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Abstract 
 This paper considers four aspects of online communities. Design, mechanisms, architecture, and the 
constructed knowledge. We hypothesize that different designs of communities drive different mechanisms, which 
give rise to different architectures, which in turn result in different levels of collaborative knowledge 
construction. To test this chain of hypotheses, we analyzed the recorded responsiveness data of two online 
communities of learners having different designs: a formal, structured team, and an informal, non-structured, 
Q&A forum. The designs are evaluated according to the Social Interdependence Theory of Cooperative 
Learning. Knowledge construction is assessed through Content Analysis. The architectures are revealed by 
Statistical Analysis of p* Markov Models for the communities. The mechanisms are then identified by matching 
the predictions of Network Emergence Theories with the observed architectures. The hypotheses are strongly 
supported. Our analysis shows that the minimal-effort hunt-for-social-capital mechanism controls a major 
behavior of both communities: negative tendency to respond. Differences in the goals, interdependence and the 
promotive interaction features of the designs of the two communities lead to the development of different 
mechanisms: cognition balance and peer pressure in the team, but not in the forum. Exchange mechanism in the 
forum, but not in the team. In addition, the pre-assigned role of the tutor in the forum gave rise to its 
responsibility mechanism in that community, but not in team community. These differences in the mechanisms 
led to the formation of different sets of virtual neighborhoods, which show up macroscopically as differences in 
the cohesion and the distribution of response power. These differences are associated with the differences in the 
buildup of knowledge in the two communities. The methods can be extended to other relations in online 
communities and longitudinal analysis, and for real-time monitoring of online communications.  
 

Introduction 
 Building communities is recognized as an essential strategy for online learning. An online community 
consists of actors who develop certain relations among themselves. For example, some actors only read what 
others write; some respond to queries posted by others and some influence others to do something (for example 
to access a web page), etc. This simple observation led us to adopt a network abstraction to describe online 
communities. A network is a set of actors – members of communities, groups, web-pages, countries, genes, etc., 
with certain possible relations between pairs of actors. The relations may – or may not – be hierarchical, 
symmetrical, binary, or other. Network abstraction is thus very flexible.  
 Social Network Analysis (Wasserman and Faust 1999) is a useful tool for studying relations in a 
network. It is a collection of graph analysis methods developed by researchers to analyze networks which 
consist of precise mathematical definitions of certain network structures and the methods to calculate them. 
Examples of network structures are cohesiveness and transitivity: cohesiveness measures the tendency to form 
groups of strongly interconnected actors; transitivity measures the tendency to form transitive triad relations (if i 
relates to j and j relates to k, then i necessarily also relates to k).  SNA has been utilized to analyze networks in 
various areas, whose actors include politicians (Faust, Willet et al. 2002), the military (Dekker 2002), 
adolescents (Ellen, Dolcini et al. 2001), multi-national corporations  (Athanassiou 1999), families (Widmer and 
La Farga 1999), and terrorist networks (van Meter 2002). SNA methods were introduced to online communities 
research in (Garton, Haythornthwaite et al. 1997). Since then several scholars have demonstrated the 
applicability of SNA to specific collaborative learning situations (Haythornthwaite 1998; Wortham 1999; 
Lipponen, Rahikainen et al. 2001; Cho, Stefanone et al. 2002; de Laat 2002; Martinez, Dimitriadis et al. 2002; 
Reffay and Chanier 2002; Aviv 2003). 
 Macro-level SNA identifies network macro-structures such as cohesiveness. Micro level SNA reveals 
significant underlying microstructures, or neighborhoods, such as transitive triads (Pattison and Robbins 2000; 
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Pattison and Robbins 2002). The identified neighborhoods are the basis for revealing theories that explain their 
emergence (Contractor, Wasserman et al. 1999). For example, the theory of cognitive balance explains the 
emergence of transitive triads, which underlies the macroscopic phenomenon of cohesiveness. The precise 
definition of a neighborhood will be given in section 2. 
 We examine online communities of learners according to the constructivist perspective (Jonassen, 
Davidson et al. 1995). Rafaeli (Rafaeli 1988) emphasized that constructive communication is determined by its 
responsiveness. Accordingly, we analyze the network structures of the responsiveness relation between actors in 
the online communities. Previous work (Aviv, Erlich et al. 2003) demonstrated that certain macrostructures 
(cohesion, centrality and role groups) are correlated with the design of the communities and with the quality of 
the constructed shared knowledge. In this study, we extract the micro-level neighborhoods of the same 
communities. Our goal is to reveal the underlying theoretical mechanisms that control the dynamics of the 
communities and to correlate them with the design parameters and with the quality of the knowledge 
constructed by the communities.  
 

Architecture of a Community 
 An online community is modeled as a network of actors. Every ordered pair of actors has a potential 
response tie relation. The response tie between actor i and actor j is realized if i responded to at least one 
message sent by j to the community; otherwise the response tie is not realized. In addition, a (non-directed) 
viewing relation is realized between a pair of actors if they read the same messages. In a broadcast community, 
a realized response tie relation is also a realized viewing tie. The reverse is not necessarily true. 
 A virtual neighborhood (VN) is a sub-set of actors, endowed with a set of prescribed possible response 
ties between them, all of which are pair-wise statistically dependent.  We identified the significant VNs of a 
community by fitting a p* stochastic Markov model (Wasserman and Pattison 1996; Robins and Pattison 2002) 
to the response tie data. In this model, every pair of response ties in a VN has a common actor, which is why 
they are interdependent. Same topology VNs are aggregated into a class of VNs. In the model every possible 
class is associated with a strength parameter that measures the tendency of the network to realize VNs of that 
class. The basic ideas and the formulas of the p* Markov model are elaborated in (Wasserman and Pattison 
1996; Robins and Pattison 2002). The model equations are presented in the Appendix. Examp les of Markov 
VNs are presented graphically in Figure 1.  
 

