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Abstract 

The proportion of variance in student achievement that is explained by student SES—“poverty’s 

power rating,” as some dub it—tends to be lower among smaller schools than among larger 

schools.  Small schools, many claim, are able to somehow disrupt the seemingly axiomatic 

association between SES and student achievement.  Using eighth-grade data for 215 public 

schools in Maine, I explored the hypothesis that this in part is a statistical artifact of the greater 

volatility (lower reliability) of school-aggregated student achievement in smaller schools.  This 

hypothesis was supported when the dependent variable was mathematics achievement.  In 

contrast, this hypothesis received no support when reading achievement served as the dependent 

variable.  Implications for subsequent research are discussed. 
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As every student of education research knows, the relationship between student 

achievement and socioeconomic status (SES) is well-established in the empirical literature:  All 

things equal, as student SES increases, so does student achievement (e.g., Sirin, 2005; White, 

1982).  Further, this holds regardless of the unit of analysis employed (e.g., student, school, 

multilevel).  The seemingly axiomatic nature of this relationship notwithstanding, a recurring 

finding in rural education research is that SES and school size interact in affecting student 

achievement (e.g., Howley, 1996; Howley & Bickel, 1999; Huang & Howley, 1993; Johnson, 

Howley, & Howley, 2002; McMillen, 2004; also see Friedkin & Necochea, 1988; Lee & Smith, 

1997).  In other words, the magnitude of the relationship between SES and achievement depends 

on the size of the school, or, equivalently, that the magnitude of the relationship between school 

size and achievement depends on the SES makeup of the school. 

 How is such an interaction demonstrated?  With the school as the unit of statistical 

analysis, for example, interaction is shown by regressing achievement on SES, school size, and 

the mathematical product of SES and school size, and then testing the product term for statistical 

significance.  If the slope associated with this term is statistically significant—which researchers 

have been reporting with remarkable consistency—there is an interaction between SES and 

school size.  A common way to illustrate such an interaction is to show that the school-level 

correlation between SES and achievement is weaker among smaller schools than among larger 

schools.  That is, SES explains less of the variance in school achievement among smaller schools 

than it does among larger schools.  As Huang and Howley (1993) put it, smaller schools 

“mitigate” the effect that SES has on student achievement. 

 The mitigating-effect finding enjoys considerable fanfare by researchers, advocacy 

groups, and practitioners alike.  Johnson, Howley, and Howley (2002), highly respected rural 

education researchers all, judged this finding to be “among the most consistent ever to be 
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reported in educational research” (pp. 36-37).  The Rural School and Community Trust, which 

tirelessly advocates for rural schools and communities, crafted the phrase “poverty’s power 

rating” to refer to the percentage of variance in achievement that is explained by SES (i.e., the 

coefficient of determination).  In newsletters and press releases, the Rural Trust celebrates the 

recurring finding that the power rating of poverty is markedly lower—sometimes negligible—

among smaller schools than among larger schools.  “In study after study,” the organization’s 

president recently announced, “small schools have been shown to cut poverty’s power over 

student achievement” (Tompkins, 2006).  And in an op-ed published in my local newspaper, a 

school superintendent and his colleagues summed it up this way:  “Small schools are an antidote 

to the impact of poverty on school achievement” (Butler et al., 2005, p. A9). 

 I must confess that, despite my affinity to rural education and its causes, I have always 

been uneasy with the mitigating-effect finding and, in particular, the markedly lower “power 

rating” of poverty in smaller schools.  As much as I am attracted to the notion that smaller 

schools, by virtue of their smallness, are somehow able to disrupt the achievement disadvantage 

of lower-SES students, and as much as I can imagine the many ways in which smaller schools 

might be able to pull this off (although hard data would be helpful), my immediate suspicion was 

that the diluted SES-achievement correlation among smaller schools may have little to do with 

the educational experience characterizing such schools.  Rather, I suspected a statistical artifact 

at play.   

 Loosely defined, a statistical artifact is where a research result is misleading because of 

an artificial or extraneous effect due to statistical considerations.  For example, if X has modest 

variance and, further, the correlation between X and Y is r = 0, the absence of relationship 

between X and Y very well could be due to restricted range in X (a statistical artifact) rather than 

to an absence of relationship between the two constructs underlying X and Y.  In the present 
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context, the putatively ameliorative role of smaller schools in the SES-achievement relationship 

would be a statistical artifact if, say, there were much less variability in either student SES or 

student achievement among smaller schools than among larger schools.  Truth be told, this was 

my immediate suspicion, both because it is so obvious as a plausible rival hypothesis (when 

subgroup correlations are comparatively small) and because I saw no acknowledgment of this 

possibility by those who were doing (or celebrating) the research.  But I was unable to find 

evidence of restricted variance in the statistics reported by the researchers.  Nor did such 

evidence surface in my own analyses of Maine data that had been featured in a 2005 Rural Trust 

news release (Rural School and Community Trust, 2005). 

My interest in the challenges that small schools face related to the “adequate yearly 

progress” requirement of No Child Left Behind suggested another possible statistical artifact:  

the greater volatility, or lower stability, of school-level student achievement among smaller 

schools (Coladarci, 2003).  School achievement differs widely from one year to the next for 

smaller schools, whereas larger schools enjoy more stability in this regard (e.g., Coladarci, 2003; 

Hill & DePascale, 2003; Kane, Staiger, & Geppert, 2002; Linn & Haug, 2002).   

Consider Figure 1, for example, which shows the relationship between (a) the size of the 

fourth-grade cohort tested in a Maine school and (b) the one-year change in the proportion of 

students in that school who met or exceeded the standard on the Maine Educational Assessment 

reading test.  Although the average change from one year to the next hovers around zero for all 

schools, there is considerably greater variability among smaller schools in the amount of this 

change.  For schools having 15 or fewer fourth graders, for instance, this change ranges from 

−.47 (declining from 60% proficient to 13% proficient) to +.83 (increasing from 17% proficient 

to 100% proficient).  In contrast, the corresponding figures are only −.07 and +.09, respectively, 
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among schools having 150 or more fourth graders.1  

At issue here is the reliability of school-aggregated student achievement.  Insofar as any 

measure of school achievement is less reliable—i.e., more volatile—for a smaller school than for 

a larger school and, further, because a measure’s reliability places an upper limit on its ability to 

correlate with any other variable (e.g., Thorndike, 1982, p. 222), a plausible conjecture is that the 

lower SES-achievement correlation among smaller schools is an artifact of the lower reliability 

of school achievement for such schools.  In short, this is the conjecture I investigated in the 

present study.   

In pursuing the statistical-artifact hypothesis, my intention was not to debunk popular 

opinion.  Rather, I simply wished to determine whether a celebrated proposition in the rural 

education literature could withstand a sincere attempt to falsify it.  If such an attempt were to 

fail, then we all are entitled to a greater confidence in this proposition—greater warranted 

confidence, I believe—than we presently can claim.      

Method 

Data Source and Variables 

 My focus is on eighth-grade achievement in Maine public schools, using reading and 

mathematics data from the Maine Educational Assessment (MEA) for the 2002-2003 and 2003-

2004 school years.  (The MEA scale ranges from 501 to 580.)  For each public school having an 

eighth grade, I created a weighted two-year mean for both reading achievement (reading) and 

mathematics achievement (math).  Similarly, I determined for each school the weighted two-year 

percentage of students receiving subsidized meals (poverty). 

                                       
1 The +.83 school (upper left corner) is somewhat of an outlier.  The small-school range is −.47 
to +.46 with this discrepant case excluded. 
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As for operationally defining school size, I immediately faced the distinction between a 

school’s total enrollment across all grades and a school’s mean enrollment per grade.  Howley 

(2002, pp. 52-53) argues that the latter is the appropriate measure of school size because per-

grade enrollment takes into account a school’s grade configuration—that, say, a K-8 school with 

270 students (30 per grade) is arguably smaller than a 6-8 school with 270 students (90 per 

grade).  I have yet been able to appreciate the logic of this position, which inevitably must fall on 

how one conceptualizes “school” and its effects on students.  But because most mitigating-effect 

studies employed the enrollment-per-grade measure of school size, I followed suit in the analyses 

reported below.  Specifically, I determined the mean enrollment per grade for each school, 

averaged across 2002-2003 and 2003-2004 (school size).  (I confess that I ran all analyses using 

a total-enrollment measure of school size as well, which yielded similar results to those based on 

enrollment per grade.)  

 To estimate a school’s volatility in eighth-grade achievement, I determined the difference 

in mean achievement from 2003-2004 to 2002-2003 for reading and mathematics separately.  I 

then recoded the absolute value of these differences to obtain a volatility rating for each school.  

