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EVIDENTIARY RELATIONSHIPS AMONG DATA-GATHERING METHODS
AND REPORTING SCALES IN SURVEYS OF EDUCATIONAL ACHIEVEMENT1

Robert J. Mislevy
CRESST/University of Maryland/Educational Testing Service

Abstract

Large-scale surveys of educational attainment gather data about the proficiencies of a
sample of students to support inferences about the distribution in the populations.
Several approaches to gathering data have been used, each with its own advantages and
disadvantages. Several scales have also been used to bring results together from different
students and different test forms. This paper lays out the evidentiary relationships
between data gathered under five methods and inferences framed in terms of six
reporting metrics. "Marketbasket reporting" receives special attention.

1.0 Introduction

The National Assessment of Educational Progress (NAEP) and the Third
International Mathematics and Science Study (TIMSS) are examples of large-scale
surveys of educational attainment. They assess knowledge and skills in samples of
students, and then estimate the distribution of proficiency in the population and the
relationships between proficiency and students' education and demographics. An
assessment designer can choose from several data-gathering designs and several
reporting scales. This paper examines the implications for analysis that result when
different ways of gathering data are combined with different ways of reporting
results. It highlights "marketbasket" reporting, which produces results in terms of a
particular collection of tasks (Bock, 1993; Forsyth, Hambleton, Linn, Mislevy, & Yen,
1996; Johnson, 1996; Mislevy, 1998; National Research Council, 2000, 2001).

The main part of this presentation is organized as a matrix. The columns
correspond to the methods by which one may collect student performance data. The
rows correspond to reporting scales. The cells of the matrix lay out the relationship
between data collected by a particular method and inferences desired on a particular

I Prepared for the NAS conference on marketbasket reporting in Washington DC, February 6-7, 2000.
This paper is dedicated to Bert Green, who told me it was high time to sort this stuff out. For
enlightening conversations and helpful suggestions, I thank Russell Almond, Paul Holland, Gene
Johnson, John Mazzeo, David Rogosa, Neal Thomas, and my fellow members of the National
Assessment Governing Board's Design/Feasibility Team: Robert Forsyth, Ronald Hambleton, Robert
Linn, and Wendy Yen.
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reporting scale, in terms of population and subpopulation averages and standard
deviations, and proportions of the population above a predetermined criterion score
(proportion above criterion, or PAC). Section 2 defines the data collection methods,
inferential targets, and reporting scales. Section 3 describes machinery for
probability-based reasoning from assessment data to target inference, namely, test
equating and projection. Section 4 lays out the relationships between data and
inferences in the cells of the table. The gist of the results appears in Table 1. Section 5
offers some comments on tradeoffs in assessment design. The overriding constraint:
Designs ought to be restricted to combinations of data collection methods, reporting
scales, targets of inference, and analytic procedures that produce sound inferences.

2.0 Background and Notation

This section defines the methods of data collection that correspond to the
columns of Table 1, the reporting methods that correspond to its rows, and the
targets of inference that are discussed in the cells.

2.1 Methods of Collecting Data

Methods for gathering assessment data differ as to cost, convenience, and
implications for analysis. This section describes five basic approaches:

1. a single test form,

2. parallel forms,

3. tau-equivalent forms,

4. congeneric forms, and

5. unconstrained forms.

2.1.1 A Single Form

The simplest way to gather data is to administer an identical test form to every
student from whom data are acquired. We'll denote the random variables that
represent responses to the n items in this form, say Test X, by X (X1,..., Xn). Let
x x ) represent either realized values or generic values for a response vector.
Let S(x) be a function that maps a response vector to a summary score x+ . S(x)

could be defined simply as the count or the proportion of right answers, but
variations include item weights, partial credit, "corrections for guessing," and item
response theory (IRT) proficiency estimates. X denotes the Test X total score as a
random variable.
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In classical test theory (CTT; Gulliksen, 1950/1987; Lord & Novick, 1968), a
student's observed test score, x- , is conceived as the sum of two components: her
"true score" t, plus an independent error term e, that comes from a distribution with
mean 0 and variance cre2, . That is,

= tx+ ex.

A student's true score can be thought of as the expected value of her observed
scores, or the average that would be obtained if she could somehow take the test
many times with the same state of knowledge. CTT can be cast equally well in terms
of total scores and percent-correct scores. It makes little difference when there is
only one test form or a set of parallel tests, but we shall see that percents-correct
have a useful property when working with tau-equivalent test forms.

We'll use X to refer collectively to the set of responses to Test X from a sample
of students and X+ to refer to their scores.

2.1.2 Parallel Forms

A single form is easy to administer, but it usually can't cover a content domain
well. We are interested in students' proficiencies across many skills, many concepts,
and many relationships; it is difficult for a single test form to provide direct evidence
on more than a relatively small sample of them. Either a single form is short enough
to administer conveniently but doesn't cover the content domain, or it contains
enough items to represent the domain but takes too long to administer. Collecting
data with parallel test forms is one way to escape the dilemma. Parallel forms
contain different items, but the same kinds and numbers of items, tapping the same
mix ofunderlying skills. Different forms of the SAT, for example, are parallel.

Data gathered with parallel forms provide evidence about the same proficiency
with the same accuracy. We will consider parallel forms that are all practical to
administer as a standard way of gathering data. One of several parallel forms may
be "special" when it comes to reporting, as "the" marketbasket form, but that is an
issue of reporting and analysis rather than one of gathering data.

We will use the notation Y ( . . . y (y1 y ) s(Y) Y÷ , and S(y) - y+ to .

denote the random variables and particular values of item responses and scores on a
representative second test form, Test Y, that is parallel to Test X. Y and Y+ refer to
the sets of responses and scores respectively of a sample of students to Test Y.
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Under CTT, parallel tests have the same true score and independent errors that
all have the same error variance. In terms of total scores or percents-correct, x+ = +

ex and y+ = t, + ey, ide = 1u = 0, and a: = 0er .

2.1.3 Tau-Equivalent Forms

In classical test theory, "tau-equivalent" tests measure the same true score but
may have different error variances (Novick & Lewis, 1967). In terms of percents-
correct, tests with the same mix of items, but different numbers of them, are tau-
equivalent. A student's expected percent-correct is the same in both cases, but a long
form provides a more accurate estimate. One way of producing tau-equivalent
forms is first to produce a set of parallel forms, then to administer different students
tests constructed with various numbers of the parallel forms. For example, some
students must take the items on three forms, whereas other students must respond
to only one form.

We will use Z (Z1 , . . . , ,n) , z (z1 , . . . , z ,) , s(z) Z + , and S(z) =- z+ to denote

variables associated with a representative Test Z, which is tau-equivalent to Test X.

Note that Test Z contains m items, while Test X contains n items. Z and Z+ are
the responses and scores of a sample of students to Test Z. From the perspective of
CTT, and with respect to percents-correct but not total scores, x+ = tx + ex and z+ = t
+ ez for any given student, and pe, = pet= 0, but o-e2, o-c2z .

Constructing tau-equivalent forms is only slightly less constraining than
constructing parallel forms. We will see that tau-equivalent forms enable an assessor
to gather data of different precision for different purposes (long forms for measuring
individual students, short forms for estimating group averages or item statistics), yet
report group averages in a common framework with familiar methods.

2.1.4 Congeneric Forms

"Congeneric" is another term from CTT that describes tests that "measure the
same construct" but can have both different true-score variances and different error
variances (Joreskog, 1971). We shall use the term to describe tests that include the
same essential mix of knowledge and skills, but may differ as to the numbers, the
difficulties, and the sensitivities of their constituent items. Constructing congeneric
forms is less constraining than constructing tau-equivalent or parallel forms. As the
examples below suggest, congeneric test forms can provide more information than
common test forms because they can be better targeted to examinees.

6 1 0



We will use W (W, W7), W s(W)..-=_W+, and S(w) w+ to denote

variables associated with a Test W that is congeneric to Test X. W and W+ are the
responses and scores of a sample of students.

Although congeneric test forms are easier to construct than parallel or tau-
equivalent forms, more complicated analyses are required to synthesize data across
forms. Item response theory (IRT; Hambleton, 1989; Lord, 1980) is one way to do it.
An IRT model expresses an examinee's tendency to perform well with respect to a
domain of test items in terms of an unobservable proficiency variable. Each item j
has parameters that characterize how responses to it depend on 0, through the IRT
model p(w 10). Item responses are assumed to be independent given 0, so the

conditional probability of the response vector w is obtained as

p(410)= n Awilt9) Eq. 2.1.4(1)

Once a response vector w is observed, Avv0) is interpreted as a likelihood function.

This is the basis of inference from x to 0 and, in turn, from 0 to other variables if
required. For example, the model-based true score t, (0), defined as the expected

score on Test W for an examinee with proficiency 0, is obtained as

ttv(0)= fs(w)p(wlodiv. Eq. 2.1.4(2)

In the special case of number-right scoring of right/wrong items, Equation 2.1.4(2) is
the sum over items of their conditional probabilities of correct response:

t, (0) = Aw./161)

Most applications of IRT use a one-dimensional 0, but models with vector-
valued 0 s are sometimes used (e.g., Reckase, 1997). These are multivariate IRT
(MIRT) models. We will focus here on unidimensional IRT models, however: Tests
are congeneric from the perspective of IRT if they are modeled in terms of the same
unidimensional 0.

We find congeneric test forms in IRT-based computerized adaptive testing
(CAT). Stocking and Swanson (1993), for example, show how to build tests that
adapt their difficulties to each examinee's level of performance, yet maintain the
same mix of item form and content.

The targeted test booklets in the 1984 NAEP Reading assessment (Beaton, 1987)
are also congeneric test forms. All the booklets for the Age 9, Age 13, and Age 17
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samples had similar mixes of reading comprehension items, some of which
appeared in forms at all ages. The data from all these booklets were fit using the
same IRT model. But many easy items appeared only in Age 9 booklets; others
appeared in Age 9 and Age 13 booklets but not Age 17 booklets; some harder items
appeared only in Age 13 and Age 17 booklets; and some appeared only in Age 17
booklets. In contrast, NAEP assessments such as Mathematics that measure several
subscales and have different mixes of items from the subscales in different booklets
are not using congeneric test forms.

2.1.5 Unconstrained Forms

"Unconstrained" forms consist of items from the same content domain but may
differ, perhaps substantially, as to mix, number, format, and content. An example: A
science assessment that administers to some students test forms with just multiple-
choice questions across a range of subjects; to other students, forms based on hands-
on experiments; and to still others, a series of tasks that all concern the same
complex inquiry investigation.

Constructing unconstrained test forms imposes the fewest constraints on the
assessment designer. Correspondingly, assessors who gather data with
unconstrained test forms usually have to work hardest to bring the disparate results
into a common reporting framework.

We will use U it s(U)=--U+ , and S(u)=.-u+ to denote

variables associated with an arbitrarily composed Test U. U and U+ are the
responses and scores of a sample of students.

2.2 Inferential Targets

"Choosing a reporting scale" means defining a variable in terms of which
results will be expressed. The "targets of inferences" in a survey assessment are
features of the distribution of that variable in some group of students. This
presentation considers means, standard deviations, and proportions-above-criterion
(PACs). The proportion of students above a NAEP Achievement Level and the
percentage of candidates passing a certification examination with a fixed cut score
are examples of PACs.

Let A be a random variable defined on the real numbers, and let F(a) be the
cumulative distribution function (cdf) in a population of interest; that is,
F(a) = a). We will denote the density function by p(a), using the same
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notation whether A is continuous or discrete. In the continuous case, F(a) and p(a)
are continuous functions; in the discrete case, F(a) is a step function and AO
assigns probabilities to a countable set of points. Letting ,u and a denote the mean

and standard deviation of A in this population,

,u joa dF(a). fa p(a)da

and

:c= ar dF(a)=f.(p a)2 p(a)da .

The proportion of the distribution above the fixed criterion value (10 is obtained
no

as PAC(a0) = fdF(a). Equivalently,

PAC(a0)-m jc(a; ao )dF(a). jc(a; ao)p(a)da,

where c(a;a0) is an indicator function that takes the value 1 if a ao and 0 if not.

Let G be a student background variable, concerning perhaps educational
background or demographic characteristics. We may denote the cdf of A in the
subpopulation in which G takes the value g by Fg(a)=Pr(A aIG = g), and the

density by either p JO or p(al,g). Conditional means, standard deviations, and
PACs for Group g are denoted as dug , ag , and PACg (ac, ).

2.3 Reporting Scales

The preceding section discussed features of distributions that might be
reported in survey assessmentsbut distributions of which variable? This section
describes six possibilities:

1. observed scores on a particular administerable test form,

2. true scores on a particular administerable test form,

3. observed scores on a particular synthetic test form,

4. true scores on a particular synthetic test form,

5. point estimates on a latent variable scale, and

6. latent variable scales themselves.
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We will refer to the first four approaches as types of marketbasket reporting.
The fifth, point estimates on a latent variable scale, is generally not thought of as

marketbasket reporting. We will see, however, that the notion of a reference test is
usually required for it to provide sound inferences, even if that form is used
explicitly for interpreting results.

2.3.1 Observed Score on a Particular Administerable Form (Marketbasket
Reporting, Type 1)

In this reporting scale, a particular test form that can be conveniently
administered to students, say Test X, is chosen. The items of Test X are considered a

marketbasket of items, representative of the domain of interest. The observed-score
scale of Test X, that is, concerning the distribution of X' , is designated to be the
reporting metric for any and all data collected. Whether or not data are actually
collected using Test X, the information is expressed in terms of the X scale.

This reporting metric has two attractive advantages. First, it is easy to interpret
a score on this scale: It is simply the test score on a set of items we can see before us.
Second, gathering data with this form leads directly to estimates of population
distributions on the reporting scale. No transformations or adjustments of
individuals' scores or school distributions are required, so if data are gathered with
the marketbasket form itself, analyses are simple and can be carried out locally.

However, the limited sample of items that appears on such a form, and the
equally limited scope of knowledge and skills it taps directly, limit the value of
using a single form as the only way to gather data. As we shall see, though, data can
be gathered in more flexible ways and the results mapped into the scale of a special
marketbasket form, albeit through more complex analyses.

A second disadvantage is that the results are easy to interpret with respect to a
given form because they are so tightly bound to that form. Consider a test of
basketball players' ability to make free throws, and suppose we are interested in the
proportion of players who can make more than 80% of their attempts. If we have a
test that only consists of two attempts, we will have a much larger number of
players whose observed success is above 80%they made both shotsthan if we
take a larger sample, such as a hundred attempts. Classical test theory tells us that
measurement error causes a consistent bias: The proportion of players whose
observed percent of shots made is above 80% is an overestimate of the correct
proportion whose true accuracy is above 80%, and the shorter the test the worse the
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overestimate tends to be. The reporting scale in the next section addresses this
pitfall, but as we shall see, at the cost of greater complexity in analysis.