 
Figure 1 . Virtual neighborhoods 
 
 
In this research we consider the set of Markov classes of VNs listed in Table 1.  
 

VN Class  Participating Actors & Prescribed Response Ties 
link  All pairs: (i? j) or (j? i) 
resp i All pairs:  (i? j) fixed i  
triggi All pairs:  (j? i) fixed i  
mutuality All pairs: (i? j) and (j? i) 
out-stars All triplets: (i? j) and (i? k) 
in-stars All triplets: (i? j) and (k? j) 
mixed-stars All triplets:  (i? j) and (j? k) 
transitivity All triplets: (i? j)and(j? k)and (i? k) 
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cyclicity  All triplets: (i? j) and (j? k) and (k? i) 
Table 1. Classes of VNs 
 
 Tendencies to form VNs of a certain class are the result of the underlying mechanisms. Several 
candidate mechanisms, postulated by certain network emergence theories are briefly described below. See 
(Monge and Contractor 2003) for an extensive survey. 
 The theory of social capital (Burt 1992; Burt 2002) postulates efficient connectivity in the hunt for a 
social capital mechanism. In an online broadcast community, efficiency means forming zero response ties 
because a response tie is a redundant viewing tie, so actors prefer to remain passive. This mechanism predicts a 
tendency for not creating VNs of any class. Thus, other mechanisms are responsible for creating responsiveness.  
 Exchange and resource dependency theories (Homans 1958; Willer 1999) postulate an information 
exchange mechanism, in which actors prefer to forge ties with potentially “resource-promising” peers. This 
mechanism creates tendency for VNs of class mutuality. 
 The theory of generalized exchange (Bearman 1997) postulates an information exchange mechanism 
via mediators. This theory then predicts tendencies for n-link cycles, in particular VNs from the cyclicity class.  
 Theories of collective action (Marwell and Oliver 1993) postulate a social pressure mechanism that 
induces actors to contribute to the goal of the community if threshold values of “pressing” peers, existing ties, 
and central actors are met (Granovetter 1983; Valente 1996). In that case, actors will respond to several others, 
forging out-stars VNs.  
 Contagion theories (Burt 1987; Contractor and Eisenberg 1990) postulate that the exposure of actors 
leads to a contagion mechanism that uses social influence and imitation to create groups of equivalent actors 
with similar behaviors (Carley and Kaufer 1993). Contagion predicts a tendency for VNs of the various star 
shaped classes.  
 

Theories Predicted Tendencies Hypotheses 
Social capital  Few single tie links H1: link  < 0 
Collective action  If thresholds  met then respond 

to several others 
H2: if thresholds  met then out-stars > 0 

Exchange  Tendency to reciprocate H3: mutuality  > 0  
Generalized exchange Tendency to respond cyclically H4: cyclicity > 0 
Contagion Respond to same as others  H5: out-stars> 0; in-stars > 0; mixed-stars > 0 
Cognitive consistency Respond via several paths  H6: transitivity > 0  
Uncertainty reduction Attract  many responses  H7: in-stars > 0 
Exogenous factors: 
Students  

No tendencies to respond/trigger H8: {resp i = 0 | i ? students} 
H9: {triggi = 0 | i ? students} 

Exogenous factors: Tutors Personal tendencies to 
respond/trigger 

H10: {resp i > 0 | i = tutor} 
H11: {triggi > 0 | i = tutor} 

Table 2:  Research Hypotheses 
 
 Theories of cognitive balance (Cartwright and Harary 1956; Festinger 1957; Harary, Norman et al. 
1965) postulate a cognition balance mechanism with a drive to overcome dissonance and achieve cognition 
consistency among actors. This drive is implemented by transitivity VNs. 
 The uncertainty reduction theory (Berger 1987) postulates drives in actors to forge links with many 
others to reduce the gap of the unknown between themselves and their environment; this theory predicts a 
tendency to create in-stars (responses to triggering actors) VNs. 
 Finally, responsibilities of actors influence their residual personal tendencies toward response ties. In 
this study, students did not have pre-assigned responsibilities, predicting that the students’ VNs resp i and triggi 
will be insignificant. The tutors’ residual tendencies will be significant, due to their roles.   
 The theories, and predicted tendencies stated as Research Hypotheses, are presented in Table 2. 
 

The Analysis 
 We analyzed recorded transcripts of two online communities – two communities of students at the 
Open University of Israel. These communities were established for 17 weeks during the Fall 2000 semester (19 
participants) and the Spring 2002 semester (18 participants) as part of an academic course in Business Ethics. 
Each community included one tutor. The designs of the activities of the two communities were different. The 
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Fall 2000 community was designed as a goal-directed collaborative team, whereas the Spring 2002 community 
was a Q&A forum. Hence we have labeled the communities “team” and “forum,” respectively. The data is 
available at http://telem.openu.ac.il/courses (password protected). 
 The team community engaged in a formal debate. Participants registered and committed to active 
participation, with associated rewards in place. Students took the role of an "advisory committee" that had to 
advise a company on how to handle the business/ethical problem of cellular phone emissions. The debate was 
scheduled as a 5-step process of moral decision-making, with predefined goals (Geva 2000). A unique feature 
of the team community was that the goals of the debate were to reach consensus up to the point of writing a 
joint proposal to an external agency. The forum community was open to all students in the course. Participants 
were asked to raise questions on issues relating to the course. We followed the social interdependence theory of 
cooperative learning  (Johnson and Johnson 1999) to characterize the communities according to four groups of 
parameters: interdependence, promotive interaction, pre-assigned roles, and reflection. The two communities 
differ in most of the design parameters. Table 3 summarizes the differences between the designs of the two 
communities.  
 
