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Measuring Student and School Progress
with the California API

Yeow Meng Thum*

Graduate School of Education and Information Studies
University of California, Los Angeles / CRESST

October 2002

Abstract. This paper focuses on interpreting the major conceptual features of California's Academic
Performance Index (API) as a coherent set of statistical procedures. To facilitate a characterization of
its statistical properties, we first cast the index as a simple weighted average of the subjective worth of
students' normative performance and present its estimation in the form of a linear model. In the process,
we illustrate with an example several problems with this index for the study of a school's year-to-year
progress. In its current usage the API lacks realistic estimates of precision and, on closer examination,
further misrepresents conceptually student and school performance. We present an alternative analysis
of the API index, based on a Bayesian meta-analysis of results from school-specific multilevel models
of longitudinal student test scores. We introduce a display for the precision of estimated relative gains
of each school in the form of a profile that represents the probability that a gain estimate exceeds set
fractions of the distance the pretest is from the statewide target of 800. Along with estimates of their
reliabilities, we also produce rank estimates of school API gains rather than simply ranking schools.
We illustrate our approach with an elementary school student cohort who took the Stanford 9 at the
Long Beach Unified School District in the Spring of 2000.

Keywords. Academic Performance Index, Acceptability curves, Bayesian meta-analysis, Index score,
Latent variable regression, Measuring progress, Multilevel modelling, Ratios, Ranks, Reliability, School
performance.

1 Introduction

Like many systemic efforts across the country, California has taken serious steps to build a statewide
accountability system to help public schools better gauge and improve the academic performance
for all of their students. The Public Schools Accountability Act (PSAA), which became law in 1999
(SB 1X, Chapter 3 of 1999), requires that the State Board of Education (SBE) design a statewide
numerical index, the Academic Performance Index (API), for measuring the

" ... performance of schools, especially the academic performance of pupils, and demon-
strate comparable improvement in academic achievement by all numerically significant eth-
nic and socioeconomically disadvantaged subgroups within schools." (PSAA, Article 2, Sec-
tion 52052 (a))

The importance of the API, officially dubbed the "cornerstone" of California's accountability effort,
cannot be overstated. In this paper, we will examine the major conceptual features of this instrument

* This research was supported in part by the Center for Research on Evaluation, Standards, and Student Testing
(CRESST). The author thanks Professor Maria Castro of the Facultad de EducaciOn, Universidad de Murcia,
Campus de Espinardo, 30100 Murcia (Spain), for close collaboration during 2000 that laid much of the groundwork
for the ideas dealt with in this paper. We are very grateful to Dr. Lynn Winters of the Long Beach Unified School
District for the data. Katharine Fry of CRESST provided invaluable copy-editing assistance. Early versions of this
work first appeared in February 2002. Opinions expressed in this paper are however the sole responsibility of this
author, as are all remaining errors. Please direct all correspondence to Y. M. Thum, at thumOuc la edu.
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for the measurement of student and school change, leaving aside its use for the accompanying reward
system. After we briefly explain how the index defines student and school progress with the help of
simple examples, we suggest that in its present usage the API measures neither. We then illustrate
an approach to measuring school performance which retains the broader features of the index and
that is feasible within the boundaries of the present API information base. In concluding, we hope to
have articulated a general procedure for making useful data-driven accountability decisions beyond
the immediate concerns of any single index.

2 Unpacking the API

When compared with indicators that simply aggregate students, raw test scores in various way to
the school-level, the API formula has two distinctive features. First, it employs a set of weights
(reasonable perhaps, albeit subjective) to express the "worth" attached by the SBE to the student's
normative performance. In particular, the student national percentile rank (NPR) for each test
(Language, Mathematics, Reading, Science, History and Social Science, or Spelling) is assigned
a value of either 200, 500, 700, 875 or 1000 depending on whether the student NPR falls in the
first to fifth NPR quintiles (1-19, 20-39, 40-59, 60-79, 80-99 the so-called performance bands).1
These five values form the basis of all further API calculations. For each relevant subject area, the
API test component is simply the school average of student assigned values. Note further that,
by construction, the API ranges from a minimum of 200 (when all scores fall within the lowest
quintile) to a maximum of 1000 (when every score equals or exceeds the 80th %tile rank).

2.1 The API Component for a Test, API-jk

To fix ideas, suppose we index each of the B = 5 performance bands by b = 1,2, ..., B. Let the
number of students in performance band b be nb and Pb represents the proportion of students in
band b. We further denote the series of values that are set at (200, 500, 700, 875, 1000), the worth
assigned to each performance band b, as vb. If j = 1, 2, ... , N denotes a school and k = 1, 2, ... ,K
denotes a specific test, the API3k component estimate is then simply the weighted mean of the
student scores vb's, or

1
API jk =

n
Enb X Vb = Pb X Vb
b=1 b=1

where n is >b nb. Given (1), the weighted variance of vb is

Var(vb) =
1

(n 1)
Enb x (vb A PIlk
b=1

(1)

and the standard error of the weighted mean, our- school AP/3k component, is the square-root of
its sampling variance

Var(vb)
Var(AP/ik) = (2)

1 The interested reader may visit the PSAA home-page at http: //www cde . ca. gov/PSAA/API/ for additional clari-
fication.
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Example 1 (API Component Mean and Standard Error). If the 100 students in your school
are placed in the lowest to the highest performance band numbers in the proportions 20%,
20%, 40%, 10%, and 10%, then your school API is 607.5, with a standard error of 24.92, by
Equations (1) and (2). If the total number of students is 1000 and the proportions remain
as they were, the standard error drops to 7.85.

