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  Abstract 

An extensive body of researches has favored the use of 

regression over other parametric analyses that are based on OVA. 

In case of noteworthy regression results, researchers tend to 

explore magnitude of beta weights for the respective predictors. 

This is plausible when the predictor variables are perfectly 

uncorrelated. However, as other researchers suggested, the 

failure to compute structure coefficients may cause erroneous 

interpretation in regression, when multicollinearity is present 

between predictors. This paper provides an explanation by using 

two heuristic examples, so as to emphasize the importance of 

balancing attention to both beta weights and structure 

coefficients, so that valid interpretations of regression 

results are formulated. 
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A Comparison Between The Use of Beta Weights and Structure 

Coefficients In Interpreting Regression Results 

An extensive body of researches has favored the use of 

regression over other parametric analyses that are based on OVA, 

when the objective of the research project is to explore the 

relationship between a set of independent variables and one 

dependent/outcome/criterion variable (Cohen, 1968; Courville & 

Thomspon, 2001; Friedrich, 1991; Pedhazur, 1997; Thompson, 1992; 

Thompson & Borrello, 1985; Wilson, 1980). The advantage of 

regression lies in that it can handle both intervally and 

nominally scaled predictor variables, whether or not they are 

correlated. Furthermore, the univariate feature makes the 

results straightforward and explicit by taking the following 

mathematical model: 

         Y        jj XbXbXbaY ++++= ...ˆ
2211  .              (1)            

Ŷ  is the predicted value of the criterion upon given 

predictor X (s). Researchers have argued that all statistical 

analyses are correlational and generate additive and 

multiplicative weights applied to measured or observed variables 

that can be used to estimate the scores on latent or synthetic 

variables (Fan, 1996; Thompson, 1991). Supposed in a simple 

regression case where there is a single predictor, the model can 

be simplified into: 
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     Y        bXaY +=ˆ .                            (2)            

In Equation 2, the additive weight a  (sometimes referred to 

as the Y -intercept of the fit line) serves to help control the 

mean of Ŷ  to be equal to the mean of Y ; while the 

multiplicative weight b  (usually termed as unstandardized 

regression coefficient or slope of the regression) functions to 

also convert the “‘spreadoutness’ of the predictor variable into 

the same metric as the ‘spreadoutness’ of the dependent 

variable” (Perry, 1990, p. 4). In terms of regression, the 

primary interest in any research practice is to minimize the 

distance (i.e. e score) between the observed score Y and the 

predicted score on Ŷ  so as to yield a perfect prediction for 

each case by weighting the predictor variables. Therefore, in a 

regression model, there are at least two measured variables ( X  

and Y ), and always two latent variables ( Ŷ  and e). Because b  

weights are sensitive to the existence of different scaling in 

predictor variables, and the variance of measured variables, 

they are usually transformed into standardized coefficients, the 

beta weights, by the following computation: 

                )/( YX SDSDb=β .                         (3)           

By doing so, the influence of the variance of the measured 

variables has been washed out. As a result, the magnitude of the 

predictor’s beta weight can be employed to identify the 
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contribution of that variable in the prediction; at least from 

one perspective. 

Uncorrelated Predictors: Heuristic Example #1 

In case when there are noteworthy results occurring, 

researchers tend to explore the source of the effect size by 

emphasizing β  weights of the respective predictors (Courville & 

Thompson, 2001). This is reasonable in simple regression or in 

multiple regression (MR) with two or more predictors, all of 

which are completely uncorrelated with each other; but is 

reasonable only in these cases. 

 

INSERT TABLE 1 ABOUT HERE. 

As reflected in Table 1, the biviarate correlation between 

1X  and 2X  is 0, which indicates that each of the predictor 

variable shares a non-overlapping area in the variance of the Y  

scores. According to formula (4) (which is always applicable for 

two predictor variables), the beta weights of 1X  and 2X  equal to 

their respective Pearson r  with the outcome variable (and thus 

ranging from -1 to +1): 
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    0
21
=XXr  

    
11 YXr=β , 

22 YXr=β  

     Hence 

                  =1β .385, =2β .859 

Moreover, the effect size multiple 2R  is .887, which 

corresponds to the following calculation: 

)()(
2121 21),(

2
YXYXXXY rrR ββ +=  

= 22
21 YXYX rr +  

   = 22 859.385. +  

                         = 887.  

It is evident that 1X  explains 14% of the criterion whereas 

2X  contributes 75%. By examining the beta weights, we can claim 

that 2X  supercedes 1X  in accounting for a larger proportion of 

the Y  information and thus does a better job of predicting score 

on the latent variable Ŷ . This is illustrated by the Figure 1 

Venn diagram.  

  

INSERT FIGURE 1 ABOUT HERE. 

Multicollinearity 

However, it is fallacious (and erroneous) to believe that 

once the job of interpreting beta weight has been accomplished, 

the interpretation of the analysis will be free of suspicion. As 
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many other scholars have suggested, the beta weight is not the 

only issue that counts. In fact, structure coefficient (or the 

Pearson r  between predictors and the dependent variable, both of 

which will yield identical results) is equally important in 

terms of interpretation, if not more (Cooley & Lohnes, 1971; 

Pedhazur, 1997; Thompson & Borrello, 1985). When 

multicollinearity (or collinearity) is present between the 

predictors in multiple regression, both beta weights and 

structure coefficients must be interpreted.  