2.3.2 True Score on a Particular Administerable Form (Marketbasket Reporting,
Type 2)

As above, a special test form that can be administered to students, Test X, is
chosen. The true-score scale of Test X is now the reporting metric for any and all data
collected. The items that constitute Test X are still the marketbasket of items, with
the same advantages of interpretation and disadvantages of limited scope.

The distinction between Type 1 and Type 2 marketbasket reporting lies in the
scale on which results are reported; there are no outward differences in the nature or
constitution of the collection of items. With Type 1 marketbasket reporting, the
actual observed score of student i on Test X, say x, is immediately on the desired
reporting scale. With Type 2 marketbasket reporting, xj+ are viewed as random

draw from a distribution whose expected value is the "true score" of Student i, say
t, ; that is, x; = t +17 + e . True scores can be also be defined in terms of expected

percents-correct rather than total scores with a simple rescaling. Either way, the
Type 2 reporting scale is that of Tx, rather than of X+ .

A key result from CTT is that an observed distribution of x+ s, no matter how
large the sample of students, is generally not a good estimate of the distribution of

(Lord, 1969). Some model is needed to reason from any data to any inference on

a true-score scale.2 It is possible to estimate the proportion of basketball players
whose accuracy is above 80% based on just two shots per player, but doing so
requires knowing or assuming something about the shape of the distribution of their
accuracies. Then the distribution of true accuracies can be estimated from the
proportion of players making zero, one, and two of their attempts. Paradoxically, an
accurate estimate of this true proportion be obtained if the number of players is
large, even though just two shots per player provides a very unreliable estimate for
each player individually.

A second key result is that estimated true scores have the same meaning across
tau-equivalent forms (Section 4.2.3). This means that aside from sampling

2 Different inferences lean on the model more heavily than others, though. Estimating the true-score
mean of a population by its observed-score mean, for example, is less sensitive to alternative models
than estimating the PAC for a high true-score cutoff.
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variability, estimated true-score distributions are the same for every form in a set of
tau-equivalent forms.

Under the assumptions of classical test theory (CTT), the error terms are
independent across students, do not depend on their true scores, and have a
common variance cre2 . A normal distribution is often assumed. Under strong true-

score theory, more realistic distributions are posited for p(x+ bx ), recognizing for

example that X may have to be an integer between 0 and n, or that the distribution
of e; may depend on the value of tx, (Lord, 1965; Lord & Novick, 1968).

2.3.3 True Score on a Synthetic Form (Marketbasket Reporting, Type 3)

A marketbasket of items that can be administrated conveniently represents
only a fraction of the tasks that constitute a content domain. A larger collection of
items would probe the domain more broadly and deeply, but would become too
long to administer routinely, if at all. Bock (1993) has discussed advantages of
content coverage and communication one gains by defining the reporting scale in
terms of an entire item poolthe domain score reporting scale, in his terms (also see
Bock, Thissen, & Zimowski, 1997). Alternatively, a shorter but proportionally
representative synthetic form, again too large to administer conveniently but now
better representing the skill domain than a short marketbasket form, could be
defined and kept constant for reporting results while the actual item pool evolves.

We will refer to a synthetic form as Test V and suppose it contains q items. Let
V,/ ), ), S(y) V+ , and S(v):_=. v+ denote the random variables and(vi

particular values of item responses and total scores on Test V.

Once a synthetic test form has been settled on, another choice must be made to
determine the reporting scale. A Type 3 approach to marketbasket reporting is based
on true scores for the synthetic form. The focus is then on the hypothetical
distribution of expected scores of students, if they were to take the entire synthetic
marketbasket form.

2.3.4 Observed Score on a Synthetic Form (Marketbasket Reporting, Type 4)

Again the assessor determines a synthetic test form, too long to administer
conveniently but broadly representative of the domain. A Type 4 approach to
marketbasket reporting is based on hypothetical observed scores for the synthetic
form. How can one define a reporting scale in terms of observed scores for a test that
will rarely, if ever, produce observed scores? Results using this approach have to be
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modeled projections from data on some other forms. As the length of a synthetic
marketbasket form increases, though, the distinction between true scores and
hypothetical observed scores vanishes.

2.3.5 Examinee Point Estimates on a Latent Variable Scale

A reporting scale for a survey of achievement can be defined in terms of IRT
point estimates for individuals. As mentioned in Section 2.1.4, IRT gives the
probability of an examinee's item responses in terms of an unobservable variable 9,
say Au10). IRT applications that concern the proficiency of individual examinees

produce a point estimate from each p(0) that is in some sense optimal for
inference about the individual, along with a measure of its accuracy. The maximum
likelihood estimate (MLE) O and its standard error o-o are most common. The
Bayesian posterior mean j and standard deviation cro, are also used, usually

calculated with a common prior distribution p(0) multiplying Au do).

Defining a reporting scale in these terms means choosing a method of
calculating point estimates and summarizing the evidence from each student's
responses by her estimate. The underlying model can be either one-dimensional or
multidimensional (MIRT). With MIRT, a function of the components of 0 , such as a
weighted average, can be used to summarize each student's results and serve as a
composite reporting scale. The complexity of MIRT may be unavoidable when test
forms differ substantially as to the mix of formats and skill demands their
constituent items pose.

A key issue is that IRT point estimates generally have different distributions for
different test forms. For any given 0 , the distributions of O s from repeated draws of
x on Test X and w on Test W depend on the amount of information each test
provides in the neighborhood of 0 , as indicated by their test information curves.
This depends mainly on the numbers of items in the tests and their difficulties
relative to 0 . The hypothetical distribution of Os for repeated tests of an examinee
with a given 0 will be more dispersed as the form has fewer items in the
neighborhood of 0 . This means the distribution of a group of students' d s from a
short test will be wider than the distribution of their O s from a long test, even if the
IRT model is true. Distributions of point estimates from different test forms have
comparable distributions only if the forms are closely parallel (technically, if their
test information curves match).
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Form-to-form vagaries in IRT point-estimate distributions don't preclude
observed-score latent variable reporting with disparate test forms. The assessment
designer can first designate some particular set of items and their associated
parameters as a reference form. She can then project information obtained from
various data-gathering forms into the observed-score scale of the reference form
(Sections 3.5.4 and 3.5.5).

2.3.6 A Latent Variable Scale

Reporting with respect to a latent variable 9 means synthesizing information
from item responses in the form of an estimated distribution on the 9 scale. Again 0
can be unidimensional or multidimensional, and if it is multidimensional a function
that produces a unidimensional summary can be defined. In all cases, though, this
reporting option concerns the distribution of 0 in the population of interest as
opposed to the distribution of 'j . Lord (1969) provides a pioneering exploration of
this problem.

This is the reporting approach currently used in NAEP (see Mislevy, 1985,
1991, and Thomas, 1993, for the extension to the methods used in NAEP, which
build on the methods of Rubin, 1987, for dealing with missing data in surveys). As
we see in the following section, the same relationships and analytic machinery are
also employed along the way to estimates of true- or observed-score estimates in
some of the more ambitious combinations of data-gathering methods and reporting
scales.

3.0 Tools for Reasoning From Data to Inferences

Under some combinations of data-gathering methods and reporting scales, the
relationship between the resulting data and the desired inferences is quite
straightforward. An obvious example is scores on a single form, meant to support
inferences in terms of scores on that form. Other cells in the matrix are less intuitive.
From the statistician's point of view, the issue is determining the probability
distribution for the target inference that correctly expresses the evidence in the data.
This section reviews two tools we need to accomplish this task in survey-type
assessments, namely, equating and projection. Equating finds functions that map
scores from two test forms onto one another, so that information from either can be
used interchangeably. We will note that equating is possible only under highly
constrained circumstances: Test forms must be parallel, or nearly so, and this
happens only if great efforts have been made to construct them to achieve this result.
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Projection is a generally applicable method, with commensurately more limited
power. A projection maps what is known about one variable, in terms of a
probability distribution, to what is known about another, also in terms of a
probability distribution. Projection, as it is applied to linking assessments (Mislevy,
1993), incorporates results about posterior distributions and predictive distributions.

3.1 Equating

Parallel forms are constructed to provide essentially equivalent evidence across
the range of inferences they are meant to support. They have the same kinds and
numbers of items, the same mix of skill demands, the same timing and
administration conditions, and the same scoring functions. Like Fahrenheit and
Celsius temperature readings, though, data need not arrive on the same
measurement scale. An equating function Eyx,p(Y ) maps Test Y scores to Test X

scores with respect to a population P of students, with the intended result that

E1X; P (y+ = Eq. 3.1(1)

for any variable V that is also defined for those students. That is, observing either y+
or the Text X score that the equating function maps y+ to, namely Eyx,p(y+) , affects

one's beliefs about V in exactly the same way.

Figure 1 depicts equating graphically. The link from the distribution of X scores
to the distribution of Y scores is direct and point-by-point. The linkage depends on
the marginal distributions of X scores and Y scores in Population P, but not directly
on their joint distribution p(x,y). Note that the Test X axis is labeled with both x and

,p(y'), since these both correspond to scores on Test X. The same reasoning holds

for labeling the Y axis with both y and Exy;p(X ), as they both correspond to scores

on Test Y.

3.1.1 Bases of Equating Functions

When developers work hard to construct parallel forms and assessors
administer and score them in the same way, the equating functions from one form to
another all look very much like the identity function. Equating functions account for
minor variations in difficulty or accuracy. There are many formulas and data
collection designs for equating test forms (e.g., Kolen & Brennan, 1995), but all of
them depend on Eq. 3.1(1) in some way. There are many features of distributions of
Test X and equated Test Y distributions that would be identical if the forms were
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Figure 1. Equating Test X and Test Y with respect to Population P.

Test X

truly equated, and many features of relationships between Test X scores or equated
Test Y scores with other variables that would be identical. An equating method
selects certain ones of these features and finds the equating function that makes
them match.

Some examples of equating: Equipercentile equating transforms Test Y scores
so that in the equating sample of scores, their percentiles match up point by point.
This implies that their means, standard deviations, and PACs match up. Linear
equating transforms Test Y scores to make the transformed mean and standard
deviation match those of Test X, but it doesn't change the shape of the distribution.
These two methods are both examples of "observed-score equating," which means
they match features of observed-score distributions. Such methods are by far most
common in practice, and we will refer to them collectively as "standard equating."
In contrast, "true-score equating" (Lord, 1980) makes expected test scores that
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correspond to the same true score match up. If the tests being equated are in fact
nearly parallel, then results from any of the approaches will produce very similar
equating functions.

3.1.2 Applying Equating Procedures to Tests That Are Not Parallel

Features of equated test distributions that are not built into an equating
function need not match up, nor might features of their relationships with other
variables. The degree to which they do anyway indicates just how similar the
information from the test forms actually is (Dorans & Holland, 2000). When test
forms differ substantially with respect to numbers of items, levels of difficulty, or
mixes of knowledge and skill, equating functions that make some features match
will fail on others.

An example of mismatches occurs when one attempts to equate tau-equivalent
tests (Section 4.1.2 discusses its implications for analysis of assessment data).
Consider a short form and a long form tapping the same skills, Test X and Test Z.
Under CTT assumptions Examinee i has the same percent-correct true score on both
tests: xj+ = +ex and z; = txi +ez . The error terms in both cases have zero
expectation, but different variances, with crE2 > o. Since true scores are actually

the same for all students in both tests, population and subpopulation means,
standard deviations, and PACs are identical. For observed scores, population and
subpopulation means are the same as each other and the same as their true-score
counterparts as well: Aix, = duz= /dry and ,u.,,g pyg = jir,g . But since cr.;;

and (3-; = o +o-E2/ , the observed-score variances are different, with o-.2, > o.

It follows that PACs are generally different too. A larger proportion of students
will have observed Test X scores above a high cutoff point xo than will have Test Z
scores above the same point. Both overestimate the proportion whose true scores Tx
are above that point. To illustrate, suppose both the population and errors are
normal, and let (13(z) denote the cumulative normal distribution. The expected
proportions of values of T, r, and Z.- above xo are given by 1 cI)Kx0 )/(0-7-2.,

1 (131(x0 Ncr;., + and 1 (13tro + . s uppose further that for

percent-correct true scores T, :Irv= .5 and o-T2, = .01, and for error variances,

cr: ,= .01 and (ye', = .001. This implies reliabilities of .50 and .91 respectively for Text

X and Test Z, values corresponding roughly to a 10-item test and a 100-item test.
Now a cut score of .7 is two true-score standard deviations above the mean. The
proportion of the population with true scores above the cut is about 2.3%, while the
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expected proportions of Test X and Test Y observed scores above the same cut point
are 7.8% and 2.8% respectively. This situation is depicted in Figure 2.

True-score equating for Test X and Test Z in this situation gives the identity
function by definition, since each student's expected percents-correct are the same
for both tests. It follows that Test X and true-score equated Test Z population means
and subpopulation means will match. But the variance of observed percents-correct
for Test X is greater than that for Test Z, and as we have just seen, PACs don't agree
either. Alternatively, an equipercentile equating for percent-correct scores matches
up PACs, standard deviations, and means for the population as a wholebut does
so by compressing the wider Test X. As a result, PACs, standard deviations, and
means for subpopulations will not match up. With the numerical values of cre2, = .5

and o-e2, = .1, carrying out an equipercentile equating of Test Z to Test X matches

total population means and variances to each other, but except for the population
mean generally does not match them to the corresponding true-score values, and it
does not match subpopulation means in the metric of equated scores. For example, if

.5

X Z

7

Figure 2. Differing proportions of percent-correct scores above cutpoint of .7, with respect to
true scores T, a short test X, and a long test Z.
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the mean of girls' true scores is 1.00, their expected mean on Test X is 1.00 but their
expected mean on Test Z after equipercentile equating is .73

It is true nevertheless that certain "equatings" between nonparallel forms are
routinely used in certain applied problems. They have proven over time to
adequately support the particular inferences they are used for, with the particular
kinds of data that are gathered.3 Their success is better understood as an
approximation of procedures that could be derived from first principles than as
instructive applications of test equating. Other than an occasional passing comment,
we will restrict the use of equating functions to parallel forms in this presentation.

3.2 Projection

A projection maps what is known about one variable, in terms of a probability
distribution, to what is known about another, also in terms of a probability
distribution. This section describes several kinds of projection that express the
relationship between data from a given collection method to a given reporting scale.
One-stage projections are discussed first; they project what is known about one
variable to its implications for another. One-stage projections are further subdivided
into those that move from an observed variable to a latent variable through a
(mostly) theoretical model, and those that move from one observed variable to
another through a (mostly) empirical model. Two-stage projections are then
discussed. They move from an observed variable, to a latent variable, to a different
observable variable, through mostly theoretical models in both steps. In each
subsection, implications for both student-level and population-level inferences are
considered.

