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Abstract

This article provides analytic evaluations of expected (marginal) true-score measures for binary

items given their IRT calibration. Under the assumption of normal trait distribution, marginalized

true scores, error variance, true score variance, and reliability for norm-referenced and criterion-

referenced interpretations are presented as a function of the item parameters. The proposed

formulas have methodological and computational value in bridging concepts of IRT and true

score theory. They provide information about the individual contribution of IRT calibrated items

to marginal true-score measures for the test and may have valuable applications in test

development and analysis. For example, given a bank of IRT calibrated items, one can select

binary items to develop a test with known true-score characteristics prior to administering the test

(without information about raw scores or trait scores.) Calculations with the proposed formulas

are easy to perform using basic statistical programs, spreadsheet programs, or even hand-held

calculators.

Index terms: true score theory, item response theory, reliability.
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Expected Values and Reliability of Number-Right

Scores for IRT Calibrated Items

True-score measures and reliability are used in substantive and measurement studieseven

when item response theory (IRT) information about items and persons is available (e.g., with

standardized tests). Traditionally, such measures represent a common focal point between test

developers and practitioners as they place the scores and their accuracy in the original scale of

measurement [e.g., number-right (NR) score]. True (or domain) scores are readily interpretable

and; for example, when pass - fail decisions are made, a cutting score is-typically-Set oh the domain=

score scale (e.g., Hambleton, Swaminathan, and Rogers, 1991, p. 85). Therefore, it seems totally

appropriate to argue that IRT estimates and classical estimates of scores and their reliability are

not mutually exclusive and may coexist in making adequate interpretations and decisions based on

test data. Combining IRT information about trait scores with readily interpretable true-score

information will positively impact the quality of test development and analysis. This, however,

requires better understanding of the relationships between IRT and classical concepts from

methodological and technical perspectives. As a step in this direction, this article investigates

relationships between marginal true-score measures and IRT parameters of binary items. Analytic

expressions (formulas) of such relationships can be useful in test development and analysis from

both methodological and technical perspectives.

Before presenting the theoretical framework for bridging true-score measures to IRT item

parameters, an important clarification should be made. As is known, the accuracy of measurement

in IRT varies across the levels of a latent trait, 0, that underlies the persons' responses on each

item. The IRT conditional error variance at 0, inversely related to the information provided

by the test at 0 (Birnbaum, 1968), is not to be confused with the conditional raw-score variance at

0, o-219 . The expected value of the latter (when 0 varies from to 0.) is the error variance for the

raw score (e.g., Lord, 1980), whereas the expected value of the former is referred to as marginal

measurement error variance (Green, Bock, Humphreys, Linn, & Reckase, 1984). The marginal

reliability in IRT is used, for example, as an overall index of precision in computerized adaptive

4
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testing for comparison with the classical internal-consistency reliability estimated for paper-and-

pencil forms (Green et al.; Thissen, 1990). Such comparisons, however, require more accurate

evaluations of the population reliability for paper-and-pencil forms than those provided by sample-

based empirical indexes such as Cronbach's coefficient alpha (Cronbach, 1951). Some additional

comments on this issue are provided in the discussion section.

The formulas proposed in this article, derived under the assumption of normal trait

distribution, can be very useful in test development and analysis. For example, given a bank of

IRT calibrated items, one can select items to develop a test (e.g., for follow-up measurements in

longitudinal studies) with true-score characteristics and reliability knownprior to data collection.

Theoretical framework

Let Pi(0) be the probability for correct response on item i for a person with a trait score 0

under an appropriate IRT model: one-parameter (1PL), two-parameter (2PL), or three-parameter

(3PL) logistic model (Birnbaum, 1968). As /1(0) is the item true score at 0, the expected marginal

number-right (NR) score for a test of n binary items is

coPi(9)co(0)de,
i=i

(1)

where (p(0) is the probability density function (pdf) for the trait distribution. The integration is

from -00 to oc, since the ability, 0, is not limited in the theoretical framework of IRT. Also, as the

product P;(0)[1 - Pi(0)] is the conditional error variance for item i at 0 (Lord, 1980, p. 45), the

expected error variance for the NR score on a test of n binary items is

co
2

= Ef P, (6)[1- pi(6)1,0(9)de. (2)

The true score variance for the NR score is usually presented (e.g., May & Nicewander, 1993) as

5
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2

6; =
co

[1713(0)]2 9(0)de [fco

nP (0)9(9)d81 ,

where 75(0) is the mean of P;(0) at 0; (i = 1, n).

(3)

Previous research provides limited applications of Equations 1, 2, or 3 using, for example,

Gaussian quadrature (Bock & Lieberman, 1970), but analytic solutions are not provided. For

example, comparing reliability for NR scores and percentile ranks, May and Nicewander (1993)

evaluated the integrals in Equations (2) and (3) using the Simpson's Rule with 100 points on the 0

interval from -5 to 5 after approximating the compound binomial distributions of raw scores. This

article takes a different approach and provides analytic solutions (formulas) for marginalized true

score measures at item level thus making it possible to determine (and control) the contribution of

individual items to the values of v, ae2, a.,2, and reliability indexes at test level. Comments on the

advantages of the proposed analytic solutions over direct brute-force quadrature integrations are

provided in the discussion section.

