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1. Introduction 

The transition from paper-based testing to computer-adaptive testing (CAT) requires 

evaluation of different types of designs for delivery of test items.  Specifically, a CAT evaluation 

framework should include an ideal way of depicting the real administration of a CAT and a 

model that is most suitable for the particular examinee population for whom CAT is intended.  

The purpose of this study was to evaluate CAT designs for use with the Verbal Reasoning (VRS) 

measure of the Medical College Admissions Test (MCAT) using realistically simulated data.  In 

addition to model-based data generation commonly used in simulations, this study utilized more 

realistic simulations based on response data generated by using simulees’ probabilities of correct 

response on conditional observed proportions correct.   

In a typical simulation context in which model-based data generation is used, it is 

difficult to compare alternative IRT models as usual evaluation criteria involve comparisons 

between true and estimated parameters associated with the given model of interest.  Empirically-

based simulations help overcome this problem by providing a less model-dependent basis for 

model comparisons as data are generated from observed probabilities obtained on the actual data, 

which, although still affected by model-based parameter calibrations, are based upon realistic 

response patterns and should be similar across models.   

One-, two-, and three- parameter model based CATs were evaluated that were designed 

to be parallel to the fully set based paper and pencil (P&P) MCAT Verbal Reasoning test.  These 

results were compared using the two simulation procedures.  The empirical- and model-based 

simulations for the three models were carried out for the situations where sets were a) trimmed to 

increase within-set homogeneity and b) not trimmed, so had heterogeneous difficulty 

distributions.  Common specifications for the designs included item selection methodology using 

the weighted deviations model (WDM; Stocking & Swanson, 1993) and multinomial exposure 

control (Stocking & Lewis, 2000).  

 

2. Significance of the Study 

A limitation of adaptive testing simulations is that the data are generated using the same 

IRT model that is used for scoring.  As mentioned before, since real data seldom fit assumed IRT 
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models perfectly, model-based simulations may provide incomplete and possibly misleading 

information about a particular adaptive testing design.   

As part of the item calibrations in this study, data to help assess model-data fit were 

generated for each item.  The item calibration procedures in PARSCALE utilized the Bock and 

Aitkin (1981) marginal maximum likelihood algorithm to estimate item parameters.  This 

estimation procedure resulted in an estimated posterior distribution of ability, which was 

represented by discrete ability levels (quadrature points) and proportions (quadrature weights).  

The fit of the model for a particular item j was evaluated over the q quadrature points, where njk 

is the estimated number of examinees at ability level Xk and rjk is the expected number of correct 

responses at ability level Xk.  These values were used to compute chi-square fit statistics and 

graphical displays of model-data fit for each item.  Figure 2.1 displays an example of the 

graphical model-data fit for an item based on a 1-PL calibration.  The continuous line is the 

model-based item characteristic curve and the boxes represent rjk/njk at each quadrature point. 

 

 

Figure 2.1: Example of a graphical model-data fit plot. 

 

A substantial degree of model misfit is exhibited in Figure 2.1, which is not unusual in 

applications of the 1-PL model.  In this case, the empirical data suggests a more discriminating 
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item than would be predicted by the 1-PL model.  It appears that the performance of low ability 

examinees is over-predicted by the model and the performance of high ability examinees is 

under-predicted. 

In an adaptive testing situation, the potential impact of the model-data misfit illustrated in 

Figure 2.1 is unclear.  Ideally, this item would be administered adaptively to examinees with 

abilities in the range of 0.25, which is the region of the ability scale where the fit of the model to 

the data is good.  In the ideal situation, the misfit at the extremes of the scale would be of no 

consequence.  However, factors such as item pool depth, content constraints, and exposure could 

result in repeated adaptive administrations of this item at more extreme ability levels, in which 

case the model-data misfit might contribute to bias in examinees’ final ability estimates who 

received this item.  This problem is excaperated in CAT because not all examinees receive the 

same items and so not all people are affected equally.  Across an entire adaptive testing item 

pool, the patterns of model-data misfit would interact with the item selection algorithm in 

complex ways that are difficult to predict.  By conducting the empirically-based adaptive testing 

simulations, one can see the impact of model-data misfit. 

 

3.  Method 

Simulations were carried out using 1-, 2-, and 3-parameter models using model-based and 

empirically-based data generation. The empirical- and model-based simulations for the three 

models were carried out for the situations where sets were a) trimmed to increase within-set 

homogeneity and b) not trimmed so sets had heterogeneous difficulty distributions.  Our interest 

in the simulation results fell into four categories: measurement precision of the CATs; overall 

reliability of the CATs; exposure rates of set stimuli (passages) and items within sets; and how 

well the content specifications for the simulated CATs were satisfied.   

