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AMONG EQUATION SOLVERS

Jon R. Star
Michigan State University
jonstar@msu.edu

This paper explores the development of students’ knowledge of mathematical proce-
dures. Students’ tendency to develop rote knowledge of procedures has been widely
commented on. I postulate an alternative, more “intelligent” endpoint for the devel-
opment of procedural knowledge, where students choose to deviate from established
solving patterns on particular problems for greater efficiency. The purpose of this
study was to explore the instructional conditions that facilitate the emergence of this
outcome. Students with no prior knowledge of formal linear equation-solving tech-
niques were taught the basic transformations of this domain. After instruction, stu-
dents engaged in problem-solving sessions in two conditions. In the treatment group,
students completed “alternative ordering tasks,” where they were asked to re-solve
previously completed problems but using a different ordering of steps. Completing
alternative ordering tasks was found to lead to more intelligent solving.

Introduction

For much of this century, mathematics educators have sought to address students’
tendency to view school mathematics as a series of procedures to be memorized.
Researchers in mathematics education concur that (a) procedures learned by rote
are easily forgotten and error-prone; and (b) the learning of procedures must be con-
nected with conceptual knowledge in order to foster the development of understanding
(e.g., Hiebert & Carpenter, 1992). The National Council of Teachers of Mathematics
(NCTM) has articulated this emphasis on conceptual learning by calling for decreased
attention to “memorizing rules and algorithms; practicing tedious paper-and-pencil
computations; memorizing procedures ... without understanding” (NCTM, 1989, p.
71); and “rote memorization of facts and procedures” (NCTM, 1989, p. 129).

There is little doubt that the rote execution of memorized procedures does rnot
constitute “mathematical understanding.” However, there are other ways in which a
procedure can be executed other than by rote, some of which could be characterized
as “intelligent” or even as indicative of “procedural understanding” (Greeno, 1978).
But few prior studies have considered procedural outcomes other than rote knowledge,
much less explored its development. This paper attempts to map out this terrain: I
examine the development of students’ knowledge of mathematical procedures, with
particular emphasis on examining learning outcomes other than rote execution.

Perspective

Fundamentally, executing a procedural skill requires that one have knowledge
of its component steps and the order in which these steps should be applied. But not
all performances of a skill are the same. In particular, skillful execution in mathemat-
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ics can mean two very different things. On the one hand, skillful execution involves
being able to use procedures rapidly, efficiently, with minimal error, and with minimal
conscious attention; in other words, to execute a procedure automatically or by rote
(Anderson & Lebiere, 1998). On the other hand, being “skilled” means being able
to select appropriate procedures for particular problems, modify procedures when
conditions warrant, and explain or justify one’s steps to others; that is, to execute a
procedure thoughtfully or deliberately (Ericsson & Charness, 1994; Karmiloff-Smith,
1992), “relationally” (Skemp, 1976), “mindfully” (Brown & Langer, 1990; Langer,
1993), or “intelligently” (Ryle, 1949).

Although acknowledging that both notions of “skilled” are important and neces-
sary (National Research Council, 2001), mathematics educators have had difficulty
integrating these two competing visions of mathematical proficiency. The tension
between these two visions is a foundational issue in mathematics education: it not
only pertains to our educational goals for students, but also speaks directly to what it
means to know and to do mathematics.

While the first outcome for successful skill execution (automaticity) has been
frequently examined by cognitive scientists (Anderson, 1982; Anderson & Fincham,
1994; Anderson & Lebiere, 1998), “intelligent” execution of procedures has been less
widely studied and is thus the focus of this paper. I begin by articulating what I mean
by intelligent execution of procedures. I then describe a study that explored the devel-
opment of this capacity.

Framework

What does it mean to intelligently execute procedures?). I have proposed else-
where that two central features of intelligent execution of procedures are (a) flexibility,
and (b) innovation (Star, 2001a, 2001b). Flexibility refers to the ability to use a wide
range of mathematical procedures in order to generate the best solution for particular
problems (Beishuizen, van Putten, & van Mulken, 1997; Feltovich, Spiro, & Coulson,
1997). Flexible solvers have knowledge of standard solution procedures, but they also
choose to use alternative or non-standard procedures on certain problems, when doing
so results in a better or more efficient solution. Metaphorically, flexible solvers have
more tools in their procedural toolbox.