Given the IRT calibration of binary items, marginalized true-score measures for a normal

trait distribution are evaluated in this article at both item and test level. For individual items,

formulas are provided for the item score (70, item error variance [a2(e1)], item true variance

[a2(ti)], and item reliability (pil). At test level, formulas are provided for the population mean of

NR scores (ii), domain score (7c) error variance (ae2), true score variance (cyc2), reliability (p),

and dependability index [01)(X)] for criterion-referenced interpretations based on a cutting domain

score, X. For items calibrated with the 2PLM, 7Ci and a2(e) are evaluated through approximation

formulas (with a negligible approximation error). All other true-score measures at item and test

level are represented (explicitly or implicitly) as exact analytic functions of7Ci and a2(e1). The next

sections provide formulas for binary items calibrated with the 2PLM, 3PLM, and 1PLM and two

illustrative examples. The mathematical derivations of the formulas are given in Appendix A. The

calculations with the proposed formulas are facilitated by the use of a SPSS syntax (SPSS, Inc.,

2002) provided in Appendix B.

6
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Formulas for Binary Items Calibrated with the 2PLM

With the 2PLM, the probability of a correct answer on a binary item i for a person with a

trait level 0 is determined with

Pi (9) =
exp[Dai (9 bi)]

1+ exp[Dai(8bi)]
(4)

where: a; is the item discrimination, b; is the item difficulty, and D is a scaling factor; (with D =

1.7, the normal-ogive and logistic item-characteristic functions are almost identical).

Item Score.

The marginal probability of correct responses on item i is referred to here as item score, it

In classical test theory, the empirical estimate of it is referred to as item difficulty (although it is,

in fact, the easiness of the item.) As proven in Appendix A, it can be represented as a function

of the IRT item parameters (a; and b1) as

1 elf (Xi)
' 2 (5)

where Xi = aibi / V2(1 + a?) and erf is a known mathematics function called the error function.

With an approximation provided by Hastings (1955, p. 185), the error function (for Xi > 0) can

be evaluated (with an absolute error smaller than 0.0005) as:

4erf(X).---1(1+aiX+a2X 2 +a3X 3 +a4X4 ) ,
(6)

where al = .278393; a2 = .230389; a3 = .000972; a4 = .078108. When X < 0, one can use that

erf (-X) = -erf (X). It should be also noted that the erf(X) is directly executable with computer

programs for mathematics (e.g., MATLAB 5.3; MathWorks, Inc., 1999). Figure 1 represents the

values of it (calculated with Formula 5) as a function of the item parameters ai and bi.

7
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Item error variance.

As one can see from Equation 2, the marginal error variance for an item i can be obtained

through the evaluation of the integral

oo

62 (e s) = Pi (0)[1- Pi (0)k o (0)d 0
-co

(7)

With (p(0) for the standard normal distribution and D = 1.7 with the 2PLM, Equation 7 becomes

0.2 exp[1.7ai (9 b i)] ( 1

-oo (1+ exp[1.7ai (0 - b i),)2J
exp(- .5192)) d 0 (8)

Since a closed form evaluation of the integral in Equation 8 does not exist, an approximation was

developed in two steps. First, using the computer program MATLAB 5.3 (MathWorks, Inc.,

1999), quadrature method evaluations were obtained for practically occurring values from 0 to 3

for the item discrimination, ai, and from -6 to 6 for the item difficulty, bi, with a step of 0.01 on

the logit scale. Second, the results were tabulated and approximated using the three-parameter

Gaussian function with the regression wizard of the computer program SigmaPlot 5.0 (SPSS Inc.,

1998). The resulting approximation formula is

62 (ei ) = miexp[-0.5(bi / di)2 (9)

where bi is the item difficulty, whereas mi and di depend on the item discrimination (a1):

mi = 0.2646 - 0.118ai + 0.0187a12 ;

= 0.7427 + 0.7081/ai + 0.0074/a12.

Depending on the values ai and bi , the error of approximation with Formula 9 varies from 0 to

8
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0.005 in absolute value (with a mean of 0.001 and a standard deviation of 0.001). As one can see

from Formula 9 (graphical illustration in Figure 2), the item error variance is an even function of

bi for fixed values of ai . In other words, the value of cr2(ei) is the same for bi and -bi when the

value of ai is fixed. As Figure 2 also shows, larger errors occur with average difficulty items and

smaller errors occur with easy or difficult items. It should be noted also that a2(e) represents an

additive error variance component of the (total) error variance for the NR score, o-2.

Item difficulty (in loglts)

Figure 1. Marginal item score for binary items
as a function of their discrimination (ai ) and
difficulty (bi ) parameters with the 2PLM

Figure 2. Error variance for binary items as
a function of their discrimination (ai ) and
difficulty (b, ) parameters with the 2PLM

Item True Variance.

As proven in Appendix A, the item true variance can be represented as an exact function

of the item score and item error variance:

62 ( ) = 7ri ( 7Z-1
62 (e,). (10)

It should be noted also that the derivation of Formula 10 is the same with any IRT model (1PLM,

2PLM, or 3PLM) and any (not necessarily normal) trait distribution (see Appendix A).

9
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Item Reliability

In classical test theory, the reliability of item i is empirically estimated with the product

where si is the item-score standard deviation and rix is the point-biserial correlation between

the item score and total test score (e.g., Allen & Yen, 1979, p. 124). This article uses the ratio

"item true variance to observed item variance " for the evaluation of item reliability (pii). Thus,

given the IRT calibration of binary items, the marginal reliability of an item can be evaluated with

a2
Pii 2a ( i) 6'2 (eJ)'

where 02(e;) and 62(Ti) are obtained with Formulas 9 and 10, respectively. Information about the

reliability of individual items can be particularly useful when the purpose is to select items that

maximize the internal consistency reliability of test scores (e.g., Allen &Yen, 1979, p. 125).