3.2.1 One-Stage Model-Based Projection

For an individual student, one-stage projection from observations to a latent
variable through a latent-variable model amounts to calculating the posterior
distribution for that student's value on the latent variable. For a population, it might
seem at first blush that one merely accumulates the individual-level results over the
sample. We see, though, that calculating posteriors for individuals and estimating
population distributions are parts of one inferential problem.

3 An example is equating two parallel tests to each other by "equating" both to a third test that is not
parallel to them. This works not because all three tests are equated in the sense we demand
equivalent evidence for any inferencebut because for a given population the two parallel tests
should have similar joint distributions with any third test that is correlated with them.
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3.2.1.1 One-Stage Projection for Individual Students

Both CTT and IRT revolve around an expression for the probability of an
observable variable conditional on an unobservable variable. In CTT, it is the
probability of a test score given an examinee's true score,4 for insfance, p(x+ t,) or
p(w t ). In IRT, it is the probability of an item response vector given the IRT
proficiency variable, for instance, Axle) or 13(49) As noted above, these
expressions are interpreted as likelihood functions when the value of the observed
variable is available. Belief about the latent variable is then obtained by Bayes
theorem, in the form of the posterior density; for IRT,

where p(x) =

p(01x)= Ax(e)p(9)/p(x),

0)p(0)c10 ; and for CTT,

txlx+)= 14, ),x p x

Eq. 3.2.1.1(1a)

Eq. 3.2.1.1(1b)

where p(x+ )= *lc )19(t x)cl .

Figure 3 illustrates one-stage projection. There is a joint distribution in
Population P for the two variables X and O. Prior to observing the value of X for say,
Unit 1, belief about the value of 0 for that unit is simply p(0). If a value of X is
observed for Unit 1, say x then belief about the value of 0 for Unit 1 is represented
by p(61x1). This distribution projects our knowledge about X into the space of O. The
expected value of this projection is E(61x1). It is the average of the projected
distribution for 0, but the spread of the distribution indicates that there remains
uncertainty about the value of 0 even after x, has been observed. Thus the mapping
here is from a point to a distributionunlike the case of equating, where mappings
were one point to another one point between the variables being linked. Projection is
not symmetric, in the sense that this term is used in the equating literature.

The introduction to Section 3.2 referred to the preceding formulas as a "mostly
model-based" procedure. Indeed, the chain of reasoning runs directly through a
model that relates the observed data to the latent variable. Different models may be
checked against the data, however, and model parameters are generally estimated
from data. A projection function depends on the relationship between the variables

4 Strictly speaking, CTT addresses the first two moments of true and observed scores, not the full
probability distribution. We use the extension to the full probability model in this presentation,
assuming normal densities for both errors and population distributions.
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A9k1.

Figure 3. Projection from Test X to Bin Population P.

Test X

in a population of interest, so projection functions can be expected to vary from one
population to another.

Projections can be used to draw inferences about an individual student in terms
of the latent variable. Consider the question related to PAC reporting of whether
Student i has a true score tx, above the cut-score tx0 . If t. were known with
certainty, we would simply compare t., with tx0 . Using the notation c(t,;tx0), the
answer would be 1 if tx, is greater than or equal to t0 and 0 if it isn't. However, if
we know tx, only imperfectly, by having observed x, what we know is just a
probability that Student i has a true score t., above the cut-score

Pr(txj t 14- )= c(tx ; t x00 x14 kit x. Eq. 3.2.1.1(2)

Here p(tx x,+ ) is a probab Tty density representing our belief about where tx, is

likely to be, based on observing x,'; the probability that tx, is greater than t is the
proportion of that distribution that is above t. In other words, the answer about
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whether t, is greater than or equal to txo (1 if it is, 0 if isn't) is the weighted average
of answers from all possible values of t , with each weighted by its probability
given that x has actually been observed.

Equation (3.2.1.1(1)) is readily extended to accommodate background
information. For IRT,

p(01x, g) = , 013(01g)/p(x g).

With rare exceptions,5 the distribution of the observed variable given the latent
proficiency variable is modeled as independent of background variables, so
Ax1o, g) p x 0) and

with p(x g)= fAx 0)19(0

13(91x, g) = 13(0)130101 19(xig),

g)c10 . Similarly, for CTT,

Ax , g)= p(x+ tx)p(t g).

Eq. 3.2.1.1(3a)

Eq. 3.2.1.1(3b)

These subpopulation results have some surprising consequences, familiar in
the psychometric literature since the 1920s as Kelley's paradox (Kelley, 1927).
Consider a test being modeled under CTT, such that X = + e and e N(0,10). Both

Ann and Sam get scores of 50. Should we not have the same beliefs about their true
scores? Suppose that for girls, 9 N(60,10), while for boys, 9 N(40,10). Standard

Bayesian formulas for the posterior when both the prior and the likelihood are
normal (e.g., Box & Taio, 1973) lead to posterior mean estimates for Arm and Sam of
55 and 45 respectively. Starting from identical likelihood functions, the posterior
distribution for Ann is shifted upwards towards the girls' population distribution,
while Sam's is shifted downward toward the boys' distribution. On the other hand,
if we didn't happen to know that Ann and Sam were a girl and a boy respectively,
the posterior distributions would still be the samethis time centered at the
population average of 50. In the presence of measurement error and background
information related to true scores, these regressed Kelley estimates are better
estimates of students' true scores than are unbiased likelihood-based estimates that
don't take subpopulation information into account, in the sense of having a smaller
average squared error. There remain good reasons to use the unbiased estimates
rather than the Kelley estimates when a test is being used "as a contest." We will see

5 Such as differential item functioning (DIF), or performances on an item changing differently over
time than the other items in a domain because of changes in curriculum or in society at large.
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in next section, however, that the ideas behind Kelley estimatesnamely,
projections to true scores from observed scoresare necessary to recover unbiased
subpopulation distributions.

3.2.1.2 One-Stage Projection for Populations

Note from Equation (3.2.1.1(3)) that projecting information about an examinee's
latent variable given her responses involves the distribution that expresses belief
before the responses are observedfor IRT, for example, p(0) or p(01g), depending

on whether background variables are involved. But in survey-type assessments,
these distributions are typically not known. Indeed, estimating them is the goal of
the survey in the first place. In these cases one draws inferences about the group and
all sampled students simultaneously. Again using IRT as an example, we can
approximate the density of 8 from the response vectors X= of a simple

random sample of N students as

p(0)IX 7-- AT-1 p(Olx ,)
i=1

= N-1 JOAO p(x,).
i=1

Note the appearance of p(0) on both sides of the expression. In practke estimation
procedures often presume a functional form for p(0) and estimate its parameters.

Several writers solved this problem in the 1970s and 1980s by maximizing a
marginal likelihood function (e.g., Andersen & Madsen, 1977; Mislevy, 1984;
Sanathanan & Blumenthal, 1978; more recently, see Cohen, 1997). This approach to
estimating distributions of latent variables without using point estimates for each
sampled individual is sometimes referred to as "direct estimates" of the population
distributions (Cohen, 1997). With developments in computation and modeling, a full
Bayesian approach (Gelman, Carlin, Stern, & Rubin, 1995) can now be brought to
bear on the problem, as well as extensions to rater effects, covariate data, the
hierarchical structure of classrooms, schools, districts, and states, and so on.

Once one does have a representation for p(0) based on the observation of X, it

is then possible to report on features of this distribution as they are required in
reporting. PAC reports are particularly interesting because they raise the paradox
introduced earlier with the free-throw accuracy assessment. Continuing with the
IRT example from the preceding paragraph, suppose interest lies in PAC (O0), or the
proportion of the population with 0 values above 00. This proportion is

Eq. 3.2.1.2(1)

23 27



approximated by the accumulation over students of the IRT equivalent of Equation
3.2.1.1(2):

PACO, )IX N-'EP40 ?_ 00 )

= N E jc(8, 00 )/3(01x1
Eq. 3.2.1.2(2)

The paradox is that when the result of Equation 3.2.1.2 is estimated from a
sample of students, it does not generally agree with intuitive estimate obtained as
the pro ortion of students whose point estimates are above the criterion, or
N-1 Ec (i), ;00) This result holds for Bayesian estimates, MLEs, or any other estimates

that are optimal student-by-student. The size of the discrepancy depends on the
amount of information about each student (more accurate tests lead to better
agreement) and the extremeness of the criterion point (cutpoints near the middle of
the distribution lead to better agreement than cutpoints in the tails).

If distributions for subpopulations or relationships with background variables
are desired, the analogue of Equation Eq. 3.2.1.2(1) applies:

p(t9 g)X r-t: N;11 p(01. I : g)
i=1

= f;' E p(x, 0*(0/ p(x
Eq. 3.2.1.2(3)

where N is the sample size for subpopulation g and the summation runs over only

those students. It is important to note that when approximating p(01,g), as it appears

on the left side of the expression, it is necessary to also use Aelg) on the right side

("conditioning," in NAEP jargon; see Mislevy, 1991). Biases, sometimes serious, can
result if one attempts to estimate Aolg) by first calculating posterior distributions

for all sampled subjects with a single common prior distribution AO), then
averaging over only those with G=g (Mislevy, Beaton, Kaplan, & Sheehan, 1992;
Thomas, 2000).

3.2.2 One-Stage Empirical Projection

One-stage empirical projection moves from information in the form of one
observable variable to another, through an empirically based joint distribution for
the two of them. If a very large sample of subjects takes both Test X and Test U, we
essentially know the joint distribution of test scores, p(x+ ,u+), and thus the
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conditional distributions klu+) and Au- ). (If we have a small sample of

subjects who take both tests, we can estimate the joint distribution by smoothing or
through a model, as in Rosenbaum and Thayer, 1987; this is what "mostly
empirical" meant in Section 3.2.) If we observe a new student produce a score of

on Test U, the predictive distribution that describes our belief about what his score
on Test X would be is p(x+ uo+ ).

As with one-stage model-based projection, this procedure extends to

subpopulations. We must work with the joint distribution for scores on both tests
and the background variables as well, or Az+ , , g), from which we obtain the
required predictive distributions Ax+114+ , g) and Au+ , g).

Figure 4 shows a simple bivariate distribution of discrete variables r and LT,

in subpopulations of boys and girls. Each variable can take the values of 1, 2, 3, and
4. We will suppose these frequencies have been accumulated from many
observations of both boys and girls, so they are known with great accuracy. What is
the projection to L.I+ if we observe Sam's Test X score is 3? We focus on the colunm
where f=3 in the boys' table, which shows joint proportions of (.07, .10, .07, .04)
respectively for IT values of 1, 2, 3, and 4. The projective distribution is obtained by
normalizing these values, yielding (.25, .35, .25, .15). By similar calculation, we
obtain a predictive distribution for L.r if we observe Ann's Test X score is 3, except
working through the girls' joint distribution table: (.18, .29, .29, .24). Note that this
predictive distribution for 11initiated by the observation of the very same Test X
score of 3is flatter and shifted higher, due to the different shapes of the joint (X,Y)
distributions among boys and girls.

Individual-level projections are the basis for projecting what is known about a
population from observed data on one test form to a reporting scale based on
observed scores of another. Suppose, for example, we have the predictive
distribution klu+ , ,g) and observe the Test U scores U= of a sample of

Ng students from subpopulation g. The projected distribution for Subpopulation g

Test X observed scores is then obtained as

1=1
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(x- I Sex=Boy)

tt' 1 2 3 4 Sum

4 .01 .03 .04 .07 .16

3 .03 .04 .07 .10 .25

2 .04 .07 .10 .07 .30

1 .07 .09 .07 .04 .28

Sum .16 .24 .30 .30 1.00

p(x*,u Sex=Girl)

u* 1 2 3 4 Sum

4 .03 .04 .05 .07 .19

3 .04 .05 .07 .08 .24

2 .05 .07 .10 .08 .30

1 .07 .08 .08 .05 .28

Sum .19 .24 .30 .28 1.00

Figure 4. Bivariate (x.,ii+) distributions for boys and girls.

These ideas are readily extended to fitting a model for the full joint distribution
of several test scores, conditional on G if inferences involving G will be desired.
Then, given observation of any subset of scores, one can calculate the projection onto
any function of the entire set. This includes a "marketbasket" summary score over
some of the tests or all of them. The full joint distribution can be approximated even
if data are not collected on the full set from any individuals, if we are willing to fit a
simpler functional form. Beaton and Johnson (1990) applied this approach in the
1984 NAEP Writing assessment, calling it the "average response method," or ARM.
They fit a multivariate normal model for the joint distribution of 10 writing scores,
with means modeled as functions of background variables G and a common residual
covariance matrix. Assuming multivariate normality for the full joint distribution is
a simplified functional form, which could be estimated from the matrix-sampled
data collection design even though no student responded to more than three items.
Beaton and Johnson could then calculate the projected distribution of the sum of an
individual student's hypothetical observed scores on all 10 items, conditional on the
items he did take and the values of his background variables. From this they could
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project the distribution of his total score for the 10 items, which they used as the
reporting scale (see Section 4.3.4).

3.3 Two-Stage Projection

Two-stage projection extends the ideas discussed above a step further: We are
interested in what is known about one latent variable, say X, when observations
arrive in the form of another, say Y, and the relationship between X and Y is
expressed in terms of a third variable, say Z. In this presentation we will use two-
stage projection to first project the distribution of a latent variable from an observed
variable, and from the result calculate the predictive distribution of a different
potentially observable variable. The effect is the same as in the one-stage empirical
projection discussed above, also from one observable metric to another; the
difference is adding a latent variable model link inside the chain of reasoning.
Again, both individual-level and group-level inferences are of interest.

Projection across tau-equivalent forms through CTT serves to illustrate the
form of two-stage projection. Tau-equivalent forms, Test X and Test Z, have the
same mix of difficulties and skill demands, but they may vary in length. Under the
assumptions of CTT, percent-correct observed scores X and U+ measure the same
true score Tr:

and Z+ =Tx +Ez.

The error terms Ex and Ez both have expectations of zero, but different standard
deviations, (7,2., and cre'z .

If we observe a percent-correct score of x,' from Student i, what is the projected

distribution for his potentially observable z+ score? The first stage of the projection
is just as discussed in the preceding section: We use Bayes theorem to express the
posterior distribution of the true score given 4:

Atx1xT)=.
p(xtx)p(tx)Ip(x). Eq. 3.3.1(1)

Note again that the population distribution p(t) is required here, and that if
background data were involved, then Atx(g,) would appear instead. In the second

stage, we calculate the predictive distribution of z+ given what we have learned
about t, from :

14)= fp(z"Itx )p(tx Ptx.
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Equation 3.3.1(2) can be interpreted as a weighted average of distributions of z-
given t each normal distributions with a mean of that particular t, and a standard
deviation of (re', 6 The weights for the various values of t, are given by its posterior

density given the less-then-certain evidence about t, conveyed by xi+ , or 4,14.).