 

3.1 Item Pool 
 

The study utilized an item pool consisting of items from eight paper and pencil forms of 

the MCAT Verbal Reasoning test.  Each form was calibrated using the one-, two-, and three-

parameter logistic model using PARSCALE (Muraki & Bock, 1991).  Simulations using 
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different IRT models were conditioned on the same number right-true score metric based on one 

of the eight test forms so that simulation results could be compared across models.   

Item pools were first created by deleting items that exhibited poor model-data fit and 

items that differed in difficulties from the other items within a set.  The decision of set trimming 

was made to make the sets more homogeneous in difficulty, and to alleviate the adverse impact 

of using the set as administration unit in CAT on measurement precision.  However, the 

disadvantage of set trimming is that the satisfaction of content specification and item exposure 

rate requirement might be negatively affected.  Therefore the simulations were repeated with sets 

having more heterogeneously difficult distributions for within-set items, that is, without 

trimming the sets.  These decisions were made independently for each IRT model. The number 

of items recovered from the 1-, 2-, and 3-PL item pools were 35, 38, and 40, respectively for the 

non-trimmed scenario.  It was expected that not trimming would adversely affect measurement 

precision, however, it might increase the proportion of cases for which the desired content 

specifications were satisfied. 

 

3.2 Content Specifications 
 

A fixed length of 32 questions (four 5-item passages and two 6-item passages) was 

determined for the adaptive test after analyzing the content specifications for the 55-item paper-

and-pencil VRS exam.  Because of the set-based nature of the measure, it was impossible to 

reduce the number of items and passages within content areas proportionally to the reduction in 

total items administered.  Table 3.2.1 lists the content specifications used in the simulations.  

There were five content constraints for stimuli and seven content constraints for items.  The goal 

for each adaptive test was to have the number of items associated with each content constraint 

range from the lower bound to the upper bound.  The last column indicates the weight assigned 

to meeting each constraint.  The item-level cognitive constraints carried the highest weights 

because they were the most difficult constraints to meet.  Three additional constraints (not 

included in the table), called “poor fit”,  “medium fit”, and “good fit”, were defined for the pools 

based on each model.  The number of items in the lower and upper bounds differed by model.   

These constraints attempted to control the inclusion of poor fitting items in the adaptive tests, 

although this goal was not considered as important as satisfying the content constraints.   
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Table 3.2.1: Verbal Reasoning Adaptive Test Content Constraints 

Content Constraint Lower Bound Upper Bound Weight
S:Human 2 2 10 
S:NatSci 2 2 10 
S:SocSci 2 2 10 

S:Six 2 2 10 
S:Five 4 4 10 
I:Comp 8 12 90 
I:Eval 4 8 90 
I:Appl 7 10 90 

I:Incorp 6 9 90 
I:Human 10 12 10 
I:NatSci 10 11 10 
I:SocSci 10 12 10 

 

In addition, item information at the estimated ability level at each point in the test was 

also considered a constraint.   Specifically, the algorithm attempted to maximize information 

subject to the other (content) constraints.   The conditional exposure rate for an item (conditioned 

on ability level) was targeted at a maximum of 0.25. 

 

3.3 Simulated Examinees 
 

Data for 500 simulees were generated at 20 number right true scores (from 16 to 54 in the 

increments of 2) using model-based and empirically-based data generation.  

 

3.3.1 Model-Based Data Generation 
            

In typical adaptive testing simulations, item and ability parameters for a particular IRT 

model are used to generate data according to well-known data generation procedures.  In these 

procedures, an initial ability is first assumed, and the following steps occur in an iterative 

fashion: 

1. The adaptive item selection algorithm chooses an item appropriate for the initial assumed 

ability level. 

2. Using the true item and ability parameters and the chosen IRT model, the probability of a 

correct response, P(θ), is generated. 
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3. P(θ) is compared to a random uniform deviate between 0.0 and 1.0. 

4. If P(θ) is greater than or equal to the random deviate, a correct response is generated; 

otherwise, an incorrect response is generated. 

5. An updated ability estimate is obtained using the responses generated so far and the item 

parameters comprising the pool (usually these are the same as the true item parameters). 

6. The process is repeated until an appropriate stopping rule is satisfied (e.g., a fixed number of 

items are administered or a fixed level of precision is achieved). 

 

3.3.2 Empirically-Based Data Generation 
 

In case of empirically-based data generation, examinee responses were generated not 

according to the model-based probability of a correct response, but according to an observed 

conditional probability of a correct response obtained from the actual data, which we call the 

empirically-based probability.  The following adaptive testing procedures were carried out using 

the data generation based on empirical probability: 

1. The adaptive selection algorithm selected an item appropriate for the initial assumed ability 

level. 

2. Using the true ability parameters and linear interpolation, an empirically based P(θ) was 

generated by entering a table that consists of the rjk /njk at each ability level (quadrature point) 

from the original item calibrations using PARSCALE.  