Another feature of intelligent execution is innovation (Gick, 1986; Ryle, 1949;
Simon & Reed, 1976). Innovation refers to the ability to use steps within a procedure
in atypical ways in order to produce a more efficient solution. An innovative solver is
able to use the individual steps of a procedure in ways other than that suggested by a
standard solution. Metaphorically, innovation refers to the ability to use the tools in
one’s toolbox in non-standard ways that do a better job of performing certain kinds of
tasks.

Both innovation and flexibility can be seen in the example solutions shown in
Table 1. Note that the three problems in Table 1 are almost identical, but they have
been solved using three different solution strategies. Problem A is solved using a stan-
dard solution method, one that is commonly and explicitly taught as the way to solve
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linear equations in US schools. Problems B and C could have been solved using this
exact same method, but the solver has recognized and capitalized on the opportunity
to use different strategies for these two problems -- strategies that are at least as good
as the standard method but that could not be used in problem A. A solver who chooses
to use the three solution strategies shown in Table 1 on this set of three problems is
demonstrating flexibility; she has knowledge of multiple solution procedures and can

select the most appropriate one for a particular problem.
Innovation can be seen by looking closely

Table 1. Example Solutions to at the solution steps used in problem B. In her
Three Linear Equations first step, the solver has combined the terms 4(x
+ 1) and 2(x + 1) to yield 6(x + 1). The way
Problem A: that this solving step, “combining like terms,”
Ax+1)+2(x+2) = 3(x+4) is more typically used is to combine variable
dx+4+2x+4 = 3x+12 terms (such as 4x and 2x) or constant terms
6x+8 = 3x+12 (such as 4 and 2), as was done in the standard
3x =4 solution method seen in problem A. In problem
x = 43 B (and also in problem C), the solver has used

Problem B: the same “combine like term” step, but in an

4x+1)+2(x+ 1)=3(x+4) . . " .
6(x+1) = 3(x+4) atypical way that r.esults in a solution that is
6x+6 = 3x+12 arguably better. This atypical or non-standard
3x = 6 use of an equation-solving step is what is meant

x =2 by innovation.

Problem C: Framing intelligent equation-solving in
4x+1)+2(x+ 1)=3(x+1) this manner raises the question of how inno-
6(x+1) = 3(x+1) vation and flexibility develop. This question

3x+1) =0 is largely unexplored. Basic skill practice

x+1 =10 has been linked to the development of rote

x = -1 knowledge (Anderson, 1982; Fitts, 1964), but

the development of more flexible knowledge
appears to require a different kind of practice,
which has been referred to as “deliberate” (Ericsson, Krampe, & Tesch-Romer, 1993).
One hypothesis for what such deliberate practice looks like comes from studies where
participants were asked to solve a problem repeatedly in order to observe changes in
their solutions that emerged with practice. There is ample evidence that solving a prob-
lem multiple times can lead to more automatic execution (e.g., Simon & Reed, 1976;
Anzai & Simon, 1979; Blessing & Anderson, 1996; Koedinger & Anderson, 1990).
However, there is also reason to hypothesize that, under certain conditions, re-solving
previously completed problems can lead to more intelligent solving (Bléte, Klein, &
Beishuizen, 2000; Krutetskii, 1976).

In the present study, I test this hypothesis by utilizing a task I refer to as the
“alternative-ordering task.” Participants are asked to re-solve previously completed
problems but using a different ordering of steps. In this task, students are not merely
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practicing the same solution over and over again, but instead are generating, compar-
ing, and evaluating the effectiveness and efficiency of different solution procedures.
There is reason to speculate that such a task may lead to more intelligent solving, in
the form of greater innovation and flexibility.

Goals

In my prior work (Star, 2001a, 2001b) I demonstrated that intelligent execution
of procedures, as described above, exists in school-aged learners, and I explored the
development of this capacity among solvers working individually on a paper-and-
pencil task. In the present work, I build upon these initial findings by examining the
development of intelligent execution among groups of students in a simulated class-
room setting.

Method and Data Sources

Thirty-six 6th grade students volunteered to participate in this study. Students
attended one-hour experimental sessions in groups of six for five consecutive days.
The mathematical domain that I chose to use in this study was linear equation solv-
ing. A pre-test on linear equation solving was administered on Day 1. Students were
then given a brief 30-minute scripted lesson on the steps used to solve linear equations
(e.g., adding a constant to both sides of an equation, adding like terms, etc.). Following

@ instruction, students were given a post-instruction test on these steps. @

At the conclusion of instruction, all six students were randomly assigned to a
treatment or a control group. Both groups devoted the sessions on Days 2, 3, and 4
to equation-solving practice. During these three problem-solving sessions, students
solved a great variety of equations, some of which were very straightforward (e.g., 2x
+ 4 = 10), while others were much more complex (e.g., 4(x + 2) + 6x + 10 = 2(x + 2)
+8(x +2)+ 6x + 4x + 8).