 

Parameter Team Forum 
Registration  & commitment Yes No 
Interdependence: deliverables  Yes No 
Interdependence: tasks & schedule Yes No 
Interdependence: resources Yes No 
Reward mechanism Yes No 
Interdependence: reward No No 
Promotive interaction: support & help Yes No 
Promotive interaction: feedback Yes No 
Promotive interaction: advocating achievements No No 
Promotive interaction: monitoring Yes No 
Pre-assigned roles: tutor No Yes 
Pre-assigned roles: students  No No 
Reflection procedures No No 
Individual accountability Yes No 
Social skills  Yes Yes 

Table 3: Design of Communities 
 
 Previous analysis (Aviv, Erlich et al. 2003) analyzed the constructed knowledge and the macro-
structures of the communities. The analysis revealed that the team community exhibited high levels of 
constructing knowledge, developed a mesh of interlinked cliques, and that many participants took on bridging 
and triggering roles while the tutor remained on the side. The forum community did not construct knowledge, 
cohesion was dull, and only the tutor had a special role. In the team community, many students participate in 
many cliques, but the tutor belongs to only one clique. In the forum community, only one student and the tutor 
belong to the two cliques that developed. In addition, participants in the team commu nity shared the role of 
responders among them, whereas in the forum community only the tutor was a central responder.  
 The p* model of the team community has 43 classes of virtual neighborhoods, each with its 
explanatory and parameter: 18 resp i, 18 triggi, link , mutuality, transitivity, cyclicity, and the three stars. 
Similarly, the model of the forum community includes 45 classes of virtual neighborhoods: 19 resp i, 19 triggi, 
link , mutuality, transitivity, cyclicity, and the three stars. The explanatories count the number of virtual 
neighborhoods that were completely realized in the networks. The strength parameters represent the tendency to 
create (or not) neighborhoods from the classes. 
The analysis of the p* model consists of two steps: In the first step we calculate the explanatories. This was 
performed using the PREPSTAR program (Anderson, Wasserman et al. 1999). The second step involves 
solving the binary logistic regression (equation A5). The solution provides an approximate estimate for the 
strength parameters. This step was performed with SPSS. Details are provided in the Appendix. We configured 
the SPSS binary logistic procedure to work in forward steps, adding one class of virtual neighborhoods (i.e., its 
explanatory) at a time, according to its significance, where significance was assessed by the decrements in the 
PLLD (Pseudo Log-Likelihood Deviance). The analysis stops when no more significant explanatory variables 
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can be identified.  
 The analysis revealed three significant classes of virtual neighborhoods for the team community, and 
four significant classes of virtual neighborhoods for the forum community. The PLLD estimates of the strength 
parameters are presented in Table 4. 
  

Class  θK SE Wald p exp(θK) 
Team 
link  -

3.1
3 

.32 97.5 .000 .043 

out-star .18 .06 9.6 .002 1.199 
transiti
vity 

.31 .06 23.9 .000 1.366 

Forum 
link  -

2.6 
.8 10.29 .001 .076 

resp18 6.1 .12 26.78 .000 456.28 
mutuali
ty 

6.2 1.38 20.61 .002 519.92 

in-stars -
3.2 

.91 12.39 .000 .041 

   Table 4:  Revealed VNs 
 
 In Table 4, θK is the MPLE (maximal pseudo-likelihood estimator) for the strength parameter of class 
K of VNs; SE is an estimate of its associated standard error, exp(θK) measures the increase (or decrease, if θK 
negative) in the conditional odds of creating a response tie between any pair of participants if that response tie 
completes a new VN of class K. 
 We tested the hypotheses that θK = 0 by the Wald parameter (θK/SE)2 which is assumed to have chi 
square distribution. Table 3 shows that all these null hypotheses were rejected with extremely small p values. 
The statistical distributions of the MPLEs and the Wald parameters are unknown (Robins and Pattison 2002), so 
inferences are not precise in the pure statistical sense.  
 

Results 
 Few classes of VNs are significant:  3 in the Team, 4 in the Forum. In particular, the personal classes 
of VNs of students, resp i and trigg i, are not significant. This corroborates hypotheses H8 and H9. 
The relative importance of the classes of VNs is depicted by their contributions to the goodness of fit of the 
Markov models. These are presented in Figure 2. 
 

