
between pure and developmental phenomenography fades out.

The Tasks

First, each student was introduced to the definition of a ‘visiting law’ while they were
told that their first task would be giving an example of a visiting law on the prepared
grids. (See figure 1.)

A country has ten cities. A mad dictator of the country has decided that he wants to
introduce a strict law about visiting other people. He calls this 'the visiting law'.

A visiting-city of the city, which you are in, is: A city where you are allowed to visit
other people/

A visiting law must obey two conditions to satisfy the mad dictator:
1. When you are in a particular city, you are allowed to visit other people in that city.

2. For each pair of cities, either their visiting-cities are identical or they mustn’t have
any visiting-cities in common.

The dictator asks different officials to come up with valid % =

visiting laws, which obey both these rules. In order to allow 3z QOQJ_

the dictator to compare the different laws, the officials are E g

asked to represent their laws on a grid as figure 1. 2 e

After generating some examples (student-generated, ranging

from one example to suggesting a way to generate an You are here
example), students were presented with the following three Figure 1: a grid to
tasks: represent a visiting law
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Task 1: The mad dictator decides that the officials are using too much ink in drawing up
these laws. He decrees that, on each grid, the officials must give the least amount of
information possible so that the dictator (who is an intelligent person and who knows the
two rules) could deduce the whole of the official's visiting law. Looking at each of the
examples you have created, what is the least amount of information you need to give to
enable the dictator deduce the whole of your visiting law.

Task 2: One of the officials, for creating an example, uses other officials’ examples: he
takes two valid examples and put their common points in his own grid. Is the grid that he
makes a valid example? [In the discussion following this is termed the intersection task]

Task 3: Another official takes two valid examples and puts all of their points in his own
grid. Is the grid that he makes a valid example? [Hereafter, this is termed the union task]

Our account of equivalence relations when we designed the tasks

Let us use the eloquent, but still informal, account of equivalence relations given by
Skemp (1977).He begins by introducing methods of sorting the elements of a parent
set into sub-classes in which every object in the parent set belongs to one, and only
one, subset (a partition of the parent set). He (ibid, p.174) considers two sorting
methods: first, starting “with some characteristic properties, and form our sub-sets
according to this”; and second, starting “with a particular matching procedure, and
sort our set by putting all objects which match in this way into the same sub-set”. The
particularity of this matching procedure is in its “exactness”, i.e. having an exact
measure for the sameness; a necessity that if it is achieved, the matching procedure is
called an equivalence relation. The exactness of the matching procedure also
accounts for the transitive property. In addition to the transitive property, an
equivalence relation has two further properties, reflexivity and symmetry (see below).

In the problem given to our students, two cities are matched together if their visiting-
cities are the same, or two columns are matched together if they have the same status
in each row. (For a thorough analysis of the task see Asghari, 2004a).

RESULTS

Analysis of the written transcripts led to a categorisation related to the variation in
students’ focus of attention in this particular situation. It was possible for the same
student to experience different things at different times. The categories are: Matching
procedure, Single-group experience and Multiple-group experience.

Matching Procedure Experience

In this category, the focus is on the matching procedure between individual elements;
what students experienced and described is in terms of the elements involved,
without resort to a group and/or groups of elements. Before giving an example, it is
worth saying that somehow or other the defining properties of an equivalence relation
determine an exact matching. So do the defining properties of a visiting law.

A matching procedure was exhibited by Ali (first year high school student) when he
was generating an example.
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Ali: I choose the very first things (points) haphazardly, and then I am going to
match the things that have not been matched up yet.

(I ]
a0 000
(I N
a0 00
L O ]
(I O ]
LI B
a8 0 8
L B
L N
[N
(I

Fig 2: Three stages of Ali’s matching procedure
Ali: All right, we start again.

So he paired up city 1 with all the other cities, one-by-one; when two focal columns
find something in common, he matched them up, and when they have been already
matched or they have nothing in common, he left them as they were. Then he did the
same process on city 2 and paired it up and matched it up (if necessary) with all the
other city after city 2, and so on. The result of this long process was the middle figure
above. Then he continued:

Ali: Now, we are checking from start; it is going to be full (having all points).
And he did so. Eventually the process ended with the right figure above.
Single-Group Experience

In this category, focus is on only one single “group” while all the other elements that
do not fall into that group are treated as individuals. The elements in the focal group
in one way or another are related to each other while all other elements are in the
background as individual elements. Each student in the present study could exemplify
this category. However, we have chosen one that at the same time could exemplify
different aspects of this category.

Kord (a middle school student) generated the following figures:

L NN
[N N
LN N
[ BN N
LB N NN
[N NN N ]
LB N NN
(BN NN ]
LN N N ]

Figure 3: Figures generated by Kord.

Each of these has a square of equivalent points in one corner (lower left or upper
right) but in no case did he put together a picture with squares in both corners. Even
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when confronted with the ‘union task’, he found it necessary to focus on one square
after the other; while he checked whether the square that he has been focusing on has
been properly packed, he unpacks the other square and treated its elements on a par
with all other individual elements.

Kord: ... those that can visit each other are i
identical and they have no commonality o
with other cities, so this is correct (this is E
an example). co oo

Since this way of experiencing an equivalence relation **®

Y pet! 5 q Figure 4: Kord’s task
has been completely hidden by our formal account :

. putting two examples
(whether formally expressed or informally) we shall
_ A together.

give a few other examples. Somewhere in his informal
account of equivalence relation and partition, Skemp'
(1977, p.174) asks us to imagine that “we are standing on the pavement in London, and
in a hurry to get to the station, then we may divide {passing objects} simply into the sub-
sets {taxis} and {everything else}”. (Let us further his thought experiment) Doing so,
we probably could not remember when we went sightseeing in London we divided
the very parent set into the sub-sets {double-decker buses designed for tourists} and
{everything else}. And still in both situations we do not think of the other passing
objects around the world. Given this, it seems in the most practical and/or everyday
situation we, ourselves, could exemplify our second category, single-group
experience!

Multiple-Group Experience

In this category, “disjoint groups” are experienced; the groups have no elements in
common and the elements of each group are related to each other in one way or
another. There are only three students who exemplify this category. Let us follow the
youngest one (Hess, middle school student) as he dealt with the problem of giving the
least amount of information for the following figure on the left, which then was
abbreviated to the figure on the right: (“abbreviated” is the way that Hess describes
the figure with the least amount of information)

. LI ] ™
L] . e L3
L]
. . . ™
. ° ™
L] L] L] L ]
L]
° .
. e e
. . .

Figure 5: Hess’s abbreviation of one of his examples

Hess: For example, one, five and seven make a group (it is the first time that he
uses the word “group”) with each other, so I only draw five and seven, It
doesn’t need (to do something) for five and seven, then I see two, nine
and ten make a group with each other, I do for two these, it doesn’t need
for nine and ten; three and six make a group too, four nothing, it make a
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group for itself, for five, one, no five has been done(suddenly shift to the
third category); how many groups are they? It’s been finished, eight, it’s
been finished; that’s it.

And then to explain that why this abbreviated figure uniquely determines the original
figure he added:

Hess: There is only one case, when we draw the diagonal, the groups are
determined; and when the groups were determined there is only one case.

Now, let us enjoy the great extent of the operability of this new idea:

After examining different arguments for the intersection problem he decided to work
on the abbreviated figures, since “their abbreviations are themselves” and by using
them “our way would be simpler”, he suggested.

Hess : Suppose we have an abbreviation, suppose I am deleting certain points,
even randomly, it still remain an abbreviation; they have been divided into
some groups that have no intersection with each other, certain different
groups are created... so if two abbreviations have intersection the
intersection is some kind of abbreviation... (In other words) the remained
figure is again the abbreviation of another figure.

Reflexivity, Symmetry and Transitivity

Looking at the above categories, we now turn to consider what has happened to the
three properties reflexivity, symmetry and transitivity that constitute our normative
conception of equivalence relation. In many natural contexts, reflexivity is not made
explicit. Family relationships allow A to be a brother of B, but A is not his own
brother. Similarly, in some of the earliest formal notions relating to equivalence, the
Greek notion of two lines [, m being ‘parallel’ is shown to satisfy the two properties
“a Pb implies b Pa’ and ‘a Pc and b Pc implies a Pb’. But a is not parallel to itself.
(How could it be? Two parallel lines have no points in common but a has all its
points in common with itself). In the case of the example of visiting cities represented
on a grid, however, the reflexive law is visible as the main diagonal of the array. (The
matter is a little more subtle as the idea of ‘matching’ usually means matching two
things. (See Asghari, 2004a for further details.)

Symmetry seems to be the most natural properties of a matching procedure; simply
two things are matched together. To see how natural it is, let us recall the example
given in matching procedure category where Ali matched up all possible pairs to
guarantee examplehood of his figure; however, not quite all possible pairs! Taking
symmetry of the matching procedure for granted, he only needed to match forty-five
pairs of cities not ninety pairs, as he did so. The ways that our students experienced
the geometrical symmetry of each example (see any one of the above examples) or
the more algebraic form of symmetry (if (a, b) then (b, a)) have deeper subtleties.

Our discussion can again start with Skemp who said:
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The importance of the transitive property is that any two elements of the same sub-set in
a partition are connected by the equivalence relation. (Skemp, 1977, p. 175)

This suggests that the transitive property is what that makes the vague phrase used in
the second (and third) category clear; where we say that “the elements in the focal
group in one way or another are related to each other.” However, what our students
experienced in each single group (of related elements) was the version of transitivity
formulated above by Euclid and specified by Freudenthal as follows:

If two objects are equivalent to a third, then they are also mutually equivalent
(Freudenthal 1966, p.17).

Let us give an example. Hess is about to explain why the following figure that he has
just generated is an example of a visiting law.

Hess: I am going to show that those that have

commonality with four are equal to it. 06008

And he did so. And shortly after that, while generalizing il

his argument he added: s ee o
Hess: For each column we check that those that are ¢

equal to it, those that must be equal to it, are

they equal to it or not. Fig. 6: An example of

the visiting law

We will call this version of the property ‘F-transitivity’ in

honour of Freudenthal (following a private communication from Bob Burn). F-
transitivity (a ~ ¢ and b ~ ¢ impliesa ~ b) is equivalent to standard transitivity when
dealing with equivalence relations, but it is not satisfied by an order relation. The
different embodiments of transitivity in order relations and equivalence relations can
cause difficulties to students when they are introduced at the same time in a
university foundation course (Chin & Tall, 2002).

CONCLUSIONS AND AFTERWORD

Our data suggest that by the standard (and mathematical) treatment of equivalence
relation and partition in which we jump from the former to the latter and vice versa,
we ignore a gap in everyday experience of the subject, i.e. single-group experience;
moreover, If for some purposes we form our focal single-group by a certain matching
procedure, it is likely the experience of F-transitivity (not transitivity) that saves us
from matching all possible pairs though logically both amount to the same thing.

Being aware of the above deviations from the standards could shed some light on our
standard practice of teaching equivalence relations and some of its consequences (for
example, see the end of the previous section). Furthermore, the above tasks
themselves could be used for teaching purposes (though we used them only as a
research device).
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The first part of The Task of the Mad Dictator (generating an example) was used by a
lecturer in one of the top five ranked universities in the UK in a class consisting of
fifteen prospective teachers. Following the task he reported:

The students worked in groups to try to invent new visiting laws. They quickly
discovered that just the diagonal and the whole grid were valid laws... one group
produced a generic visiting law where each identical equivalence class was coloured the
same. They independently 'discovered' the notion of equivalence classes (although they
didn't use this terminology of course) and came up with the two main theorems I had on
the next seminar’s lesson plan.

End note

1- Skemp himself used this example to illustrate that characteristic properties do not
necessarily have to have a characteristic property.
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HOW SERIES PROBLEMS INTEGRATING GEOMETRIC AND
ARITHMETIC SCHEMES INFLUENCED PROSPECTIVE
SECONDARY TEACHERS PEDAGOGICAL UNDERSTANDING

Leslie Aspinwall Kenneth L. Shaw Hasan Unal

Florida State University

In an undergraduate level mathematical problem-solving course, we conducted an
experiment with a different methodology in the teaching of mathematical series
problems to twenty-eight prospective secondary mathematics teachers. We
supplemented the typical series instruction from an arithmetic focus to what we call a
geo-arithmetic focus, one that focuses both on visual and analytic skills. What
resulted were some inspiring revelations among these future high school teachers.
We present the culminating geo-arithmetic series task, describe our interpretative
methodology, and report the cases of three case-study students who reported, as a
result of these tasks, initial cognitive dissonance, rich discussions in their learning
groups, and ramifications for changes in their future teaching practices.

MOTIVATION

Mathematics students in sixth-century B.C. Greece concentrated on four very
separate areas of mathematics (called mathemata): arithmetica (arithmetic), harmonia
(music), geometria (geometry), and astrologia (astronomy). “This fourfold division of
knowledge became known in the Middle Ages as the ‘quadrivium’’ (Burton, 1997, p.
88). To these early Greeks, arithmetic and geometry were as separate as music and
astronomy. Mathematicians soon realized that arithmetic and geometry are not
separate, and that some intriguing mathematics lies at their intersection. This report
attempts to explore the beauty and richness of viewing one problem from a geo-
arithmetic perspective.

Studies (e.g., Vinner, 1989) have consistently shown that students' mathematics
understanding is typically analytic and not visual. Two possible reasons for this are
when the analytic mode, instead of the graphic mode, is pervasively used in
instruction, or when students or teachers hold the belief that mathematics i1s the
skillful manipulation of symbols and numbers. It is clear from the literature (e.g.,
Lesh, Post, & Behr, 1987; Janvier, 1987; NCTM, 2000) that having multiple ways —
for example, visual and analytic — to represent mathematical concepts is beneficial.

Our argument is not that one student’s representational scheme is superior to another,
only that students often construct vastly different personal and idiosyncratic
representations that lead to different understandings of a concept. Because student-
generated representations provide useful windows into students’ thinking, it is
productive for teachers to value these personal representations. Moreover, there is a
belief among mathematics educators (e.g., Janvier 1987; Lesh, Post, & Behr, 1987)
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that students benefit from being able to understand a variety of representations for
mathematical concepts and to select and apply a representation that is suited to a
particular mathematical task. The National Council of Teachers of Mathematics
(NCTM) reinforces this belief: “Different representations support different ways of
thinking about and manipulating mathematical objects. An object can be better
understood when viewed through multiple lenses” (2000, p. 360).

Recently, Aspinwall and Shaw (2002) reported their work with two students with
contrasting modes of mathematical thinking — Al, whose mode was primarily visual,
and Betty, whose mode was almost entirely symbolic. Their assertion was that
students often construct vastly different personal and idiosyncratic representations,
which lead to different understandings of concepts. Given problems presented
graphically, Betty generally found it nearly impossible to think about the problem in
graphical terms; thus, she translated from the graphic representations to symbolic
representations, or equations, in order to make sense of the problems. Once she
completed analytic operations on the symbols, she translated the problem back to the
graphic representations required for the tasks. Al, however, operated directly on the
graphic representations without having first to translate to symbolic representations.
Betty and Al showcased two very different ways of solving problems, but the study
suggested that if students could move freely between the visual (geometria) and the
symbolic (arithmetica), their mathematical understanding would be much richer and
their problem-solving abilities more robust.

Krutetskii (1976) distinguished among three main types of mathematical processing
by individuals: analytic, geometric, and harmonic. A student who has predominance
toward the analytic relies strongly on verbal-logical processing and relies little on
visual-pictorial processing. Conversely, a student who has predominance toward the
geometric relies strongly on visual-pictorial processing predominating over above-
average verbal-logical processing. A student who has predominance toward the
harmonic relies equally on verbal-logical and visual-pictorial processes. Several
aspects of Krutetskii's position are of relevance in our interpretation of the ways that
our students, comprising both analytic and geometric, processed mathematical series
problems demonstrated geometrically. The use of Krutetskii’s categories permitted us
to explore their thinking in the context of their cognitive processing.

The National Council of Teachers of Mathematics (NCTM, 2000) states that problem
solving with an array of creative problems is an essential component in students’
construction of meaningful mathematical content. “In high school, students’
repertoires of problem-solving strategies expand significantly because students are
capable of employing more-complex methods and their abilities to reflect on their
knowledge and act accordingly have grown” (p. 334). The following is one of those
creative problems that we developed to generate students’ interests and to engage
them in discussing mathematical content as well as geo-arithmetic issues of learning
and teaching.

2-90 PME29 — 2005



Aspinwall, Shaw & Unal

MATHEMATICAL PROBLEM

The teacher stands at the front of the room with a bag and begins to remove four
cubes, with side lengths from 1 cm to 4 cm. After ensuring all the students see the
four cubes, the teacher returns the cubes to the bag, shakes the bag, then slowly
withdraws from the bag ... the four cubes? No, she withdraws not four cubes but one
single square with side length 10 cm. The students were amazed by this extraordinary
feat of conversion of 4 cubes into a square. (For them, it represented a conversion of
three-dimensional cubes into a two-dimensional square.)

From an arithmetic perspective, this problem can be represented by the following
equation, 1I° + 2° + 3° + 4° = 10%. One student remarked that the conversion was true
when using 1, 2, or 3 cubes as well. Another student asked, “Does placing
consecutively larger cubes into the magic bag always produce a square with this
intriguing property; that is, does this equality always hold: 1° +2° + 3+ -+ +n’ =
(1+2+3+"--+n)>?" A mathematical induction approach is sufficient to show that
this relationship is true for any natural number, n. We leave these familiar induction
steps for the reader.

From a geo-arithmetic perspective, we can look at this generalized problem in a
richer way. First we consider the square, in Figure 1, withsize (1 +2+3 +---+n) X
(1+2+3+---4+n). We divide this large square into smaller squares and rectangles,
and calculate the areas of these squares and rectangles based on their dimensions —
lengths and widths. But we will add the areas separately based on their placement in
groups that we will designate as the Diagonal, Bricked, Vertical-Line, Dotted-Line,
and Horizontal-Line regions. Finally, we will demonstrate that the sum of each of
these regions is a cube so that the area of the square is the sum of the cubes.

n-1

| “ LTI
: I =24
: I R |

1 2 3 n-1 n

Figure 1: Generalized problem, regions of the square
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Sum of the Diagonal Region
1=1
Sum of the Bricked Regions
1x2 + 2x2 + 2x1 = 2(142) + 2x1 = 2((2x3)/2) + 2x1 =2(3+1) = 2x2* = 2°
Sum of the Vertical-Line Regions
1x3 +2x3 + 3x3 + 3x1 + 3x2 = 3(1+2+3) + 3(1+2) = 3[(3x4)/2] + 3[(2x3)/2] =
3[(3x4+2x3)/2] = 3x3(4+2)/2 = 3°x3 = 3°
Sum of the Dotted-Line Regions
I(n-1) + 2(n-1) + 3(n-1) +...+ (n-1)(n-1) + 1(n-1) + 2(n-1) + 3(n-1) +...+ (n-2)(n-1) =
(n-1)(14243+...+(n-1)) + (n-1)(14+2+3+...+(n-2)) =
[(n-1)(n-1)n]/2 + [(n-1)(n-2)(n-1)1/2 = [(n-1)"n]/2 + [(n-1)*(n-2)]/2 =
[(n-1)%(n+n-2)]/2 = [(n-1)*(2n-2)]/2 = [(n-1)*2(n-1)]/2 = (n-1)°
Sum of the Horizontal-Line Regions
In+2n+3n+...+n(n-1)+nn+ In+2n+3n+...+ n(n-1) =
n(1+2+3+...4n) + n(142+43+...4n-1) = n[(n(n+1)/2] + n[(n-1)(n)/2] =
n’(n+1)/2 + n’*(n-1)/2 = n*[(n+1)+(n-1)]/2 = n’2n)/2 = n’
Now, we have as the sum of the areas of the subdivided square:
Sum of the Diagonal Region: 1’
Sum of the Bricked Regions: 2}
Sum for the Vertical-Line Regions:  3° + ..
Sum for the Dotted-Line Regions: m-1)°

+ + + + 4+

Sum for the Horizontal-Line Regions: n’

Area of the square: (14243+..4n)’ = 1"+ 2° +3° + - - - 4+ 1°

A series of other geo-arithmetic problems, similar to this one, was presented to the
students over a period of 6 weeks, culminating with the problem above. During the
entire semester, students were negotiating these ideas within the small groups of the
class, and although many students had valuable insights, we report the thinking of
three students as they seemed representative of the students as a whole.

METHODOLOGY

Twenty-eight students (pre-service high school mathematics teachers) from one
senior-level mathematical problem solving class participated in the study. Analyzing
their responses to Presmeg’s (1986) theoretical framework, we determined that some
students were non-visual and that others tended to process information visually. Of
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the three students we chose for interviews, one was visual (Emily) and two non-
visual (Ryan and Sara). Students in the class responded to written and oral tasks and
questions, and the case studies consisted of students’ responses to questions about the
classroom activities. In general, the aims of our study were to arrive at a
comprehensive understanding of the role of students’ personal and idiosyncratic
representations in their learning and to develop general theoretical statements about
their learning processes.

We explored students’ thinking on tasks designed to probe their different ways of
understanding and representing series problems. Using multiple sources of qualitative
data (e.g., audiotapes of interviews with students, transcripts of those tapes,
researchers’ fieldnotes, worksheets of case study students, and two researchers’
journals), case study analyses were undertaken to identify patterns and changes in
students’ understanding. In particular, we report how their work on these series
problems presented geo-arithmetically influenced the ways they thought about
teaching. Analyses of taped sessions included coding of transcripts. We triangulated
the data to identify common and distinct strands.

STUDENTS’ EXPLORATIONS

As we began investigating these students’ geo-arithmetic concepts, assertions in three
domains arose from the data: Cognitive Perturbation, Learning Group Dynamics, and
Pedagogical Implication. We discuss each of these below with data that support each
assertion.

Cognitive Perturbation

Perturbation, although often characterized as negative, is an essential cognitive
component of change; to learn and grow, teachers must face cognitive dissonance
(Shaw & Jakubowski, 1991). Such dissonance may cause frustration, but can also
lead to reflection. We found this task caused students a great deal of reflection as the
task was geo-arithmetic and students tended to have a preference toward either the
geometric (visual) or the arithmetic (analytic). Thus, non-visual students experienced
cognitive dissonance thinking about the visual components, and, similarly, visual
students thinking about the analytic (arithmetic) part of the problem saw this as a
perturbation.

Ryan, the non-visual thinker above, was initially frustrated by our asking him to
solve the series problems geometrically; he said he had always thought “in
equations.” Ryan said that being confronted with problems presented visually had
altered the way he thought about mathematics and his future role as a teacher. But
Emily stated that she was

extremely visual. I have to see things done out; I am sometimes not confident in my
mathematical abilities, my algebra skills. I know what I am doing but I am afraid [of
mistakes]. If I can do it visually, I know I am on the right track.
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She claims that she has a good “3-D mind” and that her “last resort is to write an
equation out.” She confessed that she looks at problems in creative ways and ways
that are “out of the norm.” She asserts it “is easier for me to conceptualize it that
way.” Though Emily was comforted by the blended visual/analytic problem, just
because it was partly visual, she found herself mentally challenged as she tied
together the visual and analytic aspects of the problem. She said, “I was struggling
with the problem algebraically, I did not feel confident in myself.”

Ryan said his first approach was to try to write an equation; but Emily’s approach
was much different. When we asked Emily whether she thought these series
problems were algebraic or geometric in nature, she said, “It was a blend for me. You
needed to know the algebra behind it, but you had to have that geometry, spatial
sense, in order to see the problem.” When we asked her how she thought about the
problem presented above, she responded, “With the series problems, I had to picture
a physical cube, with them lined up next to each other, and figure it out from there.”

Sara reported that she found that the inductive proof to be easy, but had “a hard time
visualizing it.” She said she would “never have thought about the geometric aspect of
it.” She also stated that it “was confusing to me, and I would still solve them
algebraically and then convert it.” Recollecting the problem later, after we had given
the students cubes for modeling the problems, she said,

“Once we had the manipulatives, ... I can remember working with the actual blocked
cubes, colored blocked to build the cubes and then see how they unfolded to make the
square. And when I actually had hands-on something to work with, it was a little easier
for me to see it, because I wasn’t having to depend on my spatial sense.”