There were separate volatility ratings for reading and math (volatility), and both were formed as 

follows:   

volatility 
rating 

change in school 
mean-achievement 

1  0 to 2.50 points 
2  2.51 to 5.00 points 
3   5.01 to 7.50 points 
4   7.51 to 10.00 points 
5   10.01 to 12.50 points 
6   12.51 to 15.00 points 
7   15.01 to 17.50 points 
8   17.51 to 20.00 points 
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Analyses 

 I restricted my analyses to public schools in Maine that (a) had an eighth grade in 2002-

2003 and 2003-2004, (b) had data on all variables for both 2002-2003 and 2003-2004, and (c) 

had neither changed their grade span from one year to the next nor absorbed in 2003-2004 

students from a school that had closed at the end of 2002-2003.  Finally, I eliminated schools that 

did not have at least two eighth-grade students in each of the two school years.  These 

restrictions resulted in a final sample of 216 schools (from a universe of 233 public schools 

having an eighth grade in 2003-2004). 

 The school served as the unit of analysis.  After conducting preliminary analyses to 

establish the trustworthiness of the data, I  began by demonstrating the aforementioned 

interaction between socioeconomic status and school size.  I did so using ordinary least-squares 

regression (e.g., Aiken & West, 1991), where, in the case of two independent variables, the 

equation is .  Here, represents the dependent variable (either 

reading or math); a is the intercept; X

1 1 2 2 3 1 2Ŷ a b X b X b X X= + + + Ŷ

1 and X2 are poverty and school size, respectively; and X1X2 

is their mathematical product.  Prior to creating the product term and consistent with common 

practice, I centered poverty and school size at their respective means to reduce the inevitable 

collinearity engendered by multiplicative terms.    

The statistical significance of b3, the slope of the product term, indicates the presence of 

interaction between X1 and X2—that the magnitude of b1 varies with X2, or, symmetrically, that 

the magnitude of b2 varies with X1.  In the present context, this means that the degree of 

association between poverty and achievement (b1) depends on school size (X2), or, equivalently, 

that the degree of association between school size and achievement (b2) depends on the 

socioeconomic status of the school (X1).  By entering the product term on a separate step, I 
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obtained the increment in explained variance (ΔR2) that is associated with the poverty-size 

interaction (the statistical significance of which is identical to that of b3). 

 To further illustrate the degree of interaction between poverty and school size, and, in 

particular, to recast this interaction in terms of poverty’s power rating, I fit separate achievement-

on-poverty regression lines for schools falling above and below the median per-grade 

enrollment.  That is, I did a median split on school size and then regressed reading and math 

(separately) on poverty for below-median schools and for above-median schools.  The magnitude 

of interaction is shown by the degree to which the two within-group regression lines are 

nonparallel.  From this analysis, I also obtained the within-group correlations between each 

achievement measure and poverty, which, when squared, represents the power rating of poverty. 

 To explore my statistical-artifact hypothesis—that poverty’s reduced power rating, when 

examined among smaller schools, reflects the lower reliability of school-level achievement in 

such schools—I repeated these analyses on successively less-volatile collections of schools.  The 

first set of analyses included all 216 schools (i.e., volatility = 1, 2, 3, 4, 5, 6, 7, or 8); the second 

set included schools for which volatility = 1, 2, 3, 4, 5, 6, or 7; and so on to the final set of 

analyses involving the 104 least volatile schools (i.e., volatility = 1).  (Again, there were separate 

volatility ratings for math and reading.)  If, in fact, the poverty-size interaction is a statistical 

artifact due to the lower reliability of school-level achievement among smaller schools, then this 

interaction should attenuate with successively less-volatile schools—and be negligible for 

schools having the least volatility.   
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Results 

 I begin by portraying the achievement volatility among these schools and, in turn, the 

relationship between this volatility and school size.  To investigate the statistical-artifact 

hypothesis, I then conduct the regression analyses on successively less-volatile schools.   

The Volatility of School-Level Achievement 

 As described above, I estimated a school’s volatility in eighth-grade achievement by first 

calculating the difference in mean achievement from 2003-2004 to 2002-2003 for reading and 

for mathematics.  Among these 216 schools, the change in achievement from one year to the next 

ranged from roughly –17 to +17 MEA points in reading (M = –1.56, SD = 4.61) and, for math, –

19 to +16 MEA points (M = +1.14, SD = 4.79). 

The well-established relationship between school size and achievement volatility is 

clearly evident in the present data (Figure 2).  Again, there simply is greater volatility—less 

stability—of school-level achievement among smaller schools than among larger schools.  This 

also can be seen in the correlation between school size and the absolute value of a school’s 

change in achievement from one year to the next:  rs = –.31 and –.29 for reading and math, 

respectively.  In short, Figure 2 and these two correlations underscore the relevance of the 

statistical-artifact hypothesis that frames the present study. 

The distribution of the 8-point volatility ratings, formed from the absolute value of a 

school’s change in achievement from one year to the next, are shown in Figure 3 for both reading 

and math.  Each distribution reflects extreme positive skew:  While the vast majority of these 

216 schools demonstrated rather stable levels of achievement (±5 points from one year to the 

next), some schools evinced wide swings in this regard.  Only one school fell in the highest 

volatility category for mathematics achievement; none did for reading achievement. 
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Regression Analyses:  All Schools  

 The first set of regression analyses is based on all schools, irrespective of their volatility 

in achievement.  Table 1 presents descriptive statistics for reading, math, poverty, and school 

size.  Not surprisingly, schools vary considerably with respect to both poverty and size:  Some 

schools have as few as 3 students per grade and 3% of their students receiving subsidized meals, 

whereas other schools have as many as 358 students per grade and 84% of their students on 

subsidized meals.  Reading and math correlate highly (r = .74), as one would expect, and each 

correlates with poverty in the customary fashion (Sirin, 2005; White, 1982).  There is some 

tendency for smaller schools to be located in more impoverished communities (r = –.34).  

However, school size is unrelated to achievement (r = .07, p = .16). 

 Reading.  Table 2 shows the regression results for reading.  Poverty significantly and 

independently predicts reading at Step 1, whereas the corresponding effect of school size falls 

short of statistical significance.  An additional 2.2% of the variance in reading is explained by the 

introduction of the product term at Step 2, which, consistent with prior research, shows a 

statistically significant interaction between poverty and school size (p = .013).   

Because the poverty-size interaction presently enjoys so much attention in the rural 

education literature, elaboration on the meaning of the various coefficients reported at Step 2 

may be helpful to some readers.  As we saw above, Step 2 estimates the effects for the full 

equation, , where the last term, , reflects the possible 

interaction of poverty and school size.  As Aiken and West (1991) explain, b

1 1 2 2 3 1 2Ŷ a b X b X b X X= + + + 3 1 2b X X

1 is the reading-on-

poverty slope for schools having a per-grade enrollment equal to the mean (i.e., centered X2 = 0).  

For schools of average size, then, reading achievement decreases .127 MEA points (b1 = –.127) 

with every one-percentage-point increase in the students receiving subsidized meals.  In 

standardized terms, this corresponds to a decline in reading achievement of roughly half a 
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standard deviation (β1 = –.54) for each standard deviation increase in poverty (again, for schools 

of average size).  One interprets b2 analogously:  For schools at the mean for poverty, reading 

achievement decreases .008 MEA points (b2 = –.008) for each one-student increase in school 

size—an achievement decline of 16% of a standard deviation (β2 = –.16) for each standard 

deviation increase in school size.     

The statistical significance of b3 signals the presence of interaction between poverty and 

school size.  Specifically, the negative coefficient for the product term X1X2, coupled with the 

negative coefficient for poverty, means that the simple slope for poverty—i.e., the reading-on-

poverty slope at a specified value of school size—is steeper (more negative) for larger schools 

than it is for smaller schools.    

The concept of simple slope is central to interpreting a statistically significant interaction.  

The simple slope for poverty derives from the full equation, , 

which, when recast as the Y-on-X

1 1 2 2 3 1 2Ŷ a b X b X b X X= + + +

1 regression at a specified value of X2, looks like this:  

.  The critical term here is 2 2 1 3 2 1
ˆ ( ) (Y a b X b b X X= + + + ) )1 3 2(b b X+ , which is the Y-on-X1 slope 

for the specified value of X2 (expressed as a deviation from the centered mean of zero).  Select a 

deviation score to represent X2, plug this value into the expression 1 3 2(b b X )+ , and you have the 

simple slope for poverty at a particular school size. 

