Scoring Subscales

RUNNING HEAD: Multidimensional Item Response Theory

Scoring Subscales using Multidimensional Item Response Theory Models
Christine E. DeMars

James Madison University

Author Note

Christine E. DeMars, Center for Assessment and Research Studies, James Madison
University.

Correspondence concerning this manuscript should be addressed to Christine DeMars,
Center for Assessment and Research Studies, MSC 6806, James Madison University,
Harrisonburg VA 22807.



Scoring Subscales 2

Abstract
Several methods for estimating item response theory scores for multiple subtests were compared.
These methods included two multidimensional item response theory models: a bi-factor model
where each subtest was a composite score based on the primary trait measured by the set of tests
and a secondary trait measured by the individual subtest, and a model where the traits measured
by the subtests were separate but correlated. Composite scores based on unidimensional item
response theory, with each subtest borrowing information from the other subtest, as well as
independent unidimensional scores for each subtest were also considered. Correlations among
scores from all methods were high, though somewhat lower for the independent unidimensional
scores. Correlations between course grades and test scores, a measure of validity, were similar
for all methods, though again slightly lower for the unidimensional scores. To assess bias and
RMSE, data were simulated using the parameters estimated for the correlated factors model. The
independent unidimensional scores showed the greatest bias and RMSE; the relative

performance of the other three methods varied with the subscale.
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Scoring Subscales using Multidimensional Item Response Theory Model

Tests are often designed such that each item measures the primary trait and one additional
secondary trait. The secondary traits may reflect different content categories in the test blueprint,
or different tests within a battery of tests. In this situation, test users may want subscale scores,
each of which reflects both the primary trait and the relevant secondary trait. Two
multidimensional item response theory (MIRT) models are potentially useful in this context: a
model with n correlated traits, where # is the number of subscales, or a bi-factor model with one
primary trait and » orthogonal secondary traits. An additional model, which applies
unidimensional IRT in the initial scoring of each subscale but then borrows information from
correlated subscales in forming the final subscale scores, could also be applied.

In the bi-factor model, all items are specified to load on the primary factor. Additionally,
each item may load on one additional factor. The factors are orthogonal (Gibbons & Hedeker,
1992; McLeod, Swygert, & Thissen, 2001). In other words, a secondary factor is the common
factor a group of items shares beyond their shared association with the primary factor.
Hierarchical is a more general term for this class of models; bi-factor emphasizes that each item
loads on no more than two traits, including the primary trait. With the bi-factor model, scores can
be estimated for the primary trait and each secondary trait. On a battery of tests, though, it would
seem desirable for each subtest score to be a measure of the overall construct covered in the
subtest, not just the part of the construct not covered by the primary factor. In other words, the
score should be a combination of the primary trait and the secondary trait, not just the secondary
trait. To quantify the relative weights of the factors contributing to an item response, Reckase

(1985; 1997; Reckase & McKinley,1991) defined the direction of greatest slope for item i as
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OLj = arccos r:ik , (1)

> aj,

k=1
where a is the angle with axis & and ajy is the discrimination parameter for trait £. In the bi-
factor model, it is simplest to view the angle for each item relative to the primary factor. If an
item measured only the primary trait, o would be 0; if an item measured the primary trait and
secondary trait equally, oo would be 45°. Though each item may measure a slightly different
composite of the primary and secondary traits, an average composite could be formed for each
subtest, based on the average angle with the primary axis for the items in the subtest.
Multidimensional IRT Approach

TESTFACT (Bock, Gibbons, Schilling, Muraki, Wilson, & Wood, 2003) and NOHARM

(Fraser, 1988) both estimate the item parameters for multidimensional normal ogive models for
dichotomous items. The model estimated is:

P;(0) = c; +(1-c;)®(aib +d;), @
where Pi(0) is the probability of correct response on item i given the 0 vector of abilities and the
item parameters, ® indicates the cumulative standard normal distribution, c; is the lower
asymptote, a; is a vector of discrimination parameters, and d; is the item difficulty. In contrast to
the common unidimensional models, d; is added, not subtracted, so easier items have higher
values for d. TESTFACT uses full information maximum likelihood estimation for estimating
the parameters (Bock, Gibbons, & Muraki, 1988; Gibbons & Hedeker, 1992; Muraki &
Engelhard, 1985), while NOHARM uses bivariate information (proportion correct for each item
and joint proportion correct for each pair of items) and estimates a polynomial approximation to

the normal ogive model (McDonald, 1997; 1999).
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Though both TESTFACT and NOHARM use the normal ogive models, the parameters
estimated should be virtually the same as those of the multidimensional logistic IRT model,
which may be more familiar to some readers:

ol 7(2i8+d;)
(aj0+d;)”’

I’i(9)=<>i+(1—<>i)1 3)

n e1.7
where the parameters are as defined for Equation 2.

TESTFACT and NOHARM parameter estimates have been compared for exploratory
models. Zhang and Stone (2004) found that TESTFACT and NOHARM produced very similar
parameter estimates when used in an exploratory mode with items measuring two uncorrelated
factors. Knol and Berger (1991) recovered the parameters of one-, two-, and three-dimensional
exploratory IRT models using TESTFACT, NOHARM, MAXLOG, and traditional linear factor
analysis methods. Of the non-linear (IRT) packages, MAXLOG had the largest RMSE between
the parameter estimates and true parameters. TESTFACT performed slightly better than
NOHARM. Miller (1991) reviewed earlier comparisons of TESTFACT, MIRTE, and
MULTIDIM by Ackerman, and using the same data set added a study of NOHARM. The mean
and standard deviation of the residuals were similar for NOHARM and TESTFACT, a bit higher
for MULTIDIM, and quite large for MIRTE. Examining the recovering of individual item
parameter within NOHARM, the standard errors and bias were large for the anchor items, and
choosing items with average levels of difficulty and discrimination or items expected to load
highly on a given dimension as anchors did not help.

Gosz and Walker (2002) compared the probability of correct response based on the true item
parameters and the item parameters estimated in TESTFACT and in NOHARM. True theta
values were used with the recovered item parameters in the probability calculations. Items were

generated from a two-dimensional extension of the 2PL model; in some conditions one subset of
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items loaded only on factor and the remaining items loaded only on factor two, while in other
conditions a subset of items loaded on both factors. Exploratory analyses, with two factors, were
used to recover the item parameters. The probabilities of correct response based on the
NOHARM item parameter estimates were closer to the true probabilities than were those based
on the TESTFACT estimates. NOHARM's performance was particularly better than
TESTFACT's for items with a higher discrimination value on the second factor.

De Champlain and Gessaroli (1998) tested for unidimensionality using TESTFACT and
NOHARM with small samples and short tests. In NOHARM, unidimensionality was assessed by
fitting a one-factor model and using a ¥~ fit index based on the standardized residuals of the
interitem joint-probability matrix. In TESTFACT, both unidimensional and exploratory two-
dimensional models were estimated, and the difference in log-likelihood * fit was calculated.
When the data were unidimensional, TESTFACT had high Type I error rates, while the error rate
for NOHARM was close to the nominal value. When the data were two-dimensional, both
methods had high power when the traits were uncorrelated or when the test had 40 items, but
NOHARM had higher power when the traits were correlated and the test had only 20 items.

None of these studies compared NOHARM and TESTFACT when used for confirmatory
analysis of multidimensional models. Also, these studies did not compare different confirmatory
models such as the bi-factor model with a model with correlated factors.