If we observe percent-correct scores of X+ = x-v from N students, what is

the projected distribution for the potentially observable z+ scores of this sample? It
is the accumulation of individual results like Equation 3.3.1(2):

Az+1X+ N-1E Az+ .0= N-1E fp(z+k, 4,14- )dtx. Eq. 3.3.1(3)

Suppose students are sampled randomly from a population and the underlying tau-
equivalence model holds for the joint distribution of X , U+, and Tx . Then for large
samples of students, estimates of p(z ) based indirectly on sampled values of x+
through Equation 3.3.1(3) will agree with estimates based directly on sampled
values of z+, even if test lengths are not long. This includes agreement on features
such as means, standard deviations, and PACs.

Again, results that involve background variables must be calculated with
projective distributions that incorporate those variables. The subpopulation
counterpart of Equation 3.3.1(3), for example, is this:

Az+14X+ N-1 E Az+ ,g)
Eq. 3.3.1(3)

Jp(z+Itx)p(tx 4 ,g)dtx,

where At xl.x;" , g)= p(xItx)At xlg)/ p(xg). And again, failing to condition on

subpopulation information generally gives an incorrect result.

4.0 The Matrix of Relationships Between Data Collection Methods and Reporting
Scales

Section 2 defined the five methods of data collection and six reporting scales
that constitute the columns and rows of a matrix, the entries of which will consider
the relationship between data collected by a given method and inferences keyed to a
given reporting scale. Section 3 reviewed the basic tools of probability-based
reasoning we need in the discussion, and equating and projection in particular. This

6 We obtain a closed form expression for this two-stage projection if the prior distribution and both of
the likelihood functions are normal.
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section puts the machinery to work. The following sections work across each row of
the matrix, focusing on a particular reporting scale and discussing the implications
for it that arise with each data collection method in turn. Figure 5 is a map of the
discussions, in terms of sections of the paper. Most of the necessary ideas and
techniques are required in early cells, so the cell-by-cell discussions become briefer
as we proceed through the matrix.

Given a choice of a reporting scale (a row in the matrix), one can collect data in
more than one way (multiple columns) and synthesize the evidence in terms of that
same reporting scale. Working with the data in the different cells may require
different analytic methods, though, each consistent with the evidentiary
relationships entailed in each combination. This "single-reporting-scale /multiple-
collection-methods" approach might be attractive for an assessment that serves
multiple purposes, exploiting the advantages and disadvantages of different data
collection methods for the chosen reporting scale.

Forsyth et al. (1996), for example, discuss using an observed-score scale for an
administerable marketbasket form in order to capture some results easily and
quickly (Cell [1,1]), albeit at the cost of domain coverage. An assessment system

Reporting 1. Single
Scale Form

--
1. Observed Score/
Administrable Fonn

2. True Score/
Administrable Form

3. True Score/
Synthetic Form

4. Observed Score/
Synthetic Form

5. Theta-hat
distribution

6. True-Theta
Distribution

Method of Collecting Data

3. Tau-
2. Parallel Equivalent

Forms Forms
_

§4,1.2 §4:1.3

4. Congeneric
Forms

§4. 2.1

§4. 3.1

§4. 2.2

§4,3.2

§4.

§4.,3.3

§4.2.4

§4. 4.1 §4.4.2

§4.5.1 §4.5.2 §4.5.3

§4.44-

§4.5.4

5. Unconstrained
Forms

1
§4..1.5"

§4.1,4-
)

§4,3,5
4

E:771§4.4q .

§4.5.5

§4.6.1 §4.6.2 §4.6.3 §4.6.4 §4.6.5

Figure 5. Map of discussions of relationships between reportMg scales and data
collection methods (shaded cells are marketbasket reporting approaches).
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could make up on domain coverage by administering additional multiple forms that
are congeneric to the marketbasket form or even constructed without constraints.
The cost now is that reporting information from these forms on the desired scale
involves some of the most complex relationships in the matrix (Cell [1,5]). As a
compromise, these analyses could be carried out on a separate, more time-
consuming but more comprehensive, stream of analyses some time after the initial
results from the marketbasket data collection have been reported.

The following discussions focus on the structure of the evidentiary
relationships between the data that are gathered and the inferences that are desired,
not on the subtleties of complex student-sampling designs or the details of
estimation procedures. To avoid these complications, we may think in terms of an
extremely large simple random sample of N students in all cases.

4.1 Inference in Terms of Observed Scores on a Particular Administerable Form
(Marketbasket Reporting, Type 1)

For this reporting scale, a particular administerable form, Test X, is designated
to be a marketbasket of items. The observed-score scale of Test X concerns the
distribution of scores X+ . This is the metric in which evidence collected by any
method must be expressed. The cells in this row of the matrix concern different
ways of collecting data to report on this scale. We shall see that the relationships
between data collection and reporting scale become increasingly complex as we
move to the right.

4.1.1 Data Collected Through a Single Form

This is the simplest cell in the entire matrix. It is based on what we might call
"intuitive test theory." Any data that are gathered are gathered using the
marketbasket test form itself, and observed scores on it are immediately on the
desired reporting scale. The relationship between students' observed scores and
population featureS can all be expressed as functions of scores that are calculated
independently for each sampled student. In particular,

= , Eq. 4.1.1(1)

E

30 3 4

Eq. 4.1.1(2)



and, for the proportion of the population above the criterion value ,I7,; , the

proportion of students whose observed scores would be above X; ; i.e., c(x:- ; x )=1 as

opposed to 0:

PAC(X; ) N' c(x; x) Eq. 4.1.1(3)

Analogues of these equations hold for subpopulations, the only difference
being that the summations are only over the students in the subpopulation of
interest:

-+ r-
X11.vg Xg =.1Vg i 5

i:G=g

0.2 (
X jXg

i:G=g

and

Eq. 4.1.1(4)

Eq. 4.1.1(5)

PACg N;1 Ec(x,+;x) Eq. 4.1.1(6)
:G=g

4.1.2 Data Collected Through Parallel Forms

This cell is slightly more complex than the preceding one, because at least some data
are collected on a form other than the marketbasket form itself. There are two ways
of approaching analysis in this cell. All forms are constructed to be parallel to the
marketbasket form so we may either rely on test construction to give us essentially
interchangeable scores across all forms, or use equating procedures to fine-tune the
correspondence across forms. Under the former approach, we simply treat Test Y
score as if it were a Test X score, and use the relationships outlined for Cell[1,1].
Under the latter approach, we thus replace each appearance of an x in Equations

4.1.1(1)-(6) with a corresponding EyrAy+ ). Data from several parallel forms can be

combined in this way with one another and with data from Test X itself onto the
Test X observed-score scale.

Of course even if we do carry out equatings, equating functions do not make
information from parallel forms exactly interchangeable, so we can expect some
uncertainty to enter the assessment system when we gather data with multiple
forms that are only approximately parallel to the marketbasket form. The variance in
the estimates of a parameter using data from different forms is properly part of the
total uncertainty in its final estimate. Using fewer forms, or forms that are not
actually very parallel, increases this component of error. One way to gauge this
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uncertainty, and then add it in to standard errors, is to "jackknife" estimates of
population features with respect to data-gathering forms (Mosteller & Tukey, 1977).
Fitting a hierarchical model that includes form-to-form variation is another way.

4.1.3 Data Collected Through Tau-Equivalent Forms

This combination contains a surprise: Standard equating a tau-equivalent form
Test Z to the marketbasket form Test X makes inferences involving background
variables worse rather than better. We will review why this is so, then discuss the
projection relationships that hold in general to give correct results. Lord (1965)
addressed the problem in this cell, with regard to lengthening a test and using a
strong true-score theory model to project the characteristics of the new test's
observed percent-correct score distribution.

4.1.3.1 The Perverse Consequences of Standard Equating in This Cell

Standard equating matches features of observed-score distributions. Recall
from Section 3.1.2 that under the assumptions of CTT, tau-equivalent tests have the
same true-score distribution on the percent-correct scale. Recall also that this implies
the means of observed (percent-correct) scores for the population and
subpopulations are also equal to one another and to their true-score counterparts as
well; that is, ,ux ,uz = dur, and ,u = ,uyg = /dr . But since cr.2,, and

while a' o-2 the observed-score variances and observed-score-z Ez E v Ei

PACs do not agree. These relationships mean that observed-score population and
subpopulation means 27+ and 27; from a form that is tau-equivalent to the
marketbasket do serve to estimate the correct (Type 1) marketbasket observed-score
means, 1u and ,uxg , but other features of the Z+ distribution do not.

In particular, their standard deviations do not agreea (perceived) problem
that standard equating was invented to solve. The linear equating function, for
example, rescales Test Z scores by the factor that makes the standard deviations of
the two forms match in the equating sample, namely aEjo-E, . Applying an

equipercentile or linear equating to Test Z scores to remedy the discrepancy in
dispersion distorts the previously correct relationships among the means.
Specifically, the mean of the equated zs for subpopulation g, or N;' E p(z), does

not approximate the intended parameter Iti.,g , but rather the attenuated value
(as\ . Because the amount of attenuation depends on the relative sizes of the

standard deviations, test length plays a major but wholly inappropriate role in
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determining the expectation of the estimated subpopulation mean. As a
consequence, subpopulation standard deviations and PACs calculated from equated
Test Z observed scores are also biased approximations of their Test X observed-score
counterparts.

Summarizing the results of using standard equating in this cell, in an
assessment with observed-score marketbasket reporting and data collected with
forms tau-equivalent to the marketbasket form, inferences about percent-correct
marketbasket means can be based on percent-correct means from any of the forms,
without standard observed-score equating. Inferences about standard deviations or
PACs from the same unequated subject-by-subject percent-correct scores are not
correct, however. Applying standard equating appears at first to rectify problems
with the population standard deviations and PACs, but in doing so distorts
inferences concerning the relationships between proficiency and background
variables.

4.1.3.2 Understanding the Relationship Through Projections

The relationship between observed scores on a marketbasket form and a
different, nonparallel form can be expressed through projection. This may be either a
one-stage empirical projection (Section 3.2.2) or a two-stage model-based projection
(Section 3.3). The same relationship holds whether the other form is tau-equivalent,
congeneric, or unconstrained, so this section lays out the formulas in tables in terms
of the most general case, an unconstrained form Test U. The essential idea is to
project belief about what the distribution of observed scores on Test X would be,
given the observation of response vectors on Test U. We denote the projected means,
variances, and PACs with double overscores.

The one-stage empirical projections in Table 2 address test scores rather than
item responses. They presume a linking study or subsample that has provided the
joint distribution of X+ and LI+ , for the population as a whole and conditional on
any background variables G that will be involved in subsequent inferences. We
denote these as p(x ,u÷) and p(x+ ,u+Ig), from which we can obtain conditional

distributions Aflu+ ) and p(x+Iu+ , g) (as described in Section 3.2.2)7

7 Although the details of estimation are not a primary concern in this presentation, we point out that
uncertainty about these conditional distributions should be taken into account when calculating the
accuracy of final estimates. This is done in a full Bayesian solution which incorporates a higher level
model for their parameters. In a multiple-imputation computational approximation, this amounts to
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Table 2

Relationships Between Data Collected With an Unconstrained Form and Features of an Observed-
Score Marketbasket Distribution: One-Stage Empirical Projection

Target of Inference One-Stage Empirical Projection

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0)

Subpopulation PAC (X0)

,v

= 1\r'E ff. p(x-
i=i

,v

= E fx+
i=1

= 2
0_,2v N-11 + +

X X

i=1

ui+ ,cbc+

2 /

= x+ x+ Ax+lu

N

P AC(X 0) = A E k(x -; x0 )13(x+114:.)clx+

PACg (X0) = E fc(x+ ; X °)Ax+lu , Ofix+
1=1

A simple example of one-stage empirical projection from observations of u+ to
inferences about the distribution of x+ can be generated from the p(x+ ,u+1g)

distributions shown earlier as Figure 4. Figure 6 transforms the relationships into
conditional distributions of x+ given u+ and g. Suppose that the observed data consist
of only four observations, and they are u+ values of 3 and 4 for two girls and 3 and 4
for two boys. Note that the boys' and girls' distributions are identical; both
subpopulation samples, as well as the total population sample, have means of 3.5.
Let us first work through the second row of Table 2, calculating the subpopulation
average for girls. The projection to x+ for the girl with a score of 3 is found in the u+ =
3 row of the girls' conditional distribution in Figure 6, namely (.167, .208, .292, .333).
The projection for the girl with a score of 4 is (.158, .211, .263, .368). The projection to

adding a layer of imputation from the posteriors of their parameters, as discussed in general terms in
Rubin (1987) and particularized to NAEP-like applications in Thomas (1993, 2000).
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p(x-,u` Sex=Boy)

Sum1 2 3 4

4 0.067 0.200 0.267 0.467 1.000

3 0.125 0.167 0.292 0.417 1.000

2 0.143 0.250 0.357 0.250 1.000

1 0.259 0.333 0.259 0.148 1.000

p(f ,u+ I Sex=Girl)

LI+ Sum1 2 3 4

4 0.158 0.211 0.263 0.368 1.000

3 0.167 0.208 0.292 0.333 1.000

2 0.167 0.233 0.333 0.267 1.000

1 0.250 0.286 0.286 0.179 1.000

Figure 6. Conditional distributions of x+ given u+ for boys
and girls.

Test X for the girls' sample is the average of these, or (.162, .209, .277, .351), for x+
scores 1 through 4 respectively. The projected x+ mean for girls is therefore 2.82. By
similar calculations using the conditional distributions for boys, we obtain the
projected x+ distribution of (.096, .183, .279, .442). Its mean is 3.07-a different value
than obtained for girls, because the relationship between Test X scores and Test U
scores is different for boys and girls. The overall projected mean is 2.94. Had we
used a single projected distribution combining boys and girls, we would have
recovered the correct projected total mean, but boys' and girls' x+ means computed
from the common projection would have (incorrectly) been identical.

A word on how these computations would be carried out using imputation
methods. First, the empirical approximations of the conditional distributions
p(x+Iu+ , g) are calculated. Then, student by student, the appropriate projection to the

x metric is determined, in accordance with his or her values of u+ and g. Then a
value for x+ is drawn at random from this distribution. A hypothetical sample of x+
values is thus created for the entire sample of students. The expected values of this
projected data set are correct for salient features of actual x+ values, for the
population as a whole and for subpopulations that have been conditioned on in the
projection distributions.
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The two-stage projections work through latent variable models. We presume a
model in which the data that arise from both Test X and Test U depend on the same
underlying proficiency variable 9. This latent variable may be either
unidimensional, as in CTT and standard IRT, or vector-valued, as in
multidimensional IRT (MIRT). Table 3 gives the equations for two-stage model-
based projection based on test-score models such as CTT and strong true-score
theory. Table 4 gives the equations for models at the level of response vectors, such
as IRT and MIRT.