For example, consider a school having 16 students per grade—the 25th percentile in 

school size and roughly 57 fewer students than the mean ( 2X  = 72.78).  The simple slope for 

schools of this size is b-57 = –.098, which corresponds to a standardized regression coefficient of 

β-57 = –.41.2  Thus, with each standard deviation increase in poverty, reading achievement in 

                                       
2 In symbolizing this simple slope, I introduce the subscript –57 to make explicit the particular 
value of X2 at which the Y-on-X1 slope is estimated.  The specified value of X2 is expressed as a 
deviation score:  X2 – 2X  = 16 – 72.68 = –56.58 (rounded to –57 here).  Subscripts for other 
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these smaller schools decreases approximately 40% of a standard deviation.  The simple slope is 

slightly steeper for schools having 42 students per grade (the median school size, or 50th 

percentile):  b-31 = –.111 or, in standardized terms, β-31 = –.47.  Now consider a school falling at 

the 75th percentile in school size, or 105 students per grade.  Here, the unstandardized and 

standardized simple slopes are b+32 = –.144 and β+32 = –.61, respectively.  For these larger 

schools, then, reading decreases approximately 60% of a standard deviation with each standard 

deviation increase in poverty.  Consistent with the statistically significant interaction of poverty 

and school size, simple slopes estimated at various levels of school size illustrate that reading 

achievement is increasingly related to poverty as school size increases, and decreasingly related 

to poverty as school size decreases. 

Figure 4 shows the within-group regression lines.  As described above, I obtained these 

by splitting the school-size distribution at the median (42 students per grade) and, for each group 

of schools, fitting a reading-on-poverty regression line.  These within-group regression lines 

further illustrate the interaction reported in Table 2:  There is a flatter slope—a weaker 

relationship between reading achievement and poverty—for smaller schools than for larger 

schools.  Indeed, the correlation for the former is r = –.39 versus r = –.64 for the latter, which, 

when squared, yield power ratings of 15% and 41%, respectively.  Although there is 

considerable within-group variability evident in Figure 4 and, further, the nonparallel 

displacement of one regression line relative to the other is not great (particularly where most of 

the data are), there is some tendency for smaller higher-poverty schools to have reading 

achievement superior to that of larger higher-poverty schools.  

                                                                                                                           
simple slopes follow suit.  Further, to minimize rounding error, I calculated simple slopes using 
the multi-digit values reported by the statistical software. For example, b-57 = b1 + b3X2 =  
–.127330602 + (–.000511659)(–57) = –.098; similarly, β-57 = b1(S1/SY ) =  
(–.0982)(16.6250893/3.93549624) = –.41. 
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Math.  Table 3 shows the regression results for math, based on all schools.  The pattern of 

results is similar to those obtained for reading.  At Step 1, poverty is significantly related to math 

whereas school size is not (p = .31).  And at Step 2, the interaction of poverty and school size 

explains an additional 5% of variance in mathematics achievement (ΔR2 = .048, p = .001):  As 

with reading achievement, mathematics achievement is increasingly related to poverty as school 

size increases, and decreasingly related to poverty as school size decreases.  For example, the 

math-on-poverty slope for median-size schools is b-31 = –.086 (β-31 = –.33).  In contrast, the 

simple slope for schools at the 25th percentile in school size b-57 = –.064 (β-57 = –.25) and, for 

schools at the 75th percentile, b+32 = –.139 (β+32 = –.53).       

The within-group regression lines for below- and above-median schools in per grade 

enrollment are presented in Figure 5, which shows the nonparallel displacement indicative of 

interaction. The math-on-poverty slope is flatter—signifying a weaker relationship—for smaller 

schools than for larger schools.  The corresponding power ratings are, respectively, 4% for 

smaller schools (r = –.19) and 46% for larger schools (r = –.68). 

The symmetry of b3.  As noted above, the statistical significance of b3 indicates that the 

magnitude of the achievement-on-poverty slope (b1) is a function of school size (X2) and, 

symmetrically, the magnitude of the achievement-on-size slope (b2) is a function of poverty (X1).  

My emphasis thus far has been decidedly on the former, given its direct relevance to the concept 

of poverty’s power rating which frames the present study.  But many writers blur the distinction 

between the two interpretations, referring to one and then to the other as their argument 

develops.  Therefore, so (briefly) shall I. 

Just as the simple slope for poverty (b1) at a specified value of school size (X2) is equal to 

, the simple slope for school size (b1 3b b X+ 2 2) at specified value of poverty (X1) is equal to 
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2 3b b X+ 1 .3  At Step 2 of Tables 2 and 3, we see that school size has a negligible, if statistically 

significant, negative effect on both reading and math for schools of average poverty (i.e., X1 = 

0).4  But when the simple slope is calculated for a school where 23% of its students receive 

subsidized meals—approximately one standard deviation, or 17 percentage points, below the 

mean ( 1X  = 39.52)—school size is unrelated to achievement in either reading or math.  

Specifically, b-17 = .001 and β-17 = .01 (p = .91) for reading; for math, b-17 = .006 and β-17 = .11 (p 

= .20).  Now consider a comparatively high-poverty school in which 73% of students receive 

subsidized meals (roughly two standard deviations, or 33 percentage points, above the mean).  

Here, the effect of school size on reading is statistically significant and large:  b+33 = –.025 and 

β+33 = –.49 (p = .003).  For math, the effect is larger still:  b+33 = –.035 and β+33 = –.63 (p < .001).  

Thus, with a standard deviation decrease in school size, reading achievement in these high-

poverty schools—unlike their lower-poverty counterpart—increases by half a standard deviation, 

and math achievement increases almost two-thirds of a standard deviation.  This finding, of 

course, merely restates the poverty-size interaction by focusing on the conditional effect of 

school size rather than the conditional effect of poverty.    

Regression Analyses:  Successively Less-Volatile Schools 

To explore the possible operation of a statistical artifact due to the greater volatility in 

achievement among smaller schools, I repeated the regression analyses reported above for 

successively less-volatile collections of schools.  Rather than exhaustively delineate these results 

for each value of the volatility measure, I report in Table 4 the primary statistic for each analysis:  

                                       
3 As before, this derives from the full equation, , which, when now 

reformulated as the Y-on-X
1 1 2 2 3 1 2Ŷ a b X b X b X X= + + +

2 regression at a specified value of X1, is . 1 1 2 3 1 2
ˆ ( ) ( )Y a b X b b X X= + + +

4 Just as b1 is estimated at X2 = 0, b2 is estimated at X1 = 0. 
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the increment in R2 at Step 2 when the product term, X1X2, is introduced.  I then provide 

additional details for the results based on the 104 least-volatile schools. 

Reading.  As Table 4 shows, the interaction between poverty and school size is unrelated 

to the volatility of school-level achievement:  For each successive analysis, the increment in 

explained variance associated with the introduction of the product term at Step 2 is statistically 

significant.  Although I did not conduct a trend analysis on the seven ΔR2 values, there is no 

evidence that ΔR2, statistical significance notwithstanding, is systematically smaller when based 

on successively less volatile schools.   

Tables 5 and 6 show, respectively, descriptive statistics and regression results for reading, 

based on the least-volatile schools in reading achievement (n = 104).  Again, these are the 

schools for which mean achievement on the reading measure did not vary more than 2.5 points 

across the two years examined.  The pattern of results here is similar to that reported earlier for 

all 216 schools, as are the within-group regression lines shown in Figure 5.  Indeed, regarding 

the latter, poverty’s power rating differential—16% for smaller schools vs. 42% for larger 

schools—is almost indistinguishable from the differential based on all schools (15% and 41%, 

respectively).  With respect to reading achievement, then, my statistical-artifact hypothesis is not 

consistent with the data.  

Math.  A different picture emerges with mathematics achievement, where we see a 

gradual decline in ΔR2 with successively less-volatile schools (Table 4)—to the point of 

statistical nonsignificance when based on the 104 least-volatile schools (ΔR2 = .014, p = .193).   

Tables 7 and 8 present the relevant statistics for the latter analysis, where, at Step 2 of Table 8, 

we see the statistically nonsignificant slope for the product term.   

The within-group regression lines are shown in Figure 7.  While the power ratings of 

poverty show some differential between smaller and larger schools, it derives from a poverty-
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size interaction that failed to reach statistical significance and, therefore, reflects only chance 

variation.  Between the general decline in ΔR2 values (Table 4) and the absence of a statistically 

significant poverty-size interaction when based on the least volatile schools (Table 8), the 

hypothesis of statistical artifact in the case of mathematics achievement is consistent with the 

data. 

Discussion  

 “Substantive finding or statistical artifact?” is the question posed in the subtitle of my 

paper, to which I can now answer with an ineluctably facetious “Yes!”  When the dependent 

variable is reading achievement, I find no support for my hypothesis that poverty’s power rating 

is lower in smaller schools because of their greater volatility (lower reliability) in achievement.  

Thus, the celebrated interaction of socioeconomic status and school size clearly stands with 

respect to eighth-grade reading achievement in these Maine schools.  But for mathematics 

achievement, the statistical-artifact hypothesis is supported.  For eighth-grade mathematics 

achievement, poor reliability appears to be a plausible explanation of the reduced power rating of 

poverty among these smaller schools.  

