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Dimitrov Expected Values and Reliability 2

Abstract

This article provides analytic evaluations of expected (marginal) true-score measures for binary
items given their IRT calibration. Under the assumption of normal trait distribution, marginalized
true scores, error variance, true score variance, and reliability for norm-referenced and criterion-
referenced interpretations are presented as a function of the item parameters. The proposed
formulas have methodological and computational value in bridging concepts of IRT and true
score theory. They provide information about the individual contribution of IRT calibrated items
to marginal true-score measures for the test and may have valuable applications in test
development and analysis. For example, given a bank of IRT calibrated items, one can select
binary items to develop a test with known true-score characteristics prior to administering the test
(without information about raw scores or trait scores.) Calculations with the proposed formulas
are easy to perform using basic statistical programs, spreadsheet programs, or even hand-held
calculators.

Index terms: true score theory, item response theory, reliability.
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Expected Values and Reliability of Number-Right
Scores for IRT Calibi'ated Items

True-score measures and reliability are used in substantive and measurement studies even
when item response theory (IRT) information about items and persons is available (e.g., with
standardized tests). Traditionally, such measures represent a common focal point between test
developers and practitioners as they place the scores and their accuracy in the original scale of
measurement [e.g., number-right (NR) score]. True (or domain) scores are readily interpretable
“and, for example, when pass-fail'decisions are made; a cutting score is typically set of the domain- -
score scale (e.g., Hambleton, Swaminathan, and Rogers, 1991, p. 85). Therefore, it seems totally
appropriate to argue that IRT estimates and classical estimates of scores and their reliability are
not mutually exclusive and may coexist in making adequate interpretations and decisions based on
test data. Combining IRT information about trait scores with readily interpretable true-score
information will positively impact the quality of test development and analysis. This, however,
requires better understanding of the relationships between IRT and classical concepts from
methodological and technical perspectives. As a step in this direction, this article investigates
relationships between marginal true-score measures and IRT parameters of binary items. Analytic
expressions (formulas) of such relationships can be uséful in test development and analysis from
both methodological and technical perspectives.

Before presenting the theoretical framework for bridging true-score measures to IRT item
parameters; an important clarification should be made. As is known, the accuracy of measurement

in IRT varies across the levels of a latent trait, 8, that underlies the persons’ responses on each

item. The IRT conditional error variance at 6, 0'92| o> inversely related to the information provided

by the test at 6 (Birnbaum, 1968), is not to be confused with the conditional raw-score variance at

9, O'fw. The expected value of the latter (when 6 varies from -» to «) is the error variance for the

raw score (e.g., Lord, 1980), whereas the expected value of the former is referred to as marginal
measurement error variance (Green, Bock, Humphreys, Linn, & Reckase, 1984). The marginal

reliability in IRT is used, for example, as an overall index of precision in computerized adaptive
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testing for comparison with the classical internal-consistency reliability estimated for paper-and-
pencil forms (Green et al.; Thissen, 1990). Such comparisons, however, require more accurate
evaluations of the population reliability for paper-and-pencil forms than those provided by sample-
based empirical indexes such as Cronbach’s coefficient alpha (Cronbach, 1951). Some additional

comments on this issue are provided in the discussion section.

The formulas proposed in this article, derived under the assumption of normal trait
distribution, can be-very useful in test development and analysis. For example, given a bank of
IRT calibrated items, one can select items to develop a test (e.g., for follow-up measurements in
longitudinal studies) with true-score characteristics and reliability knownprior to data collection.

Theoretical framework
Let P,(6) be the probability for correct response on item i for a person with a trait score 6
under an appropriate IRT model: one-parameter (1PL), two-parameter (2PL), or three-parameter

~ (3PL) logistic model (Birnbaum, 1968). As F(®) is the item true score at 0, the expected marginal

number-right (NR) score for a test of » binary items is

u=2[" n@w©OME0, 1)
i=1

where @(0) is the probabflitJ/ density function (pdf) for the trait distribution. The integration is
from -« to = since the ability, 8, is not limited in the theoretical framework of IRT. Also, as the
product P(B)[1 - P(8)] is the conditional error variance for item i at 8 (Lord, 1980, p. 45), the

expected error variance for the NR score on a test of # binary items is

ot = Y[” p@N- E@0eNe @
i=1

The true score variance for the NR score is usually presented (e.g., May & Nicewander, 1993) as
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ol = j_m[nPwn%o(e)de—{ j_wnwa(e)de} , ®)

where P(6) is the mean of P(6) at6; (i = 1, ..., n).

Previous research provides limited applications of Equations 1, 2, or 3 using, for example,
Gaussian quadrature (Bock & Lieberman, 1970), but analytic solutions are not provided. For
example, cdfnparing reliability for NR scores and percentile ranks, May and Nicewander (1993)
evaluated the integrals in Equations (2) and (3) using the Simpson’s Rule with 100 points on the 6
interval from -5 to 5 after lapproximating the compound binomial distributions of raw scores. This
article takes a different approach and provides analytic solutions (formulas) for marginalized true
score measures at item level thus making it pqssible to determine (and control) the contribution of
individual items to the values of y, 6.2, 6% and reliability indexes at test level. Comments on the
advantages of the proposed analytic solutions over direct brute-force quadrature integrations are
provided in the discussion section.