Marginal NR Score.

Given the item score, 7C;, of each item in a test of n binary items, the marginal NR score is

J E (12)

Error Variance for the NR Score.

Given the item error variance, 02(e1), for each item in a test of n binary items, the marginal

error variance is

=
E 2 (ei .

2

i =i

True Score Variance for the NR Score.

(13)

As proven in Appendix A, the marginal true score variance for a test of n binary items is

10
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n n

Cr = EE Ai[ri(1- ;ri) a2 (ei )1 Prj (1- 75) a2 (ej)})
i=1 j=1

where it; and a2(ei) [or its and 02(0] are obtained with Formulas 5 and 7, respectively.

Reliability.

Under the true-score model (Lord & Novick, 1968), the reliability is

2
0-r

Pxx 2 2
+ (re

(14)

(15)

In this article, the theoretical value of pxx is evaluated by replacing ae2 and ate in Formula 15 with

their evaluations obtained through Formulas 13 and 14, respectively.

Dependability Index

Brennan and Kane (1977) introduced a dependability index, (D(X), for criterion-referenced

interpretations in the framework of generalizability theory (GT; e.g., Brennan, 1983)

(DM 2 + cr(:)2 +2)22
(16)

where a2(p) is the universe-score variance for persons, a2(0) is the absolute error variance, it is

the population mean, and X is the cutting score; (n and X are in the metric of proportion ofitems

correct.) When n = X, the index ON reaches its lower limit referred to also as index' in GT. As

Feldt and Brennan (1993) note, "the index (I )(X) characterizes the dependability of decisions based

on the testing procedure, whereas the index (I) characterizes the contribution of the testing

procedure to the dependability of such decisions" (p. 141). With the "person x item" (p x i) design

in GT, the absolute error variance is: o-2(A) = cy2(pi,e)In + 02(01n.

As the parameters in Formula 16 are in the metric of proportion of items correct, their

translation in the framework of this article is (a) 2cy (p) n2
2/ where 6,2 is the true variance for

11
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the NR score, (b) a2(A) = 6e21172+ a2(ri)/n, where 6e2 is the error variance for the NR score and

a2(7t-i ) is the variance of iti values (i = 1, n), (C) 20 (i) = a2(7r ) and (d) c52(pi,e)= ae2/n. With

this, the dependability index(10(X) translates into

cr2 n2 2)2

(I) (2) o +n2 (7r 2)2 + e2 + no-2 (7r ,).

Index t'(?) achieves its lowest limit when it = X. The resulting dependability index is

(17)

2

(1) -
2

Gre
2

+ no-2 (7 r i)
(1 8)

The comparison of Formulas 15 and 18 shows that the dependability index (1) does not exceed the

reliability coefficient pxx. Intuitively this also makes sense because, as Feldt and Brennan (1993)

note, "criterion-referenced interpretations of 'absolute' scores are more stringent than norm-

referenced interpretations of 'relative' scores ... (II can also be interpreted as a chance-corrected

index of dependability for criterion-referenced interpretations with squared-error loss" (p. 141). It

should be stressed that, while the evaluation of pxx, (1)(X), and 1' in the framework of GT requires

sample data (e.g., binary scores), Formulas 15, 17, and 18 in the framework of this article do not

require such data as long as the IRT item parameters are available.

Formulas for Binary Items Calibrated with the 3PLM

With the 3PLM (Birnbaum, 1968), the probability for correct response on item i for a

person with a trait score B [denoted here as P,*(0)] is provided with

Pi* (0)= ci + (1- ci)1 {1+ exp[-1.7ai (0 (19)

12
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where ci is the pseudo-chance level ("guessing") parameter of the model. In order to distinguish

true-score measures for items calibrated with the 2PLM from their counterparts with the 3PLM,

we star the latter (e.g., ). Clearly, Equation 19 can be written as

Pi* (0) = ci + (1 ci)Pi(e), (20)

where P(8) is with the 2PLM (see Equation 4).

Item Score.

The item score for calibrations with the 3PLM is

7ri = c, + (1- )7C1 , (21)

where it is obtained through Formula 5 for calibrations with the 2PLM. The proof follows directly

from multiplying on both sides of Equation 20 by cp(0) and integrating each side from -co to 00.

Item Error Variance.

The item error variance for calibrations with the 3PLM is

a 2 (e: ) c (1 ci)(1 i) + (1 c i)2 o-2 (e,), (22)

where ni and a2(e) are obtained trough Formulas 5 and 9, respectively, fot calibrations with the

2PLM; (proof in Appendix A). Figure 3 graphically represents values of the item error variance

(calculated with Formula 22) as a function of the item parameters ai and bi for a fixed value of the

pseudo-chance level parameter (ci= 0.2).

Item True Variance.

The item true variance for calibrations with the 3PLM is

a2 (r, ) = ,r,*(1 7r:) Cr2(e:),

13

(23)
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where 7C;* and a2(e1 *) are obtained with Formulas 21 and 22, respectively. Formula 23 follows

directly from Formula 10 because the derivation of the latter does not depend on which model is

used for item calibration (1PLM, 2PLM, or 3PLM).

Item Reliability

As with the 2PLM, the reliability of individual binary items calibrated with the 3PLM is

* °-
2
eri

*

vii 2 *(r ) + a 2 (ei* )'

where cr2 (4) and a 2 (r: ) are obtained with Formulas 22 and 23, respectively.

b
6

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Figure 3. Error variance of binary items as a function of

their discrimination (a; ) and difficulty (b, ) parameters for

a fixed pseudo-chance level (ci = 0) with the 3PLM.

