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Reasons Why Undergraduates have Difficulty with Mathematical Induction 

 

 It is generally agreed among researchers and teachers that students have difficulty 

understanding the notion of mathematical proof. Unlike more everyday notions of 

“proof” which are sometimes based on personal experience and empirical checking, 

mathematical proof in most undergraduate mathematics classes is based on deductive 

arguments. A deductive argument is one that uses principles of formal logic, where 

certain assumptions are made, and from these assumptions a conclusion is arrived at. The 

transition from assumption to conclusion is guided by sequences of implications which 

are true by logical necessity. This way of thinking is not necessarily natural to students, 

and although they are often encouraged to think about mathematics in ways that make 

sense to them, most often they are required eventually to submit a formal deductive 

argument as proof for a mathematical proposition. Also, there is some evidence to 

suggest that developmentally, some students are not prepared to think deductively. In 

fact, students are often persuaded that a mathematical statement is true by checking some 

cases, appealing to the authority of the text or teacher, or simply accepting work that 

looks “mathematical.” There is also reason to believe that students cannot always tell if a 

purported proof is indeed a correct or incorrect, which might suggest that if these students 

were to attempt to write the proof themselves, they would have considerable difficulty. 

The issues just described pertain to all kinds of proof related tasks, methods, and 

mathematical contexts; however, it might be helpful to limit our discussion to the context 

of proofs by mathematical induction, one of the most common proof techniques. This 



analysis will shed light on why students have difficulty with this specific method of 

proof.  

 Mathematical induction is a heavily emphasized when studying discrete 

mathematics, number theory, and their applications. The proof technique works in the 

following way: A proposition is put forth which involves a countable, infinite set. For 

example, 2n! > 5n +1 for n = 4, 5, 6, …. Let this proposition be called P(n). The goal of 

the proof is to demonstrate an implication exists between any two consecutive elements 

in the set. That is, one needs to establish that P(k) => P(k+1) for an arbitrary 3 < k. This 

is often called the inductive step. Once this implication is shown, P(n) is shown true for 

the least element in the set under consideration. In our current example, this would be 

P(4). This is frequently called the base case. Since P(4) is true, one can reason from the 

implication that P(5) is also true. Reusing the implication suggests that P(5) => P(6) is 

true, and so forth. It then follows that P(n) is true for all natural numbers n > 3.  

 As one can see, in order for a student to successfully write and understand a 

mathematical induction proof, they must accomplish several subtasks (such as working 

out the base case, and proving the inductive step), as well as grasping how all these 

subtasks work together to prove the original proposition. The heart of deduction in the 

proof lays in establishing the inductive step. Most often this task amounts to manipulating 

algebraic expressions involving factorials, inequalities, series, or rational expressions. 

With this in mind, the results of Gibson’s (1998) work are of interest.  

 Gibson worked with a cohort of mathematics majors in an Advanced Calculus 

class as they worked on proving certain statements. Although he did not encourage 

students to draw pictures or diagrams as they went about the proof tasks, he was 



interested in the work of students who did use diagrams. He found that students had 

considerable difficulty when it came to interpreting the symbolic notation often present in 

the statement to be proved, and also the crafting of proofs using this same notation. In 

particular, he found that students would often draw diagrams to represent the statement to 

be proved, so that they might understand what the statement meant and then why it was 

true. Students commented that when they were thinking of the mathematics of the 

statement, they were thinking in terms of diagrams, and so they felt it would be helpful to 

“download” their mental images onto paper. Thus, visual representations were found to 

be more consistent with students’ internal understandings of mathematics (which tended 

to consist of visual representations of mathematical situations as opposed to symbolically 

defined propositions). This could be one reason why mathematical induction is so 

difficult for students—often times the proposition to be proved is algebraic and not 

readily converted to a visual representation. This is definitely true of statements like: 2n! 

> 5n +1 and (7)(8)+(7)(8^2)+…+(7)(8^n) = 8(8^n – 1). There are exceptions to this. For 

example, 1+3+5+…+(2n-1) = n^2, where square arrays can be created by summing 

consecutive odd numbers.  

 Another item Gibson found was that students would often take their diagram and 

use it to help them generate ideas for starting the proof, because the diagram suggested 

why the statement itself was true. Once the diagram was understood, they had a better 

chance of writing a correct formal proof by simply translating components of their 

diagrammed situation into formal symbolic notation. Thus the visual was used as a guide, 

and provided the structure for the proof. In mathematical induction, often times proving 

the implication P(k) => P(k+1) amounts to tricks (such as adding and taking away the 



same number) and tedious algebraic moves whose only motivation is in arriving at the 

conclusion. In other words, in some statements the underlying mathematics which 

explains why the statement is true is not used as a guide when establishing the inductive 

step. Thus, after one completes the proof by mathematical induction, they have not 

gained any real insight into why the statement works mathematically.  