Alternative to Multidimensional Models

When several tests are administered to examinees, or when a test includes subscales, the
parameters for each subtest or subscale may be estimated separately. In addition to avoiding
dependency problems due to items on a subscale sharing an additional factor beyond the primary

test trait, this approach allows for estimation of several trait scores. The potential drawback of
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this approach is that the subtests may be quite short and unreliable. Wainer et al. (2001)
developed a score augmentation approach that uses information from the other subscales in
estimating a subscale score. This method can be used with both classical test theory and IRT-
based scores. The extent of the influence of the other subscores depends on the intercorrelations
of the subscores and their reliabilities. For example, a subtest that had low reliability and was
highly correlated with another subscale with high reliability would be affected more. Augmented

subscale scores are estimated by:

A true ;g obs \—1

Ti=x+S" (7)) (xj-x), 4)
where 7; is a vector of augmented subscale scores for examinee j, Xj is a vector of unaugmented

subscale scores for person j and x. is a vector of subscale means, and $™ and S°* are the
estimated true and observed variance-covariance matrices. When applied to Bayesian IRT scores
(expected a-posterior (EAP) or modal a-posterior (MAP)), the bias of the scores toward the
subscale means is first adjusted for, based on the subscale marginal reliability. Each diagonal
element of S and S$™ is divided by the squared marginal reliability of the corresponding
subscale, and each off-diagonal element is divided by the product of the reliabilities of the
corresponding subscale. Each subscale score in X; is also divided by the marginal reliability. The
vector X. will be a vector of 0's if the IRT metric has been scaled so that the estimated population
mean of each subscale is zero.

Gessaroli (2004) applied Wainer et al's (2001) method to a test with four correlated
subscores, using the number-correct scores. He also estimated scores with the bi-factor model;
using the thetas and item parameter estimates from the bi-factor model he calculated the

expected score on the number-correct metric. Results from the two methods were essentially
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identical, and these methods yielded scores with greater reliability/smaller standard errors than
raw scores.
Purpose of the study

In this study, estimated scores from the bi-factor model, a multidimensional model with
correlated factors, and the augmented score approach were examined. The bi-factor model was
estimated in TESTFACT and NOHARM, and the subscale scores were estimated as a weighted
combination of the primary factor and the associated subscale factor. An additional model was
estimated in NOHARM: the items on each subscale formed a factor and the factors were free to
correlate. Separate unidimensional models for each subscale were also estimated, and Wainer et
al.'s (2001) data augmentation method was used to estimate scores for each subscale. In addition,
the unaugmented unidimensional scores themselves were examined. Note that all of these
methods used IRT scores (thetas); unlike Gessaroli's (2004) study the IRT scores were not used
to estimate scores in the number-correct metric. These results would be most applicable when
standardized test scores are a direct transformation of the IRT thetas.

Method

Participants

Second and third-year students at James Madison University participated in this study. The
university requires students with 45-70 credit hours to participate in assessment activities each
spring. The students are randomly assigned to assessment instruments covering different areas of
general education or student development. Over the course of three years, 2552 students
completed the two tests selected for this study.

Instruments and Procedures
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Two multiple-choice assessment tests were used for this study, a scale covering American
history and political science and a scale covering global issues. Though the tests administered to
the students were longer, 20 of the American items and 15 of the global items were used in this
study to create a situation where the scales were short enough that reliability would be increased
by using a multidimensional model or augmented scores. The tests were presented at the same
testing session along with varying other instruments. Tests were not strictly timed but when most
students had finished a test the others were given an additional five minutes to finish. Test scores
did not appear on student transcripts and were used only in the aggregate for program
assessment.

Estimation

Item parameters for the bi-factor model were estimated twice, once using TESTFACT 4.0
and once using NOHARM. NOHARM does not provide ability estimates, so EAP (expected a-
posteriori) ability estimates were estimated using TESTFACT 4.0, once using the item
parameters from TESTFACT and again using the item parameters from NOHARM. Ability was
estimated for both the primary and secondary factors (American history was one secondary
factor and global issues was the other). Nine evenly spaced quadrature points from -4 to 4 were
used for each dimension. For each of the two subtests, the average angle with the primary trait
axis was calculated. Based on this angle, the subscale ability was calculated as a weighted linear
composite. The ratio of the weight for 0, to the weight for 0, used in forming the composite
score is equal to the tangent of this angle (Ackerman, 1991). While any weights with this ratio
could be used, the weights used here were chosen such that the sum of their squares was equal to

one; because the 0s were uncorrelated and they were scaled such that their estimated variances
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were 1, this would result in a composite score with an estimated variance of 1 (the observed
variance of the Bayesian ability estimates was of course less than 1 due to shrinkage).