Here she notes that having physical manipulatives was an aid to her understanding as
she had difficulties with mentally picturing the problem. Though the manipulatives
were beneficial to her, she still relied on the analytic as her absolute,

And I still think even though the visual representations were effective, they’re not a proof
to me. [ would still have to do it algebraically for it to verifiably be true in every case.

Learning Group Dynamics

During group activity, Ryan reported he was able to see how some students process
information geometrically as he worked through the problems. What was striking was
that as a result of the group activities, he felt he would be a better teacher in relating
to visual and non-visual learners. “They taught me how to think about a problem so
that if you are trying to reach someone who does not think just in numbers, well, you
can help the student to see the problem visually.”

Sara was also influenced by working within her groups. She said,

It showed me that there are more visual aspects to math than I ever would have
thought.... In the past I tended to rely on algebraic methods to solve problems and now I
might be more willing to look at it visually and to think about whether or not my answer
makes sense geometrically and visually.
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Sara contrasted the way her group partner worked the problem, “She was very visual
and I was very non-visual, but together we somehow always seemed to find a
solution... we could always find some way to make sense for both of us.” She valued
working with someone who was a visual thinker,

I think that if I didn’t have someone like that to work with, who looked at it completely
different, I would’ve kept trying the same things over and over and over again, and never
have found a solution.

Pedagogical Implication

Our students reported that the activities had altered the way they thought about their
future careers in teaching high school. Ryan’s experience with the geo-arithmetic
problem “opened my eyes to a new way of seeing things that I had never been
exposed to before. I consider myself to be not just a better problem solver, but a
better teacher seeing how other students are going to see things.” Furthermore, he
explained,

Before, I was only thinking of the equations, and I thought everyone else was too. My
1dea was that everyone was going to learn by my [symbolic] teaching. I wasn’t open to
visual teaching. Now I’m thinking differently, out of my comfort zone.

Emily reflected on her future teaching practice, “Before these problems, I would have
had to just go by the book, teach by breaking the equations down into smaller parts
algebraically.” As a result of doing these geo-arithmetic problems, she asserted,

I want to try to incorporate this (visual aspects) into my teaching, into as many lessons as
possible. Because I now know I am that kind of thinker (visual), I know there are others
like me. Based on this I want to try to accommodate all the different kinds of thinking. I
will have to teach it purely algebraically for those who don’t think visually. I want to try
to incorporate as much visual as I can, and that will help the algebra (analytic) people to
see it differently too. Maybe I can create a future engineer. And the people who are visual
need to know the numbers, how the equations work and not have to see it visually.

Emily clearly saw a need to provide a balanced approach in teaching students both
the analytic and the visual components of problems. Sara stated that,

In teaching, definitely, I think that I would use more visual aspects, because at least for
me as a student it was easier to see why things made sense, because you could visually
look at it and tell, as opposed to algebraic methods where you had to think about it and
see if it reasoned out.

Since Sara states that she is non-visual, we asked Sara specifically, “What are the
ramifications for the non-visual students if she presented something visually?” Sara
responded,

I think you would have to show it the algebraic way, the inductive way, the proof way,
and then show it visually to kind of illustrate why it works. And I think that, at least for
me, as a non-visual thinker, it still made sense for me to look at it visually.
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CONCLUSIONS

We believe students develop mathematical power by learning to recognize an idea
embedded in a variety of different representational systems and to translate the idea
from one mode of representation to another. A positive result of multiple
instructional representations of concepts is that students who are prospective teachers
learn to construct and to present representational schemes with which they might not
be comfortable.

The geo-arithmetic problems had positive implications for each student in class and
in particular, the three students that have been mentioned in this paper. The problems,
along with the group interactions caused students to reflect on how they think,
whether it be predominantly visual or analytic. They were able to see from their
colleagues that not everyone thinks they way they do. The pedagogical discussions
were rich in that these prospective teachers began to describe how they might deal
with various modes of students’ representations in their own classes, especially
students who may have a predominance that differs from theirs. The authors intend to
continue to investigate how geo-arithmetic problems positively perturb prospective
mathematics teachers in their own thinking about mathematics learning and what
impact these problems may have on their pedagogical content knowledge.
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DEALING WITH LEARNING IN PRACTICE: TOOLS FOR
MANAGING THE COMPLEXITY OF TEACHING AND
LEARNING

Sikunder Ali Baber Bettina Dahl
Aalborg University Virginia Tech

Drawing on the so-called CULTIS model of learning theories developed while
working with students in the UK and Denmark and insights gained through the
experiences of teachers’ learning through Networks of Learning developed in
Pakistan, we suggest that the complexity of learning can be tackled with the CULTIS
model at the conceptual level and can be supplemented while taking insights from the
experiences of working through the Networks of Learning. An example of the
Network of Learning is the Mathematics Association of Pakistan (MAP). The paper
also discusses the implications of how the juxtaposition of CULTIS and Networks for
Learning can be used to develop mathematics teachers’ understanding for various
demands of learning mathematics in an informed manner.

INTRODUCTION

This paper brings in the experiences and ideas developed by each author. Sikunder
Ali Baber (SAB) has worked on Networks of Learning and further theorized on this
through the creation and continually running of various activities of Mathematics
Association of Pakistan (MAP). SAB has chaired MAP the last four years. Bettina
Dahl (BD) developed the CULTIS model of learning theories during her Ph.D. study.
Below this model is explained. At the end of the paper, we discuss why we think it is
necessary to combine both approaches to tackle the complexities of learning theories.

NETWORKS OF TEACHER LEARNING

What are networks? It is difficult to find one suitable definition of a network given
the range of purposes for which they are established. However, Clarke (1996) quotes
a useful definition proposed by Alter and Hage (1993, p. 46): “Networks constitute
the basic social form that permits inter-organizational interactions of exchange,
concerted action, and joint production. Networks are unbounded or bounded clusters
of organizations that, by definition, are non-hierarchical collectives of legally
separate units. Networking is the art of creating and/or maintaining a cluster of
organizations for the purpose of exchanging, acting, or producing among the member
organizations” (Clarke, 1996, p. 142). Darling-Hammond and McLaughlin (1995)
have stressed the importance of networks as a powerful tool in teacher learning for
both pre-service and in-service teachers, as cited by the report named
Networks@Work (Queensland Board of Teacher Registration, 2002). Networks
provide the ‘critical friends’ or ‘peers’ that teachers need to be able to reflect on their
own teaching experiences associated with developing new practices in their
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classrooms. Teacher networking often provides an opportunity for teachers to visit
the various schools of participants and to gain ‘practical pedagogical clues’ (Moonen
and Vooget, 1998, p. 102), from other teachers’ classrooms. Also, ‘“Professional
relationships forged outside the immediate working environment enable teachers to
gain valuable insights into new knowledge and practice beyond that gained from
interactions with colleagues in their own schools” (Board of Teacher Registration,
1997, pp. 6-7). Lieberman (1999) says that “Networks are becoming popular, in part,
because they encourage and seem to support many of the key ideas that reformers say
are needed to produce change and improvement in schools, teaching, and learning”.

Networks therefore seem to provide:

e  Opportunities for teachers to both consume and generate knowledge;

] A variety of collaborative structures;

e  Flexibility and informality;

e  Discussion of problems that often have no agreed-upon solutions;

e Ideas that challenge teachers rather than merely prescribing generic
solutions;

e An organizational structure that can be independent of, yet attached to,
schools or

®  universities;
e A chance to work across school and district lines;
e A vision of reform that excites and encourages risk taking in a supportive
environment; and
e A community that respects teachers’ knowledge as well as knowledge from
research and reform (Lieberman and Grolnick, 1997).
Various writers (e.g., Darling Hammond and McLaughlin, 1995; Smith &
Wohlstetter, 2001; Lieberman & Wood, 2003) have identified two distinctive features
that teacher networks exhibit in their pursuit to better support teachers’ learning on a
regular basis:

Personal and Social Relationships: improved relationships, flexibility, risk-taking,
commitment, openness in interacting with each other and clarifying values and
expectations.

Academic and Professional Aspects: innovation, enriching practice, continual
development of teachers focused on professional concerns such as student learning,
sharing and getting relevant professional information (dissemination), developing
healthy and shared norms, enriching curriculum and influencing policy makers.

Networks should also continually get engaged in the process of diversifying their
activities and programs so that evolving and changing needs can be accommodated.
This requires training of network leaders in managing the complex relationships and
meeting the evolving needs in an effective manner. Also networks can get engaged
with processes of follow-up of their professional development activities through
engaging different individual and institutional members. These follow-up activities
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can also help participants to develop insights into the issues that the professional
networks are supposed to tackle. This continual sharing of professional practice of
teachers within the networks can help all the participants to develop the culture of
evidence essential to develop teaching practice along professional lines.

Why are networks important in the context of Pakistan?

Recently Aga Khan University Institute for Educational Development (AKU-IED) in
Pakistan, a leading Institute mandated to uplift the quality of education through its
innovative programs and research initiatives, has supported six professional
associations; namely, Mathematics Association of Pakistan (MAP), School Head
Teachers Association of Development of Education (SHADE), Science Association
of Pakistan (SAP), Pakistan Association of Inclusive Education (PAIE), Association
of Primary Teachers (APT) and Association of Social Studies Educators and
Teachers (ASSET) to form a network called Professional Teachers Associations
Network (PTAN). This network has some funding support from the Canadian
International Development Agency (CIDA). The overarching aim of this Network is
to promote an enabling environment for the professional growth and development of
educators from diverse backgrounds, as a contribution to the improvement of
education in Pakistan (PTAN Funding Proposal, unpublished). In the funding
proposal of PTAN, an assessment is made about the status of teachers in Pakistan. It
states: “Teaching in the context of Pakistan continues to remain as a neglected
profession thus leading to poor status for the teachers within society. This status quo
also remains prevalent due to the absence of networking amongst Pakistani teachers
and an authentic platform to raise genuine issues to broader audiences as well as to
support their own professional development. Pakistani teachers today, find
themselves as an ignored identity, in most educational reforms and quality
improvement initiatives in the country. This despondency has further perpetuated
nonchalance and lack of conviction within their profession leading to the educational
system working in a dismal situation” (PTAN Proposal, unpublished p. 1.). PTAN,
through its constituent members is helping teachers from different sectors (public,
private not-for-profit and private for profit) to come together and discuss their
professional matters in a more open manner and develop a collaborative strategy to
approach their professional matters. For example, the composition of working
committees of these professional associations is made up with fair representation of
teachers from all the constituencies such as government and private and other non-
governmental organizations that they are serving. This coming together of teachers
from different sector schools helps members of these networks to understand their
particular issues and develop a holistic approach towards creating greater cooperation
to deal these issues on a more sustained and focused manner.

MAP was established as a professional association of mathematics teachers to
upgrade the quality of mathematics education in Pakistan. Since its inception, July 4,
1997, it has been committed to providing a learning platform for all those related to
the field of mathematics education whether directly or indirectly. MAP has adopted a
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three-pronged approach to address the matter of the continuing development of
mathematics teachers. Firstly, it has created and structured focused programs for
mathematics teachers both pre-service and in-service to provide opportunities for
them to interact freely with each other on professional matters. For example, MAP
organizes a regular workshop every month on various topics such as teaching
fractions meaningfully or geometry - making connections etc.

Secondly, for children to develop positive attitude towards mathematics, MAP has
been very active in organizing separate programs for them. In these programs, the
children have opportunities to work in teams to experience mathematics as an
interesting and challenging subject. MAP has also organized three Olympiads for
children of different grade levels to work on interesting and challenging mathematics
in a collaborative fashion.

Thirdly, in order to create a strong support mechanism for teaching and learning
worthwhile mathematics, MAP has worked on various projects where important
stakeholders are being encouraged to re-learn mathematics so that they can see the
broader role of mathematics in daily life situations. In this regard, MAP has been
actively engaged into the process of rewriting textbooks with the Provincial bodies
such as Sindh Text Book Board, a policy level body to design and produce text books
for the province of Sindh in Pakistan. In Pakistan not too distant the government
regulates the guidelines of mathematics curriculum to be taught at secondary and
high schools in Pakistan. Also the governmental agencies have been significantly
involved in the production of the textbooks of mathematics.

MAP is also organizing workshops for parents so they can see what it means to learn
mathematics and how they would be able to support children’s mathematics
understanding. This work with the wider society enables MAP to create greater
synergy and networking amongst different stakeholders to achieve quality
mathematics education within Pakistan and beyond. Within this scenario the learning
of mathematics can be seen as an important subject for making informed decisions in
today’s fast changing world.

CULTIS AND ITS SIGNIFICANCE FOR TEACHER LEARNING

Dahl (2003, 2004) developed a model combing a number of different widely
recognized and classical learning theories. This was done as part of a study on high-
achieving Danish and UK high school students’ mathematics learning strategies. To
have a range of possible analysis, mainly the following theorists were used: von
Glasersfeld (1995), Hadamard (1945), Mason (1985), Piaget (1970), Polya (1971),
Skemp (1993), and Vygotsky (1962, 1978). These theories express themselves in
various categories: Consciousness-Unconsciousness; Language-Tacit; Individual-
Social (CULTIS). The categories cut the theories into modules that to some extent
interact and overlap but each category has nevertheless its own identity.
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Category 1: Consciousness

Polya described four phases for working on a mathematics problem. First: understand
the problem; second: device a plan; third: carry out the plan, and the fourth is to
examine the solution. The student should also be motivated and “desire its solution”
(Polya, 1971, p. 6). Since it is a practical skill to solve problems and since we require
all practical skills by imitation and practice, this also applies for solving
mathematical problems (Polya, 1971, p. 4-5). Mason writes that practice is important
but without reflection it may leave no permanent mark. Time and a questioning,
challenging, and reflective atmosphere is also needed (Mason, 1985, p. 153). This
reflects many teachers’ and students’ experience that through practice and repetition,
one gets a feeling for the mathematics but also that if one only learns a technique, an
algorithm, then soon after, these are forgotten.

Category 2: Unconsciousness

Hadamard (1945, p. 56) states that there are four stages in learning: preparation,
incubation, illumination, and verification. Conscious work (preparation) is therefore
preparatory to the illuminations. Polya states that “only such problems come back
improved whose solution we passionately desire ... conscious effort and tension seem
to be necessary to set the subconscious work going” (Polya, 1971, p. 198). This is the
experience that after one has worked on a problem, one leaves it, and then later one
feels a sudden shed of lighting and everything is clear. The illumination is generally
preceded by an incubation phase where the problem solving is completely interrupted
(Hadamard, 1945, p. 16). Teachers can organize time for the incubation phase e.g.
through repetition and after the illumination spend time on verification, as in
Category 1, to reflect consciously on the unconscious inputs.

Category 3: Language as thinking-tool and concept formation

Vygotsky describes language as the logical and analytical thinking-tool and that
thoughts are not just expressed in words but come into existence through the words
(Vygotsky, 1962, p. viii & 125). Mathematics is also itself a language, wherefore the
formations of concepts are an essential part of learning mathematics. A basic
principle in concept formation is that all concepts, except the primary ones, are
derived from other concepts and they take part in the formation of higher order
concepts (Skemp, 1993, p. 35). It is therefore important to let new concepts build on
old ones and that these old ones are firmly learnt. These concepts form a schema in
the student’s mind and if a concept is learnt and understood, the student does not
need to remember it, he knows it. A change in a schema is always difficult since the
existing schema needs to change (accommodate) when it is inadequate to assimilate
new knowledge. Assimilation of new knowledge to an existing schema gives
however a feeling of mastery (Skemp, 1993, pp. 29-42).

Category 4: Tacit knowledge and obstruction by language

Hadamard argued that thoughts die when they are embodied by word but that signs
are nevertheless necessary support of thought (Hadamard, 1945, p. 75 & 96). Piaget
(1970, p. 18-19) states that “the roots of logical thought are not to be found in
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language alone, even though language coordination is important, but are to be found
more generally in the coordination of actions, which are the basis of reflective
abstraction”. Individual actions are thus the root of mathematical thought. In relation
to tacit knowledge, one can observe that a person has a certain kind of knowledge but
when one asks the person he is not aware that he knows this (Polanyi, 1967, p. 8).

Category S: Individual

Constructivist epistemology is that “knowledge ... is in the heads of persons, and that
the thinking subject has no alternative but to construct what he or she knows on the
basis of his or her own experience (Glasersfeld, 1995, p. 1). Piaget argues that the
basis of abstraction is the action, not the object (Piaget, 1970, p. 16-18). The
individual is therefore active and learning comes as the individual manipulates with
the objects and reflects on this. These reflective abstractions are based on coordinated
actions, not individual actions. Examples of coordinated actions are actions that are
joined together or who succeed each other (Piaget, 1970, p. 18). Furthermore: “To
know is to assimilate reality into systems of transformations. ... knowing an object
does not mean copying it - it means acting upon it” (Piaget, 1970, p. 15). Students
therefore need to manipulate e.g. with concretization materials, algebraic concepts, or
geometrical figures. It is important to leave time for students to do this individually
since learning happens as the individual interacts with the surrounding.

Category 6: Social

Social interaction plays a fundamental role in shaping students’ internal cognitive
structure. This is a gradual process that has two levels: “first between people ... and
then inside the child” (Vygotsky, 1978, p. 56-57). In the beginning a teacher controls
and guides the student’s activity but gradually the student takes the initiative and the
teacher corrects and guides, and at last the student is in control and the teacher is
mainly supportive. The potential for learning is limited to the “zone of proximal
development (ZPD)” (Vygotsky, 1978, p. 86), which is the area between the tasks a
student can do without assistance and those that require help. The teacher is essential
since on his own, the student might not enter his ZPD. Verbal thinking is an example
of a social activity since “audible speech brings ideas into consciousness more clearly
and fully than does sub-vocal speech” (Skemp, 1993, p. 91-92). Vision is therefore
individual and hearing is collective (Skemp, 1993, p. 104). The students should
appropriate and internalize. Also discussions among classmates facilitate learning.

CONCLUSIONS

A conclusion in Dahl (2004) is that if a teacher uses teaching methods that are too far
away from teaching styles the students are used to, learning becomes difficult.
However, the study also confirms that students learn in a variety of ways. Hence
balance and eclectism is necessary. This does however not mean that anything is as
good/bad as anything else but the teaching style must be targeted towards the specific
students. Networks are good at helping teachers establishing new practices in their
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classroom and CULTIS would be useful to gain input to ensure that the “area” of
possible student learning processes is covered.

Networks also respect both teachers’ knowledge and knowledge from research.
CULTIS could therefore also be a tool from which to discuss the teachers’
experience. The teachers might in some of the theories recognize elements of ideas
that they have developed from their experience. Kilpatrick argues: “Why is it that so
many intelligent, well-trained, well-intentioned teachers put such a premium on
developing students’ skill in the routines of arithmetic and algebra despite decades of
advice to the contrary from so-called experts? What is it that teachers know that
others do not?” (Kilpatrick, 1988). CULTIS is a holistic approach and we assume that
since CULTIS shows a broad range of different theories, CULTIS might give
teachers a language for theories that are not “in” for the moment and give them some
arguments and reasons to hold on to their old stuff. We assume that any teacher in
CULTIS can find something that “fits” the teacher’s own ideas. At the same time
CULTIS might give the teachers new insight. It might therefore be a “safe” arena for
discussing professional matters in an open manner and hopefully also create some
openness for other ideas. Diversity of ideas, trust, and teachers feeling that they are
being valued are also essential elements in Networks of Learning.

Networks provide flexibility, informality, and a forum for discussing problems that
often do not have an agreed-upon solution. This fits with CULTIS’s “neutrality”
since it exhibits a wide range of learning theories. These theories are different,
opposing, but they have been widely accepted at some point in time. They are
thoughts where one might foresee revised versions recurring in the future. This
insight is based on Hansen (2004) who argues that there seems to be pendulum
swings between child centered/understanding and content centered/skills in the
mathematics curriculum reforms. The teachers can disagree with the theories in
CULTIS, but they nevertheless need to know the existence of these theories partly
since it can provide insight into how to tackle individual student’s learning, and
partly since it will give the teachers a tool to “recognize” the theoretical roots of
future new theories and/or reforms.

In Pakistan the Networks of Learning have up to now not focused on learning
theories, but the CULTIS model could be a useful tool for the continual development
of teachers focused on professional concerns such as student learning. The
implementation of CULTIS into Networks of Learning has not yet happened but
based on the experience we anticipate that this will be a useful tool to tackle the
complexity of learning.
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SITUATIONS OF PSYCHOLOGICAL COGNITIVE NO-GROWTH
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We present and discuss three classroom situations where failure emerges
unexpectedly after initial success and contend that they cannot be sufficiently
explained by theories of psychological cognitive growth as surveyed in Tall [2004].
The discussion hinges on the social implication of psychoanalysis as developed by
Slavoj Zizek [2002].

INTRODUCTION

Psychoanalysis has made its entrance into Mathematics Education via considerations
of affect and cognition. Breen [2004] sought to deal with a case of a student’s anxiety
through a change in the teacher’s attitude. Evans [2004] approaches the relationship
of beliefs, emotions and motivations through the study of films that present
mathematics as a work of genius. Falcdo et al. [2003] discuss affect and cognition
approaching the mathematics learner as possessor of a subjectivity that is always
embedded in culture. Hannula, Maijala and Pehkonen [2004] point out that beliefs
related to mathematics (self-confidence) have an influence on students’
achievements. Morselli and Furinghetti [2004] consider the connection between
cognitive and affective aspects and look for answers in the domain of affect.
Walshaw [2004] looks for a conceptualization in Lacan and Foucault that could aid
the interpretation of subjectivity. Cabral [2004], Cabral and Baldino [2004], Carvalho
and Cabral, [2003] assume a Lacanian perspective and introduce the concept of
pedagogical transference. The importance of framing cognition in a wider
sociological frame has been demonstrated in PME28 whose main theme was
“inclusion and diversity” [Gates, 2004; Johnsen Hgines, 2004].

In this paper, we take advantage of another slant of Lacanian Psychoanalysis that has
been developed by Slavoj Zizek [2002] and leads to the analysis of social ideological
formations. We contend that there is in cognition something more than cognition
itself and that, in order to apprehend this surplus, theories of psychological cognitive
growth do no suffice. We make an exercise of Hegel’s dialectics on Tall’s [2004]
survey of theories on psychological cognitive growth in order to show that these
theories have a built-in social exclusion bias. Then we present three episodes of what
we call no-growth situations that, as such, escape the appreciation of cognitive
growth theories. We interpret these situations eliciting their implicit discourse which
has the form of present day ideologies: “Yes, I know, but nevertheless...”. “I know
that school knowledge is important but nevertheless...” Our final discussion relates
cognition to three forms of school authority that students, teachers and mathematics
educators corroborate in order to disavow (the feeling of) castration: the institutional,
the manipulative and the totalitarian forms. It will not be very pleasant to find
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ourselves as mathematics educators implicated in the support of such forms of
authority, but perhaps this is the unbearable dimension of the “P” in “PME”.

THE EXCLUSION BIAS OF COGNITIVE THEORIES

Tall [2004] seeks to dress an overall universal picture of PME meetings from the
point of view of individual psychological cognitive growth. He makes a
comprehensive survey of Piaget’s empirical, pseudo-empirical and reflective
abstractions, Bruner’s enactive, iconic and symbolic representations, Fishbien’s
intuitions, algorithms and formal aspects of mathematical thinking, Skemp’s
perception, action and reflection types of activity, Van Hiele’s levels, Dubinsky’s
APOS theory, Sfard’s operational operational/structural theory, Lakoff’s embodiment
of thinking in biological activity. Grounded on the interplay of these theories, Tall
attempts a synthesis intended to encompass the developments from conception to
mature man and from discalculic children to research mathematicians. He arrives at
“three worlds” into which cognitive growth can be categorized: the worlds of
perception, of symbols and of properties. “Different individuals take very different
journeys through the three worlds™ he says [ibid: 285].