(24)

True-Score Measures and Reliability at Test Level

Formulas 12, 13, 14, 15, 17, and 18 for true-score measures and reliability at test level

with the 2PLM translate directly into their 3PLM counterparts for the marginal NR score, error

I4
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variance for the NR score, true score variance, reliability, and dependability (it suffice to use

star notations for the symbols that participate in the right-hand side of each of these six formulas.)

Formulas for Binary Items Calibrated with the 1PLM

When the discrimination index in Equation 4 is a constant (a;= a), the 2PLM translates

into the 1PLM. With the 1PLM, however, one should know which computational IRT model had

been used: logistic (with a scaling constant D = 1.0) or logistic approximation of the normal ogive

model (D = 1.7). Both options are provided with some computer programs for calibrations with

the 1PLM (e.g., RASCAL; Assessment Systems Corporation, 1995). When the standardization is

on the trait scores (D = 1.7), one can use the formulas for true-score measures and reliability (at

item and test level) derived here for the 2PLM (ai= constant with the 1PLM). This approach does

not work, however, for a "pure" Rasch model (D = 1; Rasch, 1960) in which the standardization

is on the item difficulty. For this case, formulas for true-score measures and reliability of binary

items are developed by Dimitrov (in press) for normal and logistic trait distributions.

Examples

Simulated Data Example

In this example, binary scores for 8,000 persons were simulated to fit the 2PLM with the

standard normal distribution for trait scores, 0 -N(0,1), and fixed values ofai and L.; for 20 items.

The purpose of this example is to illustrate the application of the formulas proposed in this article

for true-score measures and reliability of binary items calibrated with the 2PLM. The empirical

validation of Formulas 5 and 9 [for 7Ci and 62(ei) with the 2PLM] is of particular interest because

these two formulas are based on approximations. All other formulas are obtained through exact

derivations and represent (explicitly or implicitly) functions of it; and 62(ei).

The data were generated using a computer program written in SAS (SAS Institute, 1985)

for Monte Carlo simulations of binary data that fit IRT models (Dimitrov, 1996). The assumptions

of 0 - N(0,1) and model fit with the 2PLM being met with these simulations, the produced binary

15
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scores (for 8,000 persons on 20 items) were analyzed using the computer program XCALIBRE

(Assessment Systems Corporation, 1995). Using the XCALIBRE estimates ofai and bi (given in

Table 1) allows us to test the "robustness" of Formulas 5 and 9 when they are used with sample-

based (i.e., less than "ideal") estimates of item parameters. The evaluations of true-score measures

and reliability in this example were facilitated through the use of the statistical program SPSS

(SPSS Inc., 2002). The SPSS syntax developed for this purpose (in Appendix B) works for binary

items calibrated with the 3PLM (input variables: ai, bi, and ci), but it also can be used for items

calibrated with the 2PLM (with ci= 0) or the 1PLM (with ci = 0 and ai = constant). The SP SS run

generates the true-score measures and reliability for each item a2(e1), 62(-ri), and pii] as "new"

variables in the SPSS data spreadsheet. At test level, the SPSS printout provides values for the

marginal NR score (R), error variance for the NR score (cre2), true variance for the NR score

(o-,2), and variance of items scores [a2(zi)].

The results from the SPSS run in this example (with ai and bi from Table 1 and ci= 0) are

provided in Appendix C. The true-score measures and reliability for individual items (upper panel

in Appendix C) are given in Table 1. At test level, the SPSS printout (lower panel in Appendix C)

provides the true score variance for the NR score (;2 = 6.315), the error variance for the NR

score (6,2 = 3.719), the marginal NR score (p. = 8.956), and the variance of 7Ci values for the 20

items WOO = .045]. With this, the domain score is it = gin = 8.956/20 = .448 and the reliability

is pxx = .63 (using Formula 15).

The empirical estimates of true-score measures and reliability for the simulated datawere

also determined and compared to their theoretical counterparts. Most importantly, a strong match

was found between the theoretical evaluations of 7Ci and cr2(ei) and their empirical counterparts

denoted here as pi and s?, respectively. The empirical item scores,pi (provided by XCALIBRE

for the simulated data) are given in Table 1. The difference between pi and 7ti (also in Table 1) is

smaller than 0.01 in absolute value. The same is true for the difference between theoretical and

16
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empirical item variances: a2(ei) - si2. One can check this quickly and easily using, for example, the

SPSS spreadsheet for Table 1 and calculating: 4 =p;(1 - pi).

As noted earlier, the empirical validation of the accuracy of Formulas 5 and Formula 9 is

important because the values of ni and o.2(e1) produced by these two formulas govern the values

of other true-score measures and reliability indexes. Given the strong match between theoretical

and empirical estimates for the item score and the item error variance in this example, it is not a

surprise then that Cronbach's alpha for the sample of simulated binary scores (N = 8,000) was

found to be the same as the theoretically evaluated reliability (a = pxx= .63). Similarly, the mean

and the variance of the empirical item scores in Table 1 [T, = .448 and s2(pi) = 0.044] also match

their theoretical counterparts [n = 0.448 and 62(70i) = 0.045]. Thus, with the assumptions of data

fit and normal trait distribution met, there is a strong match between the theoretical and empirical

values of true-score measures even when the proposed formulas are applied with IRT estimates

(not "ideal" values) of the item parameters for relatively large samples (in this case, N= 8,000.)