 Unfortunately, the latter conclusion is complicated by plausible rival hypotheses of its 

own—an inevitable consequence of correlational research.  Two problems immediately come to 

mind.  First, my achievement-volatility measure does not distinguish between random variation 

and variation due to educational practice.  Some of the high-discrepancy schools in Figure 2, as 

reflected in their alignment on the vertical axis, doubtless are revealing real—not random—

improvement or decline in achievement.  By treating all variation as random variation, I 

inevitably exclude some schools from the analysis that should have been included (were it 

possible to make this distinction in practice).  That said, the results are not systematically biased 
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as a consequence, insofar as the absence of “real improvement” schools is offset by the absence 

of “real decline” schools, particularly regarding the poverty-size interaction.   

The second problem is of greater concern.  By conducting the regression analyses on 

successively less-volatile collections of schools, and because achievement volatility is more 

pronounced among smaller schools (Figure 2), I successively compromise the full representation 

of small schools as well.  In short, I arguably exclude some of the very schools required for a fair 

test of my statistical-artifact hypothesis (and, in doing so, introduce a certain irony into the 

present study).  We see the extent of this sacrifice in Figure 8, which shows the school-size 

distribution for all 216 schools and for the 104 least-volatile schools.  Although both 

distributions have the expected positive skew, there are proportionately fewer small schools in 

the restricted sample than in the full sample.  Consistent with this visual impression, the school-

size mean and median are both higher in the restricted sample, and the coefficient of variation is 

smaller. 

 Yet this second problem—the successive underrepresentation of small schools—had no 

effect on the viability of the poverty-size interaction for reading achievement.  This 

inconsistency presents an interesting challenge:  how to explain it.  If one is inclined to dismiss 

my findings for mathematics achievement because of this underrepresentation, then the challenge 

is to explain why a similar outcome was not obtained for reading achievement.  After all, small-

school underrepresentation operates there as well.  So, what is it about reading achievement (or 

related instruction) that makes the poverty-size interaction immune to the successive 

underrepresentation of small schools in these analyses?  Or, if one prefers, what is it about 

mathematics achievement (or related instruction) that makes the poverty-size interaction 

particularly vulnerable in this regard? 
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 On the other hand, for those whose confidence in the statistical-artifact results for 

mathematics achievement is unshaken by the underrepresentation problem—after all, the bottom 

distribution in Figure 8 still shows positive skew and healthy variance—the corresponding 

challenge is to explain why the statistical-artifact hypothesis did not prevail for reading 

achievement.  After all, reading achievement is not appreciably less volatile than mathematics 

achievement.  So, what is it about reading achievement (or related instruction) that explains this 

apparent invincibility—a greater robustness—of the poverty-size interaction?      

 Unfortunately, I cannot answer these questions.  At least not yet.  But insofar as I cannot 

explain, even with the benefit of hindsight, a statistical-artifact finding that would surface only 

for mathematics achievement, I am inclined to attach greater import to the successive 

underrepresentation of small schools in these analyses than I had at the outset.  Although I 

cannot explain why this underrepresentation has no concomitant effect on the poverty-size 

interaction with respect to reading achievement, this anomaly presently perplexes me less than 

does a mathematics-specific statistical artifact.  Furthermore, it is only in the final, most 

restrictive analysis—where a sizeable number of small schools are lost—that the poverty-size 

interaction for mathematics achievement fails to reach statistical significance (Table 4).   

In view of these considerations, then, I conclude that my results are insufficient to 

support the statistical-artifact hypothesis with respect to mathematics achievement.  Although 

this conclusion is not as unequivocal as that for reading achievement, I nevertheless believe it is 

the reasonable conclusion given the considerations above.  In short, the celebrated interaction of 

poverty and school size has survived a sincere attempt to empirically cast doubt on it.  

Consequently, we can have greater confidence in this interaction than was warranted before.   
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Implications for Research 

 First, further tests of the statistical-artifact hypothesis would be informative, if only to 

show that my somewhat equivocal results for mathematics achievement are a mere anomaly.  

Replications should involve Maine data drawn from other years, but replications also should 

involve data beyond Maine.  In this spirit, I am hopeful that other researchers who have explored 

the mitigating-effect phenomenon will, where possible, conduct (re)analyses of their own with 

the inclusion of an achievement-volatility measure. 

 Second, if we are inclined to take the interaction of socioeconomic status and school size 

as an established phenomenon, we nonetheless are left wanting for a credible explanation of it.  

Such an explanation seemingly would draw on the mechanisms through which smaller schools 

facilitate student achievement and related outcomes, but, unfortunately, we are wanting there as 

well.  As Fowler and Walberg (1991) said in reference to the then-extant research, 

“[a]lthough these studies show a positive relationship between small school size and 

student outcomes, they do not suggest why this may occur.  In other studies, which only 

peripherally included school size, researchers have suggested reasons for the beneficial 

effect that small school size has upon student outcomes” (p. 191; emphasis added).   

A decade later, Howley (2002) offered a similar conclusion in his synthesis of the school size 

research: 

Many, many other unanswered questions exist.  For instance, why is smaller school size 

(variously defined) associated with higher . . . levels of achievement for individuals, 

schools, and districts?  Hypotheses abound, with most having to do with the care, 

attention, and respect enabled by smallness in the conduct of personal relations.  (p. 62; 

emphasis in original) 
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As an influence on student achievement, school size clearly is a proxy rather than a 

causal force in and of itself.  To offer credible explanations for the poverty-size interaction, then, 

we first need stronger evidence regarding the mechanisms—the mediating variables—through 

which school size putatively influences student achievement (McMillen, 2004, p. 20).  Howley 

(2002, p. 62) refers to “care, attention, and respect.”  Lee and her colleagues refer to “the 

academic and social organization and functioning of schools” (Lee & Smith, 1997, p. 219).  

Doubtless there are other context- and process-related forces at play as well.  Whatever the 

focus, a warranted claim about its relationship to both school size and student achievement must 

be based on careful empirical investigation, not on casual observation, anecdotal reports, 

reasonable (but untested) hypotheses, popular opinion, or the will to believe.  We need additional 

descriptive research like that conducted by Howley and Howley (2006) and Lee, Smerdon, 

Alfeld-Liro, and Brown (2000), which should be followed up by analyses that exercise the 

statistical control necessary to test hypotheses that fundamentally get at cause-and-effect 

relationships. 

Equipped with empirically established mediating variables regarding the relationship 

between school size and student achievement, we can then craft defensible conjectures regarding 

the poverty-size interaction.  In this regard, of course, one’s central obligation will be to argue 

why a mediating variable would be expected to differentially affect student achievement as a 

function of student SES.  For example, if the accumulation of evidence from sound empirical 

research were to show that smaller schools are characterized by more personalized social 

relations and, in turn, that these more personalized social relations improve student achievement, 

our obligation is to cogently argue why lower-SES students would benefit from such social 

relations more than higher-SES students would.  These conjectures should then be subjected to 

empirical tests of their own.  For example, one could introduce a set of social-relations variables 
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into the full regression equation (in the tradition above) to see whether the poverty-size 

interaction disappears—as it would if the poverty-size interaction is in fact due to social 

relations.   

In any case, well-crafted arguments followed by equally well-crafted investigations—

both premised on warranted claims regarding the mechanisms through which school size 

influences student achievement—should be the direction of future research on the poverty-size 

interaction.      
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Figure 1.  The relationship between (a) the number of fourth-grade students tested in a school 
and (b) the one-year change in the proportion of students who met or exceeded the standard.  
(Source: Coladarci, 2003, Figure 4) 
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Figure 2.  School size and the volatility of achievement in reading (top)and mathematics (bottom). 
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Figure 3.  The distribution of volatility in school achievement:  reading (top) and math (bottom.) 
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Table 1.  Descriptive statistics:  All schools (n = 216). 
 

intercorrelations 

 

 
       M 

 
      SD 

 
range 

 reading math poverty 
reading 535.96 3.94 522.72,  547.69     
math 528.16 4.36 514.51,  542.17  .74*   
poverty 39.52 16.63 2.68,  83.86  -.48* -.37*  
school size 72.78 77.31 2.94,  358.00  .07 .07 -.34* 

 
Note.  For the purpose of this table, poverty and school size are in their original uncentered  
form (which affects only the mean and range). 
* p < .01. 
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Table 2.  Regressing reading on poverty, school size, and their product:   
All schools (n = 216). 
 

   b        s.e. 
 
β t 

 
       p 

 
ΔR2

Step 1: (constant) 535.962     
 poverty -.122 .015 -.51 -8.07 < .001  
 school size -.006 .003 -.11 -1.71 .089  
      

Step 2: (constant) 535.738     
  poverty -.127 .015 -.54 -8.45 < .001   
  school size -.008 .003 -.16 -2.40 .017  
  poverty x size -.001 .0002 -- -2.52 .013 .022 

 
Note.  Poverty and school size were centered for this analysis. 
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Figure 4.  The interaction of poverty and school size (p =.013), reading:  All schools (n = 216).   
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Table 3.  Regressing math on poverty, school size, and their product:   
All schools (n = 216). 
 

   b        s.e. 
 
