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In this paper, we describe instruction designed to teach students about exponents and
logarithms and report a pilot study to test the effectiveness of this instruction. Based
on the theoretical work of Dubinsky and Sfard, we postulate a set of mental construc-
tions that a student could make to understand the concepts of exponents and loga-
rithms. We then describe computer and paper-and-pencil exercises designed to induce
students to make these constructions. We report a pilot study assessing the efficacy
of these exercises. Students receiving our instruction outperformed students receiv-
ing traditional instruction across a variety of measures, including performing basic
computations, recalling formulae, explaining why rules of exponents and logarithms
are true, and answering conceptual questions.

Introduction

Exponents and logarithms are important mathematical concepts that are useful
for modeling and understanding population growth, radioactive decay, and compound
interest. Further, exponential and logarithmic functions are central concepts for many
college mathematics courses, including calculus, differential equations, and complex
analysis. Unfortunately, research indicates that students’ understanding of these con-
cepts is quite limited (e.g., Confrey & Smith, 1995). In particular, students often forget
many properties of exponents and logarithms shortly after they learn them and can
seldom explain why these properties are true (Weber, in press).

While mathematics educators have proposed instructional techniques to supple-
ment or replace traditional pedagogy of exponents and logarithms (e.g., Confrey &
Smith, 1995; Rahn & Berndes, 1994), to our knowledge, the efficacy of these tech-
niques has not been assessed. The purpose of this paper is to describe instruction
designed to teach students the concepts of exponents and logarithms and to report a
pilot study in which we tested the effectiveness of this instruction.

Theoretical Framework

Students are often told that the exponential operation represents “repeated mul-
tiplication” (e.g., 2* = 2x2x2). However, as many researchers have pointed out (e.g.,
Confrey & Smith, 1995; Lakoff & Nunez, 2000), this conception is inadequate to
perform much of the reasoning that we associate with exponents and logarithms. For
instance, to a student who can only view exponents as repeated multiplication, expres-
sions such as 2! and 2"2 will be nonsensical, as you cannot multiply a number by itself
negative one or one half times. In this paper, we attempt to teach students about expo-
nents and logarithms by first having students understand exponentiation as a process,

1019 @ 9/18/02, 11:58:40 PM

Do

e



1020 Learning

then having them view exponential and logarithmic expressions as results of applying
this process (i.e., b* represents the number that is the product of x factors of b), and
finally generalizing this understanding for cases where the power in an exponent is not
a natural number. We discuss the theoretical underpinnings behind these constructions
below.

According to Dubinsky, a mathematical operation can be understood as an action
or as a process (Dubinsky, 1991; Asiala et al., 1996). An action is a repeatable physi-
cal or mental transformation of mathematical objects to obtain other objects. Students
limited to an action understanding of an operation can apply this operation only in
response to an external cue explicitly detailing what steps to make. In the case of
exponents, students with only an action understanding can do little besides calculat-
ing an exponent when they are given a specific base and power, and only if the power
is a positive integer. After repeating an action and reflecting upon it, the student may
interiorize the action as a process. Individuals with a process understanding of an
operation can imagine the result of the transformation without actually performing
the corresponding operation and can construct a new process by reversing the steps
of the original transformation. A student with a process understanding of exponents
can imagine b* as a number that is the result of applying the operation of exponentia-
tion, an ability that we believe is necessary to understand the rules of exponents, and

@ can imagine reversing the process of exponentiation to obtain the process of taking a @
logarithm.

Many researchers have noted that expressions such as b* have multiple meanings:
this expression can be viewed as an operation- multiply b by itself x times- or it can
be viewed as a mathematical structure- the number that is the result of applying the
process of exponentiation. It can also be viewed as a function, a family of functions,
or a string of symbols, depending on the context in which it is used (e.g., Sfard &
Linchevski 1994). In particular, Sfard (1991, Sfard & Linchevski, 1994) distinguishes
between an operational understanding of a concept- which focuses on its algorithmic
nature- and the structural understanding of a concept- which treats the result of a pro-
cess as an object in its own right. While students are generally capable of acquiring an
operational understanding of a concept, acquiring a structural understanding appears
to be quite difficult. In our view, an operational understanding of exponents would be
tantamount to understanding exponential expressions as calls for repeated multiplica-
tion, while a structural understanding would be interpreting b* as the number that is
the product of x factors of b and log,m as the number of factors of b that are in the
number m.