To offer some interpretation to the forms in these tables, let's take a closer look
at the first row in Table 3, the test-level projected population mean for Text X scores,
given observations in the form of congeneric Test U scores. The two stages of

Table 3

Relationships Between Data Collected With an Unconstrained Form and Features of an Observed-
Score Marketbasket Distribution: Two-Stage, True-Score, Model-Based Projection

Target of Inference
Two-Stage Empirical Projection:

True-Score Model (e.g., CTT)

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0 )

Subpopulation PAC (X0 )

X+ = N-1E jx+ jp(x+It, )p(t,lu:- kitx dx+

X+ = N-' E fx+ p(x+ t .v)p( tx ui , Odt dx
1.1

= N-' E f(x+ jp(x+tx )11 xlu:-)dt ch+
i=1

r-)2 fp(x+It,)p(tx1u; , g)dt dx+
g

N

P AC(Ar = N-' E f*-; x0 ) jp(elt dx+

N

PAC, (X0 )= Avg-1E fc(x ; x0 p(x+It x)p(t u , g)dt dx+
i=1
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Table 4

Relationships Between Data Collected With an Unconstrained Form and Features of an Observed-
Score Marketbasket Distribution: Two-Stage Item-Level Model-Based Projection

Two-Stage Model-Based Projection:
Target of Inference Item-Level Model (e.g., IRT, MIRT)

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0 )

Subpopulation PAC (X0 )

= N jS(x)fp(x0p(Olui )d dx
i.1

N,

.7C; = N;IE fS(x) fAxIO)p(Olu, , 1 dx
i=1

= A f f(s(x)- x÷)2 p(x14(91u i)dt 9 dx
1.1

AA

!rg= A c'E .1(S (x) -1;;:.)2 f Ax119)Aolu ,g)1& clx

P AC(X 0) = fc(S(x); X 0) AO) p(Olu i)d dx
1=1

N
PACg (X0 ) = N;' fc(S(x)., X 0)f p(x10)491ti , g)dO dx

projection appear under the inner integral sign: fp(x+Itx )p(t,v

condenses to p(x+

zit pl-it whichx

is the model-based projection of ui+ into the x+ metric by way

of the true score tx. In the first stage of the projection, p(tx1z4- ) uses Bayes theorem

to express the probability distribution across all possible values of the true score
what Student i's value of it might be. Then p(x+ It x) expresses the distribution of x+

scores that would be expected from any given value of true score. The integral is the
average over these latter x+-predicted-from-tx distributions, weighted by the
projection into I-, from Student i's observed u- . The outer integral computes the

average of the two-stage projected distribution for x+, for Student i. The final
summation, divided by the total number of students, calculates the average of these
student-by-student projected x+ expectations.
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An imputation-based approximation of this formula highlights the two stages
of projection. Again we start with At ud, the model-based projection from an

observed Test U score to true scores. The first stage of projection is effected by
drawing a value from it, say Tx, . This is a plausible value for Student i's true score,

given the observed Test U score. Then the latent variable model provides a
distribution for Test X scores given true scores, which we now instantiate with the
true score fixed at Tvi , or p(x+ Tv,). The second stage of projection is effected by

drawing a value of x+ from this distribution, say Ti7 . This is a plausible value for

Student i's hypothetical Text X score, given the observed Test U score. The
distribution of -x-7 scores over students is a plausible representation of what their

Test X score distribution might have been, had it rather than Test U scores been
observed. In expectation, it yields the correct features of the Test X population
distribution. If subpopulation features are desired, it is necessary to incorporate
subpopulation membership into the first stage distributions in the projections, or

g i). Subpopulation membership is irrelevant in the second stage of the

projection, however; by the conditional independence assumptions of latent variable
models, pklixi , p(x+ Ixi).

The item-level two-stage projections summarized in Table 4 follow the same
reasoning, although now projections involve response vectors of item responses to
both Text U (observed) and Text X (projected). To prepare for the first stage of the
projection, one estimates the distribution of the latent variable 0 in the population
from the entire collection of responses, again using methods such as Mislevy (1984)
if inferences concerning subpopulation membership are not desired and Mislevy
(1985) if they are. Then, the observed item response vector tc, for each Student i
induces a likelihood function for the latent variable 0, which is combined with the
appropriate population or subpopulation distribution via Bayes theorem to give a
projected distribution for that student's 0. The latent variable model provides a
distribution for Test X item responses via the latent variable model, p(x I 0). The
distribution of a scoring statistic S(x) for Student i can then be calculated with
respect to this projection, and their distribution in a sample of students can be
obtained by averaging the results over the sample.

The imputation approximation for item-level two-stage projection starts out
like the score-level distribution, in that first the projection for the latent variable is
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calculated for each Student i via Bayes theorem given their observed response vector
u, and subpopulation data g, if it is relevant. Then a value is drawn at random from
this distribution, say j, . Then a plausible vector of responses to the items of Test X

for Student i is drawn from p(x I j,), say . The desired score Sri, ) is calculated.

The distribution of such scores over students yields, in expectation, the correct
distribution of S(x) scores, had response vectors to Test X been observed.

4.1.4 Data Collected Through Congeneric Forms

Bringing information about the same underlying variable to the same
observed-score reporting scale when test forms differ in difficulty is the so-called
"vertical equating" problem. Although standard equating is often used for this
situation to align standardized achievement tests at adjacent grades, some
controversy surrounds the results and the practice itself. The consensus is that the
results are best not considered "equated" even when the machinery of equating is
used; they are better consider "scaled"a weaker form of linking that may preserve
unbiasness of estimates for individual students, but not features of population
distributions (Kolen & Brennan, 1995, chap. 8). Congeneric forms are less similar to a
marketbasket form than are tau-equivalent forms, so we can expect results from
standard equating to be no better. Indeed, results are generally unsatisfactory for
means, standard deviations, and PACs alike. The more complex relationships shown
in Tables 2-4 must be applied instead.

4.1.5 Data Collected Through Unconstrained Forms

Tables 2-4 still apply when data are collected through unconstrained forms.
Because the mix of skills and formats of tasks now varies across forms, however,
more complex models are likely to be required to carry out model-based projection.
For projection based on score-level models, for example, a factor analysis model
might be required to account for the relationships among scores from different
forms. For projection based on item-level models, MIRT might well be required
rather than unidimensional IRT.

This is the way data are collected in the current NAEP. A five-dimensional IRT
model was applied in the 1986 NAEP mathematics assessment, with the property
that an item was presumed to depend on exactly one of the dimensions. The
dimensions corresponded to subscales such as Algebra, Probability, and Numbers
and Operations. This structure allowed test developers to vary the mix of items from
the subscales across many test forms.
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How would we project the distribution of observed scores for a marketbasket
form in the current NAEP system? An 8-step procedure is listed below. It is one way
to instantiate the equations in Table 4, using a multiple-imputation computing
approximation. Steps 1-5 and Step 8 echo current NAEP analytic procedures (Cell
[6,5] in Table 1, discussed in Section 4.6.5).

Step 1: Fit the IRT model to data from all forms, including the marketbasket
form Test X and each regular bookletwe'll use Test U to denote a typical one of
themto estimate item parameters for all items.

Step 2:Estimate the conditional distribution of the five-dimensional 19

conditional on background variables G, as described in, for example, Mislevy (1985)
or Cohen (1997).

The multiple-imputations approximation requires creating M sets of pseudo-
data. Steps 3-7 pertain to the creation of a single set, generically denoted set m.

Step 3: Draw a value for each parameter from the joint posterior distribution of
the item parameters and the parameters of the conditional distributions. Treat these
as known for Steps 4-7.

Step 4: For each sampled subject who responded to each test form U, calculate
her posterior distribution for given her item responses and her background
variables. Denote this as p,(01u,,g1) for Student i.

Step 5: Draw a value from this distribution, and denote it jj, .

Step 6: For each item in the marketbasket form, draw a value from p(xj,), the

predictive distribution of its response under the MIRT model, conditional on its item
parameters and j . Call the resulting pseudo item-response vector .

Step 7: Calculate the marketbasket form score S(7,, )_= -.1'7, for Student i in
pseudo data set m.

Step 8: In the usual way of analyzing data from multiply imputed data (Rubin,
1987), calculate a feature of the distribution of X statistics S(X) such as means
and PACsby calculating its value in each pseudo data set as if the s were

known with certainty, then averaging the results over pseudo data sets. We'll use
the mean as an example. Each set m contains a plausible value for each Student i's
marketbasket score, say .77 . If the true mean is , then from pseudo data set m

we obtain the estimate
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/n)
x+ = N-1;+1.

(Recall that we are assuming simple random sampling; weighted means may be
required with complex samples.) The final estimate is the average of these within
pseudo data set estimates:

=1 ) M-1Ext
in

In determining the precision associated with this estimate, there is a component due
to sampling students and a component due to having observed values of U rather
than values of X. Again assuming simple random sampling, the sampling variance
associated with the estimate of the mean within each pseudo data set is the squared

standard error of the mean, say Var x+ . The average of these values will be the

contribution due to student sampling. The contribution due to uncertainty about X
even from each sampled student is basically the variance among the different
estimates of the mean from the M pseudo data sets. Altogether, then,

( =On
( )

XX
Var(x+Ip M-11Var( +1)1

in

x+
(M

M ) M -1

For further information on creating and using multiple imputations in NAEP,
the interested reader is referred to the NAEP Technical Reports (available from the
National Center for Educational Statistics), Mislevy (1991), and Thomas (1993). For
theory and more general background, the best reference is Rubin (1987).

An interesting feature of this cell in the reporting/data-gathering matrix is the
balance of advantages and disadvantages it offers for different parties involved in an
assessment. It is as simple as it can be for the user of reported data, since the
interpretation is familiar and intuitively meaningful. It is as easy as can be for the
constructor of test forms, since they don't need to maintain strict balances among
forms as to length or content. It is as hard as it can be for the analyst, since it requires
advanced methods in psychometrics, latent variable modeling, multiple imputation
methodology, and, in complex designs, survey sampling variance estimation.
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4.2 Inference in Terms of True Score on a Particular Administerable Form
(Marketbasket Reporting, Type 2)

The similarity between this reporting scale and the preceding one is that in
both, a particular administerable form, Test X, is designated to constitute a
marketbasket of items. Scores on this set of tasks, actual or projected, are the terms
in which performance is reported. But now the true score scale of Test X, that of
expected values of Test X scores, is the metric in which evidence collected by
whatever method must be expressed. Since by definition true scores are not
observed for any students, it can be expected that the evidentiary relationships
between observed data and reporting statistics will be more complicated.

Model-based inference is thus required under all data collection methods for
this reporting scale, so let us recap the definitions of true scores under psychometric
models. True scores can be defined either directly at the level of scores, as they are
under CTT, or constructed from the level of items, as they are under IRT. Under
CTT, by definition, a student's true score I-, on Test X is the expected value of her
observed score X. Under the assumption of normality for errors, the distribution of
the observed score for student i is Xj+ 11(t ). For a Test Y that is parallel to

Test X, Y,' N(txi ae. ) as wella relationship that holds for either total scores or

percent-correct scores. For a Test Z that is tau-equivalent to Test X, attention is
focused on percent-correct scores, where the mean is the same but the error variance
may differ, so Z7 N(t x, , o-

Under IRT, a student's true score for Test X in terms of either a total score or a
percent-correct score is the expected value of that score, over all possible response
patterns x to the items in Test X, with each pattern weighted by its probability given
the student's 0, namely p(x I 0). Letting S(x) be the desired scoring function, the
model-based true score tx (0) is thus obtained as

tA,(0)= fs(x)p(xle)dx.

Recall that for number-right scoring of right/wrong items, tx (0) simplifies to the
sum over items of their conditional probabilities of correct response.

4.2.1 Data Collected Through Single Form

The expected score of each student i is his or her true score, so it follows from
the algebra of expectations that population and subpopulation means are the same
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for both observed scores and true scores. It is therefore possible to give estimates of
means on the true-score scale of Test X without complex analyses. They are correctly
estimated by their observed-score counterparts, and calculated by scoring each
student's observed response vectors in the usual way and accumulating the results
in the usual way. This holds for both total scores and percent-correct scores.

Although means match up neatly, other features of true-score and observed-
score distributions do not; the distribution of observed scores x+ for a population or
subpopulation is not the same as the distribution of true scores tx . In particular, the

variance of the observed-score distribution is larger by the value of the error
variance cr . This in turn overestimates the proportions of the population and

subpopulations above high PAC cutoffs and below low cutoffs. As suggested in
Figure 2, the bias is directly related to the magnitude of measurement associated
with the testits reliability, roughlyand increases as tests become less reliable. If
features other than means are desired on the true-score scale of Test X, it is necessary
to estimate the distribution of tA, by methods that lie beyond intuitive test theory
even when data are collected directly on Test X itself. This may be accomplished
with CTT models at the level of test scores or IRT models at the level of item
responses.

For test-level approaches, the key is having a model for an observed score
given a true score, or p(x+It . The CTT solution, in which it is posited that
x+ =tv +ex with independent errors with the same variance cc for all students,

requires "deconvoluting" the observed-score distribution with respect to cc'', ; that

is, estimating what it would be if error terms with this variance were removed from
all observed scores. Strong true-score theory (Lord, 1965; Lord & Novick, 1968, Part
6) has the same objective, but with more flexible and realistic error distributions.
Table 5 gives the equations that map information from observed scores on Test X to
projected features of the Test X true-score distribution. As before, it is necessary to
estimate the true-score distribution, Atx ) or At Ig) as appropriate, in order to

apply Bayes theorem and obtain the student-by-student projected true-score
distributions At x Ix) oc AxIt x)p(t .3( ) or Atx Ix , g)cc AxIt )p(t x , g). Features of these

student-by-student projected true-score distributions are then accumulated to
approximate features of population or subpopulation true-score distributions.
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Table 5

Relationships Between Data Collected With Test X and Features of the Test X True-Score
Distribution: One-Stage Model-Based Projection

Target of Inference One-Stage Model-Based Projection

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0)

Subpopulation PAC (X0)

==
tx = N'E ftxp(t.i.

1=1

tXg = N-1E ft A,At
i=1

cr2 = N-' E j(A,
1=1

=

x, )citx

,g)tit

Ng =\2
7l.g=1\c'I -t xg) x

1=1

xi )citA,

P ;(0)= ifc.(tx;tx0)14 xlxikltx
i=1

PAC, (tx0) = A cl fc(t x0)At xlxi,,dc 1 t
1=1

For item-level models, the key is having a model that gives the probability of a
response vector to Test X as a function of a latent variable 8. IRT is the prototypical
example of such a model. Estimating features of the true-score distribution of Test X
from vectors of responses to Test X requires one-stage projection to the 8 scale, then
calculation of expected scores on Test X. Table 6 gives the equations that are
required, in terms of the most general case of data collected from =constrained
forms. The relationships are the same for data collected on Test X itself, substituting
x, for each /4, . This cell is closest to the early investigations of Lord (1969).