β t 

 
       p 

 
ΔR2

Step 1: (constant) 528.161     
 poverty -.103 .018 -.39 -5.78 < .001  
 school size -.004 .004 -.07 -1.02 .310  
      

Step 2: (constant) 527.796     
  poverty -.112 .017 -.43 -6.40 < .001   
  school size -.008 .004 -.14 -2.05 .042  
  poverty x size -.001 .0002 -- -3.53 .001 .048 

 
Note.  Poverty and school size were centered for this analysis. 
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r2 = .04 median split: 

 
●   fewer than 42 students 
      per grade (solid line) 
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       per grade (broken line)  

r = -.68
r2 = .46

 
Figure 5.  The interaction of poverty and school size (p =.001), math:  All schools (n = 216).   
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Table 4.  Volatility in school achievement and the magnitude of ΔR2.   
 

Reading  Math 
Volatility n ΔR2 p  Volatility n ΔR2 p 

≤ 8 – – –  ≤ 8 216 .048 .001 
≤ 7 216 .022 .013  ≤ 7 215 .047 .001 
≤ 6 214 .022 .014  ≤ 6 212 .042 .001 
≤ 5 208 .029 .005  ≤ 5 208 .039 .002 
≤ 4 204 .029 .006  ≤ 4 204 .038 .002 
≤ 3 188 .030 .008  ≤ 3 193 .026 .011 
≤ 2 166 .042 .002  ≤ 2 164 .027 .018 
1 104 .031 .027  1 104 .014 .193 

 
Note.  ΔR2 is associated with the introduction of the product term (poverty x size)  
at Step 2 of each regression analysis. 
 
 
 
 
 
 
Table 5.  Descriptive statistics:  Least volatile schools, reading achievement (n = 104). 
 

intercorrelations 

 

 
       M 

 
      SD 

 
range 

 reading poverty 
reading 535.95 3.76 527.99,  545.95    
poverty 38.78 15.98 2.68,  78.52   -.59*   
school size 89.19 79.67 2.94,  358.00  .09  -.35* 

 
Note.  For the purpose of this table, poverty and school size are in their original uncentered  
form (which affects only the mean and range). 
* p < .01. 
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Table 6.  Regressing reading on poverty, school size, and their product:  Schools having  
minimal volatility in achievement (n = 104). 
 

   b        s.e. 
 
β t 

 
       p 

 
ΔR2

Step 1: (constant) 535.945     
 poverty -.149 .020 -.63 -7.45 < .001  
 school size -.006 .004 -.14 -1.61 .110  
      

Step 2: (constant) 535.721     
  poverty -.141 .020 -.60 -7.067 < .001   
  school size -.007 .004 -.16 -1.875 .064  
  poverty x size -.001 .0002 -- -2.237 .027 .031 

 
Note.  Poverty and school size were centered for this analysis. 
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Figure 6.  Interaction of poverty and school size (p = .001), reading: Schools having minimal 
volatility in achievement (n = 104). 
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Table 7.  Descriptive statistics:  Least volatile schools, math achievement (n = 104). 
 

intercorrelations 

 

 
       M 

 
      SD 

 
range 

 math poverty 
math 527.60 4.26 514.51,  542.17    
poverty 38.25 14.71 7.99,  73.89   -.41*   
school size 82.28 81.72 3.39,  327.50  .06  -.30* 

 
Note.  For the purpose of this table, poverty and school size are in their original uncentered  
form (which affects only the mean and range). 
* p < .01. 
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Table 8.  Regressing math on poverty, school size, and their product:   
Schools having minimal volatility in achievement (n = 104). 
 

   b        s.e. 
 
β t 

 
       p 

 
ΔR2

Step 1: (constant) 527.475     
 poverty -.125 .028 -.43 -4.54 < .001  
 school size -.004 .005 -.07 -.76 .448  
      

Step 2: (constant) 527.305     
  poverty -.131 .028 -.45 -4.709 < .001   
  school size -.007 .006 -.13 -1.265 .209  
  poverty x size -.001 .0004 -- -1.309 .193 .014 

 
Note.  Poverty and school size were centered for this analysis. 
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Figure 7.  No interaction of poverty and school size (p = .193), math:  Schools having minimal 
volatility in achievement (n = 104). 
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X  = 72.78 
Mdn = 42.44
SD = 77.31 
CV = 106.22  