Real Data Example

The data for this example consisted of dichotomously scored responses of 4,854 fifth

graders on 24 multiple-choice items of the Ohio Off-Grade Proficiency Test-Reading (Riverside

Publishing, 1997) in a large urban area in northeastern Ohio. The items capture four strands of

learning outcomes defined by the publisher as (a) examining meaning given a fiction or poetry

text, (b) extending meaning given a fiction or poetry text, (c) examining meaning given a

nonfiction text, and (d) extending meaning given a nonfiction text. The data were analyzed using

XCALIBRE with the 3PLM (to accommodate for "guessing" with the multiple-choice items.) For

the test of data fit XCALIBRE reports a standardized residual statistic for each item. This statistic

is normally distributed and values in excess of 2.0 indicate misfit with a type I error rate of 0.05.

In this example, the standardized residuals for the 24 binary items ranged from 0.34 to 1.13 thus

17
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indicating that the data fit the 3PLM. The XCALIBRE estimates of item discrimination, ai, item

difficulty, b1, and pseudo-chance level, ci, are provided in Table 2 (the 24 items are grouped by

strands of learning outcomes.)

The normal quantile tests (proportion-proportion and quantile-quantile comparisons of the

observed and expected values) were conducted using SPSS with the trait scores, 0, provided by

XCALB3RE for the sample data (N= 4,854). The results indicated a good fit of 0 to N(0,1) thus

allowing the application of formulas developed in this article (see also Figure 4). The theoretical

true-score measures and reliability (at item and test level) were evaluated through the use of the

SPSS syntax in Appendix B (with the item parameters ai, b and ci in Table 2 as "input" SPSS

variables.) The results are summarized in Table 2 by strands of learning outcomes. In terms of

domain score, the highest performance of the target population of fifth graders is on the learning

outcome "poetry - constructing meaning" (7c = .664), whereas their lowest performance is on the

learning outcome "nonfiction - extending meaning" (7c = .475). The dependability index ON was

also calculated (using Formula 17) for values of the cutting score X on the proportion of items

correct scale from 0 to 1 with a "step" of 0.01 (see Figure 5). As one can see, the dependability of

pass/fail decisions based on a domain cutting score X = .8 (i.e., 80% items correct) is $11(X) = .90.

With the data in this example (as with any sample of real data), it is not realistic to expect

ideal conditions for the assumptions of model fit and normality of the trait distribution. Yet, there

is still a good match between theoretical and empirical values for item scores (it versus pi values

in Table 2), variance of items scores [62(7ri) = .027 versus 62(m) = .025], domain score (7c = .585

versus p = .586), and reliability (p= .789 versus Cronbach's a= .801). Additional comments on

pxx and its empirical evaluation through Cronbach's a are provided in the discussion part.

In this example the 3PLM estimates of item parameters were determined from sample

data, but the procedures described in the previous paragraph remain the same when ai, b and ci

are known from previous (or simulated) calibrations with the 3PLM. One can use the procedures

(without further data collection) to determine the true-score characteristics and reliability for any
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combination of calibrated items - for example, to develop test booklets with the OOPT-Reading

test for follow-up reading diagnostics (e.g., in different school districts).
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Cutting score (proportion of items correct)

Figure 4. Frequency distribution (with a normal Figure 5. Dependability index, (I)(?.), as a function

curve fit) of the trait scores for the sample of real of the cutting score, X., for the OOPT-Reading.

data on the OOPT-Reading (N = 4,854).

Conclusion

This article provides analytic evaluations (formulas) for marginal true-score measures and

reliability of binary items as a function of their MT parameters. Assuming the normal distribution

of trait scores, the formulas can be applied for items calibrated with the 1PLM, 2PLM, or 3PLM

without information about binary scores or trait scores of persons from the target population. At

item level, the proposed formulas provide evaluation for the following marginalmeasures: item

score (n), item error variance [a2(e1)], item true variance [a2(r1)], and item reliability (pii). At test

level, the item true-score measures are "summarized" in formulas for the marginal NR score (p),

domain score (it), error variance for the NR score (a02), true variance for the NR score (0,2),

reliability (p), and dependability [ON] for criterion-referenced interpretations (e.g., "pass/fail")

based on a domain cutting score, X.

19
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Brief clarifications about the derivation design for the formulas proposed in this articleare

necessary. For item calibrations with the 2PLM, the formulas for item score (ti, Formula 5) and

item error variance [a2(ei ), Formula 9] are based on approximations, but the absoluteerror with

these approximations is practically close to zero (less than 0.0005, with Formula 5, and less than

0.005 with Formula 9). All other formulas are obtained through exact derivations that (explicitly

or implicitly) involve it and a2(e1) - Formulas 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, and 23. Some

arguments in support of using the formulas proposed in this article versus brute-force numerical

integrations also seem appropriate. First, the proposed formulas are easy to perform with widely

used spreadsheets, statistical programs (e.g., SPSS, see Appendix B), or even regular calculators.