Given the IRT calibration of binary items, marginalized true-score measures for a normal
trait distribution are evaluated in this article at both item and test level. For individual items,
formulas are provided for the item score (m), item error variance [6*(e;)), item true variance
[6%(t;)], and item reliability (p;). At test level, formulas are provided for the population mean of
NR scores (), domain score (n) , error variance (c.?), true score variance (c.?), reliability (p,,),
and dependability index [®())] for criterion-referenced interpretations based on a cutting domain
score, A. For items calibrated with the 2PLM, 7; and o*(e)) are evaluated through approximation
formulas (with a negligible approximation error). All other true-score measures at item and test
level are répresented (explicitly or implicitly) as exact analytic functions of w;and c?(e;). The next
sections provide formulas for binary items calibrated with the 2PLM, 3PLM, and 1PLM and two
illustrative examples. The mathematical derivations of the formulas are given in Appendix A. The
calculations with the proposed formulas are facilitated by the use of a SPSS syntax (SPSS, Inc.,

2002) provided in Appendix B.



Dimitrov Expected Values and Reliability 6

Formulas for Binary Items Calibrated with the 2PLM

With the 2PLM, the probability of a correct answer on a binary item i for a person with a

trait level 0 is determined with

)

P () = _SXPLDa (0= b))
7 14exp[Da; (6-b,)]

where: a; is the item discrimination, b;is the item difficulty, and D is a scaling factor, (with D =

1.7, the normal-ogive and logistic item-characteristic functions are almost identical).

Item Score.

The marginal probability of correct responses on item i is referred to here as item score, =,
In classical test theory, the empirical estimate of m, is referred to as item difficulty (although it is,

in fact, the easiness of the item.) As proven in Appendix A, m, can be represented as a function

of the IRT item parameters (g; and b)) as

7z'i = %’ : | (5)

where X; = a;b; /J2(1+a?) and erf is a known mathematics function called the error Sfunction.
With an approximation provided by Hastings (1955, p. 185), the error function (for .X; > 0) can

be evaluated (with an absolute error smaller than 0.0005) as:

-4 -
erf(X) =1—(1+a1X+ a2X2 +a3X3 +a4X4) , ©

where a, = 278393; a,=.230389; a,=.000972; a,= .078108. When X < 0, one can use that
erf(-X) = -erf (X ). It should be also noted that the erf(X) is directly executable with computer
programs for mathematics (e.g., MATLAB 5.3; MathWorks, Inc., 1999). Figure 1 represents the

values of m; (calculated with Formula 5) as a function of the item parameters a; and b,.

7
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Item error variance.

As one can see from Equation 2, the marginal error variance for an item 7 can be obtained

through the evaluation of the integral

o2 (e;) = j P, (9)[1- F,(6)p(6)d6 | . (7

With ¢(6) for the standard normal distribution and D = 1.7 with the 2PLM, Equation 7 becomes

2, exp[1.7a; (8- b;)] [ 1 e )d 5 ®
é- (1) J_w (l+exp[l,7ai(0—bi)])2 ‘/gexp( . ) |

Since a closed form evaluation of the integral in Equation 8 does not exist, an approximation was
developed in two steps. First, using the computer program MATLAB 5.3 (MathWorks, Inc,,
1999), quadrature method evaluations were obtained for practically occurring values from 0 to 3
for the item discrimination, a;, and from -6 to 6 for the item difficulty, b;, with a step of 0.01 on
the logit scale. Secqnd, the results were tabulated and approximated using the three-parameter
Gaussian function with the regression wizard of the computer program SigmaPlbt 5.0 (SPSS Inc.

b

1998). The resulting approximation formula is
2 2 :
o2 (e,) = mexp[-0.5(5, / d,)?], ©)

where b; is the item difficulty, whereas m; and d; depend on the item discrimination (a;):
m;=0.2646 - 0.118a, + 0.0187a? ;
d, =0.7427 + 0.7081/a, + 0.0074/a?.

Depending on the values a; and b, , the error of approximation with Formula 9 varies from 0 to



O

ERIC

Aruitoxt provided by Eic:

. Dimitrov Expected Values and Reliability 8

0.005 in absolute value (with a mean of 0.001 and a standard deviation of 0.001). As one can see
from Formula 9 (graphical illustration in Figure 2), the item error variance is an even functioh of
b; for fixed values of g;. In other words, the value of 6°(e;) is the same for b; and -b; when the

value of g; is fixed. As Figure 2 also shows, lafger errors occur with average difficulty items and

smaller errors occur with easy or difficult items. It should be noted also that 6%(e) represents an

additive error variance component of the (total) error variance for the NR score, o ez
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Figure 1. Marginal item score for binary items Figure 2. Error variance for binary items as
as a function of their discrimination (a; ) and a function of their discrimination (q; ) and
difficulty (b; ) parameters with the 2PLM difficulty (b; ) parameters with the 2PLM

Item True Variance.

As proven in Appendix A, the item true variance can be represented as an exact function

of the item score and item error variance:

O-Z(Ti) =m(l-7,)- o’ (e). (10)

It should be noted also that the derivation of Formula 10 is the same with any IRT model (1PLM,

2PLM, or 3PLM) and any (not necessarily normal) trait distribution (see Appendix A).
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Item Reliability |

In classical test theory, the reliability of item i is empirically estimated with the product
S;¥ Where s; is the item-score standard deviation and 7,y is the point-biserial correlation between
the item score and total test score (e.g., Allen & Yen, 1979, p. 124). This article uses the ratio
"item true variance to observed item ‘variance " for the evaluation of item reliability (p;). Thus,

given the IRT calibration of binary items, the marginal reliability of an item can be evaluated with

_ )
o S () o)

(11)

where o*(e; ) and 6*(t;) are obtained with Formulas 9 and 10, respectively. Information about the
reliability of individual items can be particﬁlariy useful when the pufpose is to select items that

maximize the internal consistency reliability of test scores (e.g., Allen &Yen, 1979, p. 125).