At this point, a critical reader may question why a student needs to understand b*
as a mathematical object. According to Sfard, possessing a structural understanding
of mathematical objects is necessary to reason about mathematical concepts because
it makes one’s knowledge of the concept more compact and intuitive (Sfard, 1991,
p. 23). We believe that this is the case with exponents and logarithms. Consider the
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following rule about exponents: b*bY = b**. A student with a structural understanding
of exponential expressions could interpret this equation as “The product of x factors
of b and y factors of b is (x+y) factors of b”. Perhaps a student could also explain this
equation as a statement about processes, at least in theory. (e.g., You obtain the same
result if you multiply b multiplied by itself x times with b multiplied by itself y times
or if you multiply b by itself (x+y) times). However, such an explanation would be
longer and less intuitive. Hence, we believe that possessing a structural understanding
of exponential and logarithmic expressions greatly aids students in understanding their
properties.

After a student acquires an operational understanding of b* as “the number that
is the product of x factors of b”, that student must generalize that understanding to
account for cases where x is not a natural number. How students may do this is an
interesting and difficult question, but it is beyond the scope of this paper. Discussion
of this topic can be found in Confrey and Smith (1995), Lakoff and Nunez (2000), and
Weber (in press).

Instruction Used in Our Study

In this section, we describe instructional activities designed to lead students to

make the mental constructions we describe above. After receiving this instruction,
@ we would like students to be able to complete routine tasks that are traditionally @
associated with exponents and logarithms. That is, students should be able to perform
basic computations with exponents and logarithms and be able to recite and apply the
“rules” of exponents and logarithms. We would also like students to acquire a deeper
conceptual understanding of these topics. Students should understand why the rules
of exponents and logarithms are true and they should be able to use their conceptual
understanding to answer traditional and non-traditional questions.

The first goal of our instruction is to have students understand the act of “taking
an exponent” as a process (as described in section 2 of this paper or in Asiala et. al.
(1996)). Research indicates that a particularly effective way for leading students to
construct this understanding is to have students write a computer program to apply
this operation. (Tall & Dubinsky, 1991). Researchers argue that in writing a computer
program, students are forced to reason about and explicitly describe the steps of an
operation. In doing so, students are likely to reflect on the steps of an operation and
interiorize it into a process.

In our instruction, students were first taught the structure of a basic for loop and
were given a for loop program in MAPLE that performed multiplication of integers
as repeated addition (or repeated subtraction, in the case where a factor is negative).
Students were asked to write a similar program that performed exponentiation as
repeated multiplication (or repeated division). The students worked in pairs to write
these programs. The instructor would answer questions and would help the students
with MAPLE syntax, but would not help the students in other aspects of the program
writing. All students completed this task in a one hour class period.
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Our next goal was to have students understand b* as the number that is the product
of x factors of b and logbm as the number of factors of b that are in the number m, a
construction that Sfard coins reification. Sfard (1991, 2000) emphasizes the role that
names and symbols play in acquiring a structural understanding of a mathematical
concept. We designed paper-and-pencil worksheets in which the student was asked
to describe exponential and logarithmic expressions as mathematical objects. They
were also given exercises in which they were required to use a structural understand-
ing of the exponential expressions to complete. With the judicious use of worked out
examples, the students had several prompts to help guide their work. Some examples
of these exercises are given in the Appendix. Students worked in groups of two or
three to complete these activities. After the activities were completed, they were dis-
cussed, handed in, corrected, and returned to the students. This continued until all the
activities were complete.

A skeptical reader may question whether something as trivial as paper-and-pencil
exercises and classroom discussion can trigger a mental construction as sophisticated
as reification. The only response we can offer at this time is the results of our study
indicate that it can. Students who received this instruction appeared to be more capable
of treating b* as a mathematical object than students who received traditional instruc-
tion. We will describe these results in the next section.

@ Evaluation of Our Instruction @

To evaluate the effectiveness of our pedagogy, we conducted a pilot study in
which we implemented this instruction in a college algebra and trigonometry course
and then compared the performance of our students with students who received tradi-
tional instruction on a set of interview questions.

Methods

Participants

Two groups of students from a regional university in the southern United States
participated in this study. The experimental group of students was enrolled in the first
author’s college algebra and trigonometry course. The control group of students was
enrolled in a separate section of the college algebra and trigonometry course taught
by a different instructor. The instructors of the control and experimental groups spent
roughly equal time reviewing exponents and logarithms. 15 students in each course
volunteered to participate in this study.