 
Figure 2. Relative importance of VNs 
 
 Figure 2 shows that the global class link  of the single response tie virtual neighborhoods is the most 
significant in both communities: 65% and 72% of the goodness of fit are explained by the tendencies associated 
with this class. Table 5 shows that in both communities the strength parameter θ of the link  class is negative. 
This means that the major observed phenomenon in both communities is a significant tendency for not creating 
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single response tie neighborhoods – the phenomenon of lurking. As elaborated above, this can be explained by 
basic self interest – minimizing the effort required to forge a response tie vs. the possible social capital reward, 
given that every response tie is a redundant viewing tie. This observation is in accordance with hypothesis H1. 
Note that the fact that response ties are redundant viewing ties is a feature of every broadcast community, 
irrespective of the design of the community. 
 By itself, the negative tendency to create virtual neighborhoods of class link  will give rise to a 
community of non-responsive isolates. The actual responsiveness is formed by the other neighborhoods. These 
neighborhoods are quite different in the two communities. The significant virtual neighborhoods in the team 
community are from the global classes transitivity  and out-stars. The significant virtual neighborhoods in the 
forum community are from the personal class resp18, and from the global classes mutuality and in-stars. In the 
subsections below, we will consider each of these virtual neighborhoods. 
 The goodness of fit of the Markov model for the team community increases by 30% when the 
transitivity class of virtual neighborhoods is included. In this community there is a positive tendency to create 
transitive virtual neighborhoods. This means that in the team community, the likelihood of setting up a response 
tie from any actor i to any other actor j is enhanced (by 1.37) if that tie comp letes a transitive triangle virtual 
neighborhood. This is relative to the likelihood of setting up any other neighborhood. No such preference exists 
in the forum community. Hypothesis H6 – the tendency for creating virtual neighborhoods of the transitivity 
class is positive – is therefore accepted for the team community but rejected for the forum community. 
 The tendency to create transitive structures can be explained by cognitive balance theory. It seems that 
the design of the team community leads to the cognition balance mechanism, by which dissonance between 
actors and between their perceptions of objects is resolved by balanced paths of communication. This can be 
attributed to the interdependence built into the design of the community and to the particular goal which forced 
the participants to reach consensus during the online debate (in order to submit joint proposals).  The forum 
community, on the other hand, was a series of typical Q&A sessions. Here each of the students participating 
was interested at a certain point in time in a specific issue usually related to an assignment.  The scope of the 
issue was, in many cases, limited; it interested few students. Other issues, or even related concepts not directly 
connected to the query, were less important to the student who asked the question, let alone to other students. 
The lifetime of each issue was short (usually until the assignment due date). There was no drive to settle 
conceptual inconsistencies regarding past issues, or dissonance in perceptions regarding others. Thus, no 
cognition balance mechanism was needed and none was established.  
 Introducing the personal class resp18 to the model of the forum community increases its goodness of fit 
by 21%. This class includes all the virtual neighborhoods of single response ties initiated by N18 – the tutor. 
This means that the residual tendency of N18 to respond – above and beyond the common tendency accounted 
for by link  – is significant. Specifically, in the forum community the odds of setting up a response tie (i ?  j) 
increases (by 1,280) if actor i is N18, the main responder in this community. In contrast, the personal class of 
the tutor's responses in the team community, resp1, is statistically insignificant. resp1 neighborhoods are 
therefore not significant in the explanation of the behavior of the team community. This simply means that the 
tutor of the team community, P1, showed no tendency to respond. Hypothesis H10 – the tutor’s residual 
responsiveness is significant – is accepted for the forum commu nity but rejected for the team community.  
 This difference is attributed to the difference in the role-assignment design of the two communities, 
which leads to different responsibility mechanisms. The tutor of the forum community was assigned the job of 
responder. The tutor of the team community was – deliberately – not assigned that role. This results in a 
difference in their responsibility mechanisms which leads to the difference in their tendency to create the 
personal class of virtual neighborhoods. A similar observation, mentioned above, is that none of the students in 
either community showed a significant personal residual tendency to respond, which supports hypothesis H8. 
This again is attributed to the fact that students in both communities were not controlled by responsibility 
mechanisms because they were not assigned any particular role. Similarly, in both communities every actor 
could trigger others by posting a question. No student was pre-assigned the role of trigger. This is reflected in 
the insignificance of the triggi class of neighborhoods (consisting of a single response tie towards actor i), in 
agreement with hypothesis H9.   
 We see that the tutors in both communities had no significant tendency to trigger others, contrary to 
assumption H11. Checking the designs of the two communities, we see that the tutors' behavior was not 
controlled by responsibility mechanisms, but by other factors. In the forum community, the tutor served only as 
a helper or responder; no initiation of discussion was designed; accordingly, no triggering role was assigned to 
the tutor. In the team community, discussion was initiated by the tutor, but the design of the collaborative work 
dictated that the tutor should step aside. The tutor was therefore not responsible for triggering others. 
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 Incorporating the out-stars class increases the goodness of fit of the Markov model for the team 
community by 5% but has no significance for the forum community. This means that in the team community 
the likelihood of forging a response tie from any actor i to an actor j is enhanced (by 1.2) if the tie completes an 
out-star. No such tendency is observed in the forum community.  
 The tendency to create out-stars, that is, to forge more than one response tie can be explained by the 
contagion theory (hypothesis H5) and the theory of collective action (hypothesis H2). The theory of contagion 
predicts tendencies toward both in-stars and mixed-stars, but these predictions were not supported by the data 
of either community. Thus, hypothesis H5 was rejected for both communities. In general, contagion by 
exposure, as found in friendship relations, is a time consuming process, which presumably could not be 
developed during the short lifetime of the communities (one semester).  
 The hypothesis concerning the theory of collective action, H2, was accepted for the team community 
but rejected for the forum community. This theory assumes the development of peer pressure, provided that the 
community parameters of density and centrality are above threshold values. This condition is fulfilled for the 
team community, but not for the forum community, as can be seen in Figures 2 and 3. In general, developing 
peer pressure is not trivial, as it has to overcome the basic tendency for lurking. In the team community, 
appropriate initial conditions – commitments, interdependence, and in particular promotive interactions – were 
set up, and peer pressure was maintained by the tight schedule of common sub-goals imposed on the 
community. None of these features were designed into the forum community, hence the density and the number 
of central actors  did not reach the thresholds required for peer pressure to work. In the absence of peer pressure, 
no drive for collective action arouse, which is the reason for the non-significance of the out-stars class of virtual 
neighborhoods in the forum community. The differences between the two communities in the tendencies for 
out-stars is explained quite well by the theory of collective action.  
 The mutuality  class of virtual neighborhoods accounts for 4% of the goodness of fit of the Markov 
model for the forum community. It has no significance for the team community. This means that in the forum 
community the likelihood of setting up a response tie from any actor i to any actor j is  enhanced (by 5,000) if 
that tie closes a mutual tie. (As stated elsewhere in this paper, the actual number is not precise). This is relative 
to the likelihood of setting up a tie which is not part of a mutual tie. No such tendency for mutuality 
neighborhoods exists in the team community. Thus, hypothesis H3 is accepted for the forum community but 
rejected for the team community. 
Hypothesis H3 predicts a tendency for mutuality virtual neighborhoods on the basis of the exchange mechanism 
postulated by the theories of exchange and resource dependency. Actors select their partners for response 
according to their particular resource-promising state.  In the forum community the actors prefer to forge 
response ties (if at all) with partner(s) who usually respond to them – which in this community is the tutor. The 
tutor is an a priori resource-promising actor as result of her pre -assigned role. This kind of exchange calculus is 
not developed in the team community because actors in that community cannot identify a priori resource-
promising actors. Instead, actors in the team community chose another response policy, governed by the 
cognition balance mechanism, of responding via transitive triads, as we saw above. 
 The in-stars class of neighborhoods accounts for 3% of the goodness of fit of the Markov model to the 
forum community but has no significance in the team community. From Table 5 we see that in the forum 
community in-stars is negative. In the forum community, the likelihood of setting up a response tie from i to j 
decreases if this tie complements an in-star neighborhood, that is, if some other actor already has a response tie 
with j. Contagion theory and the theory of uncertainty reduction both predict a positive tendency for in-stars 
virtual neighborhoods. This prediction is not fulfilled. Hypotheses H5 and H7 are rejected for both 
communities. As mentioned above, the fact that a contagion process did not develop can probably be attributed 
to the short lifetime of the communities (one semester). In addition, it  seems that there was no need in either 
community to reduce uncertainties by attracting responses from several sources: in the forum community, the 
tutor was assigned this role; in the team community, the rules of the game were clearly explained in the 
document detailing the design of the forum. 
 We have yet to understand the negative tendency toward in-stars virtual neighborhoods in the forum 
community.  This negative tendency means that participants deliberately avoid responding again to the same 
actor. This phenomenon is explained by the theory of social capital: responding again to an actor is a waste of 
energy; it decreases the structural autonomy of the responder. 
 Neither community shows a tendency for mixed-stars or cyclicity classes of virtual neighborhoods. 
mixed-stars is predicted by the contagion theory, hypothesis H5; the tendency for cyclicity is predicted by the 
theory of generalized exchange, hypothesis H4. Both hypotheses were rejected for both communities. As 
mentioned above, it is plausible that the contagion mechanism could not develop during the short lifetime of the 
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communities. The theory of generalized exchange relies on knowledge transfer through intermediaries, who 
seem to be unnecessary in online broadcast communities. 
 Our findings are summarized in Table 5. 
 