3. P(θ) was compared to a random uniform deviate between 0.0 and 1.0. 

4. If P(θ) was greater than or equal to the random deviate, a correct response was generated; 

otherwise, an incorrect response was generated. 

5. An updated ability estimate was obtained using the responses generated so far and the item 

parameters comprising the pool (in this case, the calibrated item parameters). 

6. The process was repeated for a fixed test length. 
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As small values of  and  can lead to distorted probability due to rounding errors, 

quadrature points were only regarded as valid if  was larger than or equal to 0.0010, and  

was larger than or equal to 0.0001.  An interval of quadrature points that were valid was 

identified as [

jkn jkr

jkn jkr

mX , nX ] for every item.  And the following rules were applied when generating 

the probability. 

 

• When the requested ability level was within the interval of [ mX , nX ], the probability was 

obtained using linear interpolation from the expect proportions correct at the two quadrature 

points that were closest to the requested ability level. 

 

• When the requested ability level was lower than the lowest valid quadrature point, i.e. mX , 

for 1-PL and 2-PL, probability was set to jmr / jmn  at mX  if jmr / jmn  was smaller than 0.25, 

and to 0.25 if otherwise, for 3-PL, the probability was set to jmr / jmn  at mX  if jmr / jmn  was 

smaller than c parameter, and to c parameter if otherwise.   

 

• When the requested ability level was between the highest valid quadrature point, i.e. nX , and 

the highest quadrature point, and when the highest quadrature point was not valid, probability 

was obtained using linear interpolation between jnr / jnn  at nX  and 1. 

 

• When the requested ability level was higher than the quadrature point range available, 

probability was set to 1. 

 

• Polynomial regression was then conducted to get a smoothed function of /  over jkr jkn kX , so 

as to eliminate noise in the data due to small sample size and to avoid the imprecision 

introduced by linear interpolation especially at extreme ends of the posterior ability 

distribution (Davey, 2002). 
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3.4 Comparison between IRT Models and Various Data Types 
 

Because the scales of different IRT models are unique, it is often difficult to compare 

across simulations based on different IRT models. In addition, generating an empirically-based 

P(θ) makes the usual comparisons between estimated and true parameters more complicated. 

These difficulties were resolved by conditioning simulations on the number right true score 

metric based on one of the eight MCAT test forms.  The number right metric provides a basis for 

comparing the 1-, 2-, and 3-PL IRT scales under study, as well as interpreting results of 

simulations where P(θ) is generated empirically. 

Table 3.4.1 summarizes the theta-to-number right true score relationships based on the 1-, 

2-, and 3-PL IRT scales for 20 number right true scores on Form 38A, which served as the 

reference form for the simulations.   

 

Table 3.4.1: Theta-to-Number Right True Score for the 1-, 2-, and 3-PL Models 

NR True 1-PL θ 2-PL θ 3-PL θ  NR True 1-PL θ 2-PL θ 3-PL θ

54 3.5545 6.6723 4.4161  34 -0.2656 -0.4806 -0.3248 

52 2.3832 3.8516 2.7141  32 -0.4461 -0.7039 -0.5592 

50 1.7992 2.6623 2.0336  30 -0.6229 -0.9192 -0.8053 

48 1.3891 1.9132 1.5718  28 -0.7978 -1.1296 -1.0705 

46 1.0633 1.3695 1.2050  26 -0.9725 -1.3376 -1.3641 

44 0.7871 0.9420 0.8942  24 -1.1487 -1.5459 -1.6993 

42 0.5431 0.5870 0.6199  22 -1.3280 -1.7571 -2.0954 

40 0.3212 0.2798 0.3694  20 -1.5124 -1.9740 -2.5869 

38 0.1153 0.0055 0.1333  18 -1.7043 -2.2003 -3.2537 

36 -0.0793 -0.2458 -0.0960  16 -1.9063 -2.4403 -4.3797 

 

4. Results 

The following sections present the results of the study in the following sequence: a) 

model-based simulations with set trimming for the three models; b) model-based simulations 

without set trimming for the three models along with the comparisons with the previous 
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simulations with set trimming; and c) empirically-based simulations for the three models along 

with the comparisons with the model-based results.   

 

4.1.  Model-based Simulations with Set Trimming: 

Table 4.1.1 summarizes the means and standard deviations of the item parameter 

estimates for each pool used in the simulations, as well as the mean and standard deviation of the 

estimated ability distribution.  This table indicates that the items were significantly easier on 

average than the abilities of the candidates as estimated on the reference form (Form 38A). 