 It must be noted, however, that proofs by induction can be either explanatory or 

non-explanatory. For example, consider the following statement and its proof by 

mathematical induction. 

Theorem: )17(6 −n , for any natural number n.  

Proof: By mathematical induction. 

Basis: 6)17(6 1 =−  is true. 

Inductive hypothesis: assume )17(6 −k  

Inductive step:  

zqqqqq kkkk 6)17(667617766177677617 111 =+=+⋅=−⇔⋅=−−⇔⋅=−⇔=− +++

End of proof.  

No substantial insight is given by this proof explaining why 6 should divide 17 −n . One 

can focus locally on the inductive step of the proof, manipulating the inductive 

hypothesis using a “trick” (adding 6 to both sides of the equation) and then noticing 6 

factors out of both terms on the right hand side of the equation, thus completing the 

proof.  

 On the other hand, there are many instances in which mathematical induction 

proofs are explanatory, elegant, and powerful. Take, for example, the following Heavy 

Coin Problem, and the following proof: 



Suppose you have n3  coins that look identical, however, one of the coins is heavier 

than all the others. Show that you can find out which coin is heavier by using a 

balance no more than n times.  

Proof: By mathematical induction. 

Basis: When n = 1, we have 3 coins. Put one coin on the left of the scale, one on the right, 

and one on the ground. With this arrangement, the heavy coin is found in one weighing.  

Inductive hypothesis: Assume we have k3  coins, and that we can find the heavy coin in k 

weighings.  

Inductive step: Since kkkkk 333333 1 ++=⋅=+ , we can split the 13 +k  coins into three 

piles of k3 coins each. Put one pile on the left of the scale, the other on the right, and the 

other on the ground. Thus, in one weighing, we can determine the heavy pile of k3 coins. 

By the induction hypothesis, if we have k3 coins, we can weight them in k weighings. 

Thus, we can find the heavy coin in k+1 weighings. 

End of proof.  

 This proof gets at the heart of what is going on with the coins—when we have 

n3 coins, we can always split them up into three equal piles. A scale can then be used to 

distinguish the heaviest of three equal piles in one weighing. Although there are other 

ways to approach this problem, the inductive approach is not only explanatory, but 

arguably the most elegant.  

 Although deductive thinking using algebraic expressions does not mirror 

students’ inner thought processes as well as more visual representations of the same 

situation, students can and do learn to present deductive arguments eventually. It’s 

interesting to note the work of Senk (1989) in this regard, since her work suggests that 



students must pass through levels of deductive understanding. Senk (1989) studied 

groups of high school geometry students in regard to their Van Hiele levels of 

understanding geometry. There are five levels in this scheme, and described very briefly 

as: 

Level 0: students distinguish different shapes based on global features 

Level 1: students classify shapes based on specific properties they observe. 

Level 2: students understand how shapes are defined based on particular properties of the 

shape.  

Level 3: students deductively prove statements using theorems and definitions. 

Level 4: students prove statements across different axiomatic systems. 

 Senk found that students who entered high school geometry at Van Hiele level 0 

or 1 were not able rise to a level 3 understanding by the end of the year. If we assume 

Van Hiele levels are functions of classroom instruction, and that different students 

receive different qualities and quantities of mathematical instruction, this might indicate 

why certain students seem cognitively unprepared to engage in mathematical induction 

tasks, which clearly reside at Van Hiele level 3. 

 Another aspect to stages of deductive thinking is the contrasting differences 

between experts and novices when it comes to writing proofs. For example, Weber 

(2001) conducted a study involving undergraduates and graduates, where each group was 

given standard abstract algebra statements to proof during an interview session. The 

graduate students seemed to instinctively know which theorems would be important to 

use in constructing the proof, while the undergraduates randomly recalled any and all 

theorems which were related to the proposition and then used each one, hoping it would 



be useful in accomplishing the task at hand. In terms of mathematical induction, this 

suggests that some students might not understand which direction to begin when dealing 

with the inductive step, or even what theorems might be important to establish the 

induction step. For example, in working with the expression 2^(k+2), they might not 

recognize that 2^(k+2) can be split into 2^k times 2 times 2—perhaps an important part 

of establishing an inductive step.  

 Furthermore, the graduate students in Weber’s study knew what techniques or 

proof methods would be the quickest and most efficient when faced with certain types of 

questions. In the context of mathematical induction, this might suggest that when students 

are given a proposition, they might not even realize that induction is a technique for 

proving the statement. For instance, suppose the one needs to show 7^(k+1) – 1 is 

divisible by six, given that 7^k – 1 is divisible by six. The student may not realize that a 

common strategy in problems like this is to add and subtract the same number.  