A model with two correlated factors (based on the two subscales) was also estimated in
NOHARM. Because TESTFACT only calculates ability estimates for uncorrelated factors, and
NOHARM does not provide ability estimates, a routine for EAP estimation was written using
SAS. The quadrature points for each dimension were the same as those used in TESTFACT for
orthogonal factors, but the prior densities at each point were based on a bivariate normal
distribution with a correlation equal to the correlation between the factors estimated in
NOHARM.

Wainer et al.'s (2001) data augmentation method uses scores estimated for each subscale
separately. BILOG-MG 3.0 (Zimowski, Muraki, Mislevy, & Bock, 2003) was used to estimate a
three-parameter logistic (3-PL) unidimensional model for each subscale. EAP scores were
estimated for each subscale within BILOG-MG as well. Augmented subscale scores were then
calculated following Equation 4 with the adjustments noted for EAP scores.

Results

Bi-factor model. For the bi-factor model, using NOHARM item parameter estimates the
average angle with the primary factor axis was 21 degrees for the American subtest and 30
degrees for the global subtest. The angles based on the TESTFACT item parameter estimates
were similar: 27 and 25 degrees. Thus, both subscales were measuring the primary dimension
more than the secondary dimensions. The resulting weighted composites, based on these average

angles, were Oamerican = 0.93 01 + 0.36 0, and Ogjoba; = 0.86 6; + 0.50 03 for NOHARM, and

O american = 0.90 01 + 0.43 0, and Ogioba = 0.91 0; +0.42 05 for TESTFACT.
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2-Factor model. When the items were calibrated with a 2-factor model in NOHARM, the
estimated correlation between the factors was .81. Thus, the prior distribution used for the EAP
estimation of the Os was a bivariate normal distribution with a correlation of .81. For each
examinee, the posterior distribution of 0, and 6, was approximated using quadrature methods as
described in the Method section; the joint distribution was marginalized over each dimension in
turn, and the mean of this distribution taken as the EAP score.

Augmented Subscale Scores. The estimated marginal reliability was .76 for the
unidimensional American scores and .68 for the global scores. The variances of the score
estimates were .77 and .68 (EAP scores are biased inward, so the variances of the estimated
scores are lower than the estimated variances of the scores), with a covariance of .42.
Substituting these numbers into Equation 4 and adjusting for the bias in the EAP estimates, the
functions for the augmented scores were: O american(augmented) = -64/.76 B american T .20/.68 Ogiobal and
OGilobal(augmented) = -29/.76 O american + .52/.68 OGiobal.

Comparison of Score Estimates. Tables 1 and 2 show the mean, standard deviation,
minimum, and maximum of the score estimates. The means for all methods are essentially zero.
The independent unidimensional models method led to scores with a smaller range, and
somewhat smaller standard deviation in the case of the global subtest; the more extreme scores
were pulled towards the mean more with the unidimensional models, presumably because of
lower reliability.

Correlations among the scores are shown in Tables 3 and 4. With the exception of the
separate unidimensional models, correlations among the scores based on different methods were
all at least 0.99. The unidimensional scores had correlations of at least 0.94 with scores from the

other methods.
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Comparison of Correlations with Course Grades. The objectives on the test blueprints
matched the objectives for general education courses. For the American history and political
science curriculum, students selected one of two courses: US history or US political science. For
global issues, students chose from five courses designed to address the global issues curricular
objectives; these courses were offered in the departments of anthropology, economics,
geography, political science, and sociology. Correlations between the test scores and the relevant
course grades are shown in Tables 5 and 6. Correlations varied depending on the course; within
each course, the unidimensional scores consistently had a slightly smaller correlation with the
course grades.