 

Table 4.1.1:  Item Parameter Estimates for 1-, 2-, & 3-PL Item Pools in Model-Based  
Simulations 

 a-Parameters b-Parameters c-Parameters Abilities–38A 

Model #Items #Sets Mean SD Mean SD Mean SD Mean SD 

1-PL 399 64 0.59 - -0.83 0.95 0.00 - 0.06 0.75 

2-PL 400 64 0.49 0.19 -1.07 1.23 0.00 - 0.00 1.02 

3-PL 398 64 0.70 0.26 -0.33 1.17 0.28 0.08 -0.01 1.01 

 

Figure 4.1.1 illustrates the disparity between ability distribution and distribution of 

difficulty parameters for the 1-PL model.  This graph presents the items and abilities graphed on 

the same scale, with items on the left and abilities on the right.  It can be seen that about 20 

percent of the items had difficulties at or below –1.91 and that about half of the items had 

difficulties at or below –1.15; whereas, only about 6 to 7 percent of the estimated ability 

distribution was at or below –1.15.   

Note also that for the 3-PL model, the difference between the mean b-parameter estimate 

and the mean of the ability distribution in Table 4.1.1 was smaller than for the other two IRT 

models.  This is most likely because the difficulty estimates with the 3-PL model accounted for a 

non-zero lower asymptote.  Note also that the mean c-parameter estimate with the 3-PL model 

was 0.28, which suggested that low ability candidates still had a reasonable probability of 

answering most items correctly.  The 1-PL and 2-PL models did not account for guessing, and 

these models tended to estimate lower b-parameters to compensate. 
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Figure 4.1.1: Estimated item difficulties and the estimated ability distribution for the 1-PL 

model. 

 

The measurement precision of the simulated CAT examinations was summarized in 

terms of conditional standard errors of measurement (CSEMs), calculated at each generating 

number right-true score on the reference form (Form 38A), and in terms of overall simulation 

reliabilities.  These results are presented in Table 4.1.2. and Figure 4.1.2.  Although the true 

abilities differed across the 1-, 2-, and 3-PL models, because the generating true abilities across 

models corresponded to the same number right true score on the reference form, the CSEMs can 

be compared.    

In addition, CSEMs based on the 1-, 2-, and 3-PL models were estimated at the same true 

number right true scores for the 55-item paper-and-pencil reference form itself, using the 

estimated item parameters for that form.  These values are also presented in Figure 4.1.2.  The 

overall simulation reliabilities were based on a weighted average of the CSEMs using the 

approach recommended by Green et al. (1984), and were calculated for the 32-item adaptive tests 

as well as for Form 38A based on each IRT model.  These statistics are used routinely at ETS in 

evaluating adaptive test designs and item pool characteristics. 
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Table 4.1.2: CSEMs and Reliabilities for Model-Based Simulations with Set Trimming 

 1-PL  2-PL  3-PL 
 CAT P&P CAT P&P CAT P&P 

Reliability 0.78 0.85 0.84 0.85 0.85 0.85 

 

 As shown in Table 4.1.2, the simulated reliabilities differed somewhat across models.  

Figure 4.1.2 indicates that the CSEMs for the 1-PL simulations were noticeably higher than those 

for the 2-PL and 3-PL simulations.  This is mostly due to the fact that all items in the 1-PL 

simulations are assumed to be equally discriminating.  In the 2-PL and 3-PL simulations, the 

more highly discriminating items are more likely to be chosen.  Thus, the overall simulation 

reliabilities for the 2-PL and 3-PL based on 32-item adaptive tests were very similar to the 

estimated reliability for the 55-item paper-and-pencil test. 
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Figure 4.1.2: CSEMs for 1-, 2- and 3-PL CATs for model-based simulations. 

 

Information about how well the content constraints were satisfied is provided in Table 

4.1.3.  This table lists the proportion of simulated cases where the number of items selected was 

either below the lower boundaries or above the upper boundaries shown in Table 3.2.1.  It is 

clear that substantial content violations occurred for the cognitive categories in the simulations 

for all three models.  This occurred because of the way that sets were selected for the 

simulations.  Basically, the CAT algorithm first chooses a set on the basis of a single item within 
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the set that is considered the most desirable (this evaluation is based on a simultaneous 

consideration of content and statistical properties).  However, once a set has been selected, the 

CAT algorithm is limited to selecting the remaining items in the set, which may not always 

include items in the cognitive category that is needed.  This problem was exacerbated by the 

procedures followed to eliminate items from the sets that were extreme in difficulty compared to 

the other items.   
 