Marginal NR Score.

Given the item score, m;, of each item in a test of n binary items, the marginal NR score is

n

H= Z ;. | (12)

i=1

Error Variance for the NR Score.

Given the item error variance, 6*(e; ), for each item in a test of  binary items, the marginal

error variance is

o2 =) o). (13)

i=]

True Score Variance for the NR Score.

As proven in Appendix A, the marginal true score variance for a test of # binary items is

ERIC 10




Dimitrov Expected Values and Reliability 10

a2 = D 2 \m- m)- P (e)llx, (1- 7;) - o2 (e,)], (14)

i=1 j=1

where 7; and o*(e;) [or 7; and 6°(e;)] are obtained with Formulas 5 and 7, respectively.

" Reliability.

Under the true-score model (Lord & Novick, 1968), the reliability is

2

O,

Prex = (15)

2 2°
o, t0,

In this article, the theoretical value of p,,is evaluated by replacing o,” and ¢,2 in Formula 15 with

their evaluations obtained through Formulas 13 and 14, respectively.

Dependability Index.
Brennan and Kane (1977) introduced a dependability index, ®()), for criterion-referenced

interpretations in the framework of generalizability theory (GT; e.g., Brennan, 1983)

o’(p)+(m~A)’

()= oZ(p) + (7= A) + 02 (A)’

(16)

where ¢?(p) is the universe-score variance for persons, 6*(A) is the absolute error variance, 7 is
the population mean, and A is the cutting score; (x and A are in the metric of proportion ofitems
correct.) When m = A, the index ®()) reaches its lower limit referred to also as indéx ®in GT. As
Feldt and Brennan (1993) note, "the index ®()) characterizes the dependability of decisions based
on the testing procedure, whereas the index ® characterizes the contribution of the testing
procedure to the dependability of such decisions" (p. 141). With the "person X item" (p x i) desigh
in GT, the absolute error variance is: 6*(A) = o*(pi,e)/n + c(i)/n.

As the parameters in Formula 16 are in the metric of proportion of items correct, their

translation in the framework of this article is (a) 6*(p) = ,%/n?*, where o ? is the true variance for

11
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the NR score, (b) 6*(A) = 6,Yn* + 6*(m;)/n, where 2 is the error variance for the NR score and
o’(m; ) is the variance of m; values (i = 1, ..., n), (c) 6*({) = o*(x;), and (d) 6*(pi,e) = .*/n. With

this, the dependability index ®()\) translates into

0'3 +n¥(z- A)?

D)= . 17
) ol +n*(z- )+ o? +not(x,) an
Index ®(M) achiéves its lowest limit when & =A. The resulting dependability index is
o? -
O = (18)

0'3 + 0'22 + no? (m;)

The comparison of Formulas 15 and 18 shows that the dependability index ® does not exceed the
reliability coefficient p,, Intuitively this also makes sense because, as Feldt and Brennan (1993)
note, "criterion-referenced interpretations of ‘absolute’ scores are more stringent than norm-
referenced interpretations of ‘relative’ scores ... ® can also be interpreted as a chance-corrected
index of dependability for criterion-referenced interpretations with squared-error loss" (p. 141). It |
should be stressed that, while the evaluation of p,,, ®(A), and @ in the framework of GT requires
sample data (e.g., binary scores), Formulas 15, 17, and 18 in the framework of this article do not

require such data as long as the IRT item parameters are available.

Formulas for Binary Items Calibrated with the 3PLM
With the 3PLM (Bimbaum, 1968), the probability for correct response on item i for a

person with a trait score 0 [denoted here as P;*(0)] is provided with
B (8)=c; +(1-¢;)/ {1+ exp[-17a,(8 - b)]}, (19)

ERIC 12
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where ¢; is the pseudo-chance level ("guessing") parameter of the model. In order to distinguish'

true-score measures for items calibrated with the 2PLM from their counterparts with the 3PLM,

we star the latter (e.g., 72': ). Clearly, Equation 19 can be written as

P'(0)=c; +(1-c;)F(8), | (20)

where P(0) is with the 2PLM (see Equation 4).

- Item Score.

The item score for calibrations with the 3PLM is
ﬂi* =¢, +(1-¢)m,, ' 1) -

where m; is obtained through Formula 5 for calibrations with the 2PLM. The proof follows directly
from multiplying on both sides of Equation 20 by ¢(8) and integréting each side from - to .
Item Error Variance.

The item error variance for calibrations with the 3PLM is

Gz(e:);ci(l_ci)(l_”i)+(1—ci)20-.2(ei)> (22

- where m; and 6°(e;) are obtained trough Formulas 5 and 9, respectively, for calibrations with the

2PLM,; (proof in Appendix A). Figure 3 graphically represents values of the item error variance
(calculated with Formula 22) as a function of the item parameters a; and b, for a fixed value of the

pseudo-chance level parameter (c; = 0.2).
Item True Variance.

The item true variance for calibrations with the 3PLM is

o*(z))=n;(1~z]) -0 (¢)), (23)

13
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where ;" and *(e;”) are obtained with Formulas 21 and 22, respectively. Formula 23 follows
directly from Formula 10 because the derivation of the latter does not depend on which model is
used for item calibration (1PLM, 2PLM, or 3PLM).