The reader i1s a little deceived since, instead of a synthesis, one could expect a global
appreciation of such theories so that they could be sublated (afhoben) towards
something new. After all, their similarities are much more striking than their
differences. Why are there so many theories focusing on the same object, namely,
psychological cognitive growth? Besides, they do not stem from an effort to make
sense of a large amount of empirical data; on the contrary, they rely more or less
heavily on their respective authors’ introspection. Experiences and studies tend to
confirm, infirm or answer specific questions put by the theory, rather then to discover
and tackle new phenomena.

From a philosophical point of view, the general idea of growth implies a change in
magnitude while a certain basic entity keeps its identity invariable: the “individual”
who transits through the “worlds” remains an invariable seat of magnitude. “A
magnitude is usually defined as that which can be increased or diminished” [Hegel,
1998:186]. Hegel shows that this is a circular definition: “magnitude is that of which
the magnitude can be altered” [ibid] but instead of discarding the definition as we
would do in mathematics, he takes it up as the starting point of the very Notion of
magnitude. Indeed, the definition has the merit of pointing out the external agent, the
author, who first thought of it as a reasonable one. It is the author who provides the
invariable background against which growth can be thought.

In so far as theories of psychological cognitive growth refer to mathematics, they rely
on a scale of values based on mathematical knowledge itself, a hierarchy rising from
numerical pre-linguistic to the axiomatic and formal. Their authors speak from the
position of one who has reached the apex of the stages or levels of their scales. They
focus on psychological cognitive growth from the perspective of an autonomous ego
hovering over the changes of magnitude of others, out of reach of any criticism.
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Considering the transformation of quantity into quality, Hegel warns us that a field
that gets too wet ceases to be a field and becomes a swamp. At what precise amount
of humidity did it become a swamp? Which hair thread one has to lose in order to be
considered bald? At what precise moment a graduate student becomes a research
mathematician? At what precise moment a child surpasses its discalculic condition?
These are symbolic determinations and as such they are intrinsically retroactive: once
they are verified it is found out that the new situation they constitute existed a little
before. Why? Essentially an external agent is responsible for the declaration of the
new state of affairs. In order to be able to think changes of levels or states simply as
“growth”, one has to abstract from the external social agent who attributes different
magnitudes to an identical subtract. The identity resumes to the external social agent.

Leaving their authors out, cognitive-growth theories assume the status of scientific
subject-free theoretical speeches. This effort leads to an absolute scale of values in
which all subjects are positioned, the author occupying the apex. The tendency is
almost unavoidable to pass from “growth” to “lack”, “deficiency’, “shortage”, etc.
This is the perverse social effect of cognitive theories. We do not claim that a further
effort should be made towards a “perfect theory” that would be politically neutral.
These theories represent an important logical moment. The contribution of
psychoanalysis goes in the opposite direction: simply, the wills and desires of the
authors must be brought to the fore. This is what we intend to do below.

THREE NO-GROWTH SITUATIONS

The episodes below were extracted from classes of two freshmen courses, one in
Analytic Geometry (AG) the other on calculus (C1) given in August-December 2004
for repeaters in the engineering program of our institution. Ten students enrolled in
AG, six concludes the course and four passed; twelve enrolled in CI, seven
concluded and two passed. Only one student of each course was not enrolled in the
other. Classes met during four consecutive 50-minutes periods on Tuesdays (AG) and
Thursdays (C1) totalizing 60 periods for each course. The text book was Stewart
[1999] chapter 13 for AG and chapters 1 to 4 for C1. Classes had a tutorial format
assisting individuals or couples of students. Each class ended with a 40-minutes
hand-in individual exercise, graded and returned to the student’s scrutiny in the
beginning of the following class. Very seldom students took photocopies of graded
exercises. These exercises made 40% of the passing grade the other 60% came from
two mid-terms and one final open-book written individual exams. Classes started
with a proposition of exercises to be worked out. Students could never do more than
two or three exercises per day. Pedagogical remarks stressing important points were
inserted at each class as difficulties arose.

Episode 1: Mary

Mary had been our student in a high school course on elementary algebra. The only
way she could solve algebraic equations was by trial and error. She entered the
university, failed AG and C1 and became our student in the described environment.
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In Agu-24, the exercise was: “Given points in the plane A, B, C and D, find x and y
such that AD =x AB+ y AC”. Mary found the system of equations, tried to solve it by

substitution but made a mistake:

(3x—12)/2=3x-6. The class of Sep-9 was dedicated to solving algebraic equations by
the “method of transformations”: 1) operate simultaneously on both members; 2)
replace one member by an equal one. Mary showed some proficiency but made the
same mistake again: (7+14x)/x=21. In the class of Sep-21 we made sure that all
students could solve systems of two and three equations by Cramer’s rule. In Oct-10,
one question of the mid-term exam was: Draw the straight lines r(r)=(5, 6)+#(1,3) and
y =8-3x, write the first one in reduced form and determine their intersection up to

three decimal places. Mary solved the system by substitution and this time she got it
right. Would we say success?

Mary passed AG but not C1. One of the questions of the second-chance C1 final

exam in Dec-21 was: Find the intersection of the tangent line to f(x) = x> +l at x=Y4
X

with the secant line through x=1 and x=2. Mary arrived at the system (with one
wrong coefficient) and got stuck.

Mary: Where can I find “intersection of straight lines” in the book?

We showed her the topics of intersection of lines and planes, of two lines in space
and the statement of the question in the mid-term exam reminding her that she had
got it right. She did not have a copy of the exam with her and her classroom work
with a similar question was incomplete. When she finally handed her paper in with
the question blank, we checked what sense she made of lines and equations. We drew
two lines with their equations y=2x-3, y=-3x+5. She indicated the correspondence

of x and y in the equation and points in the plane.

Teacher: (Pointing at the intersection): What happens at this point? What are the
values of x and y?

She recognized that the same x and the same y should fit into both equations. We
insisted:

Teacher: How can you find this x and this y? (She remained silent, looking at the
picture.)

Teacher: Are you making trials?

Mary: Yes.

Resume: After one semester of intense tutoring work Mary reinforced her confidence
in algebraic transformations and was able to solve a system of two equations by
substitution. Yet, at the crucial pass/fail moment of the exam, she went back to her
old high school strategy of trial and error.

Episode 2: John

In Dec-12 John was able to correctly solve the items below in the final exam.
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2

d(—tan(3x)+4 j:. (2o ) = ., sec100 (100 =), lim—— =

sen(3x? + 4x) " dx —0e" —x—1

He did not get a passing grade and had to take the second-chance final. In the
question of finding the minimum distance of a point to a curve, he repeated the
mistake that we had pointed out in his exam one week before: the derivative of

2 . . .
(x2 +3x-5 ) was simply Z(x2 +3x— 5) and in the question of related rates he
differentiated 3cos@ =z as 3—sinf =dz.

Resume: After one semester of tutoring John could show proficiency in applying the
chain rule to rather involved composition of functions. However, at the final moment
he seemed to have forgotten all and scribbled absurd equalities.

Episode 3: Students

During the first two weeks (Aug-19, 26) of C1 we made sure that all students could
perform graphical exercises on derivatives and primitives reasonably well. Given the
graph of an arbitrary function, draw tangent lines at several points, evaluate the
slopes, plot the slopes as the graph of the derivative and conversely, starting from a
given graph, interpret the ordinates as the slopes of a primitive and draw its graph
through a given initial point. A protractor graduated in tangents was provided. The
derivative was introduced as the “name” given to the slope of the tangent line and we
made sure that every student could explain the meaning of this definition.
Discussions of the relation of increasing/decreasing functions with the signs of
derivatives were provided. In the next weeks we worked on algebraic equations
(Sep—02), rules of differentiation (Sep-09), derivatives of elementary functions via
limits (Sep-16) and graphs of cubics (Sep—23). Finally we came to optimization
problems (Sep-30). Students were asked to read the first example in the text book. At
a certain point they read: “So the function that we wish to maximize is A(x) = 2400x — 2x*

0<x<1200” [Stewart:278]. They had no problems so far. “The derivative is
A’(x)=2400—-4x, so to find the critical numbers we solve the equation 2400-4x=0"
[ibid]. At this point the six students in class asked “Why?”

Teacher: Well, if you have a function like this (drawing a graph with a local
maximum) how much do you think that the derivative will be at this
point?

Students: I don’t know.

Teacher: The derivative is the name of what?

Students: (After some help for recollection): It is the slope of the tangent line.

This seemed to suffice for two of the students but the other four still could not make
any sense.

Teacher: (Showing a tangent line just a little to the left of the maximum): Is the
slope of this line positive or negative? (The strategy was to move the
tangent to the right until it reached the point of maximum.)
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Students: I don’t know. What do you mean by “slope”?

The exercises of the first two weeks had had to be retaken before they could express
any connection between extreme points and derivatives. This took most of the day.

Resume: Everything that they had learned in the first two weeks about slopes and
tangents was not available any more.

DISCUSSION

We presented a picture where the natural outcome would point towards growth and in
many reports could be held as a bulletin of victory. Mary learned how to solve
systems of equations by substitution and abandoned her empirical trial and error
strategy; John proficiently learned the chain rule and all students could reasonably
perform graphical correspondences between derivatives and primitives. However we
went one step further and checked this success in the day after. It had fallen into a
black hole! No-growth situations mean success followed by unexpected failure.

A new notion such as no-growth situations naturally faces criticism. Is it necessary?
Do these situations exist at all? Arguments may contend that we did not provide
enough data in support of our concept: how was the affective teacher student
relation? Were the student’s mistakes discussed in class? What sort of extra-class
help was provided? Did the students have the necessary requisites to take a calculus
course? An endless list of extra data may be required postponing the decision
indefinitely or until a point is reached where the reported no-growth situation may be
characterized as failed-growth: had the teacher behaved more friendly, had the
method been adequately applied, had this or that been different, then growth could
have occurred. True, the reported situations can be considered a peripheral problem
in cognitive growth theories; we prefer to take them as a central problem in a new
way of looking at “growth”. Should we call this new look “social cognition”?

We argue that it is important but not sufficient to focus on growth when it occurs. We
have to crucially consider what the student does overnight with what he has learned
during the day, that is, what he does outside the school. Every day the students in the
reported situations confirmed their will of becoming good professional engineers and
behaved accordingly, coming to class and working hard on the exercises. However,
from one day to the next they treated their learning in a way as to deny such good
intentions. In our interpretation their implicit overnight discourse could be:

Mary: ‘I know that my trial and error method to solve equations falls short of the
course needs and I have learned other methods; nevertheless trial and error it is my
method, my deep personal enjoyment and I will stick to it.’

John: ‘I know how to operate differentials according to the strict chain rules as I have
learned in this course; nevertheless I will do according to my former understanding:
squares are replaced by twice the thing and cosine by minus sinus.’

Students: ‘We know that what we learn in one class will be necessary for the next

one; nevertheless we do not take the trouble of keeping our learning under
account.’
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According to such interpretations (there may be others) the reported no-growth
situations may be referred to one of the three elementary structures of the exercise of
authority which function socially as three modes of disavowing castration.

Traditional authority is based on what we could call the mystique of the Institution.
Authority bases its charismatic power on symbolic ritual, on the form of the institution as
such. (...) Socrates’ argument could thus actually be linked to the phrase ‘I know, but
nevertheless...”: ‘I know that the verdict that condemned me to death is faulty, but
nevertheless we must respect the form of the law as such’ . [Zizek,2002:249]

‘I know that the value of school knowledge is questionable and that I will have to
undergo training in my first job; nevertheless I believe that this knowledge represents
the distinctive herald of my social group and I must endeavor to acquire it. The
Emperor wears fine clothes because he is the Emperor.” The interpretations we gave
of the students’ overnight speeches certainly do not support this form of authority.

The second mode corresponds to what might be called manipulative authority: authority
which is no longer based on the mystique of the institution — on the performative power
of symbolic ritual — but directly on the manipulation of its subjects. This kind of logic
corresponds to a late-bourgeois society of ‘pathological Narcissism’ (...) constituted of
individuals who take part in the social game externally, without ‘internal identifications’
— they ‘wear social masks’, ‘play their roles’, not taking them seriously’. (...) The social
role of the mask is directly experienced as a manipulative imposture; the whole aim of
the mask is to make an impression on the other. [Zizek, 2002:251.

‘The social role of the school institution is directly experienced as a manipulative
imposture; its whole aim is to make an impression on the other, school knowledge is
useless, only the certificate counts.” Would peripheral Third-World countries typify
the “late bourgeois societies” mentioned by Zizek? These countries have received the
“masks” of neo-liberalism, of globalization, of free trade, of international help and
loans as impostures leading to increased exploitation. It is not surprising that such an
understanding reflects itself in school, splitting knowledge and belief: ‘yes 1 know
that the Emperor wears fine clothes, nevertheless I believe he is naked and I act
accordingly’.
The third mode, fetishism stricto sensu, would be the matrix of totalitarian authority.
(...) The totalitarian too does not believe in the symbolic fiction in his version of the
Emperor’s clothes. He knows very well that the Emperor is naked (...).Yet in contrast to
the traditional authority, what he adds is not “but nevertheless” but “just because”: just
because the Emperor is naked we must hold together the more, work for the Good, our
cause is all the more necessary. [Zizek, 2002:252].

‘We know very well that imparting upper class central countries knowledge such as
mathematics, to proletarian students of peripheral Third World countries is
impossible, that raising the economy of a country through education is a hopeless
dream, that all the efforts in favor of Mathematics Education have had a
proportionally pale effect. Just because we know, since Freud, that education is one
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of the four impossible endeavours, Mathematics Education is the more necessary.
Commitment to it is our charming mode of disavowing castration.’
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GOOD CAS WRITTEN RECORDS: INSIGHT FROM TEACHERS
Lynda Ball and Kaye Stacey

University of Melbourne

Availability of a computer algebra system (CAS) provides a catalyst for teachers to
reflect on long-standing practices of teaching mathematics, including how solutions
to mathematical problems should be presented. This paper reports on how four
teachers implementing CAS for the first time thought about this issue over a school
yvear. The paper analyses their contributions to group discussions about their
teaching practices at the beginning and end of the school year. New practice is
needed to accommodate lack of intermediate steps available when CAS is used, and a
cluster of issues relating to the use of CAS syntax. Their comments show considerable
reflection about personal practice, the dominance of the external examination, and
concern that new expectations might favour users of some brands of CAS over others.

INTRODUCTION

New availability of a computer algebra system (CAS) in the mathematics classroom
and for formal assessment provides a catalyst for teachers to reflect on beliefs and
long-accepted practices about teaching mathematics. This paper will report on how a
group of teachers reflected on and reconsidered their long-standing practices of how
to present written solutions to mathematical problems. They were prompted to
reconsider this socio-mathematical norm (Krummbheuer, 1995) by the perturbation to
normal practice of working with our research team to implement the first
mathematics subject permitting the use of CAS in secondary schools in their region.
That having a complex calculator in the classroom perturbs normal practice is a
common finding in the research literature (see, for example Artigue, 2002; Guin &
Trouche, 1999; Stacey, 2003), and many aspects of this have been investigated.

The four teachers, Ken, Lucy, Neil and Meg (not their real names) were participants
in the CAS-CAT project (CAS-CAT, n.d.), which researched curriculum, assessment
and teaching using CAS in three secondary schools. A new subject, Mathematical
Methods (CAS), was accredited for the state examination system for years 11 and 12
mathematics. In MMCAS, CAS could be used for all mathematical work, including
in examinations, at the teacher’s or student’s discretion. Further descriptions and
outcomes of the project are described in Stacey (2003), Ball (2003), Flynn and Asp
(2002), and VCAA (2002). Previously, only graphics calculators without a symbolic
facility had been permitted. The three project schools each used a different brand of
CAS, with Lucy’s and Ken’s classes which were at the same school using the same
machines.

The project tracked the progress of the teachers and first cohort of students through
the first two years of implementation — year 11 in 2001 and year 12 in 2002. At the
end of 2002, the Year 12 students sat for the first externally-set state examinations in
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the new subject. Their results contributed to their university entrance scores, and
were regarded as very important by the teachers, students and schools. Teachers were
always concerned with preparing their students well for examinations - it was a very
high priority for them at all times. Ball (2003) and Ball and Stacey (2004) report on
the way in which students’ recorded their solutions in the 2002 examinations.

During 2001 and 2002, the project team provided extensive teaching material to
assist teachers and students, training in the use of CAS and discussions about
pedagogy. Consequently, teachers had considered implementation issues prior to the
discussions reported in this paper in 2002. The data for this paper is from two
meetings. The first was held at the beginning of the school year (February 2002) and
involved all teachers and the researchers. The second meeting was at the end of the
school year (November 2002) and, at the teachers’ request, involved the teachers
only. Both meetings were audiotaped and transcribed by the researchers.

HOW AND WHY DOES CAS CHANGE WRITTEN RECORDS?

Early in the planning and implementation of MMCAS, it was evident to the research
team, the teachers and also the state-appointed examination setters, that the use of
CAS might require changes in the normal way in which students write solutions, and
the way in which written solutions are assessed by examiners. The major reason is
that, in the phrase of Flynn and Asp (2002), CAS “gobbles up” intermediate working.
Figure 1a shows in TI89 syntax, how a CAS can solve simultaneous equations using
one input ‘solve(x+y=7 and 2x—y=5,{x,y})’. The input line is second from the bottom
(above MAIN) and the calculator display above is a restatement of the input followed
by the answer x =4 and y = 3. Figure 1b shows how multiple CAS steps can often be
combined into one ‘nested’ procedure with one line of CAS syntax and one output.
The expression sin(x)cos(x) was differentiated with respect to x using syntax
d(sin(x)*cos(x),x) and then x=m substituted into the derivative to give the result 1.
Note in particular, that the symbolic derivative is not outputted. In examinations, this
intermediate step of finding a correct derivative would often have been awarded a
mark, even if the derivative is not explicitly requested.

One step solving (Fig. 1a) Nested procedure (Fig. 1b)
TE%;: ﬁﬂrezb'r'u -:Fuzf:lutrﬁ':r Prrﬁf\ﬁll] E1-2Fuﬁn'UP TE%;: ﬁﬂrezb'r'u -:Fuzf:lutrﬁ':r Prrﬁf\ﬁll] E1-2Fuﬁn'UP

Beolue(x+u=7 and Z-x -4
x=d and u=3

wHAY=F and Pdw-yg=5, eyt disintxikcosixd, =0 lw=n

HAIN EAD AUTO FUNT 1750 HAIN EAD AUTO FUNC 1750

I%E5ih(x)-c05(x)j|x=n 1

Figure 1. Examples of CAS procedures which do not provide intermediate results.

The state authority, the VCAA, were concerned that partial credit should be able to
be awarded for extended response questions and approved the instructions in Figure 2
to appear on the examination papers. The third dot point is relevant here. Throughout
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2002, teachers had to decide what ‘appropriate working” meant for written records
produced in the CAS context.

In order to provide guidelines for the teachers, the research team had devised the
RIPA rubric, described with examples in Ball and Stacey (2003), to help establish
good practice for the written communication of mathematical solutions. The rubric
suggested that students should make sure that their written solutions to problems
make the plan of the overall solution (P) clear, specify what was inputted (I) to the
calculator although not in calculator syntax, and provide reasons (R). However, they
need record only selected answers (A) — there is no reason to transfer to the written
record all of the intermediate outputs of the calculator to paper. The February
meeting which provided data for this paper, began with researchers initiating a group
discussion of how students should be trained to record their solutions in MMCAS
classes, during which the RIPA ideas were raised. RIPA promoted much discussion
among the researchers and teachers which continued throughout the year. Some
teachers found RIPA helpful to share with their class, and others did not.

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer 1s required to a question.
Approprate working must be shown 1f more than one mark 15 available.

Unless otherwise ndicated, the diagrams 1n this book are not drawn to scale.

Figure 2. Instructions for MMCAS examination 2002 (VCAA, 2002).

PYTHAGORAS EXAMPLE

The February discussion on teaching students to record solutions in a CAS
environment began with examples such as those in Figure 1 but the teachers,
planning how to raise these issues with students, wanted to discuss simple examples
where students would not find the mathematics challenging. They suggested finding
the hypotenuse of a right-angled triangle with sides 3cm and 5cm, and talked about
various written solutions such as those in Figure 3, which also shows associated
calculator screendumps. Comparing Figures 3a-3c shows that students might be using
quite different syntax and calculator methods to solve even basic problems; an
illustration of the explosion of methods observed in other studies (e.g. Artigue, 2002).

Figure 3a is a typical solution using a scientific or graphics calculator: the inputs are
not symbolic and it is not possible to obtain a surd answer. Ken noted, as a teaching
difficulty, that his students (especially the less able students) would often include too
many intermediate steps (e.g. ¢’ =9+25) which were unnecessary to show in senior
work, because they could be reasonably taken-as-shared. He attributed this to
teachers of more junior classes not adjusting their expectations for written work to
the presence of even scientific calculators. “And some junior teachers actually would
make [students] write all of that because they’re not used to using technology”.
This, and other comments by the teachers, indicated that the impact of scientific and
graphics calculators on written work has not been thoroughly considered in schools.
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Figure 3b shows a CAS solution using the TI89. The first input is the equation
¢’ =3"+5"; possible as a symbolic calculator is being used. The next step in the
solution is to take the square root of both sides of the equation. The TI89 actually

inputs and shows this as an operation on the equation as one entity +/(c* =34) : a move

that is not part of standard mathematics. It is important for teachers to make sure that
their students are aware of syntax such as this which is used by the CAS but is
certainly not standard for mathematical written records. The result of this command

(right hand side of line) is |c|=+/34, a statement which looks unusual to students, who

may not immediately deduce that c=+/34; instead they would expect c=++/34.
Dealing with unexpected output is another issue with which teachers using CAS need
to assist students. The solution to this point has been worked with CAS in “exact
mode”. Obtaining an approximate answer for c¢ is not entirely trivial. Taking the
square root of the equation has to be repeated in approximate mode, accessed in this
case by pressing the “green diamond” button before ENTER, giving the output
shown.

Scientific/graphics (Fig. 3a) CAS solution 1 (Fig. 3b) CAS solution 2 (Fig. 3¢)

3A2+5ﬂ2 34 TE%;S m;-zzl;ru EFu:s'I‘-C I:I:I?;r Pr’Fﬂ-rr,ﬂlﬂ IZ'IEF-CIEH'UP TE%;S m;-zzl;ru EFu:s'I‘-C I:I:I?;r Pr’Fﬂ-rr,ﬂlﬂ IZ'IEF-CIEH'UP
TCANs2 mcf=32 452 cE =34 lsolue[c2=az+b2|a=3 atk
5.838951595 o ol = [T . c:z-mzcm o=
= lsc\lue[c =a*+h |a=3 atk
'JC- =34 ol = 5. 830935 c =353,83095 or c = -5.83095
Joc™2=34> a2kt 2 1 a=3 and b=5.c)]
MAIW FEAD EXACT FUMC 430 MAIW FEAD EXACT FUMC 430
} : 22,12
Using Pythagoras Using Pythagoras Solve (¢"=a"+b’|
=315 ?=3"+5 a=3 and b=5, ¢)
Square root of both sides
2
=34 q c=—34 or c=+/34
¢ =~/34sincec >0 c=1y34 ¢ = /34 since ¢>0
¢ = /34 since c>0
c=5.83 c=5.83

Figure 3. Several written solutions for Pythagoras example, with calculator output.

On the Casio calculator, obtaining an approximate answer is embedded deeper within
the menus, requiring the syntax TRNS (F1) then ALPHA then B (or TRNS (F1) then
log button). Students became adept at those button sequences which they often used,
but this created two issues for teachers. Firstly, students need to commit to memory
sequences of button pushes which are not highly visible from the menu structure, and
naturally begin to think in these terms. Neil commented “but my kids use language
like TRNS ALPHA B APPROX” and was concerned that these might appear in their
written records. Secondly, different brands of CAS use syntax that familiar users
come to regard as intelligible and ‘“‘standard” but which are very different to other
brands. For students who are learning in a CAS classroom, how are they to
distinguish between standard and non-standard notation?
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Figure 3¢ shows a different CAS solution to the Pythagoras problem, using the TI89
solve and substitute commands: Solve (c2:a2+b2| a=3 and b=5, c¢). This shows no
intermediate working at all, although the plan of the solution seems clear. Should the
teacher accept this written record which (a) shows no intermediate steps and (b) uses
the calculator syntax directly? If this calculator syntax is permissible, is the illogical
Solve (02:a2+b2| a=3 and b=5, x), which produces the same output, also permissible?