  Students might be at different levels in terms of how able they are to reason 

deductively, and furthermore, evidence suggests that they also differ in how they perceive 

certain types of proof. What convinces an individual student that a statement has been 

proved mathematically is not necessarily the same as what would convince a 

mathematician or instructor. For example, Martin and Harel (1989) demonstrated that 

preservice teachers held empirically-based notions of proof; a statement is true if it is 

verified for several random examples. They also found a certain element of distrust for 

deductive arguments. Thus, even when students were shown a correct deductive proof, 

they felt they needed to check more examples just to be sure the theorem was really true. 

Sowder and Harel (2003) have formulated a taxonomy of what they call student “proof 



schemes.” These descriptions consist of the types of arguments that students find 

convincing. In the context of mathematical induction, at least two proof schemes are 

noteworthy. First, the so-called empirical proof scheme is, as the name suggests, based on 

verifying that certain numbers “work.” A student with such a scheme might find it 

unnecessary to prove a statement such as 2n! > 5n +1, since after checking several 

examples it is “obviously” true. Secondly, the symbolic, non-quantitative proof scheme 

relies on the arrangement of purely symbolic statements which may be manipulated 

(according to personal or common-sense transformations) into what is desired. This proof 

scheme often contributes to errors made in which students perform operations on symbols 

with no thought as to what those symbols represent (e.g. [3x + 4]/ 3 = x + 4 ). Students 

with this proof scheme might see mathematical induction as an exercise is symbol-

pushing, instead of logical deduction, and their work prone to a host of illegal algebraic 

transformations that are passed over when they are examining their own work. In fact, 

this proof scheme could potentially contribute to another phenomenon discovered by 

Selden and Selden (2003) in their work with proof validation. 

 These authors found that university students have considerable difficulty 

determining if a given proof is valid. They noted that many students “talked a good line” 

when it came to how they said they validated purported proofs, but when it came down to 

actual validation, these students focused almost exclusively on local algebraic 

manipulations. This suggests that these students had a symbolic, non-quantitative scheme 

of proof, in that a proof was correct as long as each step, and each chain of inference was 

correct in isolation to an overall proof structure or strategy. That is, a proof that was 

correct in each step, yet proved the converse of the theorem, it still seen as correct.  



 It appears than, that students often see a mathematical proof as an exercise in 

algebraic gymnastics, or simply the ability to follow proper mathematical form. Mingus 

and Grassl (2006) noted such a phenomenon in their examination of practicing secondary 

teachers when they graded student proofs. The researchers found that large numbers of 

teachers gave full credit to induction proofs which did not even use the induction 

hypothesis, but displayed sophisticated (and correct) symbolic manipulations.  

 In summary, there are many reasons why students have difficulty with 

mathematical induction proofs. In particular, deductive reasoning appears to be unnatural 

to many students would prefer visual representations. Also, individual students within the 

same class appear to arrive at the beginning of the semester at different levels of 

cognitive thinking ability, and are somewhat limited in the progress they can make within 

normal educational situations. This is intensified by personal student views of what 

makes a convincing argument, such thinks as verifying by plugging in numbers, or 

graphical pictures, or sophisticated, yet incorrect, symbolic manipulations. This is also 

evidenced in a different way when students validate proofs based on surface features, and 

ignore the overall structure of the proof. Considering the importance of proof within 

mathematics, these misconceptions held by students need to be resolved.  

   
 
References: 
 
 

Gibson, D. (1998). Students’ use of diagrams to develop proofs in an introductory 
   analysis course. Issues in Mathematics Education, 7, 284-307. 
 
Martin, W., & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal 
   for Research in Mathematics Education, 20, 41-51. 
 



Mingus, T., & Grassl, R. (2006). An examination of practicing a prospective teachers’ validation 
of purported proofs by mathematical induction. Submitted for publication. 

 
Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can 
   undergraduates tell whether an argument proves a theorem? Journal for Research in 
   Mathematics Education, 34, 4-36. 
 
Senk, S. (1989). Van Heile levels and achievement in writing geometry proofs. Journal 
   for Research in Mathematics Education, 20, 309-321. 
 
Sowder, L., & Harel, G. (2003). Case studies of mathematics majors’ proof 
   understanding, production, and appreciation. Canadian Journal of Science, 
   Mathematics & Technology Education, 3, 251-267. 
 
Weber, K. (2001). Student difficulty in constructing proof: The need for strategic knowledge. 

Educational Studies in Mathematics, 48, 101-119. 
 