Item Reliability

As with the 2PLM, the reliability of individual binary items calibrated with the 3PLM is

p* _ O'Z(Ti*)
Toata)+o(e)’

(24)

where o2 (e; ) and % (7, ) are obtained with Formulas 22 and 23, respectively.

Error variance component

Figure 3. Error variance of binary items as a function of
their discrimination (a; ) and difficulty (5; ) parameters for

a fixed pseudo-chance level (¢; = 0) with the 3PLM.

True-Score Measures and Reliability at Test Level
Formulas 12, 13, 14, 15, 17, and 18 for true-score measures and reliability at test level

with the 2PLM translate directly into their 3PLM counterparts for the marginal NR score, error

O

ERIC | i4
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variance for the NR score, true score variance, reliability, and dependability (it suffice to use

star notations for the symbols that participate in the right-hand side of each of these six formulas.)

Formulas for Binary Items Calibrated with the 1PLM
- When the discrimination index in Equation 4 is a constant ( a,= a), the 2PLM translates
into the 1IPLM. With the 1PLM, however, one should know which computational IRT model had
been used: logistic (with a scaling constant D = 1.0) or logistic approximation of the normal ogive
model (D = 1.7). Both options are provided with some computer programs for calibrationé with
- the 1PLM (e.g., RASCAL; Assessment Systems Corporation, 1995). When the standardization is
on the trait scores (D = 1.7), one can use the formulas for true-score measures and reliability (at
.item and test level) derived here for the 2PLM (a;= constant with the 1PLM). This app‘roachv does
not work, however, for a "pure" Rasch model (D = 1; Rasch, 1960) in which the standardization
is on the item difficulty. For this case, formulas for true-score measures and reliability of binary
items are developed by Dimitrov (in press) for normal and logistic trait distributions.
Examples
Simulated Dafa Example
In this example, binary scores for 8,000 persons were simulated to fit the 2PLM with the
staﬁdard normal distribution for trait scores, 8 ~N(0,1), and fixed values of a; and &; for 20 items.
The purpose of this example is to illustrate the application of the formulas proposed in this article
for true-score measures and reliability of binary items calibrated with the 2PLM. The empirical
validation of Formulas 5 and 9 [for m; and c*(e;) with the 2PLM] is of particular interest because
these two formulas are based on approximations. All other formulas are obtained through exact
derivations and represent (explicitly or implicitly) functions of 7; and c*(e,).
The data were generated using a computer program written in SAS (SAS Institute, 1985)

for Monte Carlo simulations of binary data that fit IRT models (Dimitrov, 1996). The assumptions

of 8 ~N(0,1) and model fit with the 2PLM being met with these simulations, the produced binary

15
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scores (for 8,000 persons on 20 items) were analyzed using the computer program XCALIBRE
(Assessment Systems Corporation, 1995). Using the XCALIBRE estimates of @; and b, (given in
Table 1) allows us to fest the "robustness" of Formulas 5 and 9 when they are used with sample-
based (i.e., less than "ideal") estimates of item parameters. The evaluations of true-score measures
and reliability in this example were facilitated through the use of the statistical program SPSS
(SPSS Inc., 2002). The SPSS syntax developed for this purpose (in Appendix B) wo‘rks for binary
_ items calibrated with the 3PLM (input variables: a, b, and c;), but it also can be used for items
calibrated with the 2PLM (with ¢;= 0) or the 1PLM (with c; = 0 and a; = constant). The SPSS run
generates the true-score measures and reliability for each item [r,, %(e,), 6%(,), and p;] as "new"
variables in the SPSS data spreadsheet. At test level, the SPSS printout provides values for the
marginal NR score (p), error variance for the NR score (c,2), true variance for the NR score
(0.2), and variance of items scores [6*(n)].

The results from the SPSS run in this example (with a; and b, from Table 1 and ¢,= 0) are
provided in Appendix C. The true-score measures and reliability for individual items (upper panel
in Appendix C) are given in Table 1. At test level, the SPSS printout (lower panel in Appendix C)
provides the true score variance for the NR score (o2 = 6.315), the error variance for the NR
score (5,> =3.719), the marginal NR score (u = 8.956), and the variance of ; values for the 20
items {o*(m) = .045]. With this, the domain score is & = p/n = 8.956/20 = .448 and the reliability
is p,, = .63 (using Formula 15).

The empirical estimates of true-score measures and reliability for the simulated data were
also determined and compared to their theoretical counterparts. Most importantly, a strong match
was found between the theoretical evaluations of m; and 6*(e;) and their empirical counterparts
denoted here as p; and s, respectively. The empirical item scores, p, (provided by XCALIBRE

for the simulated data) are given in Table 1. The difference between p; and , (also in Table 1) is

smaller than 0.01 in absolute value. The same is true for the difference between theoretical and

16
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empirical item variances: o*(e;) - 5.%. One can check this quickly and easily using, for example, the
SPSS spreadsheet for Table 1 and calculating: s? = p(1 - p,).

As noted earlier, the erhpirica_l validation of the accuracy of Formulas 5 and Formula 9 is
important because the values of n, and c*(e;) produced by-fhese two formulas govern the values
of other true-score measures and reliability indexes. Given the strong match between theoretical
and empirical estimates for the item score and the item error variance in this example, it is not a
surprise then that Cronbach’s alpha for the sample of simulated binary scores (N = 8,000) was
found to be the same as the theoretically evaluated reliability (o = p,;= .63). Similarly, the mean

and the variance of the empirical item scores in Table 1 [ =.448 and s%(p,) = 0.044] also match

their theoretical counterparts 1 = 0.448 and o*(r,) = 0.045]. Thus, with the assumptions of data
fit and normal trait distribution met, there is a strong match between the theoretical and empirical
values of true-score measures even when the proposed formulas are applied with IRT estimates

- (not "ideal" values) of the item parameters for relatively large samples (in this case, N = 8,000.)