The Pythagoras example, simple as it is, shows that in addition to the problem of
which steps should be shown in the written record, there are also a second set of
issues arising for teachers related to the use of calculator syntax: what syntax can be
accepted in written records, how will students know what it special to their learning
environment and what is standard. Moreover, there are different problems arising for
different brands of calculator. In the rest of this paper, we report on the teachers’
thinking on these two sets of issues. As we shall see, there are two aspects to this
thinking — what i1s good mathematical practice and what is necessary to write in order
to score marks on the important end-of-year external examination.

CAS “GOBBLES” UP INTERMEDIATE STEPS

When CAS “gobbles” up intermediate steps, what is the key information that should
be recorded to show working? This question can be considered from the point of
view of good mathematical practice which motivated the RIPA suggestions, or from
the point of view of how marks will be allocated in examinations. It was the latter
which dominated teachers’ comments on this issue in both the documented meetings,
since they were always very concerned with maximizing students’ performance on
the end of year high stakes examinations. Ken, for example, commented on one RIPA
example: “But in an exam you would get maybe credit here and credit here and
anything else here you’re doing for yourself, not for any marks”. It was probably
because RIPA did not directly address the examination question that some teachers
did not find it very useful.

In November, Meg commented that her students were still unsure of the validity of a
written record that just described the CAS steps, rather than showing intermediate
algebraic manipulation. Meg believed that practice in previous years, requiring every
step of by-hand working to be shown, made it difficult for her students to accept
written records without all the steps that would be necessary in by-hand work.

“... And my kids had a real problem showing the steps of the working. [They asked]: “If
I just write down the process that I have to follow, the mathematical equation and write
down that I need to solve for that equation and I need to do this and do that and then just
use the calculator, is that enough?”

In February, Ken had also commented that his students, especially the less able,
wanted to record too many steps, even when working by-hand. In November Neil
believed that it was his more capable students were recording too many steps,
inserting algebraic manipulation. By the end of year 12 it might have been expected
that students and teachers would feel more confident working in parallel with CAS
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and pen-and-paper but it remained an issue, more for some students than the teachers.
Here we see a struggle to establish a new socio-mathematical norm.

The instruction on the examination paper (Figure 2) “Appropriate working must be
shown if more than one mark is available” remained problematic throughout the year.
Neil stated “Well, what does that [mean]? That’s meaningless now [with CAS]”. One
teacher responded that a ‘bit of work’ should be shown, and Neil responded “Show a
bit of work? Show the work that you value? I mean, we don’t show, even in year 7, all
the work. Even year 7’s can skip steps”. There are decisions to be made everyday of
what can be taken-as-shared. Lucy suggested that the focus for students might
profitably shift from a command to “show your working” to a request “can you let us
know what you’re doing”, which could be interpreted more broadly.

Lucy clearly supported the idea that CAS might promote more of an overview of
solution processes (reflected in a more condensed written record) and she had
observed this in her classes.

“... that’s surprised me a bit; just how good some of the kids can get at saying ‘Oh, I can
see that what I need to do here is [solve] two equations in two unknowns’. They’re much
clue-ier seeing that [a type of problem exists] inside a problem. [They might say]: ‘So
now I know that I’ve got to solve, I’ve got to define this function that way and I’'m going
to solve it for this, for this and for that’...”

Lucy believed her students had made progress in that they could focus on solving at a
macro level and were content that the details, essentially routine procedures, were to
be performed by CAS. If, as Lucy suggests, students see an overview of a solution
and they can articulate the processes being used to solve then maybe they are going
to be able to produce good written records to describe these solutions, without
worrying too much about whether they should include detail within those processes.

WHAT CAS SYNTAX IS ACCEPTABLE IN WRITTEN RECORDS?

The teachers generally discouraged their students from using CAS syntax in their
written records, but this was still an issue for them in November. Teachers
acknowledged that students had started to use CAS words to communicate
mathematical thinking. What represented accepted or CAS specific language was of
concern to them in both meetings. Meg explained that she encouraged students to
write a description of the process to be used: “I told them ... to write down the
procedure, what they were going to [use]; write it down, [such as] solve for x, solve
for k, solve for whatever.” Neil was concerned with the “different feel” of the
calculator used at his school. This included the different ways of approaching
problems which it encouraged (space precludes examples of this interesting point)
and also the different syntax. Neil dealt with this by explicitly instructing his students
not to use CAS language:

“Write down what a mathematician could understand. Write down a logical sequence but
don’t use the calculator [language]’ ... So just before the kids went into the exams I just
said to them ‘Remember don’t say CALC-DIFF’...and they [asked] ‘what will we say?’
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And someone else in the group would say ‘[write] differentiate’ and then they’d say ‘Can
we use the word SOLVE?’ I said, ‘Well, yes, because it’s a mathematical word’.”

This shows that Neil categorised SOLVE as appropriate to record in contrast to
CALC-DIFF (the first and second menu items required to carry out a differentiation)
which he saw as brand specific CAS syntax. Here we see that some students were
unsure of what was standard mathematical language and what was a specific CAS
word right until the examination. Ken helped us to see this issue from another point
of view. Ken was new to teaching senior mathematics, and so he was not as firmly
enculturated into this world as the other teachers. For example, to him, the notation
for solving simultaneous equations in Figure 1 was standard: “You could even put a
and b in [curly] brackets .... That’s accepted notation, isn’t it.” Ken made comments
such as this throughout the year. When Neil said that his students used the language
TRNS ALPHA B APPROX, Ken observed that his brand of CAS “...doesn’t have
that [nonstandard] calculator language...You don’t run into that problem.”, although
later he agreed that the symbol | for substitute was an example of calculator language.
Ken showed how CAS-specific language had become taken-as-shared in his
classroom and highlighted the difficulties that novices may have in distinguishing
standard from calculator-oriented practice. Ken also commented: “I used to say ‘Let y
equal f(x)’, but now you say ‘DEFINE f(x) equal..” and Meg and Lucy both agreed
with this, implying that this would be good practice in the examinations. In this case,
DEFINE is a command used by the brands of calculators in their two schools. This
claim by others that DEFINE should be used, perturbed Neil as he saw it as brand
specific language (STORE has a somewhat similar function on his calculator).

Fundamental to this is the question of what is considered ‘standard notation’ and
what is ‘syntax’. Comments by teachers suggest that the line between these may be
blurring and that some CAS language or syntax had become standard in these
classrooms. Student examination scripts in fact showed some use of CAS syntax
(Ball, 2003). This suggests that some commands that might be considered syntax by
teachers may be standard mathematical practice from the perspective of students.
This is not unexpected when CAS is the normal technology in the classroom.

CONCLUDING REMARKS

From February to November, teachers came to moderately comfortable personal
positions about the advice they gave to their students. The first main issue was the
conflict between expectations that students will show working, and the fact that CAS
does not report intermediate results. However, as experience of CAS syntax and the
differences between brands grew during the year, they became more aware that
students needed explicit guidance about what calculator language was acceptable in
written work. The teachers’ concern for students’ welfare meant that the demands of
the examination dominated their actions. To differing extents, they also looked
beyond this. Discussion with their students about written records and use of CAS
seemed to be a key factor to helping students develop good practices. This involves
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deciding what can be taken-as-shared and what are acceptable warrants for
mathematical explanation, as teachers and students grapple to establish new socio-
mathematical norms for the new environment. These teachers raised issues and
worked towards agreed understanding about good practice.
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This paper describes sixth grade students’ performance in tasks related to arithmetic
expressions in the context of a design experiment aimed at developing a principled
approach to beginning symbolic algebra. This approach, which is centered on the
concept of ‘term’, is described elsewhere. In the paper, students’ performance in two
kinds of tasks over items that test procedural knowledge and items that test structural
understanding is examined. We address questions of consistency in the use of
procedures in different task items, and the transfer of procedural knowledge to the
more structure-oriented items. The data shows that the relation between procedural
knowledge and structural understanding is complex. Developing a structural
understanding of expressions requires the consistent use of the procedures and rules
in various situations/ contexts and making sense of the relationships between the
components of the expression. We cite some preliminary evidence in favour of the
effectiveness of the structure-oriented approach both in strengthening procedural
knowledge and structural understanding.

BACKGROUND

A sound procedural knowledge in evaluating arithmetic expressions is clearly
necessary to build a strong foundation for algebra. Manipulating algebraic
expressions requires students to be well aware of the rules, properties and
conventions with regard to numbers and operation signs. It has also been recognized
that appreciating the structure of arithmetic expressions is useful for understanding
algebraic expressions; algebra is at times described as generalized arithmetic
exploiting the structure of arithmetic expressions (Bell, 1995). A poor understanding
of operational laws might lead to conceptual obstacles and hinder generalizing and
recognizing patterns between numbers (e.g. Williams and Cooper, 2001).

Students’ experience with arithmetic expressions in traditional classrooms is mainly
oriented to procedures but may be ineffective even in inducing sound procedural
knowledge. Many studies have reported both the poor procedural knowledge of
students and their lack of understanding of the structure of arithmetic expressions
(Chaiklin and Lesgold, 1984; Kieran, 1989). Students are seen to use faulty rules of
operations and are inconsistent in the way they evaluate an expression (Chaiklin and
Lesgold, 1984). Many common and frequent errors are reported, such as doing
addition before multiplication and detaching the numeral from the preceding negative
sign (Linchevski and Livneh, 1999).

2005. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29" Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 121-128. Melbourne: PME. 2-121
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The larger project, of which this study forms a part, is aimed at developing an
instructional sequence for beginning algebra that builds both sound procedural
knowledge and understanding of structure of arithmetic and algebraic expressions.

FRAMEWORK ADOPTED IN THE TEACHING APPROACH

The teaching approach adopted in the project explicates the structure of arithmetic
and algebraic expressions from the very beginning. It capitalizes on students’ prior
arithmetic knowledge and is strongly centered around the concept of term. Hence we
refer to this approach as the ‘terms approach’ below. Here we describe briefly the
way in which the term concept is used in teaching procedures and concepts. More
details of this approach have been described elsewhere (Kalyansundaram and
Banerjee, 2004; Subramaniam, 2004).

Students learn at the outset that an arithmetic expression stands for a number, which
is the value of the expression. Two numerical expressions are equal if their values are
equal. Equality of expressions can also be judged from the relationships between the
components or parts of the expressions. This makes it essential for the students to
learn to parse the expressions correctly, and explore and identify the relationships
between the parts, and of the parts to the whole. We take structural understanding to
include this group of skills. This is consistent with Kieran’s (1989) definition of
structure, which is seen as comprising ‘surface’ and ‘systemic’ structure.

The concept of ‘term’ has proved useful in this context. The concept of ‘term’
requires students to see the number/numeral together with its sign. Terms may be
simple terms (+5) or complex terms. Complex terms can be of various types like
product term (e.g. +3x2) and bracket term (e.g. -(4+2)). The product term may
contain only numerical factor/s or letter factor/s or bracketed factor/s. While simple
terms can be combined easily, a product term (or complex term) cannot be combined
with a simple term unless the product term (or complex term) is converted into a
simple term/s. Identifying the conditions when an expression remains invariant in
value leads to the idea of equality of expressions. The meaning of “=" is thereby
broadened from the ‘do something’ instruction to stand for a relation between two
expressions which have the same value. The two concepts of terms and equality
together give visual and conceptual support to the procedures for evaluating
expressions (order of operations) and the rules for opening bracket, as they get
reformulated using these two concepts.

METHODOLOGY

A design experiment methodology has been used in developing this instructional
approach. The design experiment is conducted with grade 6 students (11 to 12 yr
olds) from nearby English and vernacular medium (Marathi) schools. The English
medium and the vernacular medium students form separate groups of instruction. The
schools cater to low or mixed socio-economic strata. Four teaching intervention
cycles have been conducted between summer 2003 and autumn 2004, during vacation
periods of the schools.
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The four teaching cycles were carried out in summer of 2003, autumn 2003, summer
2004 and autumn 2004 respectively. The first cycle was mainly exploratory in
character and is not reported in this paper. There were 3 groups of students in each of
the cycles 2, 3 and 4. Each group had 11 to 13 instructional sessions of 90 minutes
each. A and B groups in all the cycles were from the English medium, and C groups
from the Marathi medium. Subscripts indicate the cycle to which the groups belong.
All the nine groups across the three cycles are discussed separately. The students in
groups A, and C, were students who had attended the course in Cycle 3 except a few
in C, who were first-timers. The students in all the groups in the previous cycles
including B, attended the course for the first time.

Each group in a particular cycle had one teacher, except for A, and Az, which had
separate teachers for the arithmetic and algebra modules, who taught for about equal
durations. Three teachers were involved in teaching the English groups across the
cycles and one teacher for the vernacular group. Three out of the four teachers, which
included the Marathi medium teacher, involved in the project were collaborators in
the research project.

The details of the instruction were worked out by the group of teacher-researchers in
the course of discussions held both preceding as well as during the cycles. Discussion
and reflection by the group on the different teaching cycles has brought out the
salient features that are common to and different in the cycles. There is an increasing
centrality and coherence to the use of the concept of ‘term’ over the cycles. In the
earlier cycles, this concept was used only in the context of judging the equality of
expressions, but in the later cycles, increasingly, the procedures for evaluating
expressions were brought under this concept. In terms of the evolution and coherence
of the approach, cycle 4 represents the most evolved form.

The presence of multiple groups and teachers in and across the cycles helped us trace
the development of students as they went through the course of instruction as well as
observe the differences among them due to slight variations in the teaching sequence
and their prior knowledge. It is therefore difficult to compare the groups directly. The
students in Cycle 4 were exposed to the matured ‘terms approach’ and we will focus
on their performance looking at the common errors and the extent of structural
understanding. The data was collected through daily practice exercises, written tests,
video-recordings, teacher’s log book and the pre and the post tests given to the
students. Interviews were conducted with 22 students about 6 weeks after cycle 4.
The students who showed either very consistent or somewhat inconsistent knowledge
of procedures and structure sense during the course were selected from the three
groups for the interviews, most of them falling in the average to high category of
performance. In the context of the present paper, it is important to note that groups B,
and Bj are slightly different in terms of the instruction received. Group B, received
no instruction in arithmetic, but only in algebra, the extra time being spent on
activities in geometry. Group B; received instruction mainly on arithmetic
expressions that was centered around operations with signed whole numbers.

PME29 — 2005 2-123



Banerjee & Subramaniam

ANALYSIS OF DATA

Here we discuss the performance of the students in the pre and post tests in tasks
dealing with two types of expressions: (a) expressions with a ‘X’ and ‘+’ sign and
(b) expressions with ‘+’ and ‘-’ signs only. For each type of expression, we examine
a set of tasks: simple tasks and complex tasks requiring essentially procedural
knowledge, and tasks that require some structural understanding. The latter tasks call
for judging the equality or inequality of expressions based on their structure without
recourse to calculation. Since consistent interpretation of conventions used in
arithmetic expressions is an essential element in building a structure sense, we
examine the consistency of student responses across simple and complex procedural
tasks. Specifically we look for the influence of the structure oriented teaching
approach using the concept of ‘terms’, on consistency and on developing a structure
sense.

Evaluation of expressions with a ‘+’ and ‘x’ sign

Many children do not absorb the convention of multiplication before addition in
evaluating arithmetic expressions even after it has been taught (Linchevski and
Livneh, 1999). The most common ‘LR’ error in evaluating expressions like 74+3x4, is
to first add and then multiply, that is, to move from left to right. An earlier study
conducted by us (unpublished) showed that the ‘LR’ error accounted for about 50%
of the errors in equivalent contexts made by a group of rural upper primary teachers.
Table 1 summarizes the performance of students in the different groups in evaluating
an expression with a ‘+’ and ‘x’ sign.

Item Cycle 2 Cycle 3 Cycle 4
Pre | Post | Pre | Post | Pre | Post
e.g., 7+3x4 A |44 |8 |0 74 |68 |93
(one product |B |50 |62 |0 24 |15 |92
term) C |23 [8 [21 [82 |74 |91

N(A2, As, Ay)=(25, 23, 28); N(B,, B3, By)=(21, 29, 26); N(C;, G5, C4)=(34, 38, 42)
Table 1: Percentage correct in evaluating expressions with ‘+” and ‘x’

Students in the present study were not introduced to the rule of operations before
class 6, which accounts for the very low rate of correct answers in the pre test of
Cycle 3 for all groups in the table. Students in cycles 2 and 4 were briefly exposed to
the rules of order of operation during their school instruction before they came for the
vacation course. The post test results show a significant improvement in their
performance in both the cycles. Also noticeable is the better performance of the
students in groups A and C in the pre test of Cycle 4, the students being not only
exposed to the rules in the school but also during instruction in Cycle 3. Students in
group B4 were fresh students and had only some idea of evaluating expressions from
the school. The post-test scores of groups B, and B; remain low relative to the pre test
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and the other groups, because students received very little or no instruction on this
aspect during the vacation program. While in Cycle 2, evaluating expressions was
taught only as a set of rules, in Cycles 3 and 4, the ‘terms approach’ with increasing
emphasis on the idea of product term was adopted. The incidence of LR error as a
fraction of total errors in Cycles 2, 3 and 4 respectively are 6/7, 6/13 and 2/8, the
remaining errors being mainly computational errors. (Groups B2 and B3, which did
not receive instruction on this topic, have been excluded.)

We now examine the consistency with which students applied the ‘x’ before ‘+’
convention across test items. Some of the tests contained two items of the above type,
one with a ‘+’ sign and the other with a ‘-’ sign. Students were consistent in their
responses to both questions, with a few (2 to 4) answering one of the questions
correctly while making the ‘LR’ error in the other. However, when the second item
was a more complex but similar item (Cycle 2: Evaluate 3x(6+3x5) ), around 17% of
the students in all the groups made the ‘LR’ error while evaluating the expression
inside the bracket although they had correctly evaluated the corresponding expression

in the item without brackets.

In a related item, where a substitution was required to be done prior to evaluation
(Cycles 3 and 4: 7+3xx, x=2 ), the students’ performance was low (around 50% or
lower, except for C, which had around 70%). Although most of the students who
performed poorly on this item had a problem with substitution, a significant number
of students (12%) in all the groups made the ‘LR’ error after substituting correctly for
the variable, although they had evaluated the corresponding arithmetic expression
correctly. This inconsistency on the part of the students shows that although they
learnt to parse the expression correctly and had absorbed the convention of
multiplication before addition and subtraction in a simpler situation, in a more
complex task the ‘LR’ error may resurface. In Cycle 4, where the ‘term’ approach
was adopted more strongly and the overall occurrence of ‘LR’ error is low, the
inconsistency in the substitution question (that is, responses showing ‘LR’ error after
substitution but not in the evaluation item) is only 7% for all the groups.

Figure 1a shows the performance of students in cycles 2 and 3 on the more structure-
oriented task of judging equality for expressions of the above type. These expressions
were slightly more complex than the evaluation items and had two ‘+’ signs and one
‘x” sign each (therefore, two simple terms and one product term, like 28+34+21x19
or 21434x19+28). The data indicates that knowing how to evaluate expressions of
this kind is necessary but not sufficient for judging equality. Nearly all the students
who can make the correct judgment about the equality/ inequality of two expressions,
can also evaluate the arithmetic expression with ‘+’ and ‘X’ sign (See Figure 1b). The
percentage of students, who can succeed in the more complex task of judging the
expressions equal to a given expression, is high for the groups C,, Az and C;. In
Cycle 4, the corresponding task was more complex with the options testing their
ability to use brackets and splitting terms (like writing -9 as —4 —5) in the expression.
We would not discuss the details of these results here.
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Figure 1: (a) Percentage of correct responses in evaluation and judging equality tasks
for different groups. (b) Overlap of students who perform correctly on the judging
equality task (indicated by the region filled with small circles) and those who perform
correctly on the evaluation task (indicated by the hatched region) in all groups.

In the interviews conducted after Cycle 4, 19 students out of 22 justified their
response by referring to the terms in the pair of expressions. This does not mean
however that all were correct in their responses. For example, while comparing the
expressions 18-15+13x4 and 4x15+18-13, 6 students identified the terms wrongly as
+18, -15, +13 and x4. This was consistent with their wrongly judging the expressions
4%x15+18-13 and 18-13+15x4 as unequal. From the above, it is clear that ability to
correctly evaluate simple expressions consistent with the rules of operations does not
transfer readily to the more structural task of judging equality. The interview data
indicate that the concept of term is readily applied to judging equality and may aid
students in forming a structural understanding of expressions.

Evaluation of expressions with only ‘+’ and ¢-’

An expression like 19-3+6 appears to be easy to evaluate if students know the
operations of addition and subtraction. However students frequently evaluate this
expression as equal to 19 — 9 = 10, making what has been described the error of
detaching the negative sign (Linchevski and Livneh, 1999). In the study with teachers
referred to earlier, ‘detachment’ errors accounted for about 40% of the errors that
teachers made in equivalent contexts. One reason for this error could be incorrect
perceptual parsing, where students ‘detach’ the minus sign from the terms to the right
of the sign. Another reason, as indicated by the interview responses of some students,
is that students mislearn the rule of order of operations, thinking that addition
precedes subtraction. (The ‘BODMAS’ mnemonic actually suggests this misleading
rule.) Table 2 shows the performance of students across all the cycles in evaluating
this type of expression. The post test results in the even cycles is slightly better than
the odd cycle, which could be due to their enhanced exposure to the evaluation task,
first in school and then in our project.
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Item Cycle 2 Cycle 3 Cycle 4
Pre | Post | Pre | Post | Pre | Post
19-3+6 (only simple | A |64 |84 |61 74 | 68 86
terms) B |48 62 |38 69 |65 85
C |74 |94 (82 |74 |79 86

Table 2: Percentage correct in evaluating expressions with ‘+’ and ‘-’

In designing the ‘terms’ approach, we expected students to avoid making the
detachment error as they learnt to parse an expression into terms in the course of
evaluating the expression. Although the performance in the even cycles is nearly
same, in Cycle 2, the rate of occurrence of the detachment error for all groups in the
pre test is 31% and in the post test 17%. In this cycle, it must be recalled, the concept
of term was not used in evaluation tasks but only in judging equality tasks. In the post
test for Cycle 3, there are only a few cases of detachment error, the rest being mainly
calculation errors, and in Cycle 4 there are no detachment errors. This supports our
hypothesis concerning the effectiveness of the ‘terms’ approach in avoiding the
detachment error.

Most of the students interviewed after Cycle 4 were confident that 25-10+5 cannot be
written as 25-15. Some could not say why they thought so but others said it (i.e., 25-
15) can be done only if there is a bracket around 10+5 or that the term —10 has been
incorrectly changed to +10 to get 15 and added that it could be -5. These students
also evaluated the expressions not in the left to right fashion but combined terms
flexibly as it suited them.

The more structure-oriented tasks of judging equality for this type of expressions
were specifically designed to test whether students make the detachment error. Only
20%-35% of the students made correct judgments in this type of item in Cycle 2. In
the slightly simpler item in Cycle 3 (comparing expressions such as 249+165-328 or
328+165-249), 40%-60% of the students made correct judgments. The item in Cycle
4 was more difficult with a product term included in each expression and was again
designed to catch the detachment error (18-27+4x6-15 & 18-20+7+4x6-10+5). Here
40% of the students made correct judgments. The fact that students were splitting the
expressions into terms was corroborated in the interviews after Cycle 4. 21 out of 22
students interviewed said that the expression 49-5-37+23-5 is not equal to the
expression 49-37+23 because of the extra two ‘-5’s, but readily saw that the latter
expression was equal to 49-5-37+23+5, because —5+5 gives 0.

DISCUSSION

The development of the teaching approach during the course of the project, which
can be characterized as making the concept of term central to both structural (judging
equality) tasks and procedural (evaluation) tasks, has proved fruitful from two points
of view. Firstly, it has made the instructional approach internally coherent allowing
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students to deal more meaningfully with symbolic expressions. Second, it has
strengthened students’ procedural knowledge and has reduced the occurrence of well-
known errors. Subjective assessments of the interviews conducted at the end of Cycle
4 suggest that students feel confident in the justification that they give for their
responses. However, the performance in structure-oriented tasks is low even in the
later cycles. This is partly due to the increased complexity of the tasks. Classroom
discussions indicate that students are more confident in dealing with simpler
expressions while judging equality. However, the data indicate to us that the
formation of structure sense from a knowledge of procedures and rules is a difficult
and long process. It would require abstracting the relationships within and between
expressions. Further, it requires consistent use of the rules and procedures in various
situations sharing the structural aspects.