Comparison of Bias and RMSE. Because real data were used in this example, it is difficult to
know which model produces the most accurate estimates. Simulations were run to assess bias
and RMSE of the ability estimates. For these simulations, the item parameters estimated from the
real data using the two-factor model were used as the generating, or true, item parameters. A
sample of 2500 simulees were drawn from a bivariate normal distribute with a correlation of .81
between the abilities. Item responses were simulated for each of 100 replications, using the
logistic parameterization in Equation 3 for convenience. Item parameters were recovered for
each replication, and the ability parameters were estimated based on the item parameter
estimates, not the generating item parameters. Thus, errors in item parameter estimation and
errors in estimating the coefficients for the linear combinations used in the bi-factor and
augmented score methods were taken into account. The simulation was conducted for the bi-
factor model, the 2-factor model, the augmented approach, and the independent unidimensional
models; for the bi-factor model, because the scores were virtually identical using TESTFACT

and NOHARM, only TESTFACT was used in the simulation.
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Figures 1 and 2 show the bias across the ability range. As would be expected with EAP
scores, scores were biased toward the mean. For the American subtest, the augmented scores
were the least biased and the unidimensional scores were the most biased. Bias was slightly
greater for the bi-factor model than for the 2-factor model. For the Global subtest, both the
augmented scores and the unidimensional scores were more biased than the bi-factor and 2-
factor models, and bias was again slightly greater for the bi-factor model than for the 2-factor
model.

Figures 3 and 4 show the RMSE across the ability range. For both subtests, RMSE tended to
be greatest for the unidimensional method. For the American subtest, in the center of the ability
distribution both the augmented and unidimensional scores had somewhat greater RMSE than
the multidimensional IRT approaches. At abilities below -1.5 and above 1.5, RMSE was lowest
for the augmented scores and greatest for the unidimensional scores, with RMSE for the bi-factor
and 2-factor models in the middle. For the Global subtest, in the center for the distribution
RMSE was slightly lower for the augmented scores, but at more extreme scores below -1.5 or
above 1.5, RMSE was lower for the bi-factor and 2-factor models. This is opposite the pattern
seen for the American subtest. These differing patterns were consistent with the results for bias;
the bias for the American scores was lowest for the augmented scores so the augmented scores
might be expected to have lower RMSE in the extremes providing they did not have much
greater standard deviations. Similarly, the bias for Global scores was lower for the
multidimensional IRT approaches, so at the extremes these scores might be expected to have

lower RMSE, again assuming they did not have appreciably larger standard deviations.
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Discussion, Limitations, and Conclusions

Scores on the American history and political science test and the global issues test used in
this study were nearly the same based on the TESTFACT and NOHARM bi-factor models, a 2-
correlated-factor model, and the augmented score approach. Correlations among these methods
were .99 or higher and the mean, standard deviation, and range of scores were similar. Scores
based on two separate unidimensional models had slightly lower, though still high, correlations
with the other models, but a smaller standard deviation and range, presumably because they were
biased toward the mean more than the scores from the other approaches. Correlations between
the scores and course grades were slightly lower for the independent unidimensional model. For
any one course the difference was so small it would not be worth mentioning, except that this
correlation was consistently the smallest correlation for each course.

The simulation study showed the unidimensional scores were more biased and had higher
RMSE. The relative bias and RMSE for the other approaches differed on the two tests. The bi-
factor and 2-factor models showed very similar levels of bias and RMSE; on one test higher than
the augmented scores at the extremes, and on the other test lower. Based on these results, there is
no clear advantage for any of these three methods over the others, but all produced lower bias
and RMSE than the separate unidimensional models.

A limitation of using a real data set, or item parameters based on a real data set for the
simulation study, is that it is difficult to know how the results will generalize to other tests. On
the other hand, with a real data set the results are at least realistic for one situation. These results
might generalize to other situations where the subtests are of moderately short length (15-20

items) and measure relatively similar skills and are administered at the same time. They might be
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less generalizable to longer or shorter subtests or to those which measure more disparate skills or
are administered further apart in time.