4.2.2 Data Collected Through Parallel Forms

As with all methods of collecting data with the intent of reporting on the
marketbasket true-score scale, an item-level latent variable model with one-stage
projection provides for sound inference, through the relationships in Table 6.
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Table 6

Relationships Between Data Collected With an Unconstrained Form and Features of a True-
Score Marketbasket Distribution: One-Stage, Item-Level, Model-Based Projection

Target of Inference
One-Stage Model-Based Projection:
Item-Level Model (e.g., IRT, MIRT)

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0 )

Subpopulation PAC (X0 )

t x = Ar-IE ftx MAO u i))18
i=1

t = I1;' ftx(op(191,,g)de

C4: = E j(tA,(8)-77,12p(olui )de

/

rg = N;I E .1.(t x(9) txg)2

i=1

it;

P AC(t x 0) = 11-' fc(tx tx0)49
i=1

PAC (tx0 ) = E jc(t .,.(0); t x0)149

It; )d0

However, when data are collected with forms parallel to the marketbasket, certain
inferences can be supported by simpler methods.

If Test Y is parallel to the marketbasket form Test X, then observed means of
equated Test Y scores approximate true-score means of Test X. As with data from
Test X itself, however, other features of equated Test Y scores do not approximate
corresponding features of the Test X true-score distribution.

For distributional features other than means, one could estimate the true-score
distribution for Test Y assuming CTT or strong true-score theory, then translate the
resulting distribution through an equating function. Whether test forms are
sufficiently parallel for this approach to provide satisfactory results is an empirical
question. The best way to answer it is to apply the procedure with several parallel
forms, and examine the variance across forms for estimated features in the
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uncertainty associated with the results. The more forms depart from parallelism, the
greater this penalty term will beperhaps even exceeding uncertainty due to
sampling students, or the cross-time or subpopulation differences the survey was
meant to estimate.

4.2.3 Data Collected Through Tau-Equivalent Forms

Again, an item-level latent variable model with one-stage projection correctly
supports inference for reporting on the Test X marketbasket true-score scale, with
data from a form Test Z that is tau-equivalent to Test X (Table 6).

When data are collected with forms tau-equivalent to the marketbasket, their
means and subpopulation means on the percent-correct scale do approximate the
corresponding Test X true-score counterparts; results for these statistics only are
correct, with no further complications. Other features of the Test Z observed-score
distribution do not generally approximate the corresponding Test X true-score
distribution. Recall from Section 4.1.3 that standard equating destroys the
correspondence between tau-equivalent forms with respect to population and
subpopulation means. Only population variances and PACs come out correctly with
population-level equating. Subpopulation means, variances, and PACs are biased, to
a degree that depends on the difference in reliabilities of the two tests.

Because tau-equivalent forms have the same distribution on the true-score
scale, CTT and strong true-score methods of estimating a true-score distribution of
Test Z will immediately provide estimates of the true-score distribution of the
marketbasket form Test X. The extent to which these results hold in practice
depends on the extent to which forms are in fact tau-equivalent. This assumption
can be checked empirically, and violations of it can be incorporated in statements of
uncertainty for distributional features, for example by jackknifing with respect to
test forms. That is, if tau-equivalence does not truly hold, then estimates of, say,
subgroup means will differ more from data from different test forms than sampling
error for student-selection alone would predict.

4.2.4 Data Collected Through Congeneric Forms

An item-level latent variable model with one-stage projection grounds
inference for reporting on the Test X marketbasket true-score scale, with data from a

form Test U that is congeneric to Test X (Table 6).
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4.2.5 Data Collected Through Unconstrained Forms

An item-level latent variable model with one-stage projection grounds
inference for reporting on the Test X marketbasket true-score scale, with data from
an unconstrained form Test W from the same domain as Test X (Table 6), providing

a satisfactory latent variable model is available that encompasses all items on both
test forms. This cell differs from the preceding one only in that a more complex
latent variable model, such as MIRT or the multiple IRT scales in current NAEP, is
likely to be needed.

How would we project the distribution of true scores for a marketbasket form
in the current NAEP system? The procedure very much like the one outlined in
Section 4.1.5 for observed scores on a marketbasket form would work. Only Steps 6
and 7 need to change. There, Step 6 generated a random response vector for the

marketbasket form for Student i, drawn from Ax e),) , and Step 7 evaluated the score

for this vector, 3e,' S(:50 . Here, we replace i with the Test X true score that

corresponds to j, , or tx (0, . For a test comprised of dichotomous items, this is the

total or the average, as required, of the probabilities of correct response to each Test
X item as predicted though the IRT model, using each student's projected
()distribution in turn. We may then study distributions of these imputations
features of their distributions within pseudo data sets, in light of variation of those
features across pseudo data sets.

4.3 Inference in Terms of True Score on a Synthetic Form (Marketbasket
Reporting, Type 3)

This section concerns reporting on the true-score scale of a synthetic
marketbasket Test V, a specified collection of items so long that it will probably
never be administered to students. We will denote the true-score variable and a
particular value of it by Tv and tv respectively, and, when using a latent variable
model, refer to the true score associated with a particular value of 0 as 1,,(9).

For all methods of data collectionthat is, for each cell in this rowthe item-
level model projections described in the preceding section on true-score reporting
for an administerable marketbasket form apply to a synthetic marketbasket form.
The relationships are shown in Table 7. Only relatively minor changes in notation
have been required from Table 6, namely replacing every appearance of t., and any
variation of it with r, or the corresponding variation of it.
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Table 7

Relationships Between Data Collected With an Unconstrained Form and Features of a True-
Score Synthetic Marketbasket Distribution: One-Stage, Item-Level, Model-Based Projection

Target of Inference
One-Stage Model-Based Projection:
Item-Level Model (e.g., IRT, MIRT)

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (Xo

Subpopulation PAC (X0 )

t v = N-1 ft11 (0)148

g lftvkt 9 )pkO

/ =2
t v (9) t v

fc(tv(19);tvo)p(9

Ng fckt,v9Ftvoip(

u )18

u , g)10

p(6) u

u

8

)de

,g):10

ui)dt9

u, ,g)dt9

-1Nt vg = N
i=1

N

0-v = E

(717g = .Eg ittv(o)-tvg)
1=1

P AC(t v 0) = N-I

\PACg (tv0)=

The general relationships having thus been covered, the following subsections
comment on additional considerations that arise under various data collection
methods.

4.3.1 Data Collected Through Single Form

Suppose data are collected from all examinees with the single form Test X. If
Test V is just a longer version of Test X, then Test X is tau-equivalent to Test V. It
follows that observed Test X means for populations and subpopulations
approximate their synthetic marketbasket counterparts on the marketbasket true-
score scale. Other features of the distribution, including PACs, do not.

How might such a design come about, with data collected with only one test
form but results reported in terms of true scores on a much larger form? One way
might be for a school district to administer a survey of items sampled from a
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published item bank that includes IRT parameters. The results from the single form
could then be projected to results in the item bankspecifically, to estimate the
proportion of items in of the item bank that students would answer correctly.
Projection would be required to obtain the correct population and subpopulation
means, however; student-by-student point estimates on the IRT scale would yield
biased estimates of even population and subpopulation means, when substituted
into the IRT model and used to calculated expected percents-correct item-by-item.
The size of the biases is not mitigated by large samples of students, but they do
decrease as test length increases.

4.3.2 Data Collected Through Parallel Forms

Suppose data are collected using a number of test forms that are (a) parallel to
one another and are administered and (b) tau-equivalent to the synthetic
marketbasket. In this case population and subpopulation averages of observed
percent-correct scores approximate the corresponding means of the synthetic test
true-score scale. This relationship does not hold unless the strong assumption of tau-
equivalence is satisfied, and even when it is, features of the distributions other than
overall and subpopulation means do not generally match the features of the
marketbasket true-score percent-correct distribution.

One way of guaranteeing tau-equivalence is to sample items for parallel tests
from a well-defined item pool, stratifying with respect to important characteristics of
skill and format. The pool as a whole constitutes the synthetic form, Test V.8 When
this is done, it is possible with more complex analytic machinery to estimate not
only means but higher moments of the Test V distribution. The machinery was
developed in the 1960s and 1970s by researchers including Lord (1962) and Sirotnik
and Wellington (1974), under the rubric of multiple matrix sampling (MMS). When
estimating distributions of Test V true scores by these methods, variation of
observed scores around expected scores is not added in to estimates of features of
the population distribution.

4.3.3 Data Collected Through Tau-Equivalent Forms

Suppose data are collected using a number of test forms that are (a) tau-
equivalent to one another and are administered and (b) tau-equivalent to the
synthetic marketbasket. Then population and subpopulation averages of observed

8 This is effectively the design used in the California Assessment Program (CAP) in the late 1970s and
early 1980s (Carlson, 1979).

49
53



scores approximate the corresponding means of the synthetic test true-score scale.
This relationship does not hold unless the assumption of tau-equivalence is satisfied,
and even when it is, features of the distributions other than overall and
subpopulation means do not generally match the features of the marketbasket true-
score percent-correct distribution.

4.3.4 Data Collected Through Congeneric Forms

In general, one needs a latent variable model and the relationships from Table 7
to bring data collected in this manner to the synthetic marketbasket true-score scale.
An interesting application in this cell is the ARM (Average Response Method)
reporting approach that Beaton and Johnson (1990) developed for reporting
performance in the 1984 and 1986 NAEP assessments of writing. The writing
domain was defined by about 20 tasks, each scored on a 0-4 integer scale. A given
sampled student would be administered only between 1 and 3 tasks. Beaton and
Johnson used missing-data methods to estimate the joint distribution of all tasks, in
terms of multivariate normal distributions conditional on grade and age, gender,
ethnicity, and other key reporting variables. A custom-built linear regression model,
tailored to the tasks an individual student was administered, was then used to
project the expected score on the entire domain.

4.3.5 Data Collected Through Unconstrained Forms

As for the preceding cell, one needs a latent variable model and the
relationships in Table 7 to bring data collected in this manner to the synthetic
marketbasket true-score scale. It differs only in that a more complex latent variable
model is probably needed. Reporting of this type could be incorporated into the
current NAEP system by the methods discussed in Section 4.2.5, which itself was a
modification of the scheme more fully described in Section 4.1.5.

4.4 Inference in Terms of Observed Score on a Synthetic Form (Marketbasket
Reporting, Type 4)

This section concerns reporting on the observed-score scale of a synthetic
marketbasket Test V. If the marketbasket is very long, as it would certainly be with
the domain-referenced scores Bock (1993) and his colleagues favor, there is no
practical difference between observed scores and true scores on the marketbasket
form.
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Bringing evidence from all the forms of data collection to this scale can be
accomplished with two-stage projection through an item-level latent variable model.
That is, the items on the administered form, say Test U, to infer distributions in
terms of the latent variable 0 ; these distributions are used in turn to infer
distributions on the potentially observable items that constitute Test V. The essential
relationships in Table 4, which were developed for projection to the observed-score
scale of an administerable marketbasket form, apply. One need only replace each
appearance of x or some variation of it with v or the corresponding variation.

The generally applicable relationships having been thus described, the
following sections offer additional comments about various cells in this row.

4.4.1 Data Collected Through Single Form

If data are collected from all examinees with a single form Test X that is a
representatively shortened version of the synthetic marketbasket form Test V, then
Test X is tau-equivalent to Test V. Observed Test X means for populations and
subpopulations approximate their synthetic marketbasket counterparts on the
marketbasket observed-score scale for percents-correct. Other features of the
distribution, including PACs, do not.

4.4.2 Data Collected Through Parallel Forms

If a number of parallel forms are administered and all are tau-equivalent to the
synthetic marketbasket, then population and subpopulation averages of observed
scores approximate the corresponding means of the synthetic test percent-correct
observed-score scale. This relationship does not hold unless the strong assumption
of tau-equivalence is satisfied, and even when it is, other features of the distributions
do not match those of the marketbasket observed-score distribution.

Suppose the tau-equivalent forms are constructed by sampling items to create
parallel tests from a well-defined item pool, and the pool as a whole constitutes the
synthetic form, Test V. The methods of multiple matrix sampling (Lord, 1962;
Sirotnik & Wellington, 1974) can again be used to estimate means and higher
moments of the Test V distribution. When estimating distributions of Test V observed
scores by these methods, the component due to variation of observed scores around
expected scores is added in to estimates of features of the population distribution.
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4.4.3 Data Collected Through Tau-Equivalent Forms

If a number of tau-equivalent forms are administered and all are tau-equivalent
to the synthetic marketbasket, then population and subpopulation averages of
observed percent-correct scores approximate the corresponding means of the
synthetic test percent-correct observed-score scale. Even when the assumption of
tau-equivalence holds, though, other features of the distributions do not match.

4.4.4 Data Collected Through Congeneric Forms

In general, one needs a latent variable model and the two-stage projection
relationships from Table 4 (again revised to reflect Test V rather than Test X as the
reporting scale) to bring data collected in this manner to the synthetic marketbasket
observed-score scale. The idea is the same as in that cell: One begins by using
observed data on Test U to estimate the distribution of a latent variable 0,

conditional on whatever background variables are of interest. In the first stage of the
two-stage projection, predictive distributions of 0 are created for each student given
u and g. In the second stage, a projected distribution of the statistic S(v) is obtained
with respect to the predicted 0 distribution. When imputation approximations are
used, the first stage for each student amounts to drawing a value I); from p(Olu , g,),

then drawing values for item responses to each of the items in the synthetic
marketbasket Test V, from p(vIJ ,) . These (possibly very long!) hypothetical response

vectors are used to calculate the values of the statistics of interest S(v ) student by
student.

4.4.5 Data Collected Through Unconstrained Forms

As for the preceding cell, one needs a latent variable model and the
notationally modified relationships from Table 4 to bring data collected in this
manner to the synthetic marketbasket observed-score scale. It differs only in that a
more complex latent variable model is probably needed. Reporting of this type
could be incorporated into the current NAEP system by the methods discussed in
Section 4.1.5.