Real Data Example

The data for this example consisted of dichotomously scored responses of 4,854 fifth
graders on 24 multiple-choice items of the Ohio Off-Grade Proficiency Test-Reading (Riverside
Publishing, 1997) in a large urban area in northeastern Ohio. The items capture four strands of
learning outcomes defined by the publisher as (a) examining meaning given a fiction or poetry
text, (b) extending meaning given a fiction or poetry text, (c)'examining meaning given a
nonfiction text, and (d) extending meaning given a nonfiction text. The data were analyzed using
XCAL[BRE with the 3PLM (to accommodate for "guessing" with the multiple-choice items.) For
the test of data fit XCALIBRE reports a standardized residual statistic for each item. This statistic
is normally distributed and values in excess of 2.0 indicate misfit with a type I error rate of 0.05.

In this example, the standardized residuals for the 24 binary items ranged from 0.34 to 1.13 thus

17
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indicating bthat the data fit the 3PLM. The XCALIBRE estimates of item discrimination, @;, item
difficulty, b;, and pseudo-chance level, c;, are provided in Table 2 (the 24 items are grouped by
strands of learning outcomes.)

* The normal quantile tests (proportion-proportion and quantile-quantile comparisons of the
observed and expected values) were conducted using SPSS with the trait scores, 9., provided by
XCALIBRE for the sample data (N = 4,854). The results indicated a good fit of 8 to M(0,1) thus
allowing the application of formulas developed in this article (see also Figure 4). The theoretical
true-score measures and reliability (at item and test level) were evaluated through the use of the
SPSS syntax in Appendix B (with the item parameters g, b, and ¢; in Table 2 as "input" SPSS
variables.) The results are summarized in Table 2 by strands of learning outcomes. In terms of
domain score, the highest performance of the target population of fifth graders is on the learning
outcome "poetry - construhcting meaning" (n = .664), whe.reas their lowest performance is on the
learning outcéme "nonfiction - extending meaning" (1 = .475). The dependability index ®()\) was
also calculated (using Formula 17) for values of the cutting score A on the proportion of items
correct scale from 0 to 1 with a "step" of_0.0l (see Figure 5). As one can see, the dependability of
pas‘s/fa.il decisions based on a domain cutting score A = .8 (i.e., 80% items correct) is ®(A) = .90.

With the data in this example (as with any sample of real data), it is not realistic to expect
ideal conditions for the assumptions of model fit and normality of the trait distribution. Yet, there
is still a'good match between theoretical and empirical values for item scores (m; versus p, values

in Table 2), variance of items scores [6*(r;) = .027 versus 6*(p;) = .025], domain score (r =.585

versus p = .586), and reliability (p,,=.789 versus Cronbach’s o,.= .801). Additional comments on

Pxx and its empirical evaluation through Cronbach’s a are provided in the discussion part.
In this example the 3PLM estimates of item parameters were determined from sample
data, but the procedures described in the previous paragraph remain the same when q;, b, and

are known from previous (or simulated) calibrations with the 3PLM. One can use the procedures

(without further data collection) to determine the true-score characteristics and reliability for any

18
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combination of calibrated items - for example, to develop test booklets with the OOPT-Reading

test for follow-up reading diagnostics (e.g., in different school districts).

500 S B e e e S e

400 - P=<

300 A 7 x

Frequency

200

Dependability index

100 4§

Yo W Wy 0¥ 2pp e 0 2 % Yo % Yo Vs 0.78

0.1 02 03 0.4 05 08 07 08 0.9 1

. Cutting score (proportion of items correct)
Theta (logits) R

Figure 4. Frequency distribution (with a normal Figure S. Dependability index, ®(A), as a function
curve fit) of the trait scores for the sample of real of the cutting score, A, for the OOPT-Reading.
data on the OOPT-Reading (N = 4,854).

Conclusion

This article provides analytic evaluations (formulas) for marginal true-score measures and
reliability of binary items as a function of their IRT parameters. Assuming the normal distribution
of trait scores, the formulas can be applied for items calibrated with the IPLM, 2PLM, or 3PLM
without information about binary scores or trait scores of persons from the target population. At
item level, the proposed formulas provide evaluation for the following marginal measures: item
score (m,), item error variance [c*(e))], item true variance [6*(t,)], and item reliability (p;). At test
level, the item true-score measures are "summarized" in formulas for the marginal NR score (n),
domain score (r), error variance for the NR score (c.%), true variance for the NR score (c.2),
reliability (p,,), and dependability [®())] for criterion-referenced interpretations (e.g., "pass/fail")

based on a domain cutting score, A.