X  = 82.28 
Mdn = 54.25
SD = 81.72 
CV = 99.32    

                
Figure 8.  Variability in school size:  All schools (n = 216) versus least-volatile schools (n = 104). 
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	In pursuing the statistical-artifact hypothesis, my intention was not to debunk popular opinion.  Rather, I simply wished to determine whether a celebrated proposition in the rural education literature could withstand a sincere attempt to falsify it.  If such an attempt were to fail, then we all are entitled to a greater confidence in this proposition—greater warranted confidence, I believe—than we presently can claim.     
	Method
	Data Source and Variables
	 My focus is on eighth-grade achievement in Maine public schools, using reading and mathematics data from the Maine Educational Assessment (MEA) for the 2002-2003 and 2003-2004 school years.  (The MEA scale ranges from 501 to 580.)  For each public school having an eighth grade, I created a weighted two-year mean for both reading achievement (reading) and mathematics achievement (math).  Similarly, I determined for each school the weighted two-year percentage of students receiving subsidized meals (poverty).
	As for operationally defining school size, I immediately faced the distinction between a school’s total enrollment across all grades and a school’s mean enrollment per grade.  Howley (2002, pp. 52-53) argues that the latter is the appropriate measure of school size because per-grade enrollment takes into account a school’s grade configuration—that, say, a K-8 school with 270 students (30 per grade) is arguably smaller than a 6-8 school with 270 students (90 per grade).  I have yet been able to appreciate the logic of this position, which inevitably must fall on how one conceptualizes “school” and its effects on students.  But because most mitigating-effect studies employed the enrollment-per-grade measure of school size, I followed suit in the analyses reported below.  Specifically, I determined the mean enrollment per grade for each school, averaged across 2002-2003 and 2003-2004 (school size).  (I confess that I ran all analyses using a total-enrollment measure of school size as well, which yielded similar results to those based on enrollment per grade.) 
	 To estimate a school’s volatility in eighth-grade achievement, I determined the difference in mean achievement from 2003-2004 to 2002-2003 for reading and mathematics separately.  I then recoded the absolute value of these differences to obtain a volatility rating for each school.  There were separate volatility ratings for reading and math (volatility), and both were formed as follows:  
	volatility rating
	change in school mean-achievement
	1 
	0 to 2.50 points
	2 
	2.51 to 5.00 points
	3  
	5.01 to 7.50 points
	4  
	7.51 to 10.00 points
	5  
	10.01 to 12.50 points
	6  
	12.51 to 15.00 points
	7  
	15.01 to 17.50 points
	8  
	17.51 to 20.00 points
	Analyses
	 I restricted my analyses to public schools in Maine that (a) had an eighth grade in 2002-2003 and 2003-2004, (b) had data on all variables for both 2002-2003 and 2003-2004, and (c) had neither changed their grade span from one year to the next nor absorbed in 2003-2004 students from a school that had closed at the end of 2002-2003.  Finally, I eliminated schools that did not have at least two eighth-grade students in each of the two school years.  These restrictions resulted in a final sample of 216 schools (from a universe of 233 public schools having an eighth grade in 2003-2004).
	 The school served as the unit of analysis.  After conducting preliminary analyses to establish the trustworthiness of the data, I  began by demonstrating the aforementioned interaction between socioeconomic status and school size.  I did so using ordinary least-squares regression (e.g., Aiken & West, 1991), where, in the case of two independent variables, the equation is  .  Here,  represents the dependent variable (either reading or math); a is the intercept; X1 and X2 are poverty and school size, respectively; and X1X2 is their mathematical product.  Prior to creating the product term and consistent with common practice, I centered poverty and school size at their respective means to reduce the inevitable collinearity engendered by multiplicative terms.   
	The statistical significance of b3, the slope of the product term, indicates the presence of interaction between X1 and X2—that the magnitude of b1 varies with X2, or, symmetrically, that the magnitude of b2 varies with X1.  In the present context, this means that the degree of association between poverty and achievement (b1) depends on school size (X2), or, equivalently, that the degree of association between school size and achievement (b2) depends on the socioeconomic status of the school (X1).  By entering the product term on a separate step, I obtained the increment in explained variance (ΔR2) that is associated with the poverty-size interaction (the statistical significance of which is identical to that of b3).
	 To further illustrate the degree of interaction between poverty and school size, and, in particular, to recast this interaction in terms of poverty’s power rating, I fit separate achievement-on-poverty regression lines for schools falling above and below the median per-grade enrollment.  That is, I did a median split on school size and then regressed reading and math (separately) on poverty for below-median schools and for above-median schools.  The magnitude of interaction is shown by the degree to which the two within-group regression lines are nonparallel.  From this analysis, I also obtained the within-group correlations between each achievement measure and poverty, which, when squared, represents the power rating of poverty.
	 To explore my statistical-artifact hypothesis—that poverty’s reduced power rating, when examined among smaller schools, reflects the lower reliability of school-level achievement in such schools—I repeated these analyses on successively less-volatile collections of schools.  The first set of analyses included all 216 schools (i.e., volatility = 1, 2, 3, 4, 5, 6, 7, or 8); the second set included schools for which volatility = 1, 2, 3, 4, 5, 6, or 7; and so on to the final set of analyses involving the 104 least volatile schools (i.e., volatility = 1).  (Again, there were separate volatility ratings for math and reading.)  If, in fact, the poverty-size interaction is a statistical artifact due to the lower reliability of school-level achievement among smaller schools, then this interaction should attenuate with successively less-volatile schools—and be negligible for schools having the least volatility.  
	Results
	 I begin by portraying the achievement volatility among these schools and, in turn, the relationship between this volatility and school size.  To investigate the statistical-artifact hypothesis, I then conduct the regression analyses on successively less-volatile schools.  
	The Volatility of School-Level Achievement
	 As described above, I estimated a school’s volatility in eighth-grade achievement by first calculating the difference in mean achievement from 2003-2004 to 2002-2003 for reading and for mathematics.  Among these 216 schools, the change in achievement from one year to the next ranged from roughly –17 to +17 MEA points in reading (M = –1.56, SD = 4.61) and, for math, –19 to +16 MEA points (M = +1.14, SD = 4.79).
	The well-established relationship between school size and achievement volatility is clearly evident in the present data (Figure 2).  Again, there simply is greater volatility—less stability—of school-level achievement among smaller schools than among larger schools.  This also can be seen in the correlation between school size and the absolute value of a school’s change in achievement from one year to the next:  rs = –.31 and –.29 for reading and math, respectively.  In short, Figure 2 and these two correlations underscore the relevance of the statistical-artifact hypothesis that frames the present study.
	The distribution of the 8-point volatility ratings, formed from the absolute value of a school’s change in achievement from one year to the next, are shown in Figure 3 for both reading and math.  Each distribution reflects extreme positive skew:  While the vast majority of these 216 schools demonstrated rather stable levels of achievement (±5 points from one year to the next), some schools evinced wide swings in this regard.  Only one school fell in the highest volatility category for mathematics achievement; none did for reading achievement.
	 Regression Analyses:  All Schools 
	 The first set of regression analyses is based on all schools, irrespective of their volatility in achievement.  Table 1 presents descriptive statistics for reading, math, poverty, and school size.  Not surprisingly, schools vary considerably with respect to both poverty and size:  Some schools have as few as 3 students per grade and 3% of their students receiving subsidized meals, whereas other schools have as many as 358 students per grade and 84% of their students on subsidized meals.  Reading and math correlate highly (r = .74), as one would expect, and each correlates with poverty in the customary fashion (Sirin, 2005; White, 1982).  There is some tendency for smaller schools to be located in more impoverished communities (r = –.34).  However, school size is unrelated to achievement (r = .07, p = .16).
	 Reading.  Table 2 shows the regression results for reading.  Poverty significantly and independently predicts reading at Step 1, whereas the corresponding effect of school size falls short of statistical significance.  An additional 2.2% of the variance in reading is explained by the introduction of the product term at Step 2, which, consistent with prior research, shows a statistically significant interaction between poverty and school size (p = .013).  
	Because the poverty-size interaction presently enjoys so much attention in the rural education literature, elaboration on the meaning of the various coefficients reported at Step 2 may be helpful to some readers.  As we saw above, Step 2 estimates the effects for the full equation,  , where the last term,  , reflects the possible interaction of poverty and school size.  As Aiken and West (1991) explain, b1 is the reading-on-poverty slope for schools having a per-grade enrollment equal to the mean (i.e., centered X2 = 0).  For schools of average size, then, reading achievement decreases .127 MEA points (b1 = –.127) with every one-percentage-point increase in the students receiving subsidized meals.  In standardized terms, this corresponds to a decline in reading achievement of roughly half a standard deviation (β1 = –.54) for each standard deviation increase in poverty (again, for schools of average size).  One interprets b2 analogously:  For schools at the mean for poverty, reading achievement decreases .008 MEA points (b2 = –.008) for each one-student increase in school size—an achievement decline of 16% of a standard deviation (β2 = –.16) for each standard deviation increase in school size.    
	The statistical significance of b3 signals the presence of interaction between poverty and school size.  Specifically, the negative coefficient for the product term X1X2, coupled with the negative coefficient for poverty, means that the simple slope for poverty—i.e., the reading-on-poverty slope at a specified value of school size—is steeper (more negative) for larger schools than it is for smaller schools.   
	The concept of simple slope is central to interpreting a statistically significant interaction.  The simple slope for poverty derives from the full equation,  , which, when recast as the Y-on-X1 regression at a specified value of X2, looks like this:   .  The critical term here is  , which is the Y-on-X1 slope for the specified value of X2 (expressed as a deviation from the centered mean of zero).  Select a deviation score to represent X2, plug this value into the expression  , and you have the simple slope for poverty at a particular school size.
	For example, consider a school having 16 students per grade—the 25th percentile in school size and roughly 57 fewer students than the mean (  = 72.78).  The simple slope for schools of this size is b-57 = –.098, which corresponds to a standardized regression coefficient of β-57 = –.41.   Thus, with each standard deviation increase in poverty, reading achievement in these smaller schools decreases approximately 40% of a standard deviation.  The simple slope is slightly steeper for schools having 42 students per grade (the median school size, or 50th percentile):  b-31 = –.111 or, in standardized terms, β-31 = –.47.  Now consider a school falling at the 75th percentile in school size, or 105 students per grade.  Here, the unstandardized and standardized simple slopes are b+32 = –.144 and β+32 = –.61, respectively.  For these larger schools, then, reading decreases approximately 60% of a standard deviation with each standard deviation increase in poverty.  Consistent with the statistically significant interaction of poverty and school size, simple slopes estimated at various levels of school size illustrate that reading achievement is increasingly related to poverty as school size increases, and decreasingly related to poverty as school size decreases.
	Figure 4 shows the within-group regression lines.  As described above, I obtained these by splitting the school-size distribution at the median (42 students per grade) and, for each group of schools, fitting a reading-on-poverty regression line.  These within-group regression lines further illustrate the interaction reported in Table 2:  There is a flatter slope—a weaker relationship between reading achievement and poverty—for smaller schools than for larger schools.  Indeed, the correlation for the former is r = –.39 versus r = –.64 for the latter, which, when squared, yield power ratings of 15% and 41%, respectively.  Although there is considerable within-group variability evident in Figure 4 and, further, the nonparallel displacement of one regression line relative to the other is not great (particularly where most of the data are), there is some tendency for smaller higher-poverty schools to have reading achievement superior to that of larger higher-poverty schools. 
	Math.  Table 3 shows the regression results for math, based on all schools.  The pattern of results is similar to those obtained for reading.  At Step 1, poverty is significantly related to math whereas school size is not (p = .31).  And at Step 2, the interaction of poverty and school size explains an additional 5% of variance in mathematics achievement (ΔR2 = .048, p = .001):  As with reading achievement, mathematics achievement is increasingly related to poverty as school size increases, and decreasingly related to poverty as school size decreases.  For example, the math-on-poverty slope for median-size schools is b-31 = –.086 (β-31 = –.33).  In contrast, the simple slope for schools at the 25th percentile in school size b-57 = –.064 (β-57 = –.25) and, for schools at the 75th percentile, b+32 = –.139 (β+32 = –.53).      
	The within-group regression lines for below- and above-median schools in per grade enrollment are presented in Figure 5, which shows the nonparallel displacement indicative of interaction. The math-on-poverty slope is flatter—signifying a weaker relationship—for smaller schools than for larger schools.  The corresponding power ratings are, respectively, 4% for smaller schools (r = –.19) and 46% for larger schools (r = –.68).