4.5 Inference in Terms of Point Estimates on a Latent Variable Scale

A reporting scale for a survey of achievement can be defined in terms of point
estimates for individuals' latent variables. Under CTT, where unbiased estimates of
individuals' true scores are simply their observed scores, this approach simplifies to
reporting on the observed-score scale of the marketbasketthe first row of the
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matrix, which has already been discussed. Therefore, in this section we will focus on
latent variable models defined at the level of items, namely IRT models. An IRT
model gives the probability of a response vector u in terms of an unobservable
variable 9 , or AO) . Once a response vector u is observed, p(0) is interpreted as a

likelihood function. In applications that focus on individual students, a point
estimate that is in some way optimal for measuring individuals is calculated. The
maximum likelihood estimate (MLE) O is the point at which Au 0) has the highest

value. The Bayesian estimate is the mean of the posterior distribution, usually
calculated with a common prior distribution pH multiplying AuI0). Alternatively,

Bayesian point estimates can be calculated taking a student's background variables
into account as well, by applying AO , g) rather than Au10). Note that to carry this

out correctly in either case requires estimating the latent variable distributions
Au 0) or Au19, g) by means of one of the direct estimation procedures mentioned

earlier.

One may consider defining a reporting scale for a survey by designating a
method of calculating point estimates and summarizing the evidence from each
student's responses in its terms. But IRT point estimates generally have different
distributions for different test forms, depending on the numbers of items in the tests
and their difficulties relative to any given O. For example, the distribution of a group
of students' O s from a short test will be wider than the distribution of their 0 s from
a long test, even if the IRT model is true. Except in the special cases discussed in the
following subsections, attempting to define a reporting scale in terms of IRT point
estimates without designating a particular reference form or parallel set of reference
forms is likely to fail. These kinds of problems make reporting on an IRT point-
estimate scale a hazardous matter when only student-by-student point estimates are
the basis of inference.

This row of the matrix represents a trap that more than one large-scale
assessment program has fallen into: IRT student-level point estimates have been
used as the basis of reporting scores in a base year, and it is desired to report
comparable scores in a subsequent year when data are gathered with revised test
forms. For the reasons noted above, distributions of point estimates need not be
comparable when test forms are changed, even when the IRT model holds. Ad hoc
methods of reconciling point estimates from different scores lead to discontinuities
in trends and spurious changes in distribution features.
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These problems can be circumvented by a more careful explication of the
evidentiary relationship between data from one form and point estimates on
another. In particular, two-stage projection expresses the evidentiary relationship
between data collected from unconstrained test forms and IRT point estimates for a
reference test form. The assessment designer designates some particular set of items
and their associated parameters as a reference form, Test X. The designer then
projects information obtained from the various data-gathering forms into the
observed-score scale of the Test X. The relationships are shown in Table 8.

To illustrate the meaning of the table entries, consider the first row in the table,
for the population mean on the scale of observed IRT estimates on the marketbasket

form Test X, using data collected with unconstrained Test U. First, pHu.) expresses

Table 8

Relationships Between Data Collected With an Unconstrained Form and Features of the Distribution
of IRT Point Estimates for a Reference Test X: Two-Stage Item-Level Model-Based Projection

Target of Inference
Two-Stage Model-Based Projection:
Item-Level Model (e.g., IRT, MIRT)

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (X0 )

Subpopulation PAC (X° )

= N (c) p*p(9
i=l

Oxg = 11;II .10 x(x) AxIeWelu 1 , 410 dx

= 2r r ,
cr'e-9 = IV-1E Axle EAelu 1 i8dx

= 2

'61g N;' j(ex(x)- 'xg) jp(op(olui , g)dO dx

P AC(e xo)= fc(Ox ().ro )jp(xle)p(olui )d O dr
i=1

PAC, (o.,0 ). A cl fc(e (4; O xo) AxIOWOlu , 410 dx
i = 1

Note. Ox (x) denotes the IRT point estimate calculated for response vector x on Test X.
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what is learned from Student i's responses to the items in Test U, about her value on
the (possibly vector-valued) latent variable 9 that underlies responses to the items of
both Test U and Test X. (Obtaining this distribution once again requires Bayes
theorem, and requires that p( 0) be known or previously estimated.) Next, one uses
that projection into the 8 metric as a weighting function to obtain the expected
probability for Subject i to produce a given response vector x on marketbasket Test

X; that is, p(x u = p(x 9)p(0 u, )519 . Now (x) is the IRT estimated score

corresponding to this vectora maximum likelihood estimate, for example. Then
x(x)f p(x10)49 u, )519 dx is the expected value of this marketbasket IRT score,

averaged over all possible response vectors, each weighted by the projected
probability that Student i would produce that response vector in light of the Test U

vector that actually was observed. Finally, ijx is the mean of such values over all

sampled students.

Using such reasoning, Table 8 provides for estimates of features of IRT point-
estimate distributions on a target marketbasket form Test X, given responses on an
unconstrained form under the assumption that a common latent trait model governs
responses on all items concerned. The remaining paragraphs in this section offer
further comments that pertain to particular cells in this row of the matrix.

4.5.1 Data Collected Through Single Form

If a single form Test X is administered to all students, and IRT point estimates
define the reporting scale, then no projections are required. Intuitive test theory
takes over, once the IRT point estimates have been obtained student by student.
While less complicated than the projection method described above, this approach
falters when Test X is either very short, very hard, or very easy. In these cases the
distribution of point estimates may not be sensitive to differences among
subpopulations or over time points that are of interest, or capable of tracking small
changes in PACs.

Nevertheless, gathering data with a single form and reporting on distributions
of IRT point estimates with respect to this form present no logical flaws. It is only
when the test form(s) used to gather data change that more the subtle problems
arise, and more complex analytical procedures such as those of Table 8 are required
to rectify the problem.
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4.5.2 Data Collected Through Parallel Forms

The form-to-form vagaries of distributions of IRT point estimates are
substantially lessened if the forms have very similar test information curvesa
condition that can be approximated if care has been taken to construct forms that are
essentially parallel with respect to content and composition. However, the more test
forms depart from this condition, the more dissimilar the distributions of point
estimates they will engender for a given true 9 distribution. The variation of
estimates of distributional features from data gathered with different forms, above
and beyond variation that can be attributed to student sampling, is a gauge of the
uncertainty introduced by the lack of parallelism.

4.5.3 Data Collected Through Tau-Equivalent Forms

With increasingly long tests with no floor or ceiling problems, IRT point
estimates for a given student from the various forms converge to the same value;
that is, IRT point estimates are consistent for any given student as test length
increases. For population and subpopulation means, averages of IRT point estimates
will thus tend to the same values. (Again, this is not generally true for other features
of the distributions of interest.) This is a large-sample argument in terms of the
length of administered test forms, howevera situation avoided for practical
reasons in most large-scale educational surveys. If test forms are constructed to be
tau-equivalent, acceptable approximations to this desirable result for means may
occur earlier than for unconstrained forms; variations in point estimate distributions
due to differences in test difficulties have been eliminated. But since the 0 s are
estimated with different precision, other features of the distribution will not agree
from form to form in any case short of perfect measurement of individual students.

4.5.4 Data Collected Through Congeneric Forms

Equal-precision adaptive tests (Wainer et al., 2000, chap. 5), which are a special
kind of congeneric forms, may provide acceptable results for reporting in the metric
of IRT point estimates. These are adaptive tests in which testing continues for each
subject until a targeted estimate of the standard error or posterior standard
deviation has been attained; thus all students have scores of about the same
measurement error. What is required, however, is equally precise measurement for
all students across all subpopulations that are to be compared, including
comparisons over time. This condition may be hard to satisfy if the item pool
contains widely diverse kinds of test items, or requires a multivariate IRT model.
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Whether the approximation will be sufficiently accurate to measure small changes in
a survey such as NAEP remains to be verified empirically, through simulations and

field tests.

The generally applicable two-stage projections noted above as a better way to
think about reporting on an IRT point-estimate scale can be used with CAT data
representing Test U. Though more complex computationally, these projections
would be more robust to inevitable variations in test length and accuracy, over time
and across forms.

4.5.5 Data Collected Through Unconstrained Forms

As discussed at the beginning of this section, two-stage projection to observed-
responses followed by point estimates for Test V is the appropriate way to reason
from responses to arbitrarily constructed forms and IRT point estimates for this
marketbasket form (Table 8). The more the constitution of forms varies, the more
likely it is that a multivariate IRT model will be needed.

It may be noted that the IRT model for the point-estimate reporting scale need
not be the same one as is used to actually model responses. For example, the five-
dimensional IRT model used in the 1986 NAEP mathematics survey can be used to
project responses from any data collection form to a response vectors on a reference
form, but then a different, perhaps one-dimensional, IRT model can be used to
summarize scores for this reference form only. This distinction is subtle, so let us be
explicit about the two latent variable models that are involved here: One and the
same latent variable model is assumed to produce item responses and to project

information from Test U responses to the Test X response space; this is the model

used for 49 ui) and p(xl0). A second, different latent variablenot necessarily

believed to be responsible for generating responsescan be used to reduce
projected x score vectors to point estimates; this is the model used for jA, (x).

4.6 Inference in Terms of a Latent Variable on the Latent Variable Scale

Reporting with respect to a latent variable 9 means synthesizing information
from item responses in the form of an estimated distribution onto the 0 scale. Again
0 can be unidimensional or multidimensional; and if it is multidimensional, a
function s(o) that produces a unidirnensional summary can be defined. In all cases,

though, this reporting option concerns the distribution of 9 in the population of
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interest, as opposed to the distribution of d . Reporting with respect to the 8 scale
is the reporting approach currently used in NAEP (Section 4.6.5).

With all methods of collecting data, one-stage projection to the 0 scale

expresses the evidentiary relationship between the item responses that are observed
and the distribution on the reporting scale. Table 9 gives the equations for these
relationships.

Since IRT point estimates of individual students' 03 are consistent as test length
increases, it is an empirical question of when sufficiently long test forms yield '8 s

precise enough to be treated as &, for the purpose of estimating population features.
An experiment carried out in the context of NAEP by Johnson, Liang, Norris, and
Nicewander (1996) indicated that double-length NAEP forms, which required about
two class periods of testing time from each sampled student, were not sufficiently
accurate to achieve this result.

Further comments on particular data collection methods follow.

Table 9

Relationships Between Data Collected With Test U and Features of the Latent
Variable Distribution: One-Stage Model-Based Projection

Target of Inference One-Stage Model-Based Projection

Population Mean

Subpopulation Mean

Population Variance

Subpopulation Variance

Population PAC (Os )

Subpopulation PAC (es)

= Ar'lN f0p(0 xik10

=- N

Og = N;'I f0A0lxi ,g)c10
i=1

0"02 = N-I 1(0 pOlx; )de

Afg

cr6t2 = N;llf 0g)2 p(01.7c; , 410
i.1

PAC(80)= fc(0;00)p(Olui)d0

PACR (9c, )= N;II fc(0;00)p(0lu1,g)d0
i=1
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4.6.1 Data Collected Through Single Form

IRT-based methods for estimating the distributions of latent variables apply
here in their simplest forms. If there are no background variables, for example, we
can use the methods in Mislevy (1984). Incorporating increasingly many background
variables G requires either more complex models for the latent distribution,
incorporating perhaps many parameters for conditional distributions of 0 given g
as has been done in NAEP (Allen, Johnson, Mislevy, & Thomas, 1999). Alternatively,
distributions can be estimates for 9 conditional on just a few background variables
at a time, as attention focuses on each in turn (Cohen 1997; Mislevy, 1985).

4.6.2 Data Collected Through Parallel Forms

The same issues arise here as in the previous cell. One-stage projection through
an IRT model is the appropriate way to understand the underlying evidentiary
relationship.

4.6.3 Data Collected Through Tau-Equivalent Forms

Again, one-stage projection through an IRT model is the appropriate way to
understand this relationship.

4.6.4 Data Collected Through Congeneric Forms

One-stage projection through an IRT model is the appropriate way to
understand this relationship, too. The required estimation procedures are rendered
more stable and efficient in the special case of the congeneric test forms that
adaptive testing represents.

4.6.5 Data Collected Through Unconstrained Forms

Once again, one-stage projection through an IRT model is the appropriate way
to understand this relationship. With arbitrarily constructed forms, it is more likely
that a multivariate IRT model will be needed. This is the combination of data
collection and reporting scale in NAEP as this is written (Allen et al., 1996). NAEP
uses a multiple-imputation approach as described in Section 4.1.5 to analyze the
resulting data. Steps 6 and 7 are skipped, though, because (after a linear
transformation) the draws from examinees' posterior distributions in Step 5 are
immediately on NAEP's IRT true-score reporting scales.
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5.0 Discussion

The preceding sections have developed the machinery necessary for thinking
through the relationships among reporting scales, data collection methods, and
requisite analytic procedures in large-scale educational assessments. This section
offers some observations on tradeoffs they entail for assessment designadvantages
and disadvantages, and strategies for attaining some competing goals.

5.1 The Inevitability of Tradeoffs

Each reporting metric represented in the rows of the matrix has advantages
and disadvantages, each data-gathering method represented in the columns has
advantages and disadvantages, and the analytic methods required in each cell in the
intersections have pluses and minuses. Tradeoffs are inevitable because there is no
single combination that dominates all others.

Marketbasket reporting metrics, for example, present two hard choices. The
first is a tradeoff between comprehensibility and generalizability. The first two rows
are based on a marketbasket collection short enough to administer to a studentor
to publish in the newspaper, or distribute to parents. Easy to comprehend, as it fits
right in to everyday experience with tests. And not very generalizable. It isn't
possible for any one administerable form to cover the richness and variety of a
content domain, so performance on that particular collection of tasks would
overstate the performance of some groups at the expense of others, and might tend
to narrow instruction if performance on this single set of tasks were taken to
represent all that is important for students to learn. The third and fourth rows are
based on a large and representative set of tasks. Domain coverage, in breadth and
depth, can be better achieved. But it is harder to know exactly what scores on such a
test represent, and one cannot test it out on oneself, one's students, or one's children.

The second tradeoff in reporting metrics contrasts the first and third rows
against the second and fourth: observed-score reporting metrics versus true-score
reporting metrics. Observed-score metrics are easier to understand; they fit right in
to intuitive test theory. But unless data are gathered on the marketbasket form or
one parallel to it (cells [1,1] and [1,2]), complex statistical machinery (two-stage
projection) is required to bring information to an easy-to-interpret metric.

Data-gathering methods pose tradeoffs as well. A single form makes for the
easiest test construction, administration, and potential linkage to a marketbasket
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metric. But a single test is easily compromised, and offers the poorest domain
coverage and generalizability. Parallel tests increase coverage, but at the cost of
considerable discipline in test construction. Tau-equivalent and congeneric tests
offer additional flexibility for test developers and administrators, but require more
complex analyses. Unconstrained forms are best from the point of view of test
developers, and most esoteric from the point of view of analysts.