19
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Brief clariﬁcétions about the derivation design for the formulas proposed in this article are
necessary. For item calibrations with the 2PLM, the formulas for item score (, Formulé 5) and
item error variance [6%(e; ), Formula 9] are based on approximations, but the absolute error with
these approximations is practically close to zero (less than 0.0005, with Formula 5, and less than
0.005 with Formula 9). All other formulas are obtained through exact derivations that (explicitly
or irnplicitly) involve m;and 6(e)) - Formulas 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, and 23. Some
arguments in support of using the formulas proposed in this article Qersus brute-force numerical
integrations also seem appropriate. First, the proposed formulas are easy to perform with widely
used spreadsheets, statistical programs (e.g., SPSS, see Appendix B), or even regular calculators.
. Numerical integrations, instead, require computer programming with more complicated analytic
expressions (e.g., Gaussian quadratures) thus limiting the range of potential users with studies fhat
involve evaluations at true-score level. Moreover, some methods of numerical integrations involve
procedures that may negatively affect the accuracy. For example, the Simpson’s rule for numerical
integrations with Equation 4 involves an approximation of the compound binomial distribution of
raw scores (e.g., May & Nicewander, 1993) which, in turn, leads to losing accuracy in estimating
the true score variance. In contrast, Formula 10 (for item true variance) does not use preliminary
approximations. As a reminder, Formula 5 (for m;) and Formula 9 [for 6%(e;)] use approximations
(with an error practically close to zero), whereas all other formulas in this article are based on
exact derivations. Along with technical advantages, the formulas provide theoretical relationships
that may remain hidden with numerical integrations. Formula 9, for example, shows that the item
error variance is an even function of the item difficulty, b;, for fixed values of the discrimination
index, g;. Also, while Formulas 10 and 23 reveal relationships between true-score measures for
item calibrations with the same (e.g., 2PL or 3PL) IRT model, Formulas 21 and 22 connect item
true-score measures with the 3PLM to item true-score measures with the 2PLM. The proposed
formulas allow researchers to plan (model, predict) true-score measures, whereas the numerical

integrations put researchers in a "post-hoc" position. The proposed formulas, therefore, provide
g Y Y P prop P
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more than just calculations - they capture theoretical relationships between concepts of IRT and
true-score theory that may have useful applications in research and instructional settings (e.g.,
graduate courses in measurement).

The comparison of theoretical true-score measures and reliability with their empirical
counterparts for real data also deserves attention. The empirical approach (a) requires information
- about individual binary scores for persons from the target population and (b) provides sample-
based estimates which may (to a large extent) misrepresent the population parameters for true-
score measures and reliability. Conversely, the proposed formulas provide accurate evaluation of
true-score measures and reliability at population level without using sample scores (IRT estimates
of the item parameters suffice.) It should be emphasized also that Cronbach’s alpha is an accurate
empirical estimate for reliability (p,,) only if there is no correlation among errors and the test
* components are essentially tau-equivalent (Novick & Lewis, 1967). The evaluation of p,, in this
article, however, does not require tau-equivalency (the weaker assumption of congeneric items
suffice.) As a reminder, test items are (a) congeneric if they measure the same trait and (b) tau-
equivalent if they rﬁeasure the same trait and their true scores have equal variances (e.g.,
Joreskog, 1971). It should be also noted that when the tau-equivalency assumption does not hold,
Cronbach’s alpha underestimates p,, . However, Cronbach’s alpha may overestimate p,, when
there is a correlation among errors, (e.g., Komaroff, 1997; Raykov, 2001). Correlated errors may
occur, for example, with items that relate to a common stimulus (e.g., same paragraph or graph).
For example, the fact that (with the real data example in the previous section) Cronbach’s alpha
(.801) élightly overestimated the theoretical evaluation of p, (.789) should not be a surprise as
some items in the reading test (OOPT-Reading) relate to the same paragraph (i.e., correlated
errors may occur.) From another perspective, while the marginal reliability for IRT trait scores in
computerized adaptive testing is evaluated for the population (Green at al., 1984), it is compared
to Cronbach’s alpha for alternatively used paper-and-pencil forms. Clearly, it is more appropriate

to compare the theoretical marginal reliability in an IRT system to theoretical evaluations of p,,
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(e.g., with formulas provided in this article.) |

As illustrated with the examples in the previous section, given the IRT calibration of
binary items, one can evaluate their true-score measures and reliability for norm-referenced énd
criterion-referenced interpretations. One can also do this for any combination of items gfouped by
measurement or substantive characteristics (e.g., by content or learning outcomes) without using
(trait of raw-score) data. This can be particularly useful in developing test booklets fof folblow-up
measurements in longitudinal studies using the IRT calibration of items for a base year study. It
should be noted that in previous studies (e.g., National Center for Educational Statistics, 1995)
test booklets that are developed for follow-up measurements are usually compared on average
item difficulty thus ignoring the effect of the other item parameter(s). With the formulas propdsedI
in this artic.le, true-score measures and reliability are evaluated as functions of all item parameters
(with an appropriate IRT model) prior to follow-up data collection. The formulas can also be
incorporated into computer programs for simulation studies thus allowing researchers to generate
targeted true-score measures from (hypothetical or real) IRT parameters of binary items.

It is important to emphasize that the formulas proposed in this article deal with marginal
true-score measures and reliability and, therefore, do not provide conditional information about
scores and their accuracy at éeparate trait levels. However, while "diagnostic" IRT information
about trait measures for individuals is valuable, marginal true-score information about the
population and the measurement quality of the test is also useful. In a sports analogy, while the
assessment of individual players is very important, the evaluation of the team as a whole is also
important. In conclusion, reséarchers and practitioners can greatly benefit from combining IRT
conditional information about trait and true-score measures (e.g,, using a test ché.racteristic curve)

with marginal true-score information provided by the proposed formulas.
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Appendix A

Proof of Formula 5.