One other consequence of our teaching approach needs to be mentioned. Identifying
and comparing terms between a pair of expression in order to judge their equality is
something of a shortcut in carrying out the task. When this is taught explicitly, for
some students it may assume a recipe-like quality, turning what we have called a
structure-oriented task to a more procedural one. In the course of the interviews, we
noticed that for some students this seems to be the case, while other students develop
a more flexible and truly structural understanding. This is an aspect we intend to
explore further. However, even for students who interpret the ‘terms approach’ in
recipe-like ways, we hope that the transition to an understanding of structure will be
easier than in the traditional approach.
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Pursuing our investigation on students’ use and understanding of algebraic
notations, this paper examines students’ cognitive difficulties related to the
designation of an indeterminate but fixed object in the context of the generalization of
patterns. Stressing the semiotic affinities and differences between unknowns,
variables and parameters, we examine a Grade 11 mathematical activity in which the
core of the students’ relationship to algebraic formula comes to light. We show how
the semiotic problem of indeterminacy reveals the frailty of students’ understanding
of algebraic formulas and how it puts into evidence the limited scope of the use of
formulas as schemas, strongly rooted in student’s relationship to algebra.

INTRODUCTION

Making sense of letters is one of the fundamental problems in the learning of algebra.
A letter is a sign, something that designates something else. In the generalization of
patterns, letters such as ‘x” or ‘n’ appear as designating particular objects —namely,
variables. A variable is not a number in the arithmetic sense. A number, e.g. the
number 3, does not vary. A variable is an algebraic object. Previous research has
provided evidence concerning the meanings that students attribute to variables (e.g.
MacGregor & Stacey, 1993; Trigueros & Ursini, 1999; Bednardz, Kieran, & Lee,
1996). One of these meanings consists in conceiving of a variable as an indeterminate
number of a specific kind: it is not an indeterminate number in its own. For many
students, it is merely a temporally indeterminate number whose fate is to become
determinate at a certain point. Aristotle would have said that for the students,
variables are often seen as “potentially determinate” numbers, as opposed to the
numbers in the elementary arithmetic of our Primary school (e.g. 1, 4, 2/3 and so on),
which are “actual numbers”. Yet, the algebraic object “variable” should not be
confounded with another algebraic object —the “unknown” (Schoenfeld & Arcavi,
1988; Radford, 1996). Although both are not-known numbers and, from a symbolic
viewpoint, the same syntactic operations can be carried out on them, their meaning is
different. In the algebraic equations used in introductory algebra, such as ‘x+12 =
2x+3’, the unknown exists only as the designation of a number whose identity will be
disclosed at the end. The disclosing of the unknown’s identity is, in fact, the aim of
solving an equation. In contrast, when ‘n’ refers to a variable (see e.g. the pattern in
Fig 1 below), the focus of attention is not on finding actual numbers but on the
variable as such. The same holds for the expression 2n+1’°, that designates the
variable “the number of toothpicks in figure ‘number n’” (see Fig 1 below). In other
words, in equations, we go from symbols (alphanumeric expressions) to numbers,
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while in patterns we go the other way around (of course, once established, a
formulaic expression of a variable like ‘2n+1’ can be used to find out specific values
of ‘n” or ‘2n+1’). What previous research has suggested is that, for many students,
letters (such as ‘n’ in ‘2n+1’) are considered as potential numbers —indeterminate
ones waiting in a kind of limbo for their indeterminacy to come to its end. The letter
is hence, for the students, an index (Radford, 2003), a sign that is indicating the place
that an actual number will occupy in a process (Sfard, 1991) temporarily in abeyance
(we shall come back to this point later).

In this article, we pursue our investigations of students’ algebraic thinking about
variables. We are interested in understanding the way that students cope with another
algebraic object: a parameter, that is, an indeterminate but fixed element of the
“values taken” by a variable. The paradoxical epistemic nature of this algebraic
object rests on its apparent contradiction: it is a fixed, particular number, yet it
remains indeterminate in that it is not an actual number. Like the variable from where
it emerges, it is indeterminate and is not subjected to an inquisitorial procedure that
would reveal (as is the case with unknowns) its hidden numeric identity. From an
education viewpoint, the question is: How can such an object become an object of
thought for the students? Because of its indeterminate and abstract nature this object
cannot be pointed out through a gesture as we can point e.g. to one of the first terms
in a given patter (see e.g., the pattern below; Fig 1). The only way that a parameter
can become an object of thought is through the interplay of various sorts of signs.
The next section provides some details about how we introduced this object in the
course of a regular classroom mathematics lesson about patterns. The rest of the
article is devoted to the analysis of some of the students’ difficulties in making sense
of a parameter.

METHODOLOGY

Data collection: The paper reports parts of a five-year longitudinal classroom
research program where teaching sequences were elaborated with the teachers. The
research involved four northern-Ontarian classes of grade 11, from two different
schools. The same methodology was applied in both schools: the classes were
divided into small groups of three to encourage students to work together and share
their ideas with the others members of the group; then the teacher conducted a
general discussion allowing the students to expose, confront and discuss their
different solutions. During the implementation of the teaching sequences in the
classroom, both the teacher and the researcher were present, willing to answer the
students queries as they solved the problem. In each class, three groups were video-
taped, the dialogues transcribed and written material was also collected. For the
purpose of the present article, we will closely focus on one group we found
representative of most students’ work. This group was formed by Denise, Daniel and
Sam.
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About the given task: The teaching sequence included three linked problems
concerning the construction of geometric-numerical patterns. The figures that
constituted the patterns were described as being composed of toothpicks, triangularly
disposed.

In the first problem the first figures of the pattern (also called “original” in the
subsequent problems) were drawn (see Fig 1). After having been asked to find out the
number of toothpicks for specific figures, the students had to write an algebraic
formula to calculate the number of toothpicks in figure ‘number n’.

ANVAVAVAVANVANVAVS

Figure 1 Figure 2 Figure 3 Figure 4

Fig 1: Original pattern.

The pattern in the second problem was related to a fictitious character (Mireille)
who was said to have begun her pattern at the fourth “spot” of the original pattern (a
la place numéro quatre, in French). The first figures of the pattern were also provided
(see Fig 2) and the questions were similar to those of the first problem.

AVAVANAVANVANAVAVY

Figure 1 Figure 2 Figure 3

Fig 2: Mireille’s pattern.

In order to investigate the students’ cognitive difficulties in dealing with parameters,
a new pattern (Shawn’s) was introduced in the fourth problem. The spot where the
pattern began was given, yet not specified: students were told that Shawn had begun
his pattern at the “spot m” of the original pattern. They were then asked to provide an
algebraic formula, in terms of m, that indicates the number of toothpicks in figure
number 1 of Shawn’s pattern. In what follows, we will focus on the fourth problem.
Special attention will be given, however, to students prior answers, for it provides
essential information about the students’ relationship to algebraic symbols and, in
particular, to their use and understanding of letters.

STUDENTS’ RESPONSES
The semiotic problem of multiple referents

Both the first and second problem were easily solved. Thus, in the first problem, right
after a quick numerical examination of the link between the number of the first
figures and their corresponding amount of toothpicks, the students rapidly worded the
description of a sequence of numeric actions: Denise said: “So it’s times 2 plus 1,
right?” and, to calculate the number of toothpicks in figure number, 25 effected the
calculation 25x2+1.
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Denise’s utterance is the description of a numeric schema (in Piaget’s sense) that
allowed the students to obtain the formula by translating it into symbols. However,
when translating the worded schema into an algebraic formula, students produced a
response attesting some lack of precision in the meaning that they gave to symbols:

20z # fiurt
e oiad
4 =4+ )
Fig 3: Students’ answer to the last question of Problem 1.

Indeed, the translation of the worded schema of the students’ response suggests that
they do not interpret the letter ‘n’ as standing for the number of an unspecified figure
(despite the fact this had been suggested in the text). Instead, by writing “n = 2x+1”
(see line 2 Fig 3), ‘n’ designates an amount of toothpicks. Furthermore, a new letter
was introduced to designate something that remained implicit at the verbal level but
which was nonetheless substituted by actual numbers (such as 25, to answer the
question of the number of toothpicks in Figure 25). The letter ‘x’ used by the students
to designate the number of the figure (see line 1 Fig 3) plays the role of index, 1.e.
something indicating a place that will be occupied by a number. The letter ‘x’
designates a “temporarily indeterminate” number, suffering from indeterminacy, seen
as a kind of sickness that, like a cold, should sooner or later come to its end. The
letter ‘n’ designates the schema ‘2x+1’. Instead of considering ‘n’ as a genuine
algebraic variable, the transcripts and video analyses of this and other groups suggest
that ‘n’ is seen as a “potentially determinate” number, a number that will become
“actual” (in the Aristotelian sense) as soon as ‘x’ takes on its numerical value.

Bearing these antecedents in mind, let us now turn to the forth problem, where the
students encountered the concept of parameter. Imagining the letter ‘m’ as an
indeterminate yet fixed number at the starting point of a new pattern posed many
difficulties to them:

1.1 Daniel: OK, but if it begins at spot number m, and we want to know figure

number 1, isn’t this 1? Isn’t m [equal to] 17[...]

1.2 Daniel: Butisn’t m the number of the figure?

1.3 Denise: It’s... the place where...

1.4 Daniel: OK, it’s not... OK, it’s a number of figure, but, OK...

The above excerpt illustrates some of the fundamental student difficulties in trying to
make sense of the question. In order to understand these difficulties, we need to
discuss three different ways of referring to the figures. In the previous problems,
indeed, the figures can be seen from different perspectives:

Figure as substance: Each figure can be referred to through the number of
toothpicks it is made of. For instance, in the original pattern, there is one 3-toothpick
figure, one 9-toothpick figure (namely Figure 1 and Figure 4 respectively). In
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Mireille’s pattern, there are no figures with 3 toothpicks, but there is one 9-toothpick
and one 11-toothpick figures (Figure 1 and Figure 2, respectively).

Names as part of a system: Each figure can also be referred to by a “label”. This
label is its “name” (Figure 1, Figure 2, etc.). This name corresponds to the relative
position among the others figures of the same pattern. For instance, in the original
pattern, as well as in Mireille’s pattern, “Figure 17 is the label of the first figure,
“Figure 2” of the second figure, etc.

Relativeness of the object’s name: Since Mireille’s and Shawn’s patterns begin at a
given place or “spot” in the “original” pattern, the place that each figure occupies
inside a certain sequence must be distinguished from the place these figures occupy
in the original pattern. For instance, the figure called “Figure 2” in Mireille’s pattern
is called “Figure 5” in the original pattern.

Line 1.1 1s representative of the difficulty in seeing the subtle relativeness of the
object’s name. Indeed, from the point of view of the original pattern, Shawn’s Figure
1 is at the spot ‘m’. But each first figure in a pattern starts at spot 1 of its own pattern.
By saying that ‘m’ is 1, Daniel, probably uncomfortable with the indeterminacy,
merges the two referents.

Besides being related to a place in the pattern, ‘m’ also corresponds to the number of
the figure that occupies this place. In this sense, in Line 1.2 Daniel was right when
saying that ‘m’ corresponds to the number of a figure: if we consider the original
pattern as reference, ‘m’ is indeed the number of the figure. In Shawn’s pattern,
however, this figure is no longer “Figure m”: it becomes “Figure 1.

The effect of the indeterminate origin on using a schematic formula

As we saw previously, the students rapidly came up with a formulaic schema for the
number of toothpicks of a figure located at an indeterminate place —namely, ‘n’ (see
Fig 3). The formulaic schema made sense for the students insofar as it was
considered as a process in abeyance. Now, how were they to find an algebraic
expression for the number of toothpicks in a figure for which the place (“m”) was no
longer to be considered temporally indeterminate but indeterminate as such?
Noticing the students’ struggle to make sense of the question and their reaching an
impasse, the researcher went to talk to the group:
2.1 Researcher: They ask you to find an algebraic expression, in terms of ‘m’, that
indicates the amount of toothpicks that there are in the new pattern. It
starts at figure ‘m’ [...] How many toothpicks will its first figure have?

2.2 Sam: Yeah, well we don’t know this.
2.3 Daniel: Well, that’s what we have to find out. [...]
2.4 Daniel: His 1, his 1, where is it located according to this (pointing the

“original” pattern) . (...) Where is the ‘m’ according to this? [...]

2.5 Denise: So, if you want to find the amount of toothpicks in his pattern (sic), if
you had the number of the figure you could do it, but we don’t have it.
That’s the only thing I don’t know how to do.
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The difficulty of conceiving of the indeterminacy of the spot ‘m’, not as a temporal
indeterminacy but as indeterminacy as such, checkmated the students’ formulaic
schema (see lines 2.3, 2.4 and 2.5). The students needed to understand that a
parameter is an indeterminate but fixed element of the “values taken” by the variable
and that despite its indeterminacy it makes sense to think about it and of the figure at
that place, even if no numerical value can be attributed to them. Understanding this
entails understanding that there is a new layer of mathematical generality, a layer
where the “existence” of the objects does not depend on numerical determinacy,
whether actual or potential. The fact that this indeterminacy directly concerned the
first figure of the pattern —its origin— was for the students, to say the least, most
disconcerting:

3.1 Daniel: We don’t have Shawn’s pattern. [...] We don’t know where it starts at and
where it ends... We can almost not do it [...]

3.2 Sam: I’m going insane.[...] We have nothing...

Acceptance of indeterminacy is a real obstacle to the students. As their dialogue
indicates, they seem to feel the need to attribute a numerical value in order to
progress in the mathematical activity. This particularity reveals the students’
understanding and use of letters in algebraic formulas, suggested elsewhere in their
answers for prior problems. For them, even though they are able to produce a formula
and manipulate it (e.g. substituting), the formula is still seen as a process and not yet
as an object (Sfard, 1991). In other words, we might say that they accept dealing with
formulas, dealing with the indeterminacy, but only for a while, for the formulas have
to provide a result:

4.1 Daniel: We just don’t know how to find ‘m’. [...] What did you say?

4.2 Denise: x=2m+l1.

4.3 Researcher: Do you agree with that? [...]

4.4 Sam: Yeah, but it takes you nowhere. It’s nice to have a formula, but you
have to get a number.

4.5 Researcher: We don’t have to have a number!

4.6 Denise: We have nothing.

The students focused on trying to determine m and, by analogy with previous
problems, they struggled to provide a formula that, at the end, would give an output
for m. But what exactly is m for them? How did the students express it in a formula?

Among all the referents that characterize the figures, there is one to which the
students granted a privilege: the number of toothpicks that a figure is made up of
(influenced maybe by the questions in the first problems that focused on finding the
number of toothpicks in particular figures or on finding a formula that would
generalize this amount). As students progressed in solving the problems, their
associating of the figure with its number of toothpicks became, indeed, more and
more evident:
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5.1 Researcher: What spot did Mireille start at?
5.2 Denise and Daniel: At 9.

Not surprisingly, the first attempt in interpreting ‘m’ was hence to consider it as
representing the number of toothpicks and, by analogy with the formula that they
provided in the first problem (‘n = 2x+1’), Denise suggested the formula ‘m = 2x+1’
for the first question of Shawn’s problem: “(...) It’s the same formula as this one
(pointing at the formula ‘n = 2x+1’) (...) So m = 2x+17?”. As previously mentioned, in
the students’ response to the first problem, ‘n’ designated the number of toothpicks of
the figure ‘number n’. When Denise proceeded by analogy to solve the problem 4,
this would mean that she considered ‘m’ for the number of toothpicks in figure ‘m’.
But the question was to provide a formula that would indicate the number of
toothpicks in figure number 1 of Shawn’s pattern. Because of their merging of the
multiple referents and, more precisely, because of the confusion between the place
where Shawn’s pattern began (in the original pattern —that is, place m) and the name
of the related figure in Shawn’s pattern (that is, of its first figure —Figure 1), the
formula ‘m = 2x+1’ stands for the number of toothpicks in figure 1 of Shawn’s
pattern. But Denise feels uncomfortable with the formula that she has just provided
and says: “That’s strange, they say how many toothpicks there will be in figure 1 of
Shawn’s pattern, but we don’t have x.” Notice that Denise has transformed the
original question into a different one: finding an algebraic expression has been
“translated” into finding an amount of toothpicks. What Denise finds strange is that
one could ask such a question without providing her with an actual number.

It 1s only after having realized the difference between the multiple referents —and
only then— that Denise is able to provide the expected formula: “x = 2m+1, because if
‘m’ 1s the place where he starts his pattern at, that’s still not figure number 1, oh,
yeah!”. Yet, because the inquisitorial procedure is strongly rooted in students’
conceptions of formulas, they do not find this answer acceptable:

6.1 Daniel:  Yeah, this would work, yeah, it’s just m that we don’t know how to find.
6.2 Denise: We don’t know how to find it. Yeah, that’s the thing.

CONCLUDING REMARKS

The mathematical activity reported in this paper suggests a context in which the core
of students’ understanding of letters and their conception of formulas comes to light.
When considering the ease with which the students solved the first problems, one
may be tempted to conclude that the students have successfully conceptualized letters
as variables and have been able to meaningfully produce and even manipulate
formulas. Indeed, the students were perfectly at ease dealing with the concept of
‘figure n” —a concept that posed great difficulties to them and that took time to
overcome when first introduced in Grade 8 (see Radford, 2000). Yet, the semiotic
problem of indeterminacy brought forward by the concept of parameter in problem 4
reveals the frailty of students’ understanding of algebraic formulas that the answers
provided in first problems hide. In particular, it highlights the frailty of perceiving
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formulas as schemas, putting into evidence their limited scope. It required a different
situation —one demanding the students to deal with a new level of generality— to
reveal the students’ difficulties. In the context of the generalization of patterns, this
means making the students consider the figures not as necessarily characterized by
actual or potential numbers but as genuine conceptual objects, objects that can only
be referred to through signs. Perhaps the philosopher Immanuel Kant was right in
asserting that the possibility of (elementary) geometry resides in our intuition of
space and that the same cannot be said of the objects of algebra, whose possibility
cannot even be attributed to our intuition of time. Their possibility resides in
symbols. From an education viewpoint, our results suggest that a pedagogical effort
has to be made in order to make the students understand that there is layer of
generality in which mathematical objects can only be referred to symbolically,
detached in a significant manner from space and time. The students need to learn to
cope with the kind of indeterminacy that constitutes a central element of the concepts
of variable and parameter. Although one may very well be asked to begin from
“nothing” (see Sam in passage 3.2) there is no reason to go insane: one still can go
somewhere else —to symbolic algebra.
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EXPLORING HOW POWER IS ENACTED IN SMALL GROUPS
Mary Barnes

University of Melbourne

This paper presents an analysis of the enactment of power during group discussions
in high school mathematics. The class studied was working on introductory calculus
using a collaborative learning approach. In analysing a group discussion, I first
traced the flow of ideas, looking at when and by whom a new idea was introduced,
and how others responded. I next divided the transcript into “negotiative events” and
looked at how transitions from one event to the next came about. These analyses
made it clear that some students had more power than others to influence the course
of the discussion, but that this was not related to their mathematical capabilities.

INTRODUCTION

The research reported here is part of a larger study of student-student interactions
during collaborative learning in mathematics (Barnes, 2003) conducted in classrooms
where students worked in small groups, with shared goals, on challenging unfamiliar
tasks. They were not taught standard solution procedures in advance, but were
encouraged to construct new concepts by recalling prior knowledge and combining
and applying it in new ways. In whole-class discussions following the group work,
students explained solutions, asked questions, and shared insights, and the class tried
to reach a consensus. Collaborative learning is encouraged by recent mathematics
curriculum documents that emphasize the importance of fostering communication
skills and encouraging mathematical dialogue (e.g., AAMT, 2002). Collaborative
learning is not always successful, however. This paper explores ways in which social
interactions within collaborative groups can interfere with the learning process.

THEORETICAL FRAMEWORK AND LITERATURE REVIEW

The theoretical perspective underlying the study is that of sociocultural theory (see
Davydov, 1995; Lerman, 2001). Based on the work of Vygotsky, sociocultural theory
asserts that all learning is inherently social, resulting from the internalisation of
processes developed in interaction with others. In addition, the theory claims that
learning is mediated by signs and cultural tools, including language (both oral and
written), symbols, gestures and artefacts. This means that studies of small-group
learning need to attend not only to spoken discourse, but also to the participants’
body-language, tone of voice, direction of attention, and the artefacts they are using.

Recent research on collaborative learning has studied the interactions within
collaborating groups. Most of this has focussed on cognitive and metacognitive
aspects of the interactions (e.g., Forster & Taylor, 1999; Goos, Galbraith & Renshaw,
2002), but I believe that social aspects need to be considered also, because poor
communication and social relationships within a group can result in failure to engage
fully with the task, or can limit the range of solution pathways considered. For
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collaboration to be effective, appropriate socio-mathematical norms (Yackel & Cobb,
1996) need to be established. These include expectations that everyone will
contribute, that others will attend to what is said, and that assertions will be justified.

Cohen (1997) describes status inequalities as a cause of unequal interaction within
groups, resulting in unequal learning opportunities. Factors that determine a student’s
status include perceived ability, popularity with peers, as well as gender, social class
and ethnicity. Cohen draws on Expectation States Theory to explain how a student’s
status sets up performance expectations that can be resistant to change. Cohen and
her colleagues used mainly quantitative methods to study inequalities in interactions
within groups. My research question was to find ways of using qualitative techniques
to investigate how power is enacted, and unequal interaction patterns come about.

THE STUDY

My research was a multi-site case study of classes engaging in collaborative learning,
using video to capture classroom interactions. During group work, the camera
focussed on one group, and a desk microphone captured their speech. Additional data
included interviews with teachers and selected students. This paper focuses on a class
of Year 10 students who were following an accelerated mathematics curriculum. The
lesson described took place near the end of a sequence on introductory calculus. The
class had already investigated gradients of curves, discussed limits, and worked out
rules for differentiating polynomials, and how to use calculus in curve sketching. Up
to this point, calculus had been presented in an abstract mathematical context, with
no discussion of potential applications. The following problem was then presented:

You have a sheet of cardboard with dimensions 20 cm by 12 cm. You cut equivalent
squares out of each corner and fold up the sides to form a box without a lid. What should
be the length of the sides of the squares cut out for the box to have maximum volume?

This is a standard problem found in most calculus textbooks, but to these students it
was a true investigative task. They had no prior experience of similar problems and
no idea of how to proceed. They were not even sure if it was related to their work on
calculus, and the teacher gave no hints. There are many possible ways of tackling the
problem, with and without calculus. I chose this lesson for detailed analysis, not
because it was “typical” in any sense, but because of the contrasting personalities in
the group and the complexity of the discussion. This revealed interesting group
dynamics which helped to cast light on how power is enacted within small groups.

Introducing the group

During the small-group discussion part of the lesson the camera was focussed on four
students, whom I call Vic, Zoe, Charles and Selena. Like everyone in this accelerated
class, they were high achievers in mathematics. Vic was a champion athlete, held an
elected leadership position within the student body, played in the school band and
was popular and confident. He seemed, however, to have a short attention-span and
to crave attention. Zoe too was popular and confident, and generally very articulate.
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She spoke up frequently in class discussions. In contrast, Charles was awkward, shy
and diffident. He appeared to be a loner, with no friends in the class. The teacher
commented in an interview on his poor social and communication skills, adding that
he was “very bright, a critic”. Finally Selena, a new student, and the only class
member of Asian background, was shy but eager to be accepted. Other students were
unaware of her mathematical thinking capabilities, but did know that some topics
which they had studied had not been covered at her previous school, so they may
have tended to assume that in general she knew less than they did.

A brief outline of the discussion

During the lesson, the group worked for 35 minutes, following a tortuous solution
path that involved many false leads and dead ends. But by the end of the time they
had solved the problem by two different methods, one of which used calculus.