The implications for this study are that with tests of 15-20 items, less biased scores with
smaller standard errors can be obtained using a multidimensional IRT model or Wainer et al.'s
(2001) augmented score approach. The augmented scores might be the least arduous to calculate;
for this study BILOG-MG was used for estimating the unidimensional scores and the IML
procedure within SAS was used to estimate the coefficients for combining these scores. The
correlated-factor model might be most conceptually appealing, but I am aware of no commercial
software which will estimate IRT scores for correlated factors?, so calculation of scores must be
done separately and requires a geometrically increasing number of quadrature points as the

number of factors increases.
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Footnotes

! Because TESTFACT only provides ability estimates for the primary factor when the bi-
factor model is used, the item parameter file was re-configured to match the format of the item
parameter file from a three-factor model, with a-parameters set to 0 for the secondary factor not
measured by an item, and the ability estimates were obtained in a second run using this
parameter file. This was possible because the factors in the bi-factor model are orthogonal;
TESTFACT estimates abilities only for orthogonal factors. As a check, scores for the primary
factor were estimated along with the item parameters and compared to the estimates in the
second run after re-configuring the item parameter file; the score estimates were identical and the
estimated standard errors were nearly the same.

% To be accurate, CONQUEST (Wu, Adams, & Wilson, 1998) will estimate EAP and ML
scores for multidimensional IRT models, but only for models that are an extension of the Rasch

family of models -- models with constant discrimination parameters.
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Table 1

Distribution of American History/Political Science Subscale Scores

Mean SD Minimum Maximum
TESTFACT Bi-factor Model 0.00 0.90 -2.76 2.20
NOHARM Bi-factor Model -0.01 0.88 -2.68 2.18
NOHARM 2-Factor Model 0.00 0.91 -2.78 2.21
Augmented Subscale Method 0.01 0.90 -2.71 2.03
Independent Unidimensional Model 0.01 0.87 -2.52 1.91

Table 2

Distribution of Global Issues Subscale Scores

Mean SD Minimum Maximum
TESTFACT Bi-factor Model 0.00 0.87 -2.92 2.05
NOHARM Bi-factor Model -0.01 0.86 -2.87 2.03
NOHARM 2-Factor Model 0.00 0.88 -2.91 2.04
Augmented Subscale Method 0.01 0.87 -2.78 1.84

Independent Unidimensional Model 0.01 0.82 -2.55 1.44
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Table 3

Correlations among American History/Political Science Subscale Scores

TESTFACT Bi- NOHARM Bi- NOHARM 2- Augmented
factor Model factor Model Factor Model Subscale Method
NOHARM Bi- 1.000
factor Model
NOHARM 2- 0.995 0.995
Factor Model
Augmented 0.997 0.996 0.997
Subscale Method
Independent 0.970 0.971 0.981 0.975
Unidimensional
Model
Table 4

Correlations among Global Issues Subscale Scores

TESTFACT Bi- NOHARM Bi- NOHARM 2- Augmented
factor Model factor Model Factor Model Subscale Method
NOHARM Bi- 0.999
factor Model
NOHARM 2- 0.991 0.989
Factor Model
Augmented 0.994 0.991 0.996
Subscale Method
Independent 0.943 0.944 0.962 0.950
Unidimensional

Model
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Table 5

Correlations among Course Grades and American History/Political Science Subscale Scores

Course
History (N = 861) Political Science (N =319)
TESTFACT Bi-factor Model 32 .36
NOHARM Bi-factor Model 32 .36
NOHARM 2-Factor Model 31 .36
Augmented Subscale Method 32 .36
Independent Unidimensional Model .29 35

Table 6

Correlations among Course Grades and Global Issues Subscale Scores

Course
anthropology ~ economics geography political sci. sociology
(N=1293) (N=1741) (N=315) (N=90) (N=221)

TESTFACT Bi- .37 .29 33 .66 32
factor Model
NOHARM Bi- 37 .29 33 .66 31
factor Model
NOHARM 2- 38 .30 32 .66 31
Factor Model
Augmented 38 .30 32 .67 31
Subscale Method
Independent 35 28 .30 .65 24
Unidimensional

Model




Figure Captions
Figure 1. Bias of American History/Political Science Scores
Figure 2. Bias of Global Issues Scores
Figure 3. RMSE of American History/Political Science Scores

Figure 4. RMSE of Global Issues Scores
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