In the problem-solving sessions, students engaged in alternating cycles of indi-
vidual work followed by group discussion. The treatment and control groups differed
only in the content of the group discussion. In the treatment groups, the discussion
centered on students comparing their solution methods, discussing the differences
between solution methods, and generating alternative solution methods. In the control
groups, students participated in a discussion of identical length and concerning the
same problems. However, the discussion focused on the correctness of numeric solu-
tions and methods of checking numeric solutions. On Day 5, students in both condi-
tions were given a common post-test.

Results

The most interesting result was that students in the treatment and control groups
differed in the ways that they chose to approach equations by the end of the study.
Significant differences emerged in both students’ flexibility and innovation.

With respect to flexibility, treatment students were significantly more likely to
become flexible solvers than control group students: In particular, treatment students
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were more likely to use several different solution methods on the post-test problems,
while control students were more likely to rely upon a single solution for all problems.
The repeated equation-solving practice that control group students received resulted in
the discovery, for each individual, of a dependable, favorite solution method that was
used on many subsequent problems. Sometimes a student’s favorite solution method
was an efficient one; however, in other cases, students reliably and consistently used
solution methods that were quite inefficient. For example, Table 2 shows the solution
strategy that Billy (a student in the control group) used on several problems toward the
end of the study. Billy repeatedly moved variable and constant terms back and forth,
from one side of the equation to the other. Despite the inefficiency of this approach, it
is one that Billy used consistently. In contrast, treatment students, ostensibly because
they were repeatedly asked to consider alternative ways that equations could be
solved, did not settle into a favorite, consistently used solution strategy. Rather, treat-
ment students varied the ways that equations were solved in the post-test depending
on the specifics of individual problems, demonstrating knowledge of multiple solution
strategies. Treatment students were not content merely to solve an equation using an
algorithm that was known to always work for them; they tried multiple approaches in

order to arrive at the best solution for a particular problem.
This increased flexibil-

& Table 2. Billy’s Solutions to Problem 4.2 ity appears to be related to &
innovation: there is evidence
Billy: 3x+D+6(x+1)+6x+9 = 6x+9 that treatment students in
3x+3+6x+6+6x+9 = 6x+9 this study were more likely
3+46x+6+6x+9 = 3x+9 to innovate than control
3+6x+6+6x = 3x group students. Recall that
3+43x+6+6x = 0 innovation is the use of an
3+464+6x = 3x* equation-solving step in an
3+46+3x =0 atypical way that results in a
6+3x = -3 better solution for a particu-
3+43x = O lar problem. 81% of treat-
3x = -3 ment students showed signs
x = -1 of emerging innovation on at

least one problem attempted
*Indicates an error in how a transformation has been during the 3 problem-solv-
applied. ing sessions, while only 15%

of control group students did
so. Innovation is illustrated in Table 3, which shows Anna’s (a student in the treatment
group) solutions to equations she encountered in the second and third problem-solv-
ing sessions. Note the difference between how Anna solved problems 2.2 and 3.2,
two problems that are structurally identical. Anna’s solution on problem 3.2 is more
efficient than the one used on problem 2.2, in that she chose to divide to both sides as
a first step (on 3.2) rather than a last step (on 2.2). (Dividing to both sides as a last step
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is the typical way that students solved equations such as this one.) Anna’s use of the
“divide to both sides” step” atypically is an example of an innovation. Anna came to
this knowledge as a result of the treatment: the generation, comparison, and reflection
on multiple solution strategies. Control group students were significantly less likely to
produce innovative solution strategies such as this one illustrated in Table 3.