Procedure and Materials

Three weeks after receiving instruction, the students were interviewed individu-
ally. During the interview, the students were asked the following questions:
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Basic computations

B1. What is 2%?

B2. What is log,64?

B3. What is log_x?

B4. log,729=3. Use this information to find log,729.

Rules

R1. b*b¥ can be simplified to what? Why?
R2. log x'can be simplified to what? Why?
R3. How can you express the square root of x as a power? Why?

Conceptual questions

C1. Is (1/2)* an increasing function or a decreasing function? Why?
C2. Is(-3)'9a positive or negative number? Why?
C3. Is 5" an even number or an odd number?
C4. How would you find log,78125?
® Results of the Pilot Study @

The number of correct responses for each of the Basic Computation and Rules
questions is presented in Figure 1.

Basic computation questions- Every student was able to compute 23, indicating
that all participants had some basic notion of exponent. As can be seen from Figure
1, the participants in the experimental group performed much better than their coun-
terparts in the control group on the remainder of the Basic computation questions. No
student in the control group was able to answer questions B3 or B4.

Rules questions- The data in Figure 1 indicate that students in the experimen-
tal group were able to recall more rules of exponents and logarithms than students
in the control group. The difference between the groups becomes more pronounced
when one examines the students’ responses when they were asked why the rules of
exponents and logarithms were true. Not a single student in the control group was
able to explain why any of the rules of exponents were true. However, students in the
experimental group were often able to give an explanation of why the rules were true.
For instance, eight students were able to explain why b*b¥ = b**. One typical response
from a student was “Because we’re having b x amount of time and y x amount of time,
so when you set it up...it’s basically like your adding up all the repititions of b”. Six
students in the experimental group were able to explain why log x" = r log,x and why

x = x 2, The latter result was particularly impressive, as why x = x 2 was never
explicitly discussed in our activities.
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Figure 1. Performance on interview questions.
@ Conceptual questions- Both groups generally performed well on questions C1 and @

C2; they both were aware that (1/2)* was a decreasing function and (-3)'® was a posi-
tive number. However, students in the experimental group were better at stating why
these statements were true. When asked why the first property was true, no student in
the control group could give an adequate response. Most students relied on looking at
specific examples, usually only looking at the cases where x is one or two. However,
five students in the experimental group were able to explain why this rule was true by
using their understanding of exponentiation as a process. For instance, one student
said, “If you keep multiplying [by one half], the number is going to keep getting
smaller and smaller”. Likewise, many students in the experimental group noted that
the number (-3)'° could be decomposed into the product of positive numbers, while
such responses from the control group were uncommon.

12 students in the control group believed that 5'* would be an even number, gener-
ally because they believed an odd number raised to an even power would be even. The
three students who correctly stated that 5'* would be odd conjectured this by looking at
simple cases such as 5, 5%, and 5. 8 students in the experimental group also answered
this question correctly. While four also did so by looking at simple cases, four other
students offered deeper explanations such as, ““An odd to any power is always going to
be odd... ‘cause you keep on multiplying by an odd number, so it can never turn even”
and “It’1l be odd. If you multiply two numbers ending in five, it’s going to end in five.
So 5 to the anything will end in five”.

| PME Leaming 1024 @ 9/18/02, 11:58:55 PM |

ERIC 7

Aruitoxt provided by Eic:



Research Reports 1025

When asked how to compute log, 78125, eight students in the control group knew
this was tantamount to solving the equation 5* = 78125, but none could offer anything
more than this. In contrast, several students in the experimental group offered responses
that demonstrated an understanding of logarithms as reversing the process of exponen-
tiation. For example, four students suggested repeatedly multiplying by five until the
result reached or exceeded 78,125 and another suggested dividing 78,125 repeatedly
until he reached one. The number of repetitions required would be the answer.