Reporting metrics and data-gathering methods intersect in cells to bring about
evidentiary relationships between observations and desired reports. All other things
being equal, simple relationships are more desirable than complex relationships,
because complex relationships mean more complex analyses are required. But to
simultaneously increase flexibility for test developers, comprehensibility for users,
and accuracy for assessment owners will force the analyst into cells with complex
evidentiary relationships. They are obscure, sometimes mistrusted, from the point of
view of assessment users and even assessment owners. More assumptions are
required, and there are more places in the analysis for things to go wrong, and they
are harder to track down when they do. For example, if projections are eschewed
because they are too esoteric, only four cells in the matrix can provide solid
estimates for all population and subpopulation features (Figure 7).

"Legal Cells" if Projection is Disallowed

Rep3rting
Scale

Obs/Achnin

TruelAdrnin

True-1 Synth

Obs5 ynth

Theta-hat

Theta-true

Method of C ollecting Data

Single Parallel Tau-Equiv Congeneric Arbitrary

Y es Yes IVkans
Only

hikans
Only

bikans
Only

l'Vk ens, if
Tau-Equiv

Yes Yes Maybc-if
king or CAT

Mayid, if'
long or CAT

Figure 7. Summary of which cells provide correct relationships for
population and subpopulation distributions if projection methods
may not be used.
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Suppose an assessment program gathers data and reports results in a
combination that leads to one of the proscribed cells, and carries out analyses that do
not use projection. They will obtain biased estimates of some or all of the features of
population and subpopulation distributions in the intended reporting metric. Biased
results may be tolerable in a static system, however. If data are gathered in each
subpopulation and across all time points in the same way, analyzed with the same
models, and reported on the same scales, then comparisons among groups and
trends over time can provide useful information; intuitively, through experience,
users adjust to the biases in their interpretations. Watching the percentage of
students at "Advanced" move from 5% to 6% to 9% over three years differs little in
any practical sense from 2% to 3% to 5%, especially in light of the uncertainty and
arbitrariness of setting the Advanced cut point anyway. Problems are more serious
when form composition or length changes, however, since using the same reporting
scale and applying the same mismatched analyses produces incomparable results.
Having the percentage of Advanced students plummet from 9% to 2% simply
because more reliable test forms were administered is a disaster of a magnitude that
can sink an assessment programnot to mention sapping resources from the
educational system to assign blame and install remedies for a phantom problem.

5.2 Comments on Some Particular Cells

The assessment configuration that sits best with people's intuitive thinking
about tests is Cell[1,1] (Figure 8): Everyone takes the same test, analysis is simply
adding up number right or percent-correct for every student individually, and
results are reported in terms of these student-by-student total scores. This is the
simplest cell in the matrix to administer, analyze, and reportand it is also the most
seriously constrained.

Because of experience with testing programs such as the SAT, certification
exams, the Armed Services Vocational Aptitude Battery (ASVAB), and standardized
achievement tests such as the Iowa Tests of Basic Skills, the public has also grown
accustomed to the use of parallel test forms. Sometimes the results are reported in
terms of total scores (Cell[1,2]), possibly after equating, and other times in terms of
scaled scores (Cell[5,2]). Serious discipline is required on the part of test developers
to produce interchangeable test forms, but the benefit of easy interpretation and
straightforward analysis is maintained while increasing domain coverage and test
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Reporting
Scale Ingle

Method of C ollecting Data

Parallel Tau-Equiv Congeneric Arbitrary

True/Adruin

True/Synth

ObsIS ynth

Theta-hat

Theta-true

Figure 8. The configuration on which intuitive test theory is grounded
Also the easier cell in the matrix for design, analysis, and reporting.

security. Cell[1,2] (Figure 9) therefore offers some appeal for an ongoing assessment
system. This might be called a short form/marketbasket reporting configuration.

Reputing
Scale

latIA

S ingle

Method of C ollecting Data

Parallel Tau-Equiv Congeneric Abitrary

TnielAdinin

True/Synth

Obs/S ynth

Theta-hat

Theta-hue

Figure 9. A configuration to which the public has grown accustomed.
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A serious disadvantages of the short form/marketbasket reporting
configuration is the inflexibility of form designs, both within assessment
administrations and over time. Because the test forms must remain parallel and
fixed in structure, the assessment cannot adapt easily to changes in the content
domain over time as to kinds or balances of tasks. Further, an implicit restriction is
imposed on the range of tasks that can be offered. Assessors would not have the
flexibility they currently have in NAEP, for example, to use some test forms that call
for some students to write long essays while others ask students to write a series of
shorter passages, or in science, to present some students extended science
investigations and others a collection of short-answer questions that span a range of
concepts. To accommodate this flexibility, NAEP must use a multivariate IRT model
and use analytic procedures appropriate for unconstrained form compositions. This
places NAEP in the fifth column of our matrix. The reporting scale is that of the
latent variables, locating the current NAEP in Cell[6,5] (Figure 10). This is the second
most complex cell in the entire matrix, from the point of view of the analyst.

What then is the most complex cell, from the point of view of the analyst? It is
Cell[1,5] (Figure 11). First, data are gathered with unconstrained forms, so that the
widest possible range of tasks can be presented, changes in form length and
composition can be effected within and across time, and balances of tasks can evolve
with the content area. Second, results are reported with respect to observed scores
on a single administerable marketbasket form, so that interpreting results is as
intuitive and familiar to users as it can be. The radical difference between how data
are gathered and how they are reported requires complex analyses, in the form of
multivariate latent variable modeling and two-stage projection all the way to
imputed responses on the marketbasket form, for students who were administered
tests that looked nothing like it.

Despite its appeal to assessment users and designers, this approach harbors
another deficiency: Not all of the information gathered on the unconstrained forms
can be revealed on the marketbasket reporting scale. Recall that the marketbasket
scale says how students, however assessed, would likely have done on the
marketbasket items if they had taken them. How well they did, or might do, on in-
depth inquiry investigations or extended writing samples is relevant only insofar as
those tasks overlap with the marketbasket tasks. If performance is increasing with
respect to inquiry skills relative to science content knowledge, but the marketbasket
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Reporting
S cale

as/Admin

TruelAdrain

True/Synth

as/S ynth

Theta-hat

Method of C ollecting Data

Single Parallel Tau.Equiv Congeneric Abitrary

,-----1 .' Full Lrs e ot Info

Figure 10. The current NAEP configuration.

Reporting
Scale

S1:61A

Single

Method of Collecting Data

Parallel Tau.Equiv Congeneric

TruelAdinin

True/Synth

as/S ynth

Theta-hat

Theta-true

Abitiary

Figure 11. The most complex cell irt the matrix.

contains only content knowledge items, then the unique gains on the inquiry skills
cannot show up in the marketbasket reports. The next section considers ways to
remedy this lossnot surprisingly, at the cost of adding complexity of one kind or
another.
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5.3 Using Multiple Data Collection Methods and Multiple Reporting Scales

As we have seen repeatedly, each approach to collecting assessment data and
reporting results has its own advantages and disadvantages, and no single approach
simultaneously best satisfies the preferences of all stakeholders, including users,
designers, owners, and analysts. One strategy for designing an assessment system,
then, is to employ multiple methods of gathering, analyzing, and reporting data in
the same assessment. The idea is to employ a combination of data-gathering
methods, and perhaps reporting scales as well, in a way that provides to some
degree the advantages of each while compensating for its disadvantages by using an
alternative approach in the same assessment.

A configuration illustrated in Figure 12 that combines two approaches
discussed in Section 5.3 is halfway there. Data are gathered here in two ways. One
way is with forms parallel to a marketbasket form that can be made public, so that
with this approach one achieves comprehensible reports and simple analyses. The
disadvantage of having to use rigid and limited parallel test forms is mitigated by
the addition of unconstrained forms as well, so that a wider variety of tasks can be
used and at least some test forms can vary as to content and format within and
across assessments. But as noted above, not only are complex analyses needed to
project results from the unconstrained forms to the marketbasket reporting scale,
information that is unique to tasks not represented in the marketbasket is lost.

One way to resolve this shortcoming is to provide information about
knowledge and skills outside the marketbasket in supplementary reports, as
suggested in Figure 13. Advantages of such a configuration include comprehensible
marketbasket reports, with some data that can be analyzed quickly and even locally
in its terms, supplemented by a broader variety of data that not only contribute to
the marketbasket reports but add their own information in the parts of the content
domain that can't logistically be included in the marketbasket. While the additional
complexity of analyzing data from the unconstrained forms is a disadvantage,
perhaps the most serious drawback is that everything that is important to learn from
the assessment can't be conveyed on a single reporting scale. Serious observers
never thought that it could, of course. Yet it may seem preferable to have a primary
reporting metric that captures everything and can be decomposed, rather than a
primary reporting metric that effectively captures most of the information but must
be supplemented by additional reports.
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Reporting
Scale

Single

Method of Collecting Data

Parallel Tau-Equiv Congeneric Arbitrary

TruelAdrni

TruelSynth

asIS ynth

Theta-hat

Theta-true

Figure 12. Two data-gathering methods providing information on the
same reporting scale.

Reporting
Scale

bs1

True/Admin

True/Synth

asiSynth

Tlieta-hat

Theta-true

Method of Collecting Data

Single Parallel Tau-Equiv Congeneric Arbitrary

e ofEro.
,f

Figure 13. Observed-score marketbasket reports with supplementary reports on skills not
reflected in the marketbasket.
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A second way to resolve the problem is to have a complex data-gathering and
reporting approach that captures all the information across the full range of items, as
NAEP does now, supplemented by a streamlined marketbasket reporting scale that
captures the core of that information. Figure 14 suggests such an approach, which
combines (a) simple observed-score-on-an-administerable-form marketbasket
reporting and parallel form data collection with (b) the current complex but
comprehensive reporting of NAEP, using data from unconstrained forms to report
in terms of distributions of latent variables. This option is illustrated in Figure 14.
Advantages again include comprehensible marketbasket reports using data
collection with locally scorable parallel forms, and a separate, more complex but
fully comprehensive reporting scale based on a latent variable model. The big
problem with this configuration is that certain features of distributions in the two
reporting metrics may not agree with one another (Figure 15). The reasons are
twofold: First, the observed-score marketbasket contains measurement error at the
level of students, so, for example, a higher proportion of students will have scores
above high cutoffs than the true proportion estimated on the latent variable report.
Second, the latent variable report summarizes data across a broader array of
knowledge and skill, so to the extent groups differ or trends vary in these skills as

Reporting
Scale

3D/Adrnii

TruelAdmin

TradSynth

ObefS ynth

Theta-hat

Theta-true

Single

Method of C ollecting Data

Parallel Tau.Equiv Congeneric Arbitrary

l , 'tet: T'. 1°M1411111111
Partt U e o hi .

IIIIIII VIMORTIMMt
ilr11111111

Same
Data

Figure 14. Dual reporting scales: Quick and comprehensible marketbasket data collection and
reports, and comprehensive reports on a latent variable scale.
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Different
Results

True/ Adrnin

True1Synth

Olrs/S ynth

Theta-hat

Same
Data

Figure 15. A potential disadvantage of dual reporting scales.

compared to the marketbasket, substantive disagreements can result. It is an open
question whether users would be more happy with two numbers because they have
more information and get some of it quickly and simply, or more uncomfortable
because the two numbers sometimes (appropriately) tell them different things.

6.0 Conclusion

"Intuitive test theory" is based on everyone taking the same test, scores being
what they are, and inferences about groups are statements about distributions of
these scores (Cell [1,1]). Why do we have to bother with all these esoteric
complications? Isn't IRT complicated enough already? Why can't we just use
equating?

This is the reason: Once one steps beyond the simple data collection and
interpretation paradigm under which intuitive test theory evolved, the noise
inherent in the relationships between what one observes and what one wants to
infer causes it to give the wrong answers. Paradoxes arise. Some unpleasant truths
cannot be avoided. For example, except in very special cases, there is no single-
point, examinee-at-a-time matchup between the evidence for a given inference about
an examinee's proficiency from different test forms. The proportion of examinees
with observed scores above a given level is a biased estimate of the proportion of
examinees above that point. Observed-score distributions are not the same as true-
score distributions, and they depend on the particulars of the test form, so different
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test forms give you different answers if you look at student-by-student estimates. In
general, to get the right answer you have to work with entire probability
distributions that capture both what you know about each examinee's proficiency
and what you don't know. When targeted inferences concern populations and
background variables, the probability distributions associated with a given
examinee depend on her background data and the response and background data of
other examinees.

The equations, the relationships, and the methodologies discussed in this paper
are complex, but they are not needlessly complex. The increasingly complex
techniques of test theory evolved to handle increasingly ambitious inferential
problems. Each generation of developments overcomes limits on gathering and
reporting assessment data that frustrate educators and policymakers. The
complexity of models and methods is the price we sometimes pay for more
powerful, more flexible, and more useful ways of gathering and reporting evidence
about what students know and can do. For example:

Item response theory is more complex than classical test theory, but IRT
makes it possible to establish links among tests that are not parallel or tau-
equivalent, to design tests that will meet targeted statistical characteristics,
and to adapt tests to individual students in light of their unfolding
performance.

Matrix sampling designs are more complicated to analyze than having
every student take the same test or parallel tests, but they open the door to
more flexible test design and provide better coverage of educational
domains.

Projection methods are vastly more complicated than intuitive test theory,
but they permit an assessment program to gather data in an efficient design
yet report results on a comprehensible form.

This list could be extended much further, even if restricted to the psychometric,
statistical, and survey sampling methods used in large-scale educational
assessments.

This presentation has aimed to lay out the evidentiary relationships that
different combinations of data collection methods and reporting methods entail.
These relationships have inescapable implications for anyone who wants to report
results on a particular scale, from data that arrive in a particular way: We cannot
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choose data-gathering methods, reporting scales, and methods of analysis

independently.

Suppose we choose a data-gathering method and a reporting scale. We must
then use analyses that are consistent with the evidentiary relationships that our
choices entail. For example, if we decide to (a) report results on the observed-score
metric of a synthetic marketbasket and (b) collect data using unconstrained test
forms in order to minimize constraints on test developers, we have to use some
analytic procedure that is model-based and involves projection.

Suppose on the other hand we decide that we will not use any analyses that
involve projection. This eliminates every cell in the matrix where projection is the
only way to understand evidentiary relationships (Figure 7), and restricts our
possible targets of inference in cells where simpler methods support inferences
about means but not inferences about PACs. For example, we can gather data using
parallel forms and get sound reports on an observed-score marketbasket scale for
one of the forms using only standard equating. But without projection, we can't
draw inferences on a true-score marketbasket scale.

Understanding the evidentiary relationships between the inferences that are
desired and the data that will be collected isn't just a technical problem for the
technical people. The owners of an assessment are responsible for appreciating
which design decisions are negotiable and which are not. Methods of data collection
are open to negotiation. Reporting scales are open to negotiation. Targets of
inference are open to negotiation. Given a combination of data collection method
and reporting scales, the methods of analysis and computing approximations, among
those that account correctly for the evidentiary relationships these choices create, are open

to negotiation. The evidentiary relationships themselves are not.
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