Predicted Hypotheses and Tendencies  Results 
H1: link  < 0 
Few single tie links 

Supported for both communities; feature of 
every broadcast community independent of 
design 

H2: If large density, centralization, and size, then out-
stars > 0  
Respond to several others 

Supported in team, but not in forum; difference 
in meeting threshold conditions due to built-
in/lack of promotive interactions 

H3: mutuality  > 0 
Tendency to reciprocate to resource promising partners 

Supported in forum but not in team; difference 
in existence/non-existence of a priori resource-
promising actors due to pre-assigned roles 

H4: cyclicity > 0 
Tendency to respond cyclically to resource-promising 
partner 

Not supported in either community, probably 
because there was no need for information 
exchange via mediators 

H5: out-stars > 0; in-stars > 0; mixed-stars > 0; 
transitivity > 0 
Respond to same as other equivalent actors  

Not supported in either community, probably 
because contagion process could not develop in 
the short lifetime of the communities 

H6: transitivity > 0 
Respond via several paths 

Supported in team, but not in forum; difference 
due to difference in consensus reaching 
requirements and interdependence 

H7: in-stars > 0 
Attract responses from several others 

Not supported in either community; 
uncertainties were clarified by the design (in 
team) and by the tutor (in forum) 

H8: {respi = 0 | i ? students} 
H9: {triggi = 0 | i ? students} 
H10: {respi > 0 | i = tutor} 
H11: {triggi > 0 | i = tutor} 
Residual personal tendencies to respond or trigger only 
to actors with pre-assigned roles 

H8, H9: Supported for both communities; no 
pre-assigned role of responders to students  
H10: Supported in forum, but not in team; 
differences due to differences in pre-assigned 
roles of the tutor 
H11: not supported for either community; no 
pre-assigned role of triggers to students  
 