Table 4.1.3: Content Constraint Violations for Model-Based Simulations 
 

Content Targeted #Items %Violations Min. Adm. Max. Adm 
Constraint Low High Wght. 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL
S:Human 2 2 10 0 0 0 2 2 2 2 2 2 
S:NatSci 2 2 10 0 0 0 2 2 2 2 2 2 
S:SocSci 2 2 10 0 0 0 2 2 2 2 2 2 

S:Six 2 2 10 0 0 0 2 2 2 2 2 2 
S:Five 4 4 10 0 0 0 4 4 4 4 4 4 
I:Comp 8 12 90 .08 .05 .08 6 5 5 16 14 16 
I:Eval 4 8 90 .02 .02 .03 3 3 3 10 9 10 
I:Appl 7 10 90 .12 .08 .09 5 5 4 13 12 12 

I:Incorp 6 9 90 .08 .12 .12 3 4 4 12 12 12 
I:Human 10 12 10 0 0 0 10 10 10 12 12 12 
I:NatSci 10 11 10 .11 .34 .38 10 10 10 12 12 12 
I:SocSci 10 12 10 0 0 0 10 10 10 12 12 12 

 

Figure 4.1.3 and 4.1.4 present cumulative frequencies of the stimulus exposure rates 

(upper graphs) and item exposure rates (lower graphs) based on the 1-, 2-, and 3-PL simulations.   

In these graphs, the desirable result is the one where the cumulative percentage of the pool used 

approaches 100 percent as quickly as possible.  The patterns were very similar for the stimuli and 

items, which made sense given that most items within a set were used if the set was selected.   
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Figure 4.1.3: Cumulative exposure rates of stimuli for model-based Simulations. 
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Figure 4.1.4: Cumulative exposure rates of set items for model-based simulations. 

 
 
4.2.  Model-Based Simulations without Set Trimming 
 

In this section of the study, items that showed reasonably good model-data fit but were 

deleted from the previous simulation study because of disparate b-parameters within a set were 

recovered and simulations were repeated.   For ease of comparison, Table 4.2.1 summarizes the 

means and standard deviations of the item parameter estimates for each pool used in the current 
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simulations, as well as in the previous simulations.  The mean and standard deviation of the 

estimated ability distribution on the reference form (Form 38A) are provided also. 
 

Table 4.2.1: Item Parameter Estimates for Item Pools for Simulations with and without Set 

Trimming 

Pools # Items #Sets a-Parameters b-Parameters c-Parameters Abilities-38A

   Mean SD Mean SD Mean SD Mean SD 

1-PL w/ trimming 399 64 0.59 - -0.83 0.95 0.00 - 

1-PL w/o trimming 434 64 0.59 - -0.83 0.96 0.00 - 0.06 0.75 

2-PL w/ trimming 400 64 0.49 0.19 -1.07 1.23 0.00 - 

2-PL w/o trimming 438 64 0.48 0.18 -1.04 1.26 0.00 - 0.00 1.02 

3-PL w/ trimming 398 64 0.7 0.26 -0.33 1.17 0.28 0.08 

3-PL w/o trimming 438 64 0.7 0.26 -0.31 1.19 0.28 0.08 -0.01 1.01 

 

Table 4.2.1 indicates that there was very little difference between item pools with set 

trimming and those without set trimming with regards to item parameter means and standard 

deviations.  Items in all pools were significantly easier on average than the abilities of the 

candidates as estimated on the reference form. 

Measurement precision, in terms of overall simulation reliabilities, of the CAT 

examinations simulated from the item pools with and without set trimming are summarized and 

presented in Table 4.2.2 and Figures 4.2.1 to 4.2.3.  Measurement precision results from previous 

simulations are also displayed for comparison.  Similar to what was observed in the previous 

study, the CSEMs for the 1-PL simulations were higher than those for the 2-PL and 3-PL 

simulations.  The overall reliabilities of 2-PL and 3-PL CAT simulated exams were close to the 

P&P reference test, but the reliability of 1-PL CAT exam was relatively low compared to both its 

2-PL and 3-PL counterparts and the P&P reference form. 

 

Table 4.2.2: Reliabilites for Model-Based Simulations (with/without set trimming) 
  1-PL   2-PL   3-PL  

 CAT 

w/trim 

CAT 

w/o trim 

P&P CAT 

w/trim 

CAT 

w/o trim 

P&P CAT 

w/trim 

CAT 

w/o trim 

P&P 

Reliability 0.78 0.78 0.85 0.84 0.83 0.85 0.85 0.84 0.85 
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Furthermore, the plots show that except for the 2-PL situation where CSEMs for no 

trimming were relatively higher than those for trimming at low levels of true scores, the 

discrepancies of CSEMs between trimming and non-trimming situations were miniscule.  