They began by trying to make sense of the problem. Although “maximum volume”
was stated clearly, Selena and Zoe interpreted it as asking for maximum base area,
and discussed how small an edge they could turn up and still call the result a box.
Selena talked about turning up an edge “as close as possible” to zero, and speculated
whether limits were relevant to the problem. Eventually Zoe grasped that the problem
was about volume, not area, and claimed that they were now on the right track.

Charles suggested that they let the side of the square cut out be x, and find a formula
for the volume in terms of x. Zoe agreed at first, but then abandoned this approach for
what she thought was a simpler way and Vic supported her. Selena pointed out a flaw
in their reasoning, and the group finally agreed on an expression for the area of the
base. After some digressions, Charles prompted them to write the volume as a cubic
polynomial, and suggested graphing it (see first transcript below). The others did not
think a graph would help, but Selena began to draw the graph on her graphics
calculator. Charles explained that a graph would tell them which value of x gave the
greatest volume. Zoe ignored this, and proposed asking Miss James if they were on
the right track. Miss James first asked them to explain what they had done, followed
this with questions like “What are you going to do next?”, and then left them.

Zoe invited ideas about what to do, and Selena asked, hesitantly, if they should “do
the derivative”. Zoe could not see how it would help. Charles supported Selena, and
explained why (see second transcript, below). Vic grasped part of what Charles said
(about the graph showing where the maximum lay, but not about using the derivative)
and acted on it, using a graphics calculator to find the x-coordinate of the maximum
turning point. Again, Zoe sidetracked them with the seemingly pointless suggestion
of equating the volume to zero, but this eventually led them to conclude that x was
between 0 and 6. After an unnecessary substitution to find the greatset volume (not
realising that they could read it off the graph) they substituted values of x on either
side of their answer to verify that it was indeed a maximum, and announced that they
had “done it”. The teacher prompted them to explain what they had done, and asked
if they could think of another way to solve it, and if they could justify their result.
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Selena suggested using the derivative to find the turning point, Charles supported her,
(see lines 369-375 below) and Zoe agreed. When they equated the derivative to zero
to find the turning points, they struggled for a long time to factorise the resulting
quadratic equation. Selena suggested using the quadratic formula, but Zoe and Vic
resisted and continued trying to factorise. Eventually Charles concluded that they
would have to use the formula, Vic agreed, and he and Selena did the calculation,
obtaining the same answer as by the graphical method. As they were explaining to
the teacher what they had done, the bell rang bringing the lesson to an end.

ANALYSIS

The complexity of both the range of ideas discussed and the interactions among the
students made the transcript difficult to follow and interpret. It was necessary to find
methods of data reduction that would help to make visible the phenomena of interest:
the interplay between mathematical ideas and the interactions among the students.

Identifying the ideas involved

A first step was to list the different ideas the group discussed, including those that
were helpful, and those that proved to be ‘red herrings’ that led the group astray. I list
here the helpful ideas. For reasons of space the ‘red herrings’ are omitted.

Ideas which helped the group move forward towards a solution:

e Introduce x for the length of the sides of the squares cut out, and find an
expression for the area of the base of the box and hence its volume.

e  Graph the volume function and, from the graph, find where it is greatest.

e  The value of x must be between 0 and 6.

e  Substitute the x-value of the maximum point into the volume function to

find the greatest volume (only necessary because they did not recognise that

the y in their graph represented the volume).

Check function values on either side of this to verify that it is a maximum.

Find the derivative and equate it to zero to find turning points.

Factorise the expression for the derivative to find its zeroes.

(When factorising proved impossible) Use the quadratic formula.

Tracing the flow of ideas

From the transcript, it was possible to trace the way in which an idea was introduced
by one group member, accepted or rejected by others, and perhaps reintroduced later,
maybe more than once. To illustrate, I use the idea of graphing the volume function.
(Note: A key to the symbols used in the transcript is given at the end of the paper.)

First mention of idea: Having introduced x to represent the length of the side of the
corner square, the group (with some difficulty) found an expression for the volume of
the box. They were then unsure what to do. After a short silence, Charles spoke:

298. Chas: Perhaps we should graph it.
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299. [8 sec pause. The girls sit back. They seem to be thinking. Vic moves as if
stretching his neck. Charles glances a little anxiously in Vic’s direction.]

300. Zoe:  Wait a minute ... Um, okay ... Hang on, that was this time ... We have to
find the limit when X equals zero, maybe /

301. Sel: /How does the graph help it?

302. Zoe:  Idon’t think it does. Oh it might.

303. Sel: Hang on, I'll just see / [begins to draw the graph on her calculator]

304. Vic:  /Not in particular, what does it do? It just gives you two points on the axis.
305. [Vic turns round to watch what other groups are doing for 24 seconds. ]

306. Zoe:  Mm. Well, what we’re trying to do is, we’re trying to find the value across
here. [Points to her diagram] We have to find that.

307. Sel: Um [Uses graphics calculator, murmuring to herself as she presses keys]

308. Chas: Well, that’s /

309. Sel: /the graph /

310. Chas: /what value of X gives us the most volume.

311. Chas: [Selena holds out her calculator to Charles.] Is there a turning point there?

312. Sel: Yeah. Two. Um, yeah two.

313. Chas: Yeah, one of them’s down there /

314. Zoe:  /Shall we ask Miss James if we’re on the right track?

315. Sel: Yeah. [Vic has turned back to the group again. He nods.]
Summary I: Charles’ suggestion initially met with no response. Then Zoe expressed
doubt and proposed an alternative, based on a misconception. Selena questioned the
idea. Vic was dismissive. Then Selena began to draw the graph on her calculator. She

and Charles were making progress when Zoe brought the discussion to an end by
suggesting that they talk to the teacher, and everyone but Charles agreed.

Second mention of idea: Zoe called the teacher over to them and spoke for the group,
but she did not explain everything they had done, and in particular did not mention
graphing. As Miss James turned to go, Charles said “We need to graph this”. Miss
James did not hear, and Zoe interrupted excitedly to propose an unhelpful idea.

Third mention of idea: They discussed a number of suggestions about what to do.
Selena asked if they should use the derivative and Charles, in expressing his support,
referred to the graph that Selena had drawn on her calculator:

369. Chas: Basically, what I think here is that this turning point [points to the graph
on Selena’s calculator] um, at the turning point, that’s going to be your
maximum value for um /

370. Sel: /which is that? [points to something on the table in front of her, possibly
on the worksheet, but exactly what is not visible to the camera]

371. Chas: Yeah. Well, maximum value for X, // to get us
372. Vic:  //Obviously, so we’ve to find the value /
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373. Chas: /the maximum volume.
374. Vic:  [Picks up Selena’s calculator] So, trace
375. Chas:  So basically you do need to work out the derivative.

Summary 2: Charles was trying to explain why the maximum turning point would
give them the answer. This time Vic listened to him, took in part of what he was
saying, and acted on it, but gave no sign that he had heard Charles’ final statement.

Overview: In this sequence of excerpts, Charles repeatedly made a suggestion without
success. Selena was willing to give it a try, but Zoe and Vic repeatedly rejected or
ignored what he said. It was not until Vic endorsed part of Charles’ final statement
that the whole group focused on drawing a graph and used this to find a solution.

I give a second example in less detail. The idea of differentiating the volume function
and using the derivative to find turning points was first raised by Selena while they
were brainstorming what to do (line, 363, just before the start of the second excerpt
above). She expressed it tentatively, as a question: “Are we doing, do we do the
derivative in that?” Zoe expressed doubt: “Like, what for?”” but Charles supported
Selena by explaining why it would help (second excerpt). Vic pre-empted him by
beginning to use the Trace function on the calculator. The derivative idea seemed to
be forgotten until Miss James asked them to think of alternative ways they could use
to solve the problem. Selena hesitantly said, “Use the der- deriva-” (line 623). Zoe
interrupted to repeat an idea of her own, but Charles spoke in support of Selena. Zoe
suddenly seemed to catch on, exclaiming “Yeah, the derivative. It’s the turning
point.” (line 629) and gesturing to show the shape of the graph. The group then used
the derivative to find the maximum turning point and hence the maximum volume.

Overview: Again one student, this time Selena, repeatedly tried to make a point, but it
was rejected by the group until Zoe gave it her support.

I carried out a similar analysis for each idea discussed. Of eight helpful ideas, Selena
initiated three, Charles three, and Zoe and Vic one each, but none were acted upon
unless supported by Zoe or Vic or both. This makes it clear that it was not the
potential value of an idea that determined its adoption by the group, but whether or
not it was supported by at least one of the two students Zoe and Vic. This insight
prompted a more detailed look at how the topic of discussion was determined.

Control of the topic of discussion

Clarke (2001) proposed a way of structuring lesson transcripts by dividing them into
episodes and further subdividing episodes into negotiative events. 1 adapted his
definition slightly to suit the classes I was observing, and defined a negotiative event
to be the smallest unit of conversation involving two or more people with a consistent
topic or goal. A negotiative event may be an entire episode, consisting of many turns
or it may be a single utterance followed by tacit assent by another person.

After subdividing the transcript into negotiative events, I set out to investigate how
transitions between events came about. Transitions require the complicity of the
group: an utterance does not initiate a new negotiative event unless other group
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members begin to discuss it, or at least assent to it; nor does a declaration such as
“That’s done!” necessarily terminate an event, unless other group members agree.

To illustrate, Excerpt 1 is a single negotiative event, initiated when Charles proposed
graphing the volume function (line 298) and terminated when Zoe suggested asking
Miss James (and Selena and Vic assented). Excerpt 3 shows the end of one
negotiative event and the beginning of another. The first (deciding what to do) ended
when Vic said “obviously, so we’ve got to find the value” (line 372). The next event
(using the graphics calculator to find the maximum) began when Vic said “So, trace”
(line 374). Charles’ utterance at line 373 was a continuation of what he had been
trying to say in his previous four turns and was ignored by the others.

When the entire discussion had been divided into negotiative events, I analysed who
initiated and who terminated each and in what way, and recorded this in a table.
These were then counted and the results displayed in another table (see Table 1).

Zoe Vic Selena Charles
Initiations 16 7 4 3
Terminations 14 9 2 1

Table 1: Negotiative events initiated and terminated by each group member

This clearly shows Zoe’s dominance, and the relative lack of influence of Charles and
Selena. Vic spent a lot of time talking to other groups, so had less influence than Zoe.

DISCUSSION AND CONCLUSIONS

The results support the findings by Cohen and her colleagues about the effects of
inequalities in status on interactions within groups. To determine a student’s status in
the classroom, Cohen (1997) used a combination of peer status (i.e., popularity) and
academic status, measured by asking students to nominate who in the class were best
at the subject. If such an instrument had been used, it is clear that both Vic and Zoe
would have been assigned high status. Both were popular in the class and contributed
often to class and small group discussions. In contrast, Charles would have had low
status. He was unpopular and inarticulate. The teacher recognised him as “bright” but
poor writing skills meant that he did not get high grades in assignments, so it is
unlikely that other students would have recognised the quality of his thinking. Selena
was new to the class, so had not had enough time become popular, and there was
little evidence on which other students could form judgements about her academic
ability. Thus, at the time of the study, she too would have had a low status. My
analysis has shown that high status students influenced the discussion in the
following ways: their ideas (useful or otherwise) were more likely to be accepted by
the group; and on most occasions they determined what the group would discuss
next. Both of the low status students put forward good ideas, but these were only
accepted when endorsed by a high status student. And they had very little opportunity
to influence the course of the discussion. By making more transparent the
mechanisms by which students establish dominance within a group, this study may
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help in planning instructional strategies designed to reduce inequities in the
classroom and enhance learning for all students.

Cohen and her colleagues identified inequality in participation by counting the
number of turns for each student. Looking instead at whose ideas were accepted or
rejected, and who determined the topic of discussion, provides a more detailed and
more powerful picture of the ways in which power is enacted within small groups.

Finally, a methodological point: tracing the flow of ideas is an innovative approach to
analysing complex discussions, as is studying the structure of a discussion to identify
how transitions from one topic to another come about. These potentially have wider
applications, for example in studying whole-class teaching, or discussions of other
kinds, especially in situations where the enactment of power is at issue.

Note 1

Key to symbols used in transcripts:
/ no noticeable pause between turns, along with indications that the first turn was incomplete
1 marks the beginning of overlapping speech
a brief pause of 3 seconds or less. (For longer pauses, duration is stated.)
[text] descriptions of actions, body language facial expressions or tone of voice.
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A FRAMEWORK FOR THE COMPARISON OF PME RESEARCH
INTO MULTILINGUAL MATHEMATICS EDUCATION IN
DIFFERENT SOCIOLINGUISTIC SETTINGS

Richard Barwell
Graduate School of Education, University of Bristol

The effects of multilingualism have been an explicit focus of a number of PME
research reports in recent years. These reports, however, are located in a wide
range of socio-linguistic circumstances, making it difficult to compare findings and
develop a clearer understanding of the relationship between the teaching, learning or
understanding of mathematics. In this paper, I describe a framework that organises
the different socio-linguistic settings in which multilingual mathematics classrooms
are commonly found. I use this framework to analyse recent PME research reports
that focus on multilingualism in mathematics education. My analysis shows that,
although the English language has a strong influence in a range of settings, the
manifestation of this influence varies.

RESEARCH INTO MULTILINGUAL MATHEMATICS EDUCATION

The prevalence of multilingualism (including bilingualism) in mathematics
classrooms around the world is increasingly reflected in research in mathematics
education. Research reports at PME meetings in the past 10 years include several
concerned with different aspects of the relationship between multilingualism and
psychological dimensions of the teaching and learning of mathematics. These papers
report research from many parts of the world and with a range of foci, including, for
example:

e  (larkson’s (1996; Clarkson and Dawe, 1997) research into how multilingual
learners from non-English-speaking backgrounds make use of their different
languages in solving mathematics problems in Australia;

e Hofmannova et al.’s (2001) research in the Czech Republic into the
development and implementation of a curriculum in which mathematics is
studied using a language from outside the country;

e  Khisty’s (2001) ethnographic study of how different languages are used in
English/Spanish bilingual classrooms in the United States;

e  Setati’s (2003) investigation into the relationship between the politics of
language and language use in mathematics classrooms in South Africa.

As these examples suggest, PME research in the area of multilingual mathematics
education is highly diverse. In this paper, I will focus, in particular, on sociolinguistic
setting, that is, the constellation of languages available and used within different parts
of a society, and the different power and values associated with each of these
languages. It is clear that PME research in this area has been conducted in a wide
range of sociolinguistic settings. Such settings include, for example, classrooms in
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which many languages are used (e.g., South Africa), and, in contrast, classrooms in
which only one language is used, despite the presence of multilingual students (e.g.,
Australia). This diversity can be both a strength and a weakness. Diversity can be a
strength, in that the dangers of generalising from particular situations, or of
privileging particular languages or issues are avoided. Research conducted in a range
of settings potentially provides a broader picture of the role of multilingualism in the
teaching, learning and understanding of mathematics. Diversity can be a weakness,
however, if it becomes difficult to build up such a picture, particularly when the
number of studies reported remains low. Much of the research, moreover, is
concerned with particular issues arising from particular settings. Findings are likely
to be highly circumscribed by the particular setting in which the research was
conducted. Cummins (2000, pp. 43-44) has argued, for example, that broad social
factors, such as sociolinguistic setting, are implicated in patterns of classroom
interaction. A current problem for research within mathematics education, however,
1s that there is no way of comparing, contrasting or otherwise analysing different
studies on the basis of sociolinguistic setting. In the rest of this paper, I propose a
framework which makes such comparison possible and offer some initial analysis of
PME research in this area.

FRAMING SOCIOLINGUISTIC SETTINGS

In applied linguistics, a number of ways of classifying sociolinguistic settings of
multilingual education have been proposed (e.g., Skutnab-Kangas, 1988; Baker,
2001, p. 194), many of which are focused on the different institutional approaches to
the teaching and learning of second or additional languages (L2), such as second
language immersion, for example. This approach does not easily transfer to
consideration of classrooms where the focus is on the teaching and learning of
mathematics, rather than language. An alternative approach, based on Siegel (2003,
p- 179) is to focus on the role of the learner’s L2 in the society in which the
classroom is situated. Siegel describes 5 different settings using this approach:

Dominant L2: The main classroom language is the dominant or majority language in
wider society. Multilingual students are speakers of minority languages, such as many
immigrants or indigenous peoples. E.g. Turks learning German in Germany; Native
Americans learning Spanish in Peru.

External L2: The main classroom language is a foreign or distant language. Multilingual
students are speakers of the dominant language. E.g. Japanese learning English in Japan;
English speakers in Western Canada learning French.

Coexisting L2: The main classroom language is a nearby language spoken by a large
proportion of the population. Students are from a broadly multilingual environment. E.g.
German speakers learning French in Switzerland.

Institutional L2: The main classroom language is an indigenous or imported language
with a wide range of official uses. Students speak several local languages and inhabit
highly multilingual environments. E.g. learning English in India; Swabhili in Tanzania.
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Minority L2: The main classroom language is that of a minority group (indigenous or
immigrant). Students are speakers of the dominant or majority language. E.g English
speakers learning Welsh or Panjabi in the UK.

In Siegel’s framework, the five settings describe most situations in which school
students may use or learn an L2. The term L2 should be seen as referring to any
additional language: the framework does not preclude the use of more than two
languages. The framework offers a way of analysing research in mathematics
classrooms in different sociolinguistic settings. It is not, however, a precise
description of interaction in a classroom. Many classrooms in South Africa, for
example, officially use English as the medium of instruction and would be classified
as ‘Institutional L2’ but this does not mean that other languages are not used by
students or teachers during mathematics lessons. Finally, different settings may apply
within the same geographical area. In the UK, for example, there are examples of
mathematics classrooms within the dominant L2 (e.g., with immigrant communities),
minority L2 (e.g., English speakers learning Welsh) and external L2 (e.g., French
immersion) settings. The framework is, therefore, probably best used at the level of
individual classrooms, rather than whole communities or schools.

COMPARING PME RESEARCH ON MULTILINGUAL MATHEMATICS
EDUCATION

I have located examples of relevant PME research reports within Siegel’s framework
(see table, below). I have included all research reports with a clear focus on the role
of multilingualism in different aspects of the psychology of mathematics education
presented at PME conferences in the past 10 years. I have not included reports in
which multilingual issues were tangentially noted or referred to. Nor have I include
reports in which the focus was on the relationship between the structure of a language
and students’ mathematical learning. This survey resulted in the inclusion of 13
research reports.

In applying the framework, I have modified one of the categories. I have divided
dominant L2 settings into ‘monolingual’ and ‘bilingual’ forms. The former refers to
dominant L2 settings in which English is the main language of the curriculum and of
classroom interaction, as in the UK, for example. Bilingual dominant L2 settings are
those in which both learners’ L1 and L2 are legitimately used in the mathematics
classroom (a scenario that does not generally occur in language-focused classrooms).
Examples include Spanish-English bilingual mathematics classrooms in the USA,
where both English and Spanish are used.
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Mathematics PME research Location Focus
classroom reports
setting
Dominant L2  Barwell (2001; UK (mainstream How learners of English make
(monolingual) 2003) classrooms) sense of word problems when the
classroom language is English

Czarnocha & USA (ESL Relationship between learning

Prabhu (2000) classrooms) algebra and learning English as a
second language (ESL)

Clarkson (1996) Australia Comparing attainment of bilingual

Clarkson & (mainstream and monolingual students;

Dawe (1997) classrooms) languages learners use ‘privately’;
reasons for ‘switching’ between
languages in problem solving

Dominant L2  Khisty et al. USA Role of multimodality in a
(bilingual) (2003) (Spanish/English bilingual mathematics lesson

Khisty (2001) b1111ngual Features of effective teaching in

classrooms) bilingual mathematics

Moschkovich, J. ‘Discontinuity’ and ‘situated’

(1996) models of bilingualism in
mathematics classrooms

External L2 Hofmannovd et Czech Republic Emotional barriers of students

al. (2003) (English-medium  training to teach mathematics in

classrooms) English in the Czech Republic

Coexisting L2 NO REPORTS

Institutional Adler (1995) South Africa Multilingual learners’ ability to

L2 (multilingual express themselves; how a teacher
classrooms) supports them to do this;

challenges for teaching

Prins (1997) Multilingualism, problem solving
and problem readability

Setati (1999, Politics of language and teachers’

2003) use of different languages and
language practices in mathematics
lessons

Minority L2 NO REPORTS

Table 1: PME research into multilingual mathematics education
and sociolinguistic setting
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APPLYING THE FRAMEWORK

My first observation is that two settings are not represented in PME research. The
minority L2 setting involves mathematics classrooms in which the main language
used is a minority language within wider society. Whilst there has been research in
such settings, such work has not been reported at PME meetings. This absence may
be because such research draws more on sociological, anthropological or
sociopolitical frameworks, rather than the explicitly psychological perspectives seen
to be favoured at PME. This does not mean, however, that there are not important
issues relevant to PME research. How, for example, is mathematical understanding
influenced by the use of what are generally less widely-used languages? How are
learners’ motivations to study mathematics related to the use of such languages? The
co-existing L2 setting is also not represented, perhaps reflecting its geographical
confinement to one or two locations (e.g. Switzerland, Québec). The research reports
I have identified are fairly evenly distributed between the remaining 4 settings. In the
rest of this paper, I critically compare the research reported from the three settings
represented by more than one report: monolingual dominant L2, bilingual dominant
L2 and institutional L2.

The dominance of English in the monolingual dominant L2 setting is reflected in the
research reports. Clarkson (1996) compares the performance of bi/multilingual
students with monolingual English-speakers, setting the latter as the norm. The
students’ home languages, such as Vietnamese are portrayed as ‘other’. Clarkson
seeks to show how these ‘other’ languages are used by students in solving arithmetic
problems. Indeed, his research implies that these languages are largely used covertly.
Czarnocha & Prabhu (2000) are interested in how students’ mathematical learning
can contribute to their learning of English. Similarly, the research reported in my own
papers reflects the general absence of languages other than English in the
mathematics classrooms reported, despite the students being speakers of one or more
languages other than English. It is apparent that both questions and findings in these
research reports are closely related to the setting in which they are located.

The three papers from the bilingual dominant L2 setting are all from the USA, where
the use of two languages such as Spanish and English to teach mathematics has been
common. Again, the dominance of English is apparent. There is a concern, for
example, that students should appropriate mathematical ways of talking, that is,
mathematical ways of talking in English. Khisty (2001), for example, gives an
example of how an effective mathematics teacher introduces the English word
‘congruent’. As Moschkovich (1996) discusses in her paper, in most of the research
in Spanish-English settings, the relationship between language and learning is
described in terms of ‘discontinuities’. In particular, the relationship between English
in Spanish is seen as a discontinuity. This approach is problematic in several ways,
such as its connection to deficit models of bilingual students, who may be penalised
for using ‘incorrect’” mathematical English. Moschkovich does not speculate on the
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origins or persistence of this approach, but it is arguably related to the nature of the
bilingual dominant L2 setting, in which Spanish would be seen as an obstacle that
must be overcome on the way to learning to do mathematics in English.

The concerns of the papers in the institutional L2 setting are recognizably different
from those located in dominant L2 settings. All the contributions come from South
Africa, a nation of 11 official languages, with English as the main language of
education in most schools. Firstly, it is clear that multilingualism is a clear feature of
the research. Indeed, in the case of Prins (1997), the research is a comparison
between students who have English as L1, L2 or L3, showing that L3 learners were
more likely to score badly on written test items, and that this trend is related to the
readability of the items, an essentially linguistic issue. On the other hand, Prins’s
study, like Clarkson’s, treats English as the main language. There was no attempt to
use test items in Afrikaans or Xhosa, for example, reflecting the institutional
importance of English. This institutional position is also apparent in Adler’s (1995)
paper, in which she explores how a student struggles to explain his thinking due to a
lack of familiarity with mathematical language (concerning triangles) in English.
Thus, the influence of English is apparent in both dominant L2 and institutional L2
settings. This influence is due to the power and opportunities associated with English
in both settings. Indeed, Setati (2003) shows how the status of English in society can
be related to language use in South African mathematics classrooms. The institutional
dominance of English manifests itself in its use for more formal and procedural
mathematical talk, such as talking through a standard algorithm. African languages,
on the other hand, tend to be used in informal talk, including, for example, conceptual
discussions of the mathematics involved in a problem.