 
 Table 5: Summary of Results 

Discussion 
  Our analysis shows that the minimal-effort hunt-for-social-capital mechanism, predicted by the theory 
of social capital & transaction costs controls a large part of the behavior of both communities: a negative 
tendency to respond. This is a feature of every broadcast community, independent of design.  
 Differences in the goals, interdependence, and the promotive interaction features of the designs of the 
two communities lead to the development of different mechanisms: cognition balance, predicted by the balance 
theory, and peer pressure, predicted by the collective action theory developed in the team community, but not in 
the forum community. An exchange mechanism developed in the forum community, but not in the team 
community. In addition, the unique pre-assigned role of the tutor in the forum community gave rise to the 
responsibility mechanism in that community, but not in the team community. The differences in the 
mechanisms led to the formation of different sets of virtual neighborhoods, which show up macroscopically as 
differences in cohesion and in distribution of response power. These differences are associated with the 
differences in the construction of knowledge in the two communities (Aviv et al., 2003). 
 It should be noted that the important contagion mechanism did not develop in either community. This 
mechanism, if developed, would have led to social influence and imitation in attitudes, knowledge, and 
behavior, which would have developed all kinds of star virtual neighborhoods. The required design parameters 
– promotive interaction – were in place in the team community, but it seems that the lifetime of the community 
was too short for the development of this mechanism. 
 There are obvious limitations to the conclusions drawn here. First, we have considered only two 
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communities. In order to capture the commonality, as well as the differences in design, neighborhoods, and 
mechanisms of online communities, one needs to consider a larger set of communities of different sizes, topics, 
and, in particular, with different designs. Furthermore, one should consider a set of relations embedded in these 
communities. One possibly relevant relation between actors is common interest, which can be captured by 
common keywords in the transcripts and/or common sets of visited web-pages. 
 Another limitation lies in restricting ourselves to Markov neighborhoods. Pattison and Robbins 
(Pattison and Robbins 2002) emphasized the possible importance of non-Markovian neighborhoods and brought 
initial evidence for the empirical value of models that incorporate such neighborhoods. Thus, the dependence 
structures can, and perhaps should, be treated as a hierarchy of increasingly complex dependence structures. 
 It seems that SNA can be a useful research tool for revealing community architectures and mechanisms 
of online communities.  There are numerous directions for future research. One direction is “community-
covariates interaction.” Several studies, such as (Lipponen, Rahikainen et al. 2001), revealed that certain 
participants take on the roles of influencers (who trigger responses) or of celebrities (who attract responses). 
Others are isolated – no-one responds to them or is triggered by them. The question is whether this behavior 
depends on individual attributes or whether this is universal and found across communities. Another direction is 
“community dynamics,” an inquiry into the time development of community structures. When do cliques 
develop? Are they stable? What network structures determine this behavior? Yet another direction is “large 
group information overload.” It is well known that the dynamics of large groups leads to boundary effects that 
occur when the group and/or the thread size increases (Jones, Ravid et al. 2002). How are these manifested in 
online communities?  
 One practical implication of the methodology used here is the possibility of online monitoring and 
evaluation of online communities, by embedding SNA tools into community support environments. But a word 
of caution is necessary: There are various definitions of network structures. Experience shows that applying 
different definitions may lead to different, even contradictory, results. Further research is needed to determine 
the stability of network structures under such redefinitions. 
 

Appendix: Key Ideas of the p* Markov Model and the Estimation Procedure  
 In this research we construct parameterized p* Markov models for the two networks, assuming 
isomorphism invariance, thereafter extracting the parameters via the MPLE (maximum pseudo-likelihood 
estimation) procedure (Strauss and Ikeda 1990). Details of the precise formulation of the models, assumptions 
and the analysis are presented in a series of papers (Wasserman and Pattison 1996; Anderson, Wasserman et al. 
1999; Pattison and Robbins 2002). In this section we present the key ideas required for understanding the results 
and their interpretation. 
 Any ordered pair of actors in a network has a potential response tie relation. We say that the response 
tie relation between actor i and actor j is in the realized state if i responded to at least one message sent by j to 
the network. Otherwise a response tie is in the un-realized state. The state of the network of g actors is then 
defined by the gXg response matrix r :  rij = 1 if a response tie between i and j is realized, otherwise rij = 0. The 
states of the response ties are assumed to be the result of stochastic mechanisms operating between pairs of 
actors. Furthermore, we assume that the probability that the response matrix will actually develop into a state r, 
Pr(r), is an exponential function of a linear combination of p state dependent explanatory variables or 
explanatories, {z1(r), z2(r), …, zp(r)}. Each explanatory zi(r) has an associated unknown strength parameter θi.  
Estimates of the strength parameters are obtained by fitting the observed states of the response-ties in the forum 
to the predictions of the probability function P(r). 
 

Pr(r) = exp{θ1 z1(r) + θ2 z2(r) + … + θp zp(r)} / K(θ1, θ2, …, θp)                                                              (A1) 
 