Formula 5 provides an approximation (with an absofute error smaller than 0.0005) for the

marginal scores of binary items

o l‘e"f(Xi),’

i > (Al_)

where X, = a,b, / 1/2(1+ a?) and erf(X)) is the error function (e.g. Hastings, 1955, p. 185)

X
0

erf (X) = 2/ J7) J' exp(—u? )du, | (A2)

~ The Lord’s approximation (Lord & Novick, 1968, p. 377, Equation 16.9.3) for the item

score (marginal probability for correct response on the item) is

1 @
T, = TL exp(~1% /2)dt, (A3)
T i

wherey; = a;b; /,/1 + ai2 . With the substitution 7 = u/2 (and 7, = X \/-2-, respectively) we

have

1 oo}

7r~———j e (uz)du-l——l~ine (—uz)du—l—lerf(X)
| _\/’; X,- Xp - 2 \/; 0 Xp - 2 2 1/

with which the proof is completed.

It should be noted that Formula 5 (or A1) provides an exact theoretical relationship, but it
is referred to here as an approximation formula for m; because the error function, erf(X)), in this
formula is evaluated through approximations. With the Hasting’s approach (see Equation 6), the
approximation error for erf(X) is smaller than 0.0005 in absolute value. If, however, the erf(X)) is
executed through the use of computer programs for mathematics (e.g., MATLAB; MathWorks,

Inc.), the absolute approximation error is even smaller than the (practically zero) error of 0.0005.
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Proof of Formula 10.

Formula 10 represénts the item true variance, 6(t;) as an exact function of the item score,
7, and item error variance, c*(e;). Using the variance expectation rule VAR(X) = EX3) - [EX)]?

with X = P(8), we have
a0 a0 2
@)= | (B @ oo ([ Powens)

- | n©@- RON- ROLAO0- 7

I” p@wods- [ p©N- EOINO)6- 7

2 _ 2 2
=m-o, -n; =m(l-m)-o0°(e),

with which the proof is completed.

Proof of Formula 14
Formula 14 represents the.true score varianée for the NR score, .2, as an exact function .
of the item score, 7, and item error variance, 6*(t,). For unidimensional tests (which are dealt with
in this article), there is a perfect correlation between the congeneric true scores (t; and 1) of any
two items, / and j, because of the linear relationship: 1= a;; + b; 1 P where b; #0, 1 (e.g., Joreskog,
1971). Thus, the covariance of 7; and 7; is o(t, 7)) = o(t;)o(t;). With this, the variance of the true
number-right score on a test of 7 binary items, T=ZX 1;; (i = 1, ..., n), can be represented as
=Y o

i=1

fot)= Y oz Jo(r,). (a9

i=] j=1

T;'M=

Replacing o(t) and o(t)) in the far right side of Equation A4 with their equivalent expressions in

Formula 10, we obtain Formula 14. With this the proof is completed.
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Proof of Formula 22
Formula 22 represents the error variance for individual binary items calibrated with the
3PLM, c*(e;) as an exact function of the 2PLM evaluations for item score, m;, and item error

variance, 6’(¢). Given the relationship between P."(8) with the 3PLM and P(6) with the 2PLM

(see Equation 20), it can be easily seen that
Pi®)[1-P(®)]=¢,(1- ¢ )1 -P®)]+ (1 - c; ¥ P(O)1-PO)]. (AS)

Using Equation AS, the proof of Formula 22 is provided with the following integral manipulations

o]

oe))=|_ B @OU-E @lp(6)0

o]

=ci(1_ci)J.‘

—00

o(0)d6—c;(1-c))[ "~ P (O)p(o)0
+1-¢)*[ " RO B ©)p(0)8
=¢;(1-¢;)=¢;(1-¢))m; +(1-¢;)* 02 ()

=¢;(1-¢;)1-7m)+(1-¢;)2 o2 (e;).
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Appendix B
SPSS Syntax: Evaluation of Margina! True-Score Measures for Binary Items

Input variables: IRT item parameters (a, b,, and ¢,
COMPUTE p = .2646 - .118%a + .0187*(a**2).
COMPUTE s = .7427 + .7081/a + .0074/(a**2).
COMPUTE ve = p*exp(-.5*((b/s)**2)).
COMPUTE X = (a*b)/sqrt(2*(1+a**2)).
COMPUTE erf = (1+.278393*abs(X) + .230389*X**2 + .000972*(abs(X))**3 + .078108*X**4)**4.
COMPUTE erf=1-1/erf.
IF(X < 0) erf = -erf.
COMPUTE pi = (1-erf)/2.
COMPUTE vt = pi(1 - pi) - ve.
IF(vt < 0)vt=0.
COMPUTE ve = c*(1-c)*(1-pi) + ve*((1-c)**2).
COMPUTE pi = ¢ + (1-c)*pi. .
COMPUTE vt = pi*(1 - pi) - ve. : ' :
IF(vt<0)vt=0.
SET FORMAT = F8.3 ERRORS = NONE RESULTS OFF HEATHER NO.
FLIP
VARIABLES a b ¢ pi ve vt.
VECTOR V = VAR0OO1 TO VARO020.
COMPUTE Y = 0.
LOOP #l=1T0 20.
LOOP #J=1TO 20.
COMPUTE Y = Y + SQRT(V(#I)*V(#J)).
END LOOP.
END LOOP.
FLIP VAROO1 TO VARO20 Y.
COMPUTE roi = vt/(vt + ve).
SET RESULTS ON.
REPORT FORMAT = AUTOMATIC
IVARIABLES =pi' 've' 'vt''
/BRE AK = (TOTAL)
/SUMMARY = MAX(vt) 'True score variance:'
/SUMMARY = SUBTRACT(SUM(ve) MAX(ve)) (vt (COMMA) (3)) ‘Error variance:'
/SUMMARY = SUBTRACT(S UM(pi) MAX(pi)) (vt (COMMA) (3)) 'Marginal NR score:' .
SELECT IF(CASE_LBL~='Y"). ‘
RENAME VARIABLES (CASE_LBL = ITEM) (ve=var_em)(vt=var_tau).
VARIABLE LABELS pi ‘item score' .
DESCRIPTIVES
VARIABLES = pi
ISTATISTICS = VAR .