Reconstruction of forgotten knowledge- Perhaps the most promising result from
this pilot study was that students in the experimental group often could not recall prop-
erties of exponents and logarithms, but were able to use their conceptual knowledge of
these topics to reconstruct these rules. For instance, three students in the experimental
group initially believed that b*b¥ was equal to b*. (This was also a common mistake in
the control group). When these students attempted to explain why this rule was true,
they wrote out b* as x factors of b and bY as y factors of b. At this point, the students.
realized that there were (x+y) factors of b in b*b?, so the correct answer must be b**. In
contrast, this phenomenon did not occur with any of the students in the control group.
In fact, not one student could explain why a single rule of exponents was true. There
were several other instances of students in the experimental group using their concep-
tual knowledge to correct an initially erroneous response. For instance, one student

@ initially believed that (1/2)* would be an increasing function, but then realized that as @
X grows, “we are going to be taking half of it more often, so it will be getting smaller.”
This illustrates an important point. As time passes, one’s knowledge of symbolic rules
will generally decay. If one has a deep understanding of the concepts involved, these
rules can be reconstructed. If not, the rules cannot be recovered.

Discussion

Summary of Our Data

Students who received our instruction performed better than students who
received traditional instruction at performing basic computations, recalling rules, and
explaining why the rules of exponents and logarithms are true. They were also better
able to answer questions that required them to use their conceptual knowledge of these
topics.

Limitations of this Study

We consider the results of this pilot study to be encouraging. However, we should
note that any conclusions drawn should be tentative, due to shortcomings in the design
of this study. First, the author of this paper also served as the instructor of the experi-
mental students and the investigator in the experiment. This raises a host of method-
ological concerns. Perhaps the instruction to the experimental students was superior
to that of the control students, but only because the instructor of the former group of
students was more motivated or more able. Perhaps the students in the experimental
group performed so well in an effort to please or impress the investigator, who also
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happened to be the individual who assigned their grades at the end of the semester.
Students in the control group would feel no such obligation. Also, although there
was no a priori reason to suspect that students in the experimental group had more
knowledge of exponents and logarithms prior to instruction, this possibility cannot be
dismissed since no pre-test was given to these students. Clearly these concerns need to
be addressed before definite conclusions can be drawn.

How do we know that the experimental students’ performance was due to our
instruction? First, many of these students’ responses were analogous to the way that
they completed our worksheet. For instance, to answer question B4, one could simply
combine several rules of exponents. (e.g., log,729 = 3. So 9° = 729. (3%)* = 729. 3¢
= 729. log,729 = 6). However, not one student solved the problem this way. All 13
students who answered this question correctly wrote 729 as 9x9x9, and then noticed
that each 9 “split” into a pair of 3’s so 729 can be written as 3x3x3x3x3x3. Thus there
were six 3’s in 729. The language that the experimental students used was also indica-
tive of their thinking. For instance, many students spoke of there “being six threes
in 7297, indicating that students were thinking in a way that was consistent with our
worksheets. Students’ explanations of why the rules of exponents and logarithms were
true were also consistent with their work on our worksheets.

Second, students’ responses to our conceptual questions were consistent with our

& theoretical analysis. We predicted the conceptual questions could best be answered if @
the student had a process understanding of exponents. Many of the students’ success-
ful responses explicitly drew on this understanding.

Conclusion

In the past decades, our understanding of how students acquire mathematical
concepts has increased immeasurably. This study marks our first attempt to apply the
influential learning theories of Dubinsky and Sfard into the classroom. Using their
theories, we postulated a set of mental constructions that a student could make to
understand exponents and logarithms. We then designed instructional activities to lead
students to make these constructions. We described the results of a pilot study in which
we assessed the effectiveness of this instruction. The results are encouraging; stu-
dents who completed our instructional activities outperformed students who received
traditional instruction in a variety of measures, including recall of formulas, simple
computation, and specification of why the formulas are true. Perhaps most significant
is that students can use their deep understanding of these topics to reconstruct forgot-
ten symbolic knowledge. However, due to limitations in the design of our study, any
conclusions drawn from this study should be tentative. We are attempting to replicate
the results of our pilot study in a more controlled setting with more students. If our
attempts are successful, this study will be the focus of a future report.
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Appendix
Sample exercises from our worksheet (Desired student responses given in bold).

Describe each of the exponential expressions in terms of a product and in
terms of words.

4% = 4x4x4 = the number that is the product of 3 factors of 4
b* = bxbxbx... (x times) = the number that is the product of x factors of b

Simplify each of the expressions below by writing each exponential term as
a product. Summarize each simplification in words.

b%b* = (bxb)x(bxbxbxb) = b’

The product of 2 factors of b and 4 factors of b is 6 factors of b.

bb* = bx(bxbxbx... (x times)) = bxbxbxbx... (x+1 times) = b**!

The product of b and x factors of b is (x+1) factors of b.
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