 The Hamersley-Clifford theorem (Besag, 1974, 1975) states that each explanatory zN(r) and its 
associated strength parameter θN are associated with one virtual neighborhood N. A virtual neighborhood is a 
sub-set of actors and prescribed possible response ties between them, all of which are pair-wise statistically 
dependent. Actors in a neighborhood may be physically far apart (which is why we call it virtual), but due to 
certain mechanisms, their possible response ties are all statistically interdependent. Note that the 
interdependency of the prescribed possible response ties is an inherent property of the virtual neighborhood 
which in principle is unrelated to the actual realization states of the response ties. A virtual neighborhood may 
be completely or partially realized, or not realized at all. According to this definition, two possible response ties 
between pairs of actors in different virtual neighborhoods are statistically independent. The Hamersley-Clifford 
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theorem states that each virtual neighborhood is associated with one explanatory and its strength parameter. The 
explanatory measures whether the virtual neighborhood is completely realized, in which case it is 1. Otherwise 
it is zero. The strength parameter quantifies the probabilistic tendency to realize the virtual neighborhood 
completely. 
 A subset of a virtual neighborhood is also a virtual neighborhood. Any single pair of actors with a 
single prescribed possible response tie between them is by definition a virtual neighborhood. Different virtual 
neighborhoods might have the same set of actors but different prescribed response ties. Holland and Leinhardt 
(Holland and Leinhardt 1981) considered models in which virtual neighborhoods included only dyads of actors 
with mutual ties. This implies that dyads are independent, which is an oversimplification. Markov models 
incorporate a larger variety of various sizes of virtual neighborhoods. In a Markov neighborhood, every two 
prescribed response ties have one actor in common (which is why they are dependent). Examples of Markov 
virtual neighborhoods are graphically presented in Figure 1. Markov dependency was introduced by Frank and 
Strauss (Frank and Strauss 1986). It is a natural assumption in an online community: Forging response ties is an 
effort, so an actor’s response ties are conceivably interdependent.  
 The isomorphism invariance (or homogeneity) approximation aggregates same-topology virtual 
neighborhoods into isomorphism classes, each having one common strength parameter and one explanatory. 
The explanatory is then a simple counter: It counts the number of virtual neighborhoods of the particular class 
that are realized in the network. For example, the explanatory associated with the class of transitive triads 
counts the number of such triads that are realized in the network. The strength parameter quantifies the 
probabilistic tendency of the network for realizing virtual neighborhoods of the class. In this research we 
consider the set of Markov isomorphism classes listed in Table A1. The three left -hand columns in the table 
define the membership of actors in each class and the prescribed possible response ties, the name of the 
associated strength parameter (which also serves as the name of the class itself), and the formula for deriving 
the explanatory variables (counters) from the response matrix r.   
 
Table A1: Classes of Virtual Neighborhoods and Explanatories used in Study 
 
 

Isomorphism Class of Virtual 
Neighborhoods:  
Participating Actors & Prescribed 
Response ties 

Strength 
Parameter θ 

Explanatory zN(r) 
(counter) 

Effects: If θ > 0 is 
significant ?  
enhanced tendency to 
create 

All pairs {i, j}| (i? j) or (j? i) link  L(r)?? ?? i? jrij links (either direction) 
All pairs {i, j}| (i? j) fixed i resp i Ri(r) = ? jrij responses  
All pairs {j, i}| (j? i) fixed i triggi Ti(r) = ? jrji triggers 
All pairs {i, j}| (i? j) AND (j? i) mutuality M(r) ? ?? i? jrijrji mutual responses  
All triplets {i, j, k}| (i? j) AND (i? k) out-stars OS2(r) ? ? ? i? j? krijrik star-responses 
All triplets {i, j, k}| (i? j) AND (k? j) in-stars IS2(r) ? ? ? i? j? krijrkj star-triggers 
All triplets {i, j, k}|  (i? j) AND (j? k) 

mixed-stars MS2(r) ? ?? i? j? krijrjk 
mixed trigger-
responses  

All triplets {i, j, k}| (i? j) AND (j? k) 
AND (i? k) transitivity 

TRT(r) 
? ?? i? j? krijrjkrik transitive triads 

All triplets {i, j, k}| (i? j) AND (j? k) 
AND (k? i) cyclicity 

CYT(r) 
? ?? i? j? krijrjkrki cyclic triads 

 
 The probability function then takes the following form: 
 

Pr(r)  =  exp{θ ' • z(r)}/ k(θ? )                                                                                      (A2) 
 
 Where the vector of explanatories consists of the counters listed in Table A1: 
 

z(r) = {L(r), Ri(r), Ti(r), M(r), OS2(r), IS2(r), MS2(r), TRT(r), CYT(r)}                                 (A3) 
 
and the strength parameters measure the tendencies for realizing the virtual neighborhoods of the corresponding 
Markov classes: 
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θ = {link , resp i, trigg i, mutuality, out-stars, in-stars, mixed-stars, transitivity, cyclicity}                         (A4) 

 
 The L(r) explanatory counts the number of neighborhoods of class link  that were actually realized in 
the network whose response matrix is r. Its strength parameter link  measures the common tendency to form 
single response ties; that is, to respond or to trigger. If link  is negative, it measures the tendency not to form 
response ties.  
 The Ri(r) explanatory counts the number of neighborhoods of the resp i class that were realized in the 
network, and its strength parameter. resp i measures the residual tendency (or non-tendency) of actor i to 
respond, above and beyond the common tendency measured by link . Similarly, Ti(r) counts the number of 
neighborhoods of class trigg i that were actually realized, and the triggi strength parameter measures the residual 
capability of actor i to attract responses to his/her previous messages; that is, to trigger others to respond, above 
and beyond the common capability measured by link . The M(r) explanatory counts the number of realized 
mutual dyads. The strength parameter mutuality measures the global tendency (or non-tendency) of a network to 
form such dyads. The OS2(r), IS2(r), and MS2(r) variables count the number of realized star virtual 
neighborhoods of the three global classes (see Fig. 3). The corresponding strength parameters measure the 
tendency (or non-tendency) to forge response ties with (and/or fro m) two partners. The transitivity and cyclicity 
global classes include all triad virtual neighborhoods that are transitive or cyclic, respectively. The associated 
explanatories, TRT(r) and CYT(r) count the number of virtual neighborhoods from these classes that were 
actually realized, and the corresponding strength parameters – transitivity and cyclicity – measure the tendency 
to realize virtual neighborhoods of these classes.  
 It should be emphasized that the explanatories count only completely realized neighborhoods: a virtual 
neighborhood must have all its prescribed response ties realized in order to be counted.  
 Wasserman and Pattison (Wasserman and Pattison 1996) reformulated the exponential form of Pr(r) 
into a logit form, which provides both an insight into the precise meaning of "tendency" and a useful procedure 
for estimating the strength parameters. The logit form of the Markov model is presented in equation A5: 
 

wij = log [ Pr(rij = 1| rcij) / Pr(rij = 0| rc
ij)  ] = ? N?θNdN(rc

ij, ij)                                                            (A5) 
 