Although the purpose of set trimming was to enhance measurement precision, the gain was not 

obvious in our simulation studies except for a slight increase in reliability for 2-PL and 3-PL 

situations.  This occurred because the number of deleted items in previous set trimming was not 

large per se, hence its influence was trivial.  Another reason is that although these trimmed items 

were recovered, the probabilities of their getting selected under the condition that the sets they 

are in were selected would be low due to their extreme difficulties, as would be determined by 

the CAT algorithm.  There might be situations when these items were considered the most 

desirable when the decision of set selection was about to be made, in which case a disparate 

difficulty within set would not prevent them from getting selected, but that probability is small 

too.  If few of the items previously trimmed were administered, trimming or not trimming would 

not make much difference with respect to CSEMs and overall reliability. 
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Figure 4.2.1: CSEMs for 1-PL P&P and CATs for model-based simulations (with and without set 
trimming). 
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Figure 4.2.2: CSEMs for 2-PL P&P and CATs for model-based simulations (with and without set 
trimming). 
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Figure 4.2.3: CSEMs for 3-PL P&P and CATs for model-based simulations (with and without set 
trimming). 

 

The absolute bias in ability estimation for the trimmed and non-trimmed cases across the 

three models is presented in Figures 4.2.4. to 4.2.6.  The figures show that the bias for 1-PL was 

largest across most of the ability levels.  The difference between trimming and not trimming of 

the sets was apparent most in the 3-PL model where bias was greatly reduced by trimming the 

sets.  
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Figure 4.2.4: Bias for 1-PL CATs for model-based simulations (with/without set trimming). 
 

 

 

 

 

 

 

 

 

Figure 4.2.5: Bias for 2-PL CATs for model-based simulations (with/without set trimming). 
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Figure 4.2.6: Bias for 3-PL CATs for model-based simulations (with/without set trimming). 

 

Information about how well the content constraints were satisfied is provided in table 

4.2.3.  This table lists the proportion of simulated cases where the numbers of items selected 
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were either below the lower boundaries or above the upper boundaries.  Minimum and maximum 

numbers of items in each content category selected were also presented.  Content constraint 

violations from initial simulation with set trimming are also provided for comparison purpose. 

As expected, not trimming increased the proportion of cases for which the desired 

number of items across the cognitive categories was selected, and improvement was most 

noticeable in the “Natural Science” content category.  Nevertheless, Table 4.2.3 indicates that 

there were still considerable content violations for some item cognitive constraints across all 

three models.   

 

Table 4.2.3: Content Constraint Violations for Model-Based Simulations (with and without         
trimming 

Targeted #Items %Violations* Min.Adm.* Max.Adm.* Content 
Constraint Low High Wt. 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL 

S: Human 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: NatSci 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: SocSci 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: Six 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: Five 4 4 10 0 
0 

0 
0 

0 
0 

4 
4 

4 
4 

4 
4 

4 
4 

4 
4 

4 
4 

I: Comp 8 12 90 .08 
.08 

.04 

.05 
.05 
.08 

5 
6 

6 
5 

4 
5 

16 
16 

17 
14 

14 
16 

I: Eval 4 8 90 .03 
.02 

.02 

.02 
.02 
.03 

3 
3 

3 
3 

3 
3 

10 
10 

11 
9 

11 
10 

I: Appl 7 10 90 .07 
.12 

.07 

.08 
.07 
.09 

4 
5 

3 
5 

5 
4 

14 
13 

13 
12 

12 
12 

I: Incorp 6 9 90 .06 
.08 

.06 

.12 
.14 
.12 

4 
3 

4 
4 

3 
4 

11 
12 

10 
12 

10 
12 

I: Human 10 12 10 0 
0 

0 
0 

0 
0 

10 
10 

10 
10 

10 
10 

12 
12 

12 
12 

12 
12 

I: NatSci 10 11 10 0 
.11 

0 
.34 

0 
.38 

10 
10 

10 
10 

10 
10 

11 
12 

11 
12 

11 
12 

I: SocSci 10 12 10 0 
0 

0 
0 

0 
0 

10 
10 

10 
10 

10 
10 

12 
12 

12 
12 

12 
12 

* Numbers in the first line of cells represent non-trimming scenario.  Numbers in the second line of cells represent 
set trimming scenario. 
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Figure 4.2.7 presents cumulative frequencies of the stimulus exposure rates and Figure 

4.2.8 presents cumulative frequencies of the item exposure rates for the 1-PL, 2-PL, and 3-PL 

simulations.  The patterns of exposure rate frequencies were very similar across the three IRT 

models.   
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Figure 4.2.7: Cumulative exposure rates of stimuli for model-based Simulations (without        
trimming). 
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Figure 4.2.8: Cumulative exposure rates of set items for model-based simulations (without 
trimming). 
 

To examine the influence of trimming and no trimming on exposure rates, plots of pair-

wise comparisons were displayed.  Figures 4.2.9 to 4.2.11 compare exposure rates of VR stimuli 

between trimming and non-trimming situations for 1-, 2- and 3-PL respectively.  Figure 4.2.12 to 
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4.2.14 compare exposure rates of VR items between trimming and non-trimming situations for  

1-, 2- and 3-PL respectively.  These figures show that the difference between trimming and non-

trimming was negligible with respect to exposure rates.  Although trimming seemed to 

outperform non-trimming scenario in stimuli exposure rates for 1-PL, generally they exhibited 

very similar results. 