Numerical integrations, instead, require computer programming with more complicated analytic

expressions (e.g., Gaussian quadratures) thus limiting the range of potential users with studies that

involve evaluations at true-score level. Moreover, some methods of numerical integrations involve

procedures that may negatively affect the accuracy. For example, the Simpson's rule for numerical

integrations with Equation 4 involves an approximation of the compound binomial distribution of

raw scores (e.g., May & Nicewander, 1993) which, in turn, leads to losing accuracy in estimating

the true score variance. In contrast, Formula 10 (for item true variance) does notuse preliminary

approximations. As a reminder, Formula 5 (for ni) and Formula 9 [for a2(ei)] use approximations

(with an error practically close to zero), whereas all other formulas in this article are based on

exact derivations. Along with technical advantages, the formulas provide theoretical relationships

that may remain hidden with numerical integrations. Formula 9, for example, shows that the item

error variance is an even function of the item difficulty, bi, for fixed values of the discrimination

index, ai . Also, while Formulas 10 and 23 reveal relationships between true-score measures for

item calibrations with the same (e.g., 2PL or 3PL) IRT model, Formulas 21 and 22 connect item

true-score measures with the 3PLM to item true-score measures with the 2PLM. The proposed

formulas allow researchers to plan (model, predict) true-score measures, whereas the numerical

integrations put researchers in a "post-hoc" position. The proposed formulas, therefore, provide

20
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more than just calculations they capture theoretical relationships between concepts of IRT and

true-score theory that may have useful applications in research and instructional settings (e.g.,

graduate courses in measurement).

The comparison of theoretical true-score measures and reliability with their empirical

counterparts for real data also deserves attention. The empirical approach (a) requires information

about individual binary scores for persons from the target population and (b) provides sample-

based estimates which may (to a large extent) misrepresent the population parameters for true-

score measures and reliability. Conversely, the proposed formulas provide accurate evaluation of

true-score measures and reliability at population level without using sample scores (IRT estimates

of the item parameters suffice.) It should be emphasized also that Cronbach's alpha is an accurate

empirical estimate for reliability (p) only if there is no correlation among errors and the test

components are essentially tau-equivalent (Novick & Lewis, 1967). The evaluation of px in this

article, however, does not require tau-equivalency (the weaker assumption of congeneric items

suffice.) As a reminder, test items are (a) congeneric if they measure the same trait and (b) tau-

equivalent if they measure the same trait and their true scores have equal variances (e.g.,

Joreskog, 1971). It should be also noted that when the tau-equivalency assumption does not hold,

Cronbach's alpha underestimates px. However, Cronbach's alpha may overestimate p.when

there is a correlation among errors, (e.g., Komaroff, 1997; Raykov, 2001). Correlated errors may

occur, for example, with items that relate to a common stimulus (e.g., same paragraph or graph).

For example, the fact that (with the real data example in the previous section) Cronbach's alpha

(.801) slightly overestimated the theoretical evaluation of p (.789) should not be a surprise as

some items in the reading test (OOPT-Reading) relate to the same paragraph (i.e., correlated

errors may occur.) From another perspective, while the marginal reliability for IRT trait scores in

computerized adaptive testing is evaluated for the population (Green at al., 1984), it is compared

to Cronbach's alpha for alternatively used paper-and-pencil forms. Clearly, it is more appropriate

to compare the theoretical marginal reliability in an IRT system to theoretical evaluations of p

21
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(e.g., with formulas provided in this article.)

As illustrated with the examples in the previous section, given the IRT calibration of

binary items, one can evaluate their true-score measures and reliability for norm-referenced and

criterion-referenced interpretations. One can also do this for any combination of items grouped by

measurement or substantive characteristics (e.g., by content or learning outcomes) without using

(trait of raw-score) data. This can be particularly useful in developing test booklets for follow-up

measurements in longitudinal studies using the IRT calibration of items fora base year study. It

should be noted that in previous studies (e.g., National Center for Educational Statistics, 1995)

test booklets that are developed for follow-up measurements are usually compared on average

item difficulty thus ignoring the effect of the other item parameter(s). With the formulas proposed

in this article, true-score measures and reliability are evaluated as functions of all item parameters

(with an appropriate IRT model) prior to follow-up data collection. The formulas can also be

incorporated into computer programs for simulation studies thus allowing researchers to generate

targeted true-score measures from (hypothetical or real) IRT parameters of binary items.

It is important to emphasize that the formulas proposed in this article deal with marginal

true-score measures and reliability and, therefore, do not provide conditional information about

scores and their accuracy at separate trait levels. However, while "diagnostic" IRT information

about trait measures for individuals is valuable, marginal true-score information about the

population and the measurement quality of the test is also useful. In a sports analogy, while the

assessment of individual players is very important, the evaluation of the team as a whole is also

important. In conclusion, researchers and practitioners can greatly benefit from combining IRT

conditional information about trait and true-score measures (e.g., using a test characteristic curve)

with marginal true-score information provided by the proposed formulas.

22
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Appendix A

Proof of Formula 5.

Formula 5 provides an approximation (with an absolute error smaller than 0.0005) for the

marginal scores of binary items

1 erf (X i)
71.1 2

(Al)

where Xi = aib, I V2(1+ and erf(X) is the error function (e.g. Hastings, 1955, p. 185)

erf (X) = (2 / j)r exp(-u2 )du. (A2)

The Lord's approximation (Lord & Novick, 1968, p. 377, Equation 16.9.3) for the item

score (marginal probability for correct response on the item) is

1 r.
r. Jr, exp(- t2 / 2)dt, (A3)

where y = aibi / . With the substitution t = u/2- (and yi = X, respectively) we

have

1 co 1

xexp(-u2 )du =
2

1

0

x, 1 1

exp(-u2 )du =
2 2

e r f (Xi),= jr
with which the proof is completed.

It should be noted that Formula 5 (or Al) provides an exact theoretical relationship, but it

is referred to here as an approximation formula for 7Ci because the error function, erf(X), in this

formula is evaluated through approximations. With the Hasting's approach (see Equation 6), the

approximation error for erf(X) is smaller than 0.0005 in absolute value. If, however, the erf(X) is

executed through the use of computer programs for mathematics (e.g., MATLAB; MathWorks,

Inc.), the absolute approximation error is even smaller than the (practically zero) error of 0.0005.