 The left hand side is the logit – the log of the conditional odds of a pair of actors (i, j) to realize a 
response tie (i ?  j). Here the odds (the ratio between the probability for realizing and not realizing a response 
tie) is conditioned on all other response tie states, denoted by rc

ij, held fixed. The logit wij is a linear 
combination of the changes in the values of the explanatories when the response tie (i ?  j) jumps from a not 
realized to a realized state, when all other response ties, rc

ij are held fixed: 
 

dN(rc
ij, ij) = zN(rc

ij, rij = 1) - zN(rc
ij, rij = 0)                                                                    (A6) 

 
 The change statistic dN(rc

ij, ij) counts the increase in the number of virtual neighborhoods of class N 
when the response tie (i ?  j) flips from "non-realized" to "realized." It is 1 if (i ?  j) completes a whole virtual 
neighborhood; otherwise it is zero. 
 The logit form (A5) provides a simple interpretation of the strength parameters. Suppose that an 
explanatory zN(r) with strength parameter θ is significant. If this happens then the conditional odds for the 
realization of the response tie (i ?  j) from any actor i to any actor j will be enhanced by eθ if this envisaged 
response tie will make a new virtual neighborhood of class N realized completely. This will happen if the 
network already has an almost complete realization of the neighborhood: only (i ?  j) is missing. Otherwise the 
conditional odds do not change. Note that if the strength parameter θ is negative, the conditional odds will be 
decreased. This means that the network has the opposite tendency. For example, if the transitivity  explanatory is 
significant, then the conditional odds for forming a response tie (i ?  j) is multiplied by etransitivity ??if the response 
tie (i ?  j) completes a transitive triad (i responds to j, AND j responds to k AND i also responds to k). This will 
be larger or smaller than 1 depending on the transitivity sign. 
 The logit form (A5) is  the basis for one method of estimating the strength-parameters. This method – 
the MPLE procedure – treats A5 as a binary logistic regression equation: the response tie variable is the 
dependent variable. There are g(g-1) cases: each ordered pair of actors (i, j) is one case. The values of rij (1 or 0) 
for all cases are the observed response ties.  The independent variables in the regression equation are the 
“change statistics” dN(rc

ij, ij) associated with the explanatories. The coefficients of the change s tatistics in the 
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regression equation, ?θN, are the unknown strength parameters of the corresponding explanatories. 
 To solve A5 and estimate the strength parameters, one constructs the pseudo log likelihood function: 
 

PL(θ) = ? ijlog [ Pr(rij = 1| rcij) / Pr(rij = 0| rc
ij) ] = ? ij?? N?θNdN(rc

ij, ij)                                      (A7) 
 
 PL(θ) is the log of the product of all the conditional probabilities. It is considered a function of the 
unknown strength parameters θ??? ?? θ????θ? ? … ?θp? ? with the response tie states r fixed at the observed values. The 
estimators of the strength parameters are then the values of θ1, ?θ2, … θp that maximize PL(θ). These are the 
Maximum Pseudo Likelihood Estimators (MPLEs). The problem with this method is that the statistical 
distributions of these estimators are not known. One cannot assume that they have the same statistical (chi 
squared) distributions as their MLE (maximum likelihood estimator) counterparts. Significance intervals based 
on this assumption can at best be considered defendable approximations, not precise statistical statements. This 
study attempts to identify the relative strength of the most important explanatories, with no claim to provide 
precise numerical values for the actual values of their strength parameters. 
 In this research the actual values of the change-statistics dN(rc

ij, ij) were calculated from the observed 
response r matrix using PREPSTAR (Anderson et al., 1999). The MPLEs for the strength parameters were then 
obtained by solving equation (A7) using the binary logistic procedure of SPSS.  See (Crouch and Wasserman 
1998; Contractor, Wasserman et al. 1999) for examples and details. 
 Note that once we have estimates for the strength parameters, we can estimate the value of the pseudo 
log likelihood function, PL(θ), itself. This value, to be precise -2* PL(θ), can serve as an estimate for the 
goodness of fit of the model. The best fit is when the product of the conditional probabilities is 1, so that -2* 
PL(θ) is zero.  In practice, this is a positive number called Pseudo Log Likelihood Deviance (PLLD) signifying 
that the model is not perfect. What we are interested in, however, are the decrements in the PLLD caused by 
introducing more explanatories into the model. A decrement, denoted by ? ? , measures the contribution of the 
virtual neighborhood N to the goodness of fit of the model. If one can conjecture that PLLD and ? ?  have chi 
square distributions (as do their counterparts in MLE procedure), then one has precise numerical estimates for 
the relative importance of their contributions to the goodness of fit. As stated above, this assumption is 
approximate at best. Therefore the decrements ? ?  serve as a guide to the relative importance of the virtual 
neighborhoods, but do not provide the range of the true values. 
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