The power and opportunities of English arise in different ways in the different
settings. In the South African institutional L2 setting, although English has some
institutional prestige, other languages are widely used. In the monolingual dominant
L2 settings of the UK and Australia, languages other than English are silenced. It is
notable, for example, that Clarkson (1997) had to ask students if they used languages
other than English in working on mathematics; such usage was not generally easily
observable. In the bilingual dominant L2 setting represented by Spanish-English
classrooms in the USA, Spanish has some institutional recognition and is used in
classrooms — a position in between monolingual dominant and Institutional L2
settings. The difference is that Spanish is seen as a stepping stone to English in the
US; English is the norm. Dual language mathematics classrooms are part of a system
designed to turn students into competent speakers of English.

The differences in the manifestation of the influence of English identified in the
above analysis raise questions concerning the teaching and learning of mathematics.
What effect does covert L2 use have on students’ understanding of mathematics, their
relationship with the subject, their motivation and engagement? If a Spanish-speaking
students struggles to express their mathematical thinking in English, in a setting in
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which Spanish is seen as a stepping-stone to English, how do they then value their
mathematical understanding?

CONCLUSION

Siegel’s framework provides a useful starting point from which to develop a more
nuanced understanding of the relationship between multilingualism and the teaching
and learning of mathematics. The framework facilitates the comparison of research in
different parts of the world. Through such comparisons, it becomes possible, for
example, to identify phenomena that are specific to one or more setting and those that
arise more widely. Recent research reports at PME have been fairly evenly spread
around four different settings, although nothing has been reported from two settings.

Finally, most mathematics classrooms around the world are multilingual, in the sense
that most classrooms include teachers or students who are speakers of two or more
languages in their day-to-day lives. This multilingualism is rarely acknowledged in
PME research reports, perhaps because of the difficulty of concisely describing
complex settings when these settings do not form part of the focus of the research.
Siegel’s framework offers a way in which multilingualism can be acknowledged
whenever and wherever it occurs.
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VYGOTSKY’S THEORY OF CONCEPT FORMATION AND
MATHEMATICS EDUCATION

Margot Berger

University of Witwatersrand

I argue that Vygotsky’s theory of concept formation (1986) is a powerful framework
within which to explore how an individual at university level constructs a new
mathematical concept. In particular, this theory is able to bridge the divide between
an individual’s mathematical knowledge and the body of socially sanctioned
mathematical knowledge. It can also be used to explain how idiosyncratic usages of
mathematical signs by students (particularly when just introduced to a new
mathematical object) get transformed into mathematically acceptable usages and it
can be used to elucidate the link between usages of mathematical signs and the
attainment of meaningful mathematical concepts by an individual.

INTRODUCTION

The issue of how an individual makes personal meaning of a mathematical object
presented in the form of a definition is particularly relevant to the study of advanced
mathematical thinking. In this domain, the learner is frequently expected to construct
the properties of the object from the definition (Tall, 1995). In many instances neither
diagrams nor exemplars of the mathematical object are presented alongside the
definition; initial access to the mathematical object is through the various signs (such
as words and symbols) of the definition.

In this talk, I argue that Vygotsky’s theory of concept formation (1986) provides an
appropriate framework within which to explore the above issue of concept formation.
Specifically I claim that this framework has constructs and notions well—suited to an
explication of the links between the individual’s concept construction and socially
sanctioned mathematical knowledge. Also the framework is apposite to an
examination of how the individual relates to and gives meaning to the signs (such as
symbols and words) of the mathematical definition.

BACKGROUND

Several mathematics education researchers have considered how an individual, at
university level, constructs a mathematics concept and some have developed
significant theories in response. The most influential of these theories focus on the
transformation of a process into an object (for example, Tall, 1995; Dubinsky, 1991;
Czarnocha et al, 1999).

According to Tall et al. (2000), the idea of a process—object duality originated in the
1950’s in the work of Piaget who spoke of how “actions and operations become
thematized objects of thought or assimilation” (cited in Tall et al, 2000: 1).
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In adopting a neo—Piagetian perspective, these researchers and their various followers
successfully extend Piaget’s work regarding elementary mathematics to advanced
mathematical thinking. For example, Czarnocha et al. (1999) theorise that in order to
understand a mathematical concept, the learner needs to move between different
stages. She has to manipulate previously constructed objects to form actions.
“Actions are then interiorised to form processes which are then encapsulated to form
objects” (1999: 98). Processes and objects are then organised in schemas.

But much of this process—object theory does not resonate with a great deal of what I
see in my mathematics classroom. For example, it does not help me explain or
describe what is happening when a learner fumbles around with ‘new’ mathematical
signs making what appear to be arbitrary connections between these new signs and
other apparently unrelated signs. Similarly, it does not explain how these
incoherent—seeming activities can lead to usages of mathematical signs that are both
acceptable to professional members of the mathematical world and that are
personally meaningful to the learner.

I suggest that the central drawback of these neo—Piagetian theories is that they are
rooted in a framework in which conceptual understanding is regarded as deriving
largely from interiorised actions; the crucial role of language (or signs) and the role
of social regulation and the social constitution of the body of mathematical
knowledge is not integrated into the theoretical framework.

What is required is a framework in which the link between an individual’s
construction of a concept and social knowledge (existing in the community of
mathematicians and in reified form in textbooks) is foregrounded. Furthermore, given
that mathematics can be regarded as the “quintessential study of abstract sign
systems” (Ernest, 1997) and mathematics education as “the study of how persons
come to master and use these systems” (ibid.), a framework which postulates
semiotic mediation as the mechanism of learning, seems apposite. I claim that
Vygotsky’s much—neglected theory of concept formation, allied with his notion of
the functional usage of a sign (1986), is such a framework.

VYGOTSKY’S THEORY OF CONCEPT FORMATION

Although Vygotskian theory (but not the theory of concept formation) has been
applied extensively in mathematics education, most of the research has focused on
the mathematical activities of a group of learners or a dyad rather than the individual
(Van der Veer and Valsiner, 1994). Furthermore it has been applied most frequently
to primary school or high school learners (for example, van Oers, 1996; Radford,
2001) rather than to individuals at undergraduate level.

Indeed, Van der Veer and Valsiner (1994) claim that the use of Vygotsky in the West
has been highly selective. In particular they argue that “the focus on the individual
developing person which Vygotsky clearly had ... has been persistently overlooked”
(p. 6; italics in original).
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It 1s important to note that a focus on the individual (possibly with a textbook or in
consultation with a lecturer) does not contradict the fundamental Vygotskian notion
that “social relations or relations among people genetically underlie all higher
functions and their relationships” (Vygotsky, 1981, p. 163). After all, a situation
consisting of a learner with a text is necessarily social; the textbook or exercises have
been written by an expert (and can be regarded as a reification of the expert’s ideas);
also the text may have been prescribed by the lecturer with pedagogic intent. Thus a
focus on the individual does not undermine the significance of the social.

Functional use of the sign

In order to understand Vygotsky’s theory, one needs to understand how Vygotsky
used the term ‘word’. Vygotsky regarded a word as embodying a generalisation and
hence a concept.

As such, Vygotsky postulated that the child uses a word for communication purposes
before that child has a fully developed understanding of that word. As a result of this
use in communication, the meaning of that word (i.e., the concept) evolves for the
child:

Words take over the function of concepts and may serve as means of communication
long before they reach the level of concepts characteristic of fully developed thought
(Uznadze, cited in Vygotsky, 1986: 101).

The use of a word or sign to refer to an object (real or virtual) prior to ‘full’
understanding resonates with my sense of how an undergraduate student makes a new
mathematical object meaningful to herself. In practice, the student starts
communicating with peers, with lecturers or the potential other (when writing) using
the signs of the new mathematical object (symbols and words) before she has full
comprehension of the mathematical sign. It is this communication with signs that
gives initial access to the new object.

It is a functional use of the word, or any other sign, as a means of focusing one’s
attention, selecting distinctive features and analysing and synthesizing them, that plays a
central role in concept formation (Vygotsky, 1986: 106).

Secondly but closely linked to the above notion, is Vygotsky’s argument that the
child does not spontaneously develop concepts independent of their meaning in the
social world:

He does not choose the meaning of his words... The meaning of the words is given to
him in his conversations with adults (Vygotsky, 1986: 122).

That is, the meaning of a concept (as expressed by words or a mathematical sign) is
‘imposed’ upon the child and this meaning is not assimilated in a ready—made form.
Rather it undergoes substantial development for the child as she uses the word or sign
in her communication with more socialised others.
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Thus the social world, with its already established definitions (as given in dictionaries
or books) of different words, determines the way in which the child’s generalisations
need to develop.

Analogously, I argue that in mathematics, a student is expected to construct a concept
whose use and meaning is compatible with its use in the mathematics community. To
do this, that student needs to use the mathematical signs in communication with more
socialised others (including the use of textbooks which embody the knowledge of
more learned others). In this way, concept construction becomes socially regulated.

Semiotic mediation

Vygotsky (1978) regarded all higher human mental functions as products of mediated
activity. The role of the mediator is played by a psychological tool or sign, such as
words, graphs, algebra symbols, or a physical tool. These forms of mediation, which
are themselves products of the socio-historical context, do not just facilitate activity;
they define and shape inner processes. Thus Vygotsky saw action mediated by signs
as the fundamental mechanism which links the external social world to internal
human mental processes and he argued that it is

by mastering semiotically mediated processes and categories in social interaction that
human consciousness is formed in the individual (Wertsch and Stone, 1985: 166).

Allied to this, concept formation, as discussed above, is only possible because the
word or mathematical object can be expressed and communicated via a word or sign
whose meaning is already established in the social world.

In mathematics, the same mathematical signs mediate two processes: the
development of a mathematical concept in the individual and that individual’s
interaction with the already codified and socially sanctioned mathematical world
(Radford, 2000). In this way, the individual’s mathematical knowledge is both
cognitively and socially constituted.

This dual role of a mathematical sign by a learner before ‘full’ understanding is not
well appreciated by the mathematics education community; indeed, its manifestations
in the form of activities such as manipulations, imitations and associations are often
regarded disparagingly by mathematics educators. That is, they regard such activities
as ‘meaningless’ and without worth. (Conversely, back—to—basics mathematics
educators may regard adequate use of a mathematical sign as sufficient evidence of a
student’s understanding of the relevant mathematical concept. Of course, in terms of
Vygotsky’s theory, this is not the case).

Vygotsky’s theory, that usages of the sign are a necessary part of concept formation,
manages to provide a link between certain types of mathematical activities (including
those activities regarded pejoratively by many educators) and the formation of
concepts.
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Different stages

Vygotsky further elaborated his theory by detailing the stages in the formation of a
concept. He claimed that the formation of a concept entails different preconceptual
stages (heaps, complexes and potential concepts).

During the syncretic heap stage, the child groups together objects or ideas which are
objectively unrelated. This grouping takes place according to chance, circumstance or
subjective impressions in the child’s mind. In the mathematical domain, a student is
using heap thinking if she associates one mathematical sign with another because of,
say, the layout of the page.

The syncretic heap stage gives way to the complex stage. In this stage, ideas are
linked in the child’s mind by associations or common attributes which exist
objectively between the ideas.

Complex thinking is crucial to the formation of concepts in that it allows the learner
to think in coherent terms and to communicate via words and symbols about a mental
entity. And, as I have argued above, it is this communication with more
knowledgeable others which enables the development of a personally meaningful
concept whose use is congruent with its use by the wider mathematical community.

Complexes corresponding to word meanings are not spontaneously developed by the
child: The lines along which a complex develops are predetermined by the meaning a
given word already has in the language of adults (Vygotsky, 1986: 120).

Furthermore, in complex thinking the learner begins to abstract or isolate different
attributes of the ideas or objects, and the learner starts organizing ideas with
particular properties into groups thus creating the basis for later more sophisticated
generalisations.

With complex thinking, the learner is not using logic; rather she is using some form
of non—logical or experiential association. Thus complex thinking often manifests as
bizarre or idiosyncratic usage of mathematical signs.

For example, the learner is using complex thinking when she associates the properties
of a ‘new’ mathematical sign with an ‘old’” mathematical sign with which she is
familiar and which is epistemologically more accessible.

As an illustration, on first encountering the derivative, f ,(x), of a function f(x), the
learner may associate the properties of f "(x) with the properties of f(x). Accordingly,
many learners assume or imply that since f(x) is continuous, so is f ‘(%) Clearly this is
not logical; indeed it is mathematically incorrect.

Another example of activity guided by complex thinking is when the student seems
to focus on a particular aspect of the mathematical expression and to associate these
symbols or words with a new sign. For instance, when dealing with the greatest
integer function [[x]||= greatest integer < x, many students latch onto the word

‘greatest’ ignoring the condition < x. They then link the word ‘greatest’ to the idea of
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‘greater than’ and accordingly state that, say, [[4.3]]= 5 (whereas of course, the
answer should be 4).

My point here is not how the student uses the signs but rather that she uses the signs.
Through this use, the student gains access to the ‘new’ mathematical object and is
able to communicate (to better or worse effect) about it. Through social regulation or
reflection (in tandem with the socially constituted definition and for an attenuated or
extended time period) the learner will eventually come to use and understand the
signs in ways that are congruent with official mathematics.

My observations of undergraduate students over the years ties in very well with the
idea that preconceptual thinking is a necessary part of successful mathematics
concept construction (this is evidenced by many of these students’ apparently
confused mathematical assertions prior to mathematical coherence). Of course, the
time spent using complex thinking may be very brief or very long, depending on the
student, the particular mathematical object, the task, the context and the social
interventions.

Vygotsky distinguished between five different types of complexes. For the purposes
of this talk it is sufficient to elaborate on the pseudoconcept, which is a construct
which effectively bridges the divide between the individual and the social and
between complex and concept. (For elaboration and exemplification of the different
types of complexes, see Sierpinska (1993), Berger (2004a, 2004b)).

The pseudoconcept: a bridge between the individual and the social

In order to understand the pseudoconcept one needs to know how Vygotsky used the
word ‘concept’: in a concept, the bonds between the parts of an idea and between
different ideas are logical and the ideas form part of a socially-accepted system of
hierarchical knowledge.

According to Vygotsky, the transition from complexes to concepts is made possible
by the use of pseudoconcepts. Hence the pseudoconcept is a very special form of
complex.

Pseudoconcepts resemble true concepts in their use, but the thinking behind these
pseudoconcepts is still complex in character. This is because the bonds between the
different elements of a pseudoconcept are associative and experiential rather than
logical and abstract. But the learner is able to use the pseudoconcept in
communication and activities as if it were a true concept.

The use of pseudoconcepts is ubiquitous in mathematics and is analogous to a child
using a word in conversation with an adult before fully understanding the meaning of
that word. Pseudoconcepts occur whenever a student uses a particular mathematical
object in a way that coincides with the use of a genuine concept, even though the
student has not fully constructed that concept for herself. For example, a student may
use the definition of the derivative of a function to compute the derivative of the
function before she ‘understands’ the nature of the derivative or its properties.
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Vygotsky (1986) argued that the use of pseudoconcepts enables children to
communicate effectively with adults and that this communication (the intermental
aspect) is necessary for the transformation of the complex into a genuine concept (the
intramental aspect) for the learner.

Verbal communication with adults (...) become a powerful factor in the development of
the child’s concepts. The transition from thinking in complexes to thinking in concepts
passes unnoticed by the child because his pseudoconcepts already coincide in content
with adult concepts (Vygotsky, 1986: 123).

Thus the pseudoconcept functions as the bridge between concepts whose meaning is
more or less fixed and constant in the social world (such as that body of knowledge
we call mathematics) and the learner’s need to make and shape these concepts so that
they become personally meaningful. This bridging function of the pseudoconcept is
the basis for my contention that the pseudoconcept can be regarded as the link
between the individual and the social. As such pseudoconcepts are a necessary stage
in the child’s or student’s development of true concepts. Furthermore the notion of
the pseudoconcept is entirely consistent with the functional use of a sign.

The pseudoconcept can be used to explain how the student is able to use
mathematical signs (in algorithms, definitions, theorems, problem—solving, and so
on) in effective ways that are commensurate with that of the mathematical
community even though the student may not fully ‘understand’ the mathematical
object. The hope is that through appropriate use and social interventions, the
pseudoconcept will get transformed into a concept.

CONCLUSION

In this paper, I have argued that Vygotsky’s theory of concept formation provides an
apposite framework within which to elaborate how an individual constructs a concept
that is personally meaningful and whose usage is commensurate with that of the
mathematical community.

In particular, I argued that the notion of functional usage of the sign, together with
the construct of the pseudoconcept, can be used to bridge the divide between an
individual’s concept formation and a socially sanctioned mathematical definition.
Related to this, idiosyncratic mathematical activities can be regarded as
manifestations of complex thinking. With social regulation, these complexes can be
transformed into pseudoconcepts and ultimately concepts can be formed. Finally, I
argued that Vygotsky’s notion that all knowledge is semiotically mediated is
necessary for understanding how students use mathematical signs to gain access to
mathematical objects.

What is now required is empirical research which illuminates the bridges between
personal and socially sanctified usages of mathematical signs, explicates the
transformations from complexes to pseudoconcepts to concepts, and explores the
relationships between different usages of signs and meaning—making.
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PRESERVICE TEACHERS’ UNDERSTANDINGS OF
RELATIONAL AND INSTRUMENTAL UNDERSTANDING

Kim Beswick

University of Tasmania

This paper reports on the responses of a cohort of preservice primary teachers to a
statement about the extent to which helping children achieve relational
understanding is a realistic expectation. Although the preservice teachers’ course
had included teaching about understanding a number of misconceptions about the
meanings of relational and instrumental understanding were evident in the responses
of a sizeable minority, along with evidence that many held beliefs that were likely to
result in them teaching instrumentally. The findings highlight the idiosyncratic nature
of preservice teachers’ knowledge construction and draw attention to a range of
disparate meanings that may be attached to the term ‘understanding’ even when it is
qualified with other words such as ‘instrumental’ or ‘relational’.

BACKGROUND AND THEORETICAL FRAMEWORK

Ongoing calls for reform in education generally and mathematics education in
particular have stressed the importance of teaching for understanding (e.g. NCTM,
2000). In several Australian states, including Tasmania where this study was
conducted, significant shifts to values-based curricula that place a heavy emphasis on
the development deep understanding are underway (Department of Education,
Tasmania, DoET, 2002). It thus behoves mathematics teacher educators to prepare
preservice teachers to teach for understanding.

This task is by no means simple, with the difficulty due at least in part to the
difficulty of defining exactly what is meant by understanding. Madison (1982)
sourced the difficulty in the tendency to equate our understandings with reality, and
stressed that understandings can really only be described as beliefs. Much that has
been written about understanding, including in the two documents cited above, does
not attempt to define the concept, but rather a shared ‘understanding’ of the meaning
1s assumed. The danger of such an assumption was highlighted by Skemp (1978) in
relation to mathematics when he described the existence of two disparate uses of the
term that resulted in, in his view, two quite distinct mathematics curricula. Skemp
(1978) labelled these types of understanding instrumental and relational and it is the
latter which is implied by authors writing from a reform perspective (e.g. Hannula,
Maijala, & Pehkonen, 2004). The term relational implies connections and indeed the
development of connections is central to advice on teaching for understanding
(Mousley, 2004). Mousley (2004) lists three types of connections that are commonly
intended. These are connections between: new and existing knowledge; various
mathematical ideas and representations; and mathematics learned in school and
everyday life. It was the second of these that Skemp (1978) described.
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The process by which understanding is achieved (or connections of various kinds are
made) has been described by Pirie and Kieren (1989) as recursive in that rather than
more sophisticated understandings developing from more primitive ones, there is a
need to revisit earlier understandings and view them from a different perspective in
order to develop the next level of understanding. Sierpinska (1994) described
understanding as emerging in response to difficulties encountered when current
knowledge meets new, not readily reconcilable experiences. Wiggins and McTighe
(1998), whose work has been influential in the Tasmanian curriculum reforms,
provided a framework comprising six not necessarily discrete facets of understanding
that they believed could be helpful for teachers in designing learning experiences that
fostered the development of understanding. These views have in common that they
present the development of understanding as complex, non-linear and unpredictable
phenomenon.

All of these perspectives, as well as the underpinning philosophy of calls to reform
curricula and specifically mathematics education, are consistent with a constructivist
view of learning (Confrey, 1990; Simon, 2000). In describing understandings as
beliefs, Madison (1982), is essentially equating understandings with a constructivist
view of knowledge in which the distinction between knowledge and beliefs is
principally a matter of the degree of consensus attracted by virtue of the amount and
quality of information on which they are based, and their powerfulness in terms of
explaining and predicting experience (Guba & Lincoln, 1989). Lerman (1997)
maintained that researchers should be mindful that theories of learning apply equally
to attempts to change the beliefs and practices of teachers. That is, from a
constructivist perspective, teachers, including preservice teachers such as those in this
study, actively construct knowledge for the purpose of making sense of their
experiences (von Glasersfeld, 1990). A further dimension of constructivism derives
from the work of Vygotsky (Ernest, 1998) who stressed the critical role of language
in social contexts in the development of thinking.

The task of assisting preservice teachers to construct a notion of mathematical
understanding as relational (Skemp, 1978) and to value this perspective to the extent
that they are likely to teach in ways that foster the development of relational
understanding in their students, thus amounts to an effort to change their beliefs about
what it means to understand mathematics. Given the established difficulty of
influencing beliefs (Lerman, 1997), the strong tendency of teachers to teach in the
ways that they were taught (Ball, 1990), the fact that many will have experienced
mathematics teaching aimed at achieving instrumental understanding, and the
complexities involved in developing understanding of anything, including
understanding itself (Pirie & Kieran, 1994; Sierpinska, 1994; Wiggins & McTighe,
1998) this 1s likely to be a difficult undertaking. In this context it should be
remembered that the perception of misunderstanding on the part of a student is also a
belief of the teacher. Essentially teachers or educators operating from a constructivist
perspective but with particular outcomes for their students in mind are attempting to a
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greater or lesser extent to replicate their own understandings in their students, with
misunderstanding deduced from evidence that students do not share their
understanding.

THE STUDY

The study was motivated by a concern that, almost 30 years after Skemp (1978)
articulated the problem, teachers including preservice teachers, still attached differing
and conflicting meanings to the term ‘understanding’. It was designed to provide
evidence in relation to the extent that this was indeed the case for preservice teachers
who had notionally ‘been taught’ about understanding in relation to mathematics and
was thus part of ongoing course evaluations.

Context of the study

At the University of Tasmania, where this study was conducted, students are required
to study mathematics curriculum in three semesters of the B. Ed. program - one in
each of their second, third and fourth years. Mathematics curriculum studies are
combined with English curriculum studies, and so the students study three half units
of mathematics curriculum. Each half-unit is conducted over 13 weeks in a single
semester, delivered via a weekly one hour lecture and a one hour tutorial in second
and third year, and via a two hour weekly tutorial in the fourth year. Tutorials are
conducted in groups of 25-30 students. Instruction in this context is designed to be
interactive with students working cooperatively on activities designed to illustrate
and explore information presented in the lectures. In the tutorials, the lecturers in the
program aimed to model an approach to teaching that was consistent with the
principles of constructivism. In both lectures and tutorials the emphasis of teaching
was on promoting students’ awareness of broad pedagogical ideas for meaningful
learning of mathematics, such as the importance of rich mathematical learning
environments for conceptual development, a mathematics curriculum that focuses on
problem solving and thinking skills, and appropriate materials for concept
representation. In lectures and tutorials, it was the lecturers’ intention to
communicate these ideas through modelling best practice, using lecture and
particularly tutorial times, to engage students in activities designed for such notions
to surface. A further objective of the program in total was to promote students’
beliefs in the importance of mathematics and its teaching, whilst enhancing their
confidence in their ability to understand basic mathematics, and fostering positive
attitudes to the teaching of mathematics.

Subjects

The subjects were 174 preservice primary teachers enrolled in the first mathematics
curriculum half unit, in the second year of the preservice teachers’ study.