2i
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Proof of Formula 10

Formula 10 represents the item true variance, a2(ii) as an exact function of the item score,

7Ci, and item error variance, cy2(ei). Using the variance expectation rule VAR(X) = E(X2) - [E(X)]2

with X = Pi(0), we have

62 (ri) = :0[Pi(0)]2 co(0)d0 - (J Pi(0)T(0)c10)

= {1 (0)- P,(0)[1- 1(0)]}§o(0)d0

2

= P,(0)(o(0)d0 P,(0)[1- P,(0)]co(0)d0 7t-,2
J

2
= cr 7t,? = 7Z "1(1- 7-C i)- 62 (e i),

with which the proof is completed.

Proof of Formula 14

Formula 14 represents the true score variance for the NR score, ate, as an exact function

of the item score, and item error variance, (72(ri). For unidimensional tests (which are dealt with

in this article), there is a perfect correlation between the congeneric true scores (ii and rj) of any

two items, i and j, because of the linear relationship: ti= air + bii rj, where bid *0, 1 (e.g., Joreskog,

1971). Thus, the covariance of ti and rj is cr(ri, rj) = a(ri)a(ri). With this, the variance of the true

number-right score on a test of n binary items, i = E = 1, n), can be represented as

n n n n
2ar = 6(ri31-j)= °-

i--=1 j= i=1 j=1
(A4)

Replacing (y('0 and c(r) in the far right side of Equation A4 with their equivalent expressions in

Formula 10, we obtain Formula 14. With this the proof is completed.



Minitel/ Expected Values and Reliability 27

Proof of Formula 22

Formula 22 represents the error variance for individual binary items calibrated with the

3PLM, (32(e;*) as an exact function of the 2PLM evaluations for item score, ni, and item error

variance, a2(e). Given the relationship between P; `(0) with the 3PLM and P;(0) with the 2PLM

(see Equation 20), it can be easily seen that

P;*(0)[1 - P;*(0)] = c; (1 c; )[1 - P(e)] + (1 - c; P;(0)[1 - P;(0)]. (A5)

Using Equation A5, the proof of Formula 22 is provided with the following integral manipulations

a2
(e: ) = Pi* (9)[1 (0)]co(0)(10

-co

= ci (1 ci (0(0)&9 c (1 ci )f Pi (0*(0)&9

co

+(1 ci )2 (0)[1 Pi (0)lio(0)(10

= ci (1 ci ) ci (1 Ci )7Ci + (1 Ci )2 0-2 (ei)

= Ci (1 Ci)(1 7r1) ± (1 Ci )2 0-2 (ei).

28
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Appendix B

SPSS Syntax: Evaluation of Marginal True-Score Measures for Binary Items

Input variables: IRT item parameters (al, /31, and c1)
COMPUTE p = .2646 - .118*a + .0187*(a**2).

COMPUTE s = .7427 + .7081/a + .0074/(a**2).

COMPUTE ye = p*exp(-.5*((b/s)**2)).

COMPUTE X = (a*b)/sqrt(2*(1+a**2)).

COMPUTE erf = (1+.278393*abs(X) + .230389*X**2 + .000972*(abs(X))**3 + .078108 *X * *4) * *4.

COMPUTE erf = 1 - 1/erf.

IF(X < 0) erf = -erf.

COMPUTE pi = (1-erf)/2.

COMPUTE vt = pi*(1 - pi) - ye.

IF(vt < 0) = O.

COMPUTE ve = c*(1-c)*(1-pi) + ve*((1-c)**2).

COMPUTE pi = c + (1-c) *pi.

COMPUTE vt = pi*(1 - pi) - ye.

1F(vt < 0) vt = O.

SET FORMAT = F8.3 ERRORS = NONE RESULTS OFF HEATHER NO.

FLIP

VARIABLES a b c pi ye vt.

VECTOR V = VAR001 TO VAR020.

COMPUTE Y = 0.

LOOP #1 = 1 TO 20.

LOOP #J = 1 TO 20.

COMPUTE Y = Y + SCIRT(V(#1)*V(#J)).

END LOOP.

END LOOP.

FLIP VAR001 TO VAR020 Y.

COMPUTE roi = vt/(vt + ye).

SET RESULTS ON.

REPORT FORMAT = AUTOMATIC

NARIABLES = pi " ve " vt
/BRE AK = (TOTAL)

/SUMMARY = MAX(vt) 'True score variance:'

/SUMMARY = SUBTRACT(SUM(ve) MAX(ve)) (vt (COMMA) (3)) 'Error variance:'

/SUMMARY = SUBTRACT(SUM(pi) MAX(pi)) (vt (COMMA) (3)) 'Marginal NR score:' .

SELECT IF(CASELBL = 'Y' ) .

RENAME VARIABLES (CASE_LBL = ITEM) (ve=var err)(vt=var_tau).

VARIABLE LABELS pi 'item score' .

DESCRIPTIVES

VARIABLES = pi

/STATISTICS = VAR .