Discussion Table 3. Anna’s Solutions to Problems 2.2 and 3.2

This study provided evi-
dence that engaging in alter- Problem 2.2: 3x+1) = 15
native ordering tasks, which 3x+3 = 15
involved re-solving previously 3x = 12
solved equations using a dif- x =4
ferent ordering of steps, led
students to believe that equa- Problem 3.2: 3x+2) = 21
tions could be solved in more x+2 =7
than one way and that some x =25

strategies were better than
others. Treatment students’
cognizance of multiple ways that equations can be solved led to an increase in their
@ ability to innovate, where innovation refers to the use of a step in an atypical way @
that results in a better solution. The ability to innovate was also related to increased
flexibility in treatment students’ solutions, where flexibility refers to a reluctance to
rigidly adhere to the exact same solution sequence when solving similar problems.
Students who did not experience this treatment were more likely to develop one solu-
tion method that was rigidly adhered to on all problems.
This study adds to the literature on equation solving by shifting the focus from
students’ errors to the capacities that successful performers exhibit. A review of the
literature on the use of mathematical procedures (with its emphasis on cataloging the
multitude of errors that students make) suggests that the most important feature of
success in this domain is the ability to rapidly execute error-free procedures. The pres-
ent study suggests that another important feature of a successful solver is the ability
to intelligently use procedures; that is, to selectively choose to deviate from standard
and practiced methods in order to produce even more efficient solutions. Students who
have capacities for innovation and flexibility have more sophisticated knowledge of
equation solving transformations that only emerges in their application. This outcome
of learning procedures has not previously been considered in the mathematics educa-
tion literature.
Implications. The fact that the alternative ordering task was effective in this study
suggests that these results could be used to inform classroom practice in several ways.
First, during instruction on equation solving (and other symbolic mathematical pro-
cedures), teachers should frequently and regularly ask students to re-solve previously
completed problems using a different ordering of steps. The multiple solutions that are
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generated in such a task can then be compared and contrasted. The study described in
this paper suggests that the incorporation of such tasks will result in substantial gains
in students’ ability to innovate and be flexible.

Implicit within this recommendation is a caution against direct and explicit
instruction on the “standard solution method.” Especially for novice learners, teachers
should avoid labeling any one solution method as being the best way, the right way, or
the only way. Benefits that arise from engaging in the alternative ordering tasks come
when students think carefully about how to generate additional solution strategies and
how to compare multiple solution strategies. Students come to their own conclusions
about the features that identify one solution as different from another (e.g., efficiency),
and direct instruction on a standard, efficient procedure would appear to subvert this
process.

A challenge that necessarily accompanies these recommendations concerns stu-
dent motivation. Many teachers find students to be uninterested in learning how to
solve equations, and so it might appear that asking students to re-solve previously
completed equations would further reduce already low levels of motivation. This is
certainly a valid concern. However, there is a great deal of evidence from the elemen-
tary grades that such concerns can be addressed. Many examples exist of classrooms
where a climate has been created that incorporates the features that are integral to the

@ recommendations detailed above: student collaboration, the sharing of multiple solu- @
tion strategies, and the group comparison and evaluation of mathematical procedures
and reasoning (Ball, 1993; Chazan & Ball, 1999; Lampert, 1990). There are fewer
examples of this kind of classroom environment at the high school level, particularly
related to the instruction of mathematical procedures. The study described here sug-
gests that there is much to be gained from efforts to make such changes at the second-
ary level.

Conclusion

Procedures are an integral component of mathematics. While fluency is certainly
one educational outcome, this paper has identified another in the ability to vary the
ways that one uses procedures on particular problems in order to arrive at maximally
efficient solutions. Krutetskii captured this distinction as follows:

Incapable students are marked by inertness, sluggishness, and constraint in
their thinking in the realm of mathematical relations and operations. ... Math-
ematically able students are distinguished by a greater flexibility, by mobility
of their mental process in solving mathematical problems. It is expressed
in a free and easy switching from one mental operation to another qualita-
tively different one, in a diversity of aspects in the approach to the problem
to problem-solving, in a freedom from the binding influence of stereotyped,
conventional methods of solution, and in the ease in reconstructing estab-
lished thought patterns and systems of operations. ... Very typical of capable
students is a striving for the most rational solution to a problem, a search
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for the clearest, simplest, shortest, and thus most ‘elegant’ path to the goal.
(Krutetskii, 1976, p. 282-3)

While incapable students -- those with rote knowledge of procedures -- are rela-
tively easy to find, intelligent solvers present a much more significant challenge. The
study described in this paper represents a first attempt to re-conceptualize procedural
knowledge so as to include such a relational outcome. If flexibility and innovation in
the use of procedures are integral to our educational goals for students, further investi-
gation of the development of this kind of procedural knowledge is vital.
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