Instrument

The statement to which students were asked to respond was contained in question
eight of the examination paper for the unit. The two hour examination was comprised
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13 questions requiring short answers in the spaces provided (two lines per mark),
accounted for 40% of students’ result for the unit, and was designed to assess
students’ understandings of the material covered in the unit rather than simply their
ability to recall information. The specific question was:

Indicate your agreement or otherwise with the following statement, giving reasons for
your choice: “Helping children to achieve relational understanding is too time-
consuming. There is so much in the curriculum to cover that it is an unrealistic
expectation.” (4 marks [of a total of 53])

Procedure

Teaching mathematics for understanding was a topic of one lecture. The
corresponding tutorial included a discussion of the understanding based on a section
of the prescribed text, Van de Walle (2002), and Skemp’s (1978) article on
instrumental and relational understanding. Incidental references to the importance of
teaching mathematics for understanding (relational) were made throughout the course
and modelled in tutorials.

At the end of the semester students sat the examination and, after the assessment of
the unit had been finalised, their responses to question eight were re-examined
specifically for evidence of their understandings of understanding. Those that clearly
evidenced misunderstandings were further examined in order to identify categories
into which these responses could be divided. Some of the responses that
demonstrated misunderstandings were allocated to more than one category on the
grounds that they showed evidence of more than one type of misunderstanding.

RESULTS AND DISCUSSION

Of the 174 answers examined 52 (30%) showed evidence of misunderstanding. Table
I shows the categories of misunderstandings identified, the number of responses
falling in each and an example of a response allocated to each category.

Fifteen of the preservice teachers clearly agreed with the statement presented in the
question. Given that they responded under examination conditions and that the views
of the lecturers who would be marking their papers were likely to have been well
known, this figure is likely to be an under-estimation of the numbers who in fact
believed that relation understanding was an unrealistic expectation. It seems likely
that at least some students in classes taught by these teachers will not be taught with
relational understanding of mathematics as the goal.

Categories two to seven all contained responses that presented relational
understanding as something additional that should be aimed for, rather than essential,
and hence the argument presented in the statement that time is a constraint on
teaching for relational understanding is likely to have some merit in the view of these
preservice teachers. A likely consequence is that amongst the demands of classroom
life the goal of relational understanding will not survive. These preservice teachers
may well be among the many who revert to teaching as they were taught (Ball, 1990).
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Category of misunderstanding Example No. of
responses
(% of 174)

1. Relational a. For some Ideally it would be great to have every 10 (5.7)
understanding students student with relational understanding ...
1s an unrealistic not every student in the class is going to
expectation: achieve relational understanding.

b. Under some ... sometimes there is too much pressure 5 (2.9)

circumstances  from students, parents and government to

allow time for it.
2. Relational understanding ... Children need to move from 9(5.2)
follows from instrumental instrumental understanding so that they
understanding can see why ...
3. Relational/instrumental A well organised teacher can afford to 13 (7.5)
understanding is a curriculum cover such a topic ...
topic
4. Relational understanding is ... Students should be able to relate 7 (4.0)
about relating mathematics to mathematics to almost anything as it is
other curriculum areas/real life ever changing and growing
5. Relational understanding is ... 1f children only have an instrumental 9(5.2)
about knowing the understanding then they are merely
purpose/relevance of memorising concepts and not truly
mathematics topics understanding what they’re learning and
why it is learned ...

6. Relational understanding is a ... 1t would save time as students would 9(5.2)
skill that can be applied to be able to learn to relate the way to
problems in mathematics and understanding one question to another ...
other curriculum areas
7. Both relational and A child needs to have at least some 3(1.7)
instrumental understanding are relational understanding they also need
needed some instrumental understanding ...
8. Relational understanding is a ... Although more time consuming this 4 (2.3)

teaching technique

method is far more beneficial than the
instrumental method ...

Table 1: Types of misunderstandings of understanding

The idea that relational understanding develops from instrumental understanding
(Category 2) is perhaps related to the way in which these preservice teachers have
experienced coming to understand mathematics. Brown, McNamara, Hanley and
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Jones (1999) reported that many primary preservice teachers are pleasantly surprised
by their initial experiences of learning mathematics for teaching and in particular
enjoy achieving what could be described as relational understanding of various topics
for the first time. For them, and arguably for many teachers who have been taught
mathematics instrumentally, relational understanding, if it has been achieved at all,
has followed instrumental understanding.

The belief that relational understanding is an additional topic in the mathematics
curriculum (Category 3) was conveyed in 7.5% of all responses. It would seem that
for these preservice teachers the course has been ineffectual in influencing their
beliefs in relation to the nature of mathematical understanding.

Categories four and five contained responses that associated relational understanding
with versions of the third kind of connections described by Mousley (2004). These
students may have been influenced by the word “relational”. Their views may also
have reflected personal experiences of learning mathematics devoid of context,
meaning or applicability to their lives. The importance of connecting school
mathematics with the lives of students is emphasised in curriculum documents
(NCTM, 2000; DoET, 2002) and born out by research that suggests many students
cannot see any use for the mathematics they learn at school beyond passing tests and
achieving qualifications (Onion, 2004). While having merit, this view of
understanding is neither complete nor that described by Skemp (1978).

Pre-service teachers whose responses fell in Category six saw relational
understanding as a skill rather than a quality of understanding. It is possible that at
least some of these preservice teachers in fact saw relational understanding in terms
of the development of connections between mathematics topics which consequently
enhanced students’ ability to apply mathematics in a range of contexts. To the extent
to which this was the case, and this is not clear, this category is unproblematic and in
fact would not represent a misunderstanding.

The view that instrumental and relational understanding are both necessary (Category
7) may be based on the characterisation provided by Skemp (1978) of these types of
understanding as respectively knowing ‘what’ and ‘how’, and knowing ‘why’. As
Hannula et al. (2004) pointed out knowledge (what) and skill (how) are inherent in
mathematical understanding. The extent to which these preservice teachers regarded
instrumental understanding as included within relational understanding is not clear
but none articulated this view.

Responses in Category eight conveyed a belief that relational and instrumental
understandings are teaching methods. These preservice teachers may have focussed
on the descriptions by Skemp (1978) of instrumental and relational teaching. The
emphasis on how to teach is consistent with Brown et al.’s (1999) observation that
preservice primary teachers wanted to be told how to teach.
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CONCLUSION

Up to one third of the 174 preservice teachers in this cohort held some kind of
misunderstanding about understanding at the end of a semester in which the topic had
been approached in a variety of ways. It is recognised that the use of lectures is
neither pedagogically desirable nor effective for many students, as this study attests,
but they are sometimes fiscally necessary. There is a need for research on how the
effectiveness of courses that are constrained to operate in non ideal modes can be
maximised. In the particular context of this study, the findings have lead to the use of
an electronic discussion board on which understanding is one of the topics and a
variety of questions, similar in nature to that discussed in this paper, are provided to
stimulate the discussion. There are also plans to modify the assessment of the unit to
facilitate, to the limited extent possible, preservice teachers working with primary
school students with a focus on analysing the understandings that students display.

The findings of this study add weight to calls to increase the integration of teacher
education in on-campus settings and in schools (Ball & Bass, 2000). Preservice
teachers need to experience examples of ‘unlikely’ students achieving relational
understanding. They need powerful evidence that their own experience is not the only
possible experience of learning mathematics. Mathematics educators approaching
their task from a constructivist perspective should not of course be surprised that their
students construct idiosyncratic understandings. Findings such as these highlight the
inherent difficulty of teaching from such a stance and remind us of the challenging
task for which we are preparing preservice teachers. Despite the prominence of the
notion of understanding over several decades there clearly remains a need to carefully
unpack the meaning attached to it by various users of the term.
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THE TRANSFORMATION OF MATHEMATICS IN ON-LINE
COURSES'

Marcelo C. Borba
GPIMEM, Mathematics Department
UNESP- S3o Paulo State University

This paper presents some research findings regarding the changes in the
mathematics produced by mathematics teachers in on-line distance courses.
Predicated on the belief that knowledge is generated by collectives of humans-with-
media, and that different technologies modify the nature of the knowledge generated,
we have sought to understand how the Internet modifies interactions and knowledge
production in the context of distance courses. The research was conducted over a
period of several years, during distance courses proffered annually from the
mathematics department at UNESP, Sdo Paulo State University, to teachers
throughout Brazil, conducted mainly via weekly chat sessions. Findings presented
contrast teachers’ knowledge production when using the Internet with production of
knowledge when using regular dynamic geometry software or plotters.

INTRODUCTION

In this paper, I will report on partial results and new questions that our practice, as a
research group, have raised in the process of engaging in virtual interactions with
teachers from different parts of Brazil (and in smaller numbers, from other countries
in South America). We have developed Internet-based extension courses for
mathematics teachers from different levels as one means of addressing social
inequalities in Brazil and, at the same time, to research and learn about Internet-based
education. Different research questions are being addressed in this project, some of
which are related to the nature of the needs that teachers who participate in on-line
courses will have, and others to the different opportunities that teachers and
researchers may have with the new possibilities offered by the Internet. In this paper,
however we will discuss how mathematics can be transformed by the Internet, which
we consider to be an interface. There has been a significant amount of research
showing that function or geometry software transform the nature of the mathematics
that 1s produced (Noss & Hoyles, 1997). Our own research (Borba, 2004a; Borba &
Gracias, 2004) has strongly suggested that different software lead to different
possibilities and different mathematics. The most popular case has been the "click
and drag" resource of geometry software which enabled many students and teachers
to generate conjectures, test them and connect them to "different levels" of
demonstration, depending on the level of the students and the teaching objectives.

' Although they are not responsible for the content, I would like to thank Anne Kepple and Ana Paula
Malheiros for their comments in earlier versions of this paper. This research was sponsored by FAPESP,
TIDIA-Ae grant (03/08105-4) and CNPq grant (520033/95-7 and 471697/2003-6).
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However, it appears no questions have been posed regarding the nature of change that
on-line interfaces bring to the production of mathematics. In this paper, we will
present one model of on-line course that stresses the use of chat, and how such an
interface is changing the nature of the mathematics that is being generated in on-line
communities such as the one described. Before we do this, however, we will present
theoretical views regarding computers and knowledge production, and
methodological issues. No literature review on Internet based courses will be
presented as very little has been published in most mathematics education journals in
English or PME proceedings (see for instance, Pateman, Dougherty & Zilliox, 2003;
Hgines & Fuglestad, 2004).

THEORETICAL AND METHODOLOGICAL ISSUES

Our research group, GPIMEM?, has been developing research on the use of different
information and communication technologies (ICT) in mathematics education for
eleven years. We have developed the theoretical notion of humans-with-media as a
means of stressing that knowledge is always constructed by collectives that involve
humans and different technologies of intelligence (Levy, 1993), such as orality,
paper-and-pencil, and ICT. Different humans, or different technologies, result in
different kinds of knowledge production. There is no knowledge produced without
humans nor without media.

This notion has provided important insight as we have analyzed how different
interfaces, such as graphing calculators or dynamic geometry software, play an
important role in knowledge production (BORBA, 2004). In the last five years, we
have also started to conduct research on the possibilities provided by Internet. To this
end, some members of our group have been researching how collectives formed of
humans-with-Internet have constructed knowledge. In particular, we have offered
several on-line courses for mathematics teachers as a means of searching for theories
and research methodologies that emerge from engagement in different practices
(Lincoln & Guba, 1985; Borba & Aratjo, 2004). In this sense, we believe that we
need to be involved in on-line courses in order to focus on helpful questions and
theories.

One transformation that we soon noticed, in terms of research procedures, is that data
collection is much more "natural" than in wusual face-to-face educational
environments. If we are researching in a regular classroom, on a lab environment, we
have to deal with issues about how invasive a video-camera may be, or to struggle
with students/teachers to write reports on their findings. In on-line distance education
courses, filming, voice recording and/or transcribing are "natural”" and non-invasive.
For instance, using chat as a means of communication generates transcribed data that
can be electronically stored (as the reader will see, the use of chat also has other
implications in terms of results). Triangulation of data and "member checks" (Lincoln
& Guba, 1985) can be easily done through e-mail, as we can always ask: "what did

* www.rc.unesp.br/igce/pgem.gpimem.html

2- 170 PME29 — 2005



Borba

you mean when you wrote such-and-such" in a chat session, or in a forum. On the
other hand, an immense amount of data is generated by chats, e-mails and forums
and, more recently, by video-conferences.

In theoretical terms, some of us have been emphasizing how theoretical perspectives,
research questions and research methodologies shape one another (Borba & Aradtjo,
2004). I believe that the notion that knowledge is always produced by collectives of
human-with-media is consistent with the discussion in the last paragraph, in the sense
that research procedures and the nature of the interaction change as different media
are being used. Research procedures, results and theoretical frameworks shape each
other. In the same way, the research question of this paper interacts with these other
components: what is the nature of the change provoked by the Internet, a non-human
actor, in the production of mathematics? Next we will describe the context of the
study.

The On-line practice developed by GPIMEM

Over the last five years, our research group, GPIMEM, has made efforts to connect
teachers and researchers who are interested in fostering change in their classrooms.
We have offered on-line courses in "Trends in Mathematics Education"”, or specific
topics such as "Teaching and Learning Geometry Using Software”. These courses
have fostered the development of communities that discuss issues related to the topics
presented - teaching and learning of functions and geometry using software,
ethnomathematics, modeling, adult education in mathematics, critical mathematics
education, and so on.

Courses such as these are of paramount importance in Brazil due to the size of the
country and the concentration of knowledge production in the southeastern region,
where the states of Sdo Paulo and Rio de Janeiro are located. Internet-based courses
are one way of connecting research centers such as Sdo Paulo State University
(UNESP) with people in remote locations, where the closest university may be more
than several hundred kilometers way.

Each course connects about 20 teachers on-line at regularly scheduled times for a
period of about four months. They are designed in such a way that interaction is the
key word. The model, which has undergone changes over the last four years, is based
on synchronous and asynchronous relationships. We have three-hour chat sessions
every week for a four months, and also have bulletin boards and e-mail lists. In the
last two versions of the course (2003 and 2004), we used a freeware software
environment, Teleduc3, which requires a server in Linux, but can be accessed by
computers that use different platforms. Five courses have been offered since 2000.

These extension courses for teachers have become an environment for research. Our
research has shown the transformation of the interaction in these courses, when we

? TelEduc é um ambiente de suporte para educacdo a distincia, desenvolvido pelo Nied e Instituto de
Computagdo da Unicamp, sob a coordenacdo da Prof* Dr* Heloisa Vieira da Rocha, e disponibilizado no
endereco: http://hera.nied.unicamp.br/teleduc.
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compare it to our interactions in our regular graduate courses, in which teachers and
researchers take part (Gracias, 2003; Borba & Villarreal; in press). Based on the
assessment made at the end of each course, this model has had a significant impact in
terms of bringing members of different communities into the discussion regarding
mathematics education, and giving them access to professors from one of the most
prestigious mathematics education graduate programs in Brazil, with whom they
would otherwise not have an opportunity to interact. The chat has become the
principle means of interaction of the course. Forum, an asynchronous tool in on-line
environments, has not been used extensively, and the use of e-mail has decreased. A
typical course consisted of 11 three-hour synchronous chat sessions. Preparation for a
session would be done through asynchronous interactions, mainly e-mail and regular
mail. For instance, prior to a session on ethnomathematics, participants would be
mailed a book by D'Ambrosio (2001). All the participants were expected to have read
it before the session, and two of them (together with myself) would be responsible for
raising questions to generate discussion. After the class, a third teacher would
generate a summary of the class which would be published in the virtual environment
of the course. A different kind of preparation was required when the objective of the
class involved doing mathematics; problems regarding the use of function, for
instance, would be sent beforehand to the teachers, and they would attempt to solve
them before the class. During the chat session, different solutions would be
discussed.

The problems were designed to be solved with the use of plotters such as winplot”.
Since this software is free, teachers could have their own copies installed in their
computers. On the other hand, it was not possible to share a figure with the other
participants of the course simultaneously. An attached file could be sent to TeLeduc,
and everyone could access it minutes later. In this sense, this course was joining
together "old" computer interfaces, such as plotters, and "new" ones, such as the
Internet. In this paper, we present some of our findings regarding the interaction
between teachers and these two types of interfaces.

As a means of explaining this further, I would like to re-emphasize my belief that
knowledge 1s always constructed by collectives of humans-with-media. If the media
change, paper and pencil to a plotter, for instance, the manner of teaching the concept
of function, for example, will change. For example, a problem that might be
particularly provocative and engaging for a collective of students-with-paper-and-
pencil could be entirely simple and uninteresting for collectives that include graphing
calculators. Might there be analogous changes with intensive use of the Internet? In
this paper, we will be presenting excerpts of the interaction of collectives of humans-
with-Internet-winplot.

The 20 teachers who took the course each time were, for the most part, high school
teachers, but university level teachers, teacher educators and others, such as

* http://www.gregosetroianos.mat.br/softwinplot.asp
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curriculum developers, have also taken part. It was common in these chat sessions to
have simultaneous dialogues, since different teachers would pursue different aspects
of a given problem, or would pose a different problem, or talk about something that
happened recently in their classroom.

RESULTS

Before we present the main set of data from the 2004 class, we would like to present
a short episode that led us to look at the data we have been generating with the on-
line courses with different eyes. In the 2003 class, prior to a scheduled chat meeting
with all twenty teachers participating in one of the courses, a problem was posed to
them regarding Euclidean geometry. Different solutions and questions were raised by
all the participants, but one of the student’s reflections called our attention. During
the discussion, Elianes, said: “I confess that, for the first time, I felt the need for a
face-to-face meeting right away . . . it lacks eye-to-eye contact”. She then followed
up, explaining that discussing geometry made her want to see people and to share a
common blackboard. In this case, there was no follow-up discussion that to clarify
what she meant. While this comment raised some design issues regarding the
development of distance education environments, in this paper, we will focus on the
conjecture it evoked regarding possible changes in the mathematics practiced in
Internet-based environments.

In year that followed, we posed the following problem® to the teachers who
participated in the course:

Biology students at UNESP, Sao Paulo State University, take an introductory course in
pre-calculus/calculus. The teacher of this course asks the students to explore, using a
graphing calculator, what happens with 'a’, 'b' and 'c' in y=ax’+bx+c. Students have to
report on their findings. One of them stated: "When b is greater than zero, the increasing
part of the parabola will cross the y-axis . . . When b is less than zero, the decreasing
part of the parabola will cross the y-axis.”. What do you think of this statement? Justify
your response.

The mathematics involved in the conjecture, and its accuracy according to academic
mathematics, is developed in detail in Borba & Villarreal (in press). But it is
interesting to see how these teachers dealt with it. Some aspects of it were
suppressed, since they were seen as irrelevant to the understanding of the dialogue, or
because they were part of a different dialogue, as explained in the previous section.

Carlos, a high school teacher, started the debate at 19:49:07 (these numbers indicate
the hour, minutes and seconds in when the message reached the on-line course),
reporting on what one of his students had said: “When a is negative, or b is positive,
the parabola goes more to the right, but when a is negative and b is also negative, the

> Eliane Matesco Cristovao, High School teacher, from the 2003 class.
® Translation of this problem and of the excerpt from Portuguese into English was done by the author and
Anne Kepple.
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parabola goes more to the left”. He challenged the group to see if the student’s
sentence could lead them to solve the problem.

Since the debate was not gaining momentum, the professor of the course, the author
of this paper, tried to bring the group back to what Carlos had said:

(19:53:15) Marcelo Borba: The solution that Carlos' student presented regarding 'a" and
'b'. Does anyone have an algebraic explanation for it?

(19:54:53) Tais: It has something to do with the x coordinate of the vertex of the
parabola.

(19:55:30) Carlos: after a few attempts (constructing many graphs changing the value of
'a', 'b, and 'c') the students concluded that what was proposed by Renata is really true.

The issues at stake are distinct. Carlos tried to do what the professor proposed to the
group, but Tais raised a new issue, the vertex idea. As can be observed on the excerpt
below, the two 1ssues also have intersections:

(19:57:07) Tais : Xv=-b/2a...if 'a’' e 'b' have different signs, Xv is positive.

(19:59:16) Norma: I constructed many graphs and I checked that it is correct, afterwards
I analyzed the coordinates of the parabola vertex Xv= - b / 2a, and developed an analysis
of the 'b' sign as a function of 'a' being positive or negative, then I verified the sign of the
vertex crossing. . . . with the concavity upwards or downwards, and checked if it was
increasing or decreasing. . . .did I make myself clear?

Norma presented her ideas, which according to my analysis, are similar to the one
made by Tais, and can be labeled the vertex solution. After further discussion about
this, the professor presents another solution based on the derivative of y, y'=2ax+b:

(20:07:03) Marcelo Borba: Sandra, . . I just saw it a little differently. I saw it . I
calculated y'(0)=b, . . and therefore when 'b' is positive the parabola will be increasing
and analogously. . . .

Since a few people said they did not understand this comment, he went back to
explain his solution.

(20:10:59) Marcelo Borba: . . . as I calculate the value of y', y*>0, then the function is
increasing, and therefore I consider y'(0), which is equivalent to the point at which y
crosses the y-axis, and y'(0)=b, and therefore 'b' decides the whole thing!!!! Got it?

(20:29:24) Badin: The parabola always intercepts the y-axis at the point where the x
coordinate is zero. In order for this point to belong to the increasing "half" of the
parabola (a>0), it should be left of the x,, this means x, should be less than zero.
Therefore, -b/2a < 0 is equivalent to -b<0 (remember, a>0). But -b<0 is equivalent to
b>0. In other words, if b>0, the point where the graph crosses the y-axis is in the
increasing part of the parabola. The demonstration por a<0 is analagous.

At this point, some of the teachers had been discussing the problem and both
solutions - the vertex and the derivative — for 40 minutes. The large spaces shown by
the clock between the different citations from participants of the course, indicate the
size and amount of sections which were not transcribed in this paper, as there were
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about four messages per minute. For ten more minutes, additional refinement and
shared understanding of the solutions were presented. More examples of people’s
writing about their understanding in the chat are available in the naturally recorded
data. Educational issues regarding the use of winplot, to explore the problem and
generate conjectures, were discussed. But what 1s new about Internet in this case?
This is the topic of the next section.

DISCUSSION

Before going further, the reader should be aware that some sentences were omitted to
make it easier to follow the interaction, and that the translation suppressed most of
the informality and typos that normally occur in this kind of environment. There were
other actors involved in the discussion and refinement of the solutions of the
problem, but for the purpose of clarity, only a few were included here. When we
compare the solution presented by the teachers, the vertex one, to the original
situation that took place in a normal classroom situation in 1997, there are similarities
and differences. Students used graphing calculators to generate many conjectures for
the problem relating coefficients of parabolas of the type y=ax’+bx+c to different
graphs. Similarly, the teachers used winplot (or other software, in some instances) to
investigate the problem just described, and later the problem related to Renata's
conjecture. In the face-to-face classroom, the professor/author led the discussion, and
eventually presented the vertex solution (as he did not know the answer either, at
first). The explanation for the conjecture was never written by the students. In an on-
line learning environment based on chat, writing is natural, and everyone involved
had to express themselves in writing. Although we know that some aspects of writing
in a chat situation are different compared to writing with paper and pencil, there is a
fair amount of research showing the benefits of writing for learning (see, for instance,
Sterret, 1990). The data presented here is insufficient, and the design of the study is
inappropriate, to support arguments about "benefits". However, it can be argued that
chats transform mathematics education in a similar way that it changed research
procedures. Chats, together with human beings, generate a kind of written
mathematics that is different from that developed in the face-to-face classroom,
where gestures and looks form part of the communication, as well. I believe that
collectives of humans-with-Internet-winplot generate a different kind of knowledge,
which does not mean that the mathematical results were different. But if process is
considered, I believe that we may be on the way to discovering a qualitatively
different medium that, like the "click and drag" tool of the dynamic geometry, offers
a new way of doing mathematics that has the potential to change the mathematics
produced, because writing in non-mathematical language becomes a part of doing
mathematics. At this point, it is too early to confirm this, but I believe that this
"working hypothesis" (Lincoln & Guba, 1985) regarding the transformation of
mathematics by the Internet is one to be pursued in further research.
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