28
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Note. The user should specify the number of items (in this example, 20) in the syntax. With 50 items, for
example, change 20 to 50 and VAR020 to VAROS50 (see the bold notations in the four syntax lines.)
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Appendix C

Expected Values and Reliability

Results from the SPSS syntax run (Input variables: a, b, from Table 1 and ¢, =0)

ltem a b . c pi var_ermr var_tau  roi
1 .449 -2.554 .000 852 120 .006 .050
2 402 -2.161 .000 790 154 012 074
3 232 -1.551 .000 .837 4220 011 047
4 240 -1.226 .000 612 226 012 .050
5 610 =127 .000 526 188 .050 201
6 551 -.855 .000 660 188 036 161
7 37 -.568 .000 578 218 025 104
8 321 =277 .000 534 228 021 .085
<] 403 -.017 .000 502 220 .030 120
10 434 294 .000 454 215 .033 A3
1 459 532 .000 412 .209 .034 138
12 410 773 .000 .385 .209 027 116
13 302 1.004 .000 .386 218 018 074
14 343 1.250 .000 .342 .206 019 .086
15 225 1.562 .000 .366 222 010 044
16 215 . 1.385 000 385 227 .010 .040
17 487 2312 .000 156 123 .008 .062
18 608 2.650 .000 .084 .078 .000 .000
18 341 2.712 .000 A 941 146 .008 .058
20 465 3.000 .000 103 .091 001 .013

Note. pi= T, var_ermr = d*(e); var_tau = o%(t); roi = P

Report:

True score variance: 6.315
Error variance: 3.719
Marginal NR score: 8.956

Descriptive Statistics

N Variance

item score 20 045
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Table 1 .
True-Score Measures and Reliability for Simulated Binary Items Calibrated
with the 2PLM
Item g b; T (@) o*(e;) o(1) Pii Pi-T
1 449 -2.554 .852(.849) 120 .006 .050 -.003 -
2 402 -2.161 790 (.785) 154 012 .074 -.005
3 232 -1551  .637(644) 220 011 047  .007
4 240 -1226 .612(618) 226 012 050  .006
5 610 -127 526 (.526) 199 050 201 -.001
6 551 -.855 660 (.653) 188 .036 .161 -.007
7 371 -568  .578(577) 219 025 .104  -00]
8 321 -277  534(534) 228 021 085  .000
9 .403 -017 .502 (.503) 220 .030 .120 .001
10 434 .294 454 (.456) 215 033 131 .002
11 .459 532 412 (416) 209 034 138 004
12 410 773 385 (.389) 209 027 116 004
13 302 1.004 386 (.384) 219 018 074 -.002
14 343 1.250 342 (.345) 206 019 .086 003
15 225 1.562 366 (.360) 222 010 .044 -.006
16 215 1.385  385(.379) 227 010  .040 -.006
17 487 2312 156 ((163) 123 .008 .062 .007
18 .608 . 2.650 .084 (.092) .078  .000 .000 .008
19 341 2712 .191(192) ..146 .009 .058 001
20 465  3.000 .103 (.099) .091 .001 013 -.004

* Observed item score (proportion correct responses) for the simulated data (N = 8,000).
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Table 2
True-Score Measures and Reliability by Strands of Learning Quicomes with the OOPT: -Reading

Strand - -

Item g b; G m @) o) o) py LA o’ Pxx
Poetry - constructing meaning (n = 10) 664 1772 3293 650

1 1.089 -732 .209 767 (.759) 35 044 244

2 .948 -418 220 .698 (.696) .166 .045 214

5 .494 900 226 493 (.495) 231 .019 076

6 .494 .885 234 500 (.503) 231 .019 .075

7 905 -8672 185 734 (.727) 154 041 212

8 1.165 -1.144 205 .847 (.838) .098 031 238
20 594 -412 209 .670(.670) 192 029 .131
21 .716 475 237  .536 (.542) 217 032 129
22 703 -492 204 .691(.689) 179 .034 160
23 .841  -504 194 700 (.696) 169 .042 198

Poetry - extending meaning (n = 4) 596 0722 0517 417

-3 1169 468 .159 463 (.470) 187  .062 248
4 724 -1.541 211  .855(.848) 110 014 112
9 554 -042 197 605 (.605) 210 .029 122

24 706 698 .177  .460 (.463) 215 033 134

Nonfiction - constructing meaning (n = 5) : _' 529 1.025 0655 390

10 795 -226 194 642 (641) 187  .043 187
11 .506  1.581 .218  .404 (.406) .228 .012 052
16 .809 -154 192 627 (.626) 180 .044 190
17 499 2076 .220 .358(.362) .223  .007 .030
18 .839 075 261 616 (.622) .198  .039 .164

Nonfiction - extending meaning (n = 5) . 475 0952 0520 .353

12 709 2238 190 .269(276) .194 .002 .013
13 863  -727 .221 .753(748) 151 .035 . .189
14 686  .375 215 .541(545) 215 034 .136
15 795 219 180 .546(547) 203 .044 179
19 812 1874 170 .268(276) .188 .008 .041

Total (n = 24) 585 4471 16.520 .789

* Observed item score (proportion correct responses) for the real data (N=4_854).
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