 

0

10

20

30

40

50

60

70

80

90

100

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33

Stimuli Exposure Rate

C
um

. %
 o

f P
oo

l

1PL w/ trimming
1PL w/o trimming

 

 

 

 

 

 

 

 

 
Figure 4.2.9: Cumulative exposure rates of stimuli for 1-PL for model-based simulations (with 
and without trimming). 
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Figure 4.2.10: Cumulative exposure rates of stimuli for 2-PL for model-based simulations (with 
and without trimming). 
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Figure 4.2.11: Cumulative exposure rates of stimuli for 3-PL for model-based simulations (with 
and without trimming). 
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Figure 4.2.12: Cumulative exposure rates of set items for 1-PL for model-based simulations 
(with and without trimming). 
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 Figure 4.2.13: Cumulative exposure rates of set items for 2-PL for model-based simulations 
(with and without trimming). 
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Figure 4.2.14: Cumulative exposure rates of set items for 3-PL for model-based simulations 
(with and without trimming…number inside the figure is 3-PL). 
 

In summary, simulations without set trimming gave quite similar results to simulations 

with trimming.  Trimming seemed to give better results than non-trimming with respect to 

measurement precision and exposure rates, but only to a very small degree.  On the other hand, 

however, non-trimming resulted in fewer violations of content constraints, which would be 

attractive from the content point of view. 
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4.3.  Empirically-Based Simulations without Set Trimming 
 

In previous studies, it was found that simulations without set trimming gave quite similar 

results as simulations with trimming, except that non-trimming performed slightly better than 

trimming in that it resulted in fewer violations of content constraints.   Therefore, the simulations 

carried out in this part of the study only used the item pool without set trimming.  Results from 

this study and the previous part of the study using model-based data generation without set 

trimming are compared and summarized below.  For simplification, titles for some of the graphs 

and tables use ‘MB’ as referring to model-based data generation without trimming, and ‘EB’ as 

referring to empirically based data generation without trimming. 

Measurement precision, in terms of CSEMs and overall simulation reliabilities, is 

summarized and presented in Table 4.3.1 and Figures 4.3.1 to 4.3.3.  Similar to what was 

observed in model-based simulations, the CSEMs for the 1-PL empirically-based simulations 

were higher than those for the 2-PL and 3-PL simulations.  The overall reliabilities for 2-PL and 

3-PL CAT simulated exams, for both empirically based and model based situations, were very 

close to the P&P reference test, but the reliabilities of 1-PL CAT exams were relatively low 

compared to their 2-PL and 3-PL counterparts and the P&P reference form. 

 

Table 4.3.1: Reliabilities for Model-Based and Empirically-Based Simulations (without set 
trimming) 
  1-PL   2-PL   3-PL  

 EB MB P&P EB MB P&P EB MB P&P 

Reliability 0.77 0.78 0.85 0.83 0.83 0.85 0.84 0.84 0.85 

 

The results also showed that for 1-PL model, in comparison with model-based 

simulations, reliability in empirically based simulation were slightly lower, and CSEMs were 

considerably higher at the lower end of the ability scale.  This made sense, as model data misfit 

is not unusual in applications of the 1-PL model.  As shown in Figure 2.1, a low ability examinee 

was over-predicted by the model, and a high ability examinee, under-predicted.  The results 

suggested that in the simulation process low ability examinees often received items with 

difficulties above their ability levels.  Since data were generated from model-based  
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Figure 4.3.1: CSEMs for 1-PL P&P and CATs for model-based and empirically-based simulations 
(without set trimming). 
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Figure 4.3.2: CSEMs for 2-PL P&P and CATs for model-based and empirically-based simulations 
(without set trimming). 
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Figure 4.3.3: CSEMs for 3-PL P&P and CATs for model-based and empirically-based simulations 
(without set trimming). 
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probability that ignored the model-data misfit at low ability levels, CSEMs from model-based 

simulation at lower ability levels were smaller.   Since 2-PL and 3-PL models provided fairly 

good model-data fit for most of the MCAT items, the discrepancy between the model-based and 

empirically based probabilities was small throughout the ability scale for those models.  As a 

result, the two simulations give very similar results.   

The absolute bias in ability estimation for the trimmed and non-trimmed cases across the 

three models is presented in Figures 4.3.4 to 4.3.6.  The figures show that the bias for 1-PL was 

largely underestimated when the model-based data generation was used to simulate examinee 

responses.  The significantly large bias at the lower end of the ability scale was caused by the 

interaction between the limitation of the maximum likelihood estimation algorithm and model-

data misfit during calibrations. 
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Figure 4.3.4: Bias for 1-PL CATs for model-based and empirically-based simulations.  
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Figure 4.3.5: Bias for 2-PL CATs for model-based and empirically-based simulations. 
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Figure 4.3.6: Bias for 3-PL CATs for model-based and empirically-based simulations. 