Note. The user should specify the number of items (in this example, 20) in the syntax. With 50 items, for

example, change 20 to 50 and VAR020 to VAR050 (see the bold notations in the four syntax lines.)

ze
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Appendix C

Results from the SPSS syntax run (Input variables: al, bi from Table 1 and ci = 0)

Item a b c pi var err var tau roi

1 .449 -2.554 .000 .852 .120 .006 .050

2 .402 -2.161 .000 .790 .154 .012 .074

3 .232 -1.551 .000 .637 .220 .011 .047

4 .240 -1.226 .000 .612 .226 .012 .050

5 .610 -.127 .000 .526 .199 .050 .201

6 .551 -.855 .000 .660 .188 .036 .161

7 .371 -.568 .000 .578 .219 .025 .104

8 .321 -.277 .000 .534 .228 .021 .085

9 .403 -.017 .000 .502 .220 .030 .120

10 .434 .294 .000 .454 .215 .033 .131

11 .459 .532 .000 .412 .209 .034 .138

12 .410 .773 .000 .385 .209 .027 .116

13 .302 1.004 .000 .386 .219 .018 .074

14 .343 1.250 .000 .342 .206 .019 .086

15 .225 1.562 .000 .366 .222 .010 .044

16 .215 1.385 .000 .385 .227 .010 .040

17 .487 2.312 .000 .156 .123 .008 .062

18 .608 2.650 .000 .084 .078 .000 .000

19 .341 2.712 .000 .191 .146 .009 .058

20 .465 3.000 .000 .103 .091 .001 .013

Note. pi = Tri; var err = e(e); var tau = a2(Ti); roi = pi;

Report:

True score variance: 6.315

Error variance: 3.719

Marginal NR score: 8.956

Descriptive Statistics

N Variance

item score 20 .045

30
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Table 1

True-Score Measures and Reliability for Simulated Binary Items Calibrated

with the 2PLM

Item ai bi it (A)' a2(ei) 62(Ti) Pii Pi 7Ci

1 .449 -2.554 .852 (.849) .120 .006 .050 -.003
2 .402 -2.161 .790 (.785) .154 .012 .074 -.005
3 .232 -1.551 .637 (.644) .220 .011 .047 .007
4 .240 -1.226 .612 (.618) .226 .012 .050 .006
5 .610 -.127 .526 (.526) .199 .050 .201 -.001
6 .551 -.855 .660 (.653) .188 .036 .161 -.007
7 .371 -.568 .578 (.577) .219 .025 .104 -.001
8 .321 -.277 .534 (.534) .228 .021 .085 .000
9 .403 -.017 .502 (.503) .220 .030 .120 .001

10 .434 .294 .454 (.456) .215 .033 .131 .002
11 .459 .532 .412 (.416) .209 .034 .138 004
12 .410 .773 .385 (.389) .209 .027 .116 004
13 .302 1.004 .386 (.384) .219 .018 .074 -.002
14 .343 1.250 .342 (.345) .206 .019 .086 003
15 .225 1.562 .366 (.360) .222 .010 .044 -.006
16 .215 1.385 .385 (.379) .227 .010 .040 -.006
17 .487 2.312 .156 (.163) .123 .008 .062 .007
18 .608 2.650 .084 (.092) .078 .000 .000 .008
19 .341 2.712 .191 (.192) :146 .009 .058 .001
20 .465 3.000 .103 (.099) .091 .001 .013 -.004

a Observed item score (proportion correct responses) for the simulated data (N = 8,000).
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Table 2

True-Score Measures and Reliability by Strands of Learning Outcomes with the OOPT-Reading

Strand
Item ai bi ci (pi)a cr2(ei) cy2(Ti) pii 7t 2 2

''"Lt PXX

Poetry - constructing meaning (n = 10) .664 1.772 3.293 .650

1 1.089 -.732 .209 .767 (.759) .135 .044 .244
2 .948 -.418 .220 .698 (.696) .166 .045 .214
5 .494 .900 .226 .493 (.495) .231 .019 .076
6 .494 .885 .234 .500 (.503) .231 .019 .075
7 .905 -.672 .185 .734 (.727) .154 .041 .212
8 1.165 -1.144 .205 .847 (.838) .099 .031 .238

20 .594 -.412 .209 .670 (.670) .192 .029 .131
21 .716 .475 .237 .536 (.542) .217 .032 .129
22 .703 -.492 .204 .691 (.689) .179 .034 .160
23 .841 -.504 .194 .700 (.696) .169 .042 .198

Poetry - extending meaning (n = 4) .596 0.722 0.517 .417

3 1.169 .468 .159 .463 (.470) .187 .062 .248
4 .724 -1.541 .211 .855 (.848) .110 .014 .112
9 .554 -.042 .197 .605 (.605) .210 .029 .122

24 .706 .698 .177 .460 (.463) .215 .033 .134

Nonfiction - constructing meaning (n = 5) .529 1.025 0.655 .390

10 .795 -.226 .194 .642 (.641) .187 .043 .187
11 .506 1.581 .218 .404 (.406) .228 .012 .052
16 .809 -.154 .192 .627 (.626) .190 .044 .190
17 .499 2.076 .220 .358 (.362) .223 .007 .030
18 .839 .075 .261 .616 (.622) .198 .039 .164

Nonfiction - extending meaning (n = 5) .475 0.952 0.520 .353

12 .709 2.238 .190 .269 (.276) .194 .002 .013
13 .863 -.727 .221 .753 (.748) .151 .035 .189
14 .686 .375 .215 .541 (.545) .215 .034 .136
15 .795 .219 .180 .546 (.547) .203 .044 .179
19 .812 1.874 .170 .268 (.276) .188 .008 .041

Total (n = 24) .585 4.471 16.520 .789

a Observed item score (proportion correct responses) for the real data (N= 4,854).
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