	The symmetry of b3.  As noted above, the statistical significance of b3 indicates that the magnitude of the achievement-on-poverty slope (b1) is a function of school size (X2) and, symmetrically, the magnitude of the achievement-on-size slope (b2) is a function of poverty (X1).  My emphasis thus far has been decidedly on the former, given its direct relevance to the concept of poverty’s power rating which frames the present study.  But many writers blur the distinction between the two interpretations, referring to one and then to the other as their argument develops.  Therefore, so (briefly) shall I.
	Just as the simple slope for poverty (b1) at a specified value of school size (X2) is equal to  , the simple slope for school size (b2) at specified value of poverty (X1) is equal to  .   At Step 2 of Tables 2 and 3, we see that school size has a negligible, if statistically significant, negative effect on both reading and math for schools of average poverty (i.e., X1 = 0).   But when the simple slope is calculated for a school where 23% of its students receive subsidized meals—approximately one standard deviation, or 17 percentage points, below the mean (  = 39.52)—school size is unrelated to achievement in either reading or math.  Specifically, b-17 = .001 and β-17 = .01 (p = .91) for reading; for math, b-17 = .006 and β-17 = .11 (p = .20).  Now consider a comparatively high-poverty school in which 73% of students receive subsidized meals (roughly two standard deviations, or 33 percentage points, above the mean).  Here, the effect of school size on reading is statistically significant and large:  b+33 = –.025 and β+33 = –.49 (p = .003).  For math, the effect is larger still:  b+33 = –.035 and β+33 = –.63 (p < .001).  Thus, with a standard deviation decrease in school size, reading achievement in these high-poverty schools—unlike their lower-poverty counterpart—increases by half a standard deviation, and math achievement increases almost two-thirds of a standard deviation.  This finding, of course, merely restates the poverty-size interaction by focusing on the conditional effect of school size rather than the conditional effect of poverty.   
	Regression Analyses:  Successively Less-Volatile Schools
	To explore the possible operation of a statistical artifact due to the greater volatility in achievement among smaller schools, I repeated the regression analyses reported above for successively less-volatile collections of schools.  Rather than exhaustively delineate these results for each value of the volatility measure, I report in Table 4 the primary statistic for each analysis:  the increment in R2 at Step 2 when the product term, X1X2, is introduced.  I then provide additional details for the results based on the 104 least-volatile schools.
	Reading.  As Table 4 shows, the interaction between poverty and school size is unrelated to the volatility of school-level achievement:  For each successive analysis, the increment in explained variance associated with the introduction of the product term at Step 2 is statistically significant.  Although I did not conduct a trend analysis on the seven ΔR2 values, there is no evidence that ΔR2, statistical significance notwithstanding, is systematically smaller when based on successively less volatile schools.  
	Tables 5 and 6 show, respectively, descriptive statistics and regression results for reading, based on the least-volatile schools in reading achievement (n = 104).  Again, these are the schools for which mean achievement on the reading measure did not vary more than 2.5 points across the two years examined.  The pattern of results here is similar to that reported earlier for all 216 schools, as are the within-group regression lines shown in Figure 5.  Indeed, regarding the latter, poverty’s power rating differential—16% for smaller schools vs. 42% for larger schools—is almost indistinguishable from the differential based on all schools (15% and 41%, respectively).  With respect to reading achievement, then, my statistical-artifact hypothesis is not consistent with the data. 
	Math.  A different picture emerges with mathematics achievement, where we see a gradual decline in ΔR2 with successively less-volatile schools (Table 4)—to the point of statistical nonsignificance when based on the 104 least-volatile schools (ΔR2 = .014, p = .193).   Tables 7 and 8 present the relevant statistics for the latter analysis, where, at Step 2 of Table 8, we see the statistically nonsignificant slope for the product term.  
	The within-group regression lines are shown in Figure 7.  While the power ratings of poverty show some differential between smaller and larger schools, it derives from a poverty-size interaction that failed to reach statistical significance and, therefore, reflects only chance variation.  Between the general decline in ΔR2 values (Table 4) and the absence of a statistically significant poverty-size interaction when based on the least volatile schools (Table 8), the hypothesis of statistical artifact in the case of mathematics achievement is consistent with the data.
	Discussion 
	 “Substantive finding or statistical artifact?” is the question posed in the subtitle of my paper, to which I can now answer with an ineluctably facetious “Yes!”  When the dependent variable is reading achievement, I find no support for my hypothesis that poverty’s power rating is lower in smaller schools because of their greater volatility (lower reliability) in achievement.  Thus, the celebrated interaction of socioeconomic status and school size clearly stands with respect to eighth-grade reading achievement in these Maine schools.  But for mathematics achievement, the statistical-artifact hypothesis is supported.  For eighth-grade mathematics achievement, poor reliability appears to be a plausible explanation of the reduced power rating of poverty among these smaller schools. 
	 Unfortunately, the latter conclusion is complicated by plausible rival hypotheses of its own—an inevitable consequence of correlational research.  Two problems immediately come to mind.  First, my achievement-volatility measure does not distinguish between random variation and variation due to educational practice.  Some of the high-discrepancy schools in Figure 2, as reflected in their alignment on the vertical axis, doubtless are revealing real—not random—improvement or decline in achievement.  By treating all variation as random variation, I inevitably exclude some schools from the analysis that should have been included (were it possible to make this distinction in practice).  That said, the results are not systematically biased as a consequence, insofar as the absence of “real improvement” schools is offset by the absence of “real decline” schools, particularly regarding the poverty-size interaction.  
	The second problem is of greater concern.  By conducting the regression analyses on successively less-volatile collections of schools, and because achievement volatility is more pronounced among smaller schools (Figure 2), I successively compromise the full representation of small schools as well.  In short, I arguably exclude some of the very schools required for a fair test of my statistical-artifact hypothesis (and, in doing so, introduce a certain irony into the present study).  We see the extent of this sacrifice in Figure 8, which shows the school-size distribution for all 216 schools and for the 104 least-volatile schools.  Although both distributions have the expected positive skew, there are proportionately fewer small schools in the restricted sample than in the full sample.  Consistent with this visual impression, the school-size mean and median are both higher in the restricted sample, and the coefficient of variation is smaller.
	 Yet this second problem—the successive underrepresentation of small schools—had no effect on the viability of the poverty-size interaction for reading achievement.  This inconsistency presents an interesting challenge:  how to explain it.  If one is inclined to dismiss my findings for mathematics achievement because of this underrepresentation, then the challenge is to explain why a similar outcome was not obtained for reading achievement.  After all, small-school underrepresentation operates there as well.  So, what is it about reading achievement (or related instruction) that makes the poverty-size interaction immune to the successive underrepresentation of small schools in these analyses?  Or, if one prefers, what is it about mathematics achievement (or related instruction) that makes the poverty-size interaction particularly vulnerable in this regard?
	 On the other hand, for those whose confidence in the statistical-artifact results for mathematics achievement is unshaken by the underrepresentation problem—after all, the bottom distribution in Figure 8 still shows positive skew and healthy variance—the corresponding challenge is to explain why the statistical-artifact hypothesis did not prevail for reading achievement.  After all, reading achievement is not appreciably less volatile than mathematics achievement.  So, what is it about reading achievement (or related instruction) that explains this apparent invincibility—a greater robustness—of the poverty-size interaction?     
	 Unfortunately, I cannot answer these questions.  At least not yet.  But insofar as I cannot explain, even with the benefit of hindsight, a statistical-artifact finding that would surface only for mathematics achievement, I am inclined to attach greater import to the successive underrepresentation of small schools in these analyses than I had at the outset.  Although I cannot explain why this underrepresentation has no concomitant effect on the poverty-size interaction with respect to reading achievement, this anomaly presently perplexes me less than does a mathematics-specific statistical artifact.  Furthermore, it is only in the final, most restrictive analysis—where a sizeable number of small schools are lost—that the poverty-size interaction for mathematics achievement fails to reach statistical significance (Table 4).  
	In view of these considerations, then, I conclude that my results are insufficient to support the statistical-artifact hypothesis with respect to mathematics achievement.  Although this conclusion is not as unequivocal as that for reading achievement, I nevertheless believe it is the reasonable conclusion given the considerations above.  In short, the celebrated interaction of poverty and school size has survived a sincere attempt to empirically cast doubt on it.  Consequently, we can have greater confidence in this interaction than was warranted before.  
	 Implications for Research
	 First, further tests of the statistical-artifact hypothesis would be informative, if only to show that my somewhat equivocal results for mathematics achievement are a mere anomaly.  Replications should involve Maine data drawn from other years, but replications also should involve data beyond Maine.  In this spirit, I am hopeful that other researchers who have explored the mitigating-effect phenomenon will, where possible, conduct (re)analyses of their own with the inclusion of an achievement-volatility measure.
	 Second, if we are inclined to take the interaction of socioeconomic status and school size as an established phenomenon, we nonetheless are left wanting for a credible explanation of it.  Such an explanation seemingly would draw on the mechanisms through which smaller schools facilitate student achievement and related outcomes, but, unfortunately, we are wanting there as well.  As Fowler and Walberg (1991) said in reference to the then-extant research,
	“[a]lthough these studies show a positive relationship between small school size and student outcomes, they do not suggest why this may occur.  In other studies, which only peripherally included school size, researchers have suggested reasons for the beneficial effect that small school size has upon student outcomes” (p. 191; emphasis added).  
	A decade later, Howley (2002) offered a similar conclusion in his synthesis of the school size research:
	Many, many other unanswered questions exist.  For instance, why is smaller school size (variously defined) associated with higher . . . levels of achievement for individuals, schools, and districts?  Hypotheses abound, with most having to do with the care, attention, and respect enabled by smallness in the conduct of personal relations.  (p. 62; emphasis in original)
	As an influence on student achievement, school size clearly is a proxy rather than a causal force in and of itself.  To offer credible explanations for the poverty-size interaction, then, we first need stronger evidence regarding the mechanisms—the mediating variables—through which school size putatively influences student achievement (McMillen, 2004, p. 20).  Howley (2002, p. 62) refers to “care, attention, and respect.”  Lee and her colleagues refer to “the academic and social organization and functioning of schools” (Lee & Smith, 1997, p. 219).  Doubtless there are other context- and process-related forces at play as well.  Whatever the focus, a warranted claim about its relationship to both school size and student achievement must be based on careful empirical investigation, not on casual observation, anecdotal reports, reasonable (but untested) hypotheses, popular opinion, or the will to believe.  We need additional descriptive research like that conducted by Howley and Howley (2006) and Lee, Smerdon, Alfeld-Liro, and Brown (2000), which should be followed up by analyses that exercise the statistical control necessary to test hypotheses that fundamentally get at cause-and-effect relationships.
	Equipped with empirically established mediating variables regarding the relationship between school size and student achievement, we can then craft defensible conjectures regarding the poverty-size interaction.  In this regard, of course, one’s central obligation will be to argue why a mediating variable would be expected to differentially affect student achievement as a function of student SES.  For example, if the accumulation of evidence from sound empirical research were to show that smaller schools are characterized by more personalized social relations and, in turn, that these more personalized social relations improve student achievement, our obligation is to cogently argue why lower-SES students would benefit from such social relations more than higher-SES students would.  These conjectures should then be subjected to empirical tests of their own.  For example, one could introduce a set of social-relations variables into the full regression equation (in the tradition above) to see whether the poverty-size interaction disappears—as it would if the poverty-size interaction is in fact due to social relations.  
	In any case, well-crafted arguments followed by equally well-crafted investigations—both premised on warranted claims regarding the mechanisms through which school size influences student achievement—should be the direction of future research on the poverty-size interaction.     
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	Figure 1.  The relationship between (a) the number of fourth-grade students tested in a school and (b) the one-year change in the proportion of students who met or exceeded the standard.  (Source: Coladarci, 2003, Figure 4)
	 