Considering the reality that not all predictors are highly 

uncorrelated or “researchers purposely introduce collinearity 

when using multiple measures of variables in which they have 

greater interest or which are more important from a theoretical 

point of view” (Thompson & Borrello, 1985, p. 204), the sole 

reliance on beta weights may create serious interpretation 

problems. As Pedhazur (1982) stated: 

It should be clear now that high multicollinearity may lead 

not only to serious distortions in the estimations of 

regression coefficients but also to reversals in their 

signs. Therefore, the presence of high collinearity poses 

serious threats to the interpretation of the regression 

coefficients as indices of effects. (p. 246)  
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Consequently, the advocacy for the interpretation of structure 

coefficient in regression research has emerged (Cohen, 1968; 

Cooley & Lohnes, 1971; Dunlap & Landis, 1998).  

A structure coefficient is defined as the zero-order 

bivariate correlation between a given predictor variable X  and 

the latent (or synthetic) variable Ŷ . It should be noted that a 

structure coefficient differs from a Pearson r  between a given 

predictor and the measured variable Y  by the formula: 

Rrr YXS /=  

Heuristic Example #2 

In presence of three predictor variables which are all 

correlated to each other, the interpretation of regression 

becomes complicated.  

As shown in Table 2, if we only center our attention on 

beta weights of the three predictors, we might assert that 2X  

has little or no effect on the outcome variable because 2β  

equals to zero (or near zero depending on how many rounding 

decimals we chose). Therefore, in this regression model, 2X  

contributes little in producing the effect size. Similarly, we 

might judge that 3X  is the best predictor among the three 

( =3β .880827), followed by 1X  ( =1β .117911). However, when the 

attempt is to investigate the respective relationship of each X  

with Ŷ , it is surprising to find that 2X  has a near perfect 
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relationship with the latent variable ( =sr .9108653), while 1X  

only has a moderate correlation ( =sr .57610974), which 

contradicts with the previous conclusion. 

 

INSERT TABLES 2 AND 3 ABOUT HERE. 

A further exploration of this special case reveals that 2X  

and 3X  are highly correlated with each other with a Pearson r  

of .946. The correlation matrix in Table 3 also demonstrates 

that the three predictors are actually ‘combined’ with each 

other ( =
21XX

r .221; =
31XX

r .483). Hence, the sum of the 2r  of each 

predictor with Y  will be much greater than the multiple R  

square (.890). An explanation can be reached by consulting 

Figure 2. 

 

INSERT FIGURE 2 ABOUT HERE. 

 Obviously, 2X  and 3X  account for most of the common area, 

and the structure coefficient of 3X  is bigger than that of 2X , 

which has simply arbitrarily not been granted credit to yield 

part of the effect size (the overlapping area with Y  is 

circumscribed within that of 1X  and 3X ). However, this doesn’t 

mean 2X  assumes no predictive impact in explaining the variance 

of Y . To the contrary, 2X  turns out to be a very qualified 
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predictor! In fact, when holding the other two predictors 

constant, 2X  serves as a predictor almost as significant as 3X  

( Sr =.9939596), but more predictive than 1X . 

 This example illustrates that the sole reliance on beta 

weights could have caused serious interpretive problems. Because 

beta weights only work appropriately in cases when predictors 

are perfectly uncorrelated with each other, the computation of 

structure coefficients becomes a must in any multicollinearity 

situation when the research interest is to assess the predictive 

impact of each predictor.  

Summary 

Beta weights can be addressed to identify the merit of any 

predictor uncorrelated with other independent variables. On the 

other hand, structure coefficients can be applied to evaluate 

the relative predictive importance of a single predictor on the 

latent variable Ŷ , to indicate how strongly each independent 

variable influences the criterion variable. Structure 

coefficients are not affected by multicollinearity.  

Even though some scholars have denied the use of structure 

coefficients in multiple regression (see Harris, 1992), Thompson 

(1992) proposed that “… thoughtful researcher should always 

interpret either (a) both the beta weights and the structure 

coefficients or (b) both the beta weights and the bivariate 
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correlations of the predictors with Y ” (p. 14). By consulting 

both beta weights and structure coefficients, researchers can 

report unbiased and valid regression results by balancing their 

attention to both interpretation perspectives. Chapters 8 and 9 

in Thompson (2006) provide more detail on these various issues. 
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Table 1 
Correlation Matrix for Example #1

Y X 1 X 2

X 1 0.385

X 2 0.859 0.000 1.000

Note. R 2 =.877.
    

Y
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Table 2 

Beta Weights and Structure Coefficients of Example #2

X 1 0.117911 0.57610974

X 2 8.680040E-15 0.9108653

X 3 0.880827 0.99399596

Predictors

Standardized Coefficients Structure Coefficients
β sr
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Table 3 

Correlation Matrix for Example #2

Y X 1 X 2 X 3

Y

X 1 0.554

X 2 0.859 0.221

X 3 0.938 0.483 0.946 1.000

Note. R 2 =.89.
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Figure 1. Venn diagram for two uncorrelated predictors. 
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Figure 2. Venn diagram for three correlated predictors. 

 