 

 

Information about how well the content constraints were satisfied in empirically based 

simulations as well as model-based simulations is provided in Table 4.3.2.  This table lists the 

proportion of simulated cases where the numbers of items selected were either below the lower 

boundaries or above the upper boundaries.  Minimum and maximum numbers of items in each 

content category selected were also presented.   

 

For empirically based and model-based CAT simulations, the degree of content constraint 

violations was very much alike.  This makes sense because changing the probability for data 

generation should not directly affect the satisfaction of content specifications in item selection.  
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Table 4.3.2: Content Constraint Violations for Model-Based and Empirically-Based Simulations 
(without set trimming) 

Targeted #Items %Violations* Min.Adm.* Max.Adm.* Content 
Constraint Low High Wt 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL 1-PL 2-PL 3-PL 

S: Human 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: NatSci 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: SocSci 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: Six 2 2 10 0 
0 

0 
0 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

S: Five 4 4 10 0 
0 

0 
0 

0 
0 

4 
4 

4 
4 

4 
4 

4 
4 

4 
4 

4 
4 

I: Comp 8 12 90 .08 
.08 

.04 

.04 
.05 
.05 

5 
5 

6 
6 

5 
4 

16 
16 

17 
17 

14 
14 

I: Eval 4 8 90 .03 
.03 

.02 

.02 
.02 
.02 

2 
3 

3 
3 

3 
3 

10 
10 

11 
11 

11 
11 

I: Appl 7 10 90 .07 
.07 

.08 

.07 
.06 
.07 

5 
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3 
3 

5 
5 

13 
14 

13 
13 

13 
12 

I: Incorp 6 9 90 .07 
.06 

.06 

.06 
.15 
.14 

4 
4 

4 
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4 
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11 
11 

10 
10 

10 
10 

I: Human 10 12 10 0 
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10 
10 

10 
10 
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12 

12 
12 

12 
12 

I: NatSci 10 11 10 0 
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* Numbers in the first line of cells are results from the empirically based CAT simulation study.  
Numbers in the second line of cells are results from the model based CAT simulation study. 
 

Figure 4.3.7 presents cumulative frequencies of the stimulus exposure rates and Figure 

4.3.8 presents cumulative frequencies of the item exposure rates based on empirically-based and 

model based simulations.  Again, as with previous simulation studies, the patterns of exposure 

rate frequencies were very similar across 1-, 2- and 3-PL models in empirically based 

simulations.   The plots also showed that there was almost no difference between empirically-

based and model-based simulations with respect to item exposure rates.  For stimuli exposure 

rates, there was some difference, but very small.  This is again, not unexpected, as changing the 

probability for data generation should not affect exposure rate control in CAT simulations.  
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Figure 4.3.7. Cumulative exposure rates of stimuli for model-based and empirically-based 
simulations (without trimming). 
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Figure 4.3.8. Cumulative exposure rates of set items for model-based and empirically-based 
simulations (without trimming). 
 

In conclusion, empirically-based simulations gave similar results to model-based 

simulations when the model applied fitted the data well.  When there was considerable amount of 

model data misfit, the empirically-based simulations gave more realistic results than model based 

simulations.  
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5. Summary 

The CAT simulations that were carried out suggested that measurement precision 

equivalent to the current paper-and-pencil MCAT Verbal Reasoning test could be achieved with 

a 32-item adaptive test based on the 2-PL or 3-PL models.  However, simulations of 32-item 

adaptive tests based on the 1-PL model were far less reliable.  These findings were expected, 

given that the 2-PL and 3-PL models make use of the differential discriminating power of items 

in constructing and scoring adaptive tests.  Although the 2-PL and 3-PL simulations made 

slightly less uniform use of the item pools, the differences between these models and the 1-PL 

model were surprisingly small. 

In terms of content coverage, the set-based nature of the Verbal Reasoning test and the 

irregular representation of items with different cognitive categories across different passages 

made it all but impossible to consistently satisfy targeted test specifications.   This issue will 

have to be addressed if the implementation of an MCAT using CAT or adaptive testlets is to be 

seriously contemplated.  

The results showed that when there was considerable amount of model data misfit, the 

model-based simulations gave smaller CSEMs at certain ability levels, which are misleading.  

The empirically-based simulations provided a more reliable way of evaluating a CAT design 

before it’s implementation.   

An administration of a 2-PL CAT with reliability comparable to P&P reliability using 

almost half the P&P test length is a very positive finding of the study.  The use of a 2-PL instead 

of a 3-PL model is recommended because of the simplicity of the 2-PL model. 
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