	 
	 
	 
	Figure 2.  School size and the volatility of achievement in reading (top)and mathematics (bottom).
	  
	 
	 
	Figure 3.  The distribution of volatility in school achievement:  reading (top) and math (bottom.)
	    
	Table 1.  Descriptive statistics:  All schools (n = 216).
	       M
	      SD
	range
	intercorrelations
	reading
	math
	poverty
	reading
	535.96
	3.94
	522.72,  547.69
	math
	528.16
	4.36
	514.51,  542.17
	.74*
	poverty
	39.52
	16.63
	2.68,  83.86
	-.48*
	-.37*
	school size
	72.78
	77.31
	2.94,  358.00
	.07
	.07
	-.34*
	Note.  For the purpose of this table, poverty and school size are in their original uncentered  form (which affects only the mean and range).
	* p < .01.
	 Table 2.  Regressing reading on poverty, school size, and their product:   All schools (n = 216).
	 
	b
	       s.e.
	β
	t
	       p
	ΔR2
	Step 1:
	(constant)
	535.962
	poverty
	-.122
	.015
	-.51
	-8.07
	< .001
	school size
	-.006
	.003
	-.11
	-1.71
	.089
	Step 2:
	(constant)
	535.738
	 
	poverty
	-.127
	.015
	-.54
	-8.45
	< .001 
	 
	school size
	-.008
	.003
	-.16
	-2.40
	.017
	 
	poverty x size
	-.001
	.0002
	-- 
	-2.52
	.013
	.022
	Note.  Poverty and school size were centered for this analysis.
	 
	Figure 4.  The interaction of poverty and school size (p =.013), reading:  All schools (n = 216).  
	 Table 3.  Regressing math on poverty, school size, and their product:   All schools (n = 216).
	 
	b
	       s.e.
	β
	t
	       p
	ΔR2
	Step 1:
	(constant)
	528.161
	poverty
	-.103
	.018
	-.39
	-5.78
	< .001
	school size
	-.004
	.004
	-.07
	-1.02
	.310
	Step 2:
	(constant)
	527.796
	 
	poverty
	-.112
	.017
	-.43
	-6.40
	< .001 
	 
	school size
	-.008
	.004
	-.14
	-2.05
	.042
	 
	poverty x size
	-.001
	.0002
	--
	-3.53
	.001
	.048
	Note.  Poverty and school size were centered for this analysis.
	 
	Figure 5.  The interaction of poverty and school size (p =.001), math:  All schools (n = 216).  
	 Table 4.  Volatility in school achievement and the magnitude of ΔR2.  
	Reading
	Math
	Volatility
	n
	ΔR2
	p
	Volatility
	n
	ΔR2
	p
	≤ 8
	–
	–
	–
	≤ 8
	216
	.048
	.001
	≤ 7
	216
	.022
	.013
	≤ 7
	215
	.047
	.001
	≤ 6
	214
	.022
	.014
	≤ 6
	212
	.042
	.001
	≤ 5
	208
	.029
	.005
	≤ 5
	208
	.039
	.002
	≤ 4
	204
	.029
	.006
	≤ 4
	204
	.038
	.002
	≤ 3
	188
	.030
	.008
	≤ 3
	193
	.026
	.011
	≤ 2
	166
	.042
	.002
	≤ 2
	164
	.027
	.018
	1
	104
	.031
	.027
	1
	104
	.014
	.193
	Note.  ΔR2 is associated with the introduction of the product term (poverty x size)  at Step 2 of each regression analysis.
	Table 5.  Descriptive statistics:  Least volatile schools, reading achievement (n = 104).
	       M
	      SD
	range
	intercorrelations
	reading
	poverty
	reading
	535.95
	3.76
	527.99,  545.95
	poverty
	38.78
	15.98
	2.68,  78.52
	 -.59*
	 
	school size
	89.19
	79.67
	2.94,  358.00
	.09 
	-.35*
	Note.  For the purpose of this table, poverty and school size are in their original uncentered  form (which affects only the mean and range).
	* p < .01.
	 Table 6.  Regressing reading on poverty, school size, and their product:  Schools having  minimal volatility in achievement (n = 104).
	 
	b
	       s.e.
	β
	t
	       p
	ΔR2
	Step 1:
	(constant)
	535.945
	poverty
	-.149
	.020
	-.63
	-7.45
	< .001
	school size
	-.006
	.004
	-.14
	-1.61
	.110
	Step 2:
	(constant)
	535.721
	 
	poverty
	-.141
	.020
	-.60
	-7.067
	< .001 
	 
	school size
	-.007
	.004
	-.16
	-1.875
	.064
	 
	poverty x size
	-.001
	.0002
	--
	-2.237
	.027
	.031
	Note.  Poverty and school size were centered for this analysis.
	          
	Figure 6.  Interaction of poverty and school size (p = .001), reading: Schools having minimal volatility in achievement (n = 104).
	 Table 7.  Descriptive statistics:  Least volatile schools, math achievement (n = 104).
	       M
	      SD
	range
	intercorrelations
	math
	poverty
	math
	527.60
	4.26
	514.51,  542.17
	poverty
	38.25
	14.71
	7.99,  73.89
	 -.41*
	 
	school size
	82.28
	81.72
	3.39,  327.50
	.06 
	-.30*
	Note.  For the purpose of this table, poverty and school size are in their original uncentered  form (which affects only the mean and range).
	* p < .01.
	 Table 8.  Regressing math on poverty, school size, and their product:   Schools having minimal volatility in achievement (n = 104).
	 
	b
	       s.e.
	β
	t
	       p
	ΔR2
	Step 1:
	(constant)
	527.475
	poverty
	-.125
	.028
	-.43
	-4.54
	< .001
	school size
	-.004
	.005
	-.07
	-.76
	.448
	Step 2:
	(constant)
	527.305
	 
	poverty
	-.131
	.028
	-.45
	-4.709
	< .001 
	 
	school size
	-.007
	.006
	-.13
	-1.265
	.209
	 
	poverty x size
	-.001
	.0004
	--
	-1.309
	.193
	.014
	Note.  Poverty and school size were centered for this analysis.
	 
	Figure 7.  No interaction of poverty and school size (p = .193), math:  Schools having minimal volatility in achievement (n = 104).
	  
	               
	Figure 8.  Variability in school size:  All schools (n = 216) versus least-volatile schools (n = 104).