2.2 The School API, APIA

The second distinctive aspect of the API is that the results for different subject matter may be
weighted differently. Just like the student normative attainment weighting already described, a
similar mechanism now expresses the varying worth we attach to the different subjects. The SBE
chooses a different scheme for elementary and middle schools and for high schools. In grades 2-8,
the Language test counts for 15%, Mathematics for 40%, Reading for 30%, and Spelling for the
remaining 15%. For grades 9 and above, the percentile weights are Language, 20%; Mathematics,
20%; Reading, 20%; History and Social Science, 20%; Science, 20%. The APIA for a school is then
the weighted sum of subject specific components, AP/ik.

Even with potentially different subject matter weights, calculating the school API remains
straightforward. Let k = 1,2, ... ,K indexes the subject matter tests as before and, for each test,
wk denotes the weight for the corresponding test and Ek wk = 1 . We note that K equals 4 for
elementary and middle schools and 5 for high schools. Using Equation (1) above for each test k in
school j, the school API, APIA, can be expressed as a weighted composite of the AP/ik for the
different tests

AP. = Amik . (3)
k=1

From Equation (3), we see immediately that the standard error is the square-root of the variance
of a weighted composite of (independent) components, or

Var(APIA = Ew?, Var(APIik)
k=1

(4)

Equation (4) provides a conservative estimate of the uncertainty we attach to our school API
estimate. For now, we will leave aside the issue of whether or not to "pool" variances to "improve"
its precision.

Example 2 (School API and its Standard Error). An elementary school received the fol-
lowing subject-specific API mean and standard error estimates: Language (521.65, 13.09),
Mathematics (598.60, 12.99), Reading (490.87, 12.46), and Spelling (557.67, 13.38). Weight-
ing Language and Spelling at 15% each, Mathematics at 40% and Reading at 30%, the
school API is 548.60 with a standard error of 6.99, by Equations (3) and (4).

3 The API as a Linear Model

Up to this point, we have described procedures based on well-known results for making statistical
inference on independent means and variances. A more comprehensive approach will need to make
explicit the assumptions made about the sampling design producing the data, about error distri-
butions, etc., as all these factors are necessary for us to make sense of the additional complications
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when we wish to monitor performance over time. In this section, we show how the familiar general
linear model may be used to represent the school API and to describe how the school APIs change
over time.

3.1 The AP./jtj for school j at time t on test k

Let t = 1,2, ... , T index the time period under study. We observe the longitudinal array of perfor-
mance band frequencies for an elementary school j at time t as

njk = nljk n2jk n3jk n4jk n5jk(t) (t) (t) (t) (t) (t)
(5)

with n(t) students scoring in performance band b on test k. If v is the B x 1 outcome vector, the
63k

APP) (t)
3k , now denoted by t.t may thus be represented as a conventional linear model

m'

(t) (t) (t) (t) (t)= 1.BA. H eHjk 3k 3k 3m 3m ,
(6)

(whefe-1B is the B x 1 unit vector. D t) is a diagonal matrix of the performance band frequencies for
m

time t, i.e., n(3t,, and D(it2 = H(it2H(it2/. We further assume that the residual errors are independently

and identically distributed normal, or e(32 N(02, cr2I). Keep in mind that a more elaborate error
structure, if better supported by the data, would be preferred should it improve our inference.

Standard results for the general linear model suggest that the solution for it(it) is simply

.(t)
=

[10 T,(t)., _] -1
Pjk 'LE

er2 ([ (t)11
V B 1,1

s.e. [j12] = & [1BD(32

r,(t)
-1-131-'jkV

[V 1414)

.

/ (1/BD j(2113 1)

(7)

(8)

(9)

(t) = ()
1' D(t)]. of tB jk B 0 course equals to n.jk bnbik, th e total num ber of scores. Most statistical soft-
ware will easily perform the above calculations. We provide a simple example next, employing
SAS© PROC GLM.

Example 3 (Calculating APek) Example 1 continued). The following SAS PROC GLM
code produces the correct estimates µ = 607.5, & = 249.25, and s.e.(j.t) = 24.92, for the
observed band proportions of (.2, .2, .4, .1, .1) for a school with a total of N= 100 students.
In the data set, p, f, and v are the variables for the proportions, frequencies, and values
respectively.

Data and SAS PROC GLM code for Example 3

data;
N=100;
input p v @ @;
f=N*p;
cards;
0.2 200 0 2 500 0.4 700 0.1 875 0.1 1000

proc glm;
freq f;
model v= /solution;
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3.2 The AP/Ct) for school j over tests and over time3k

Extending the above analysis to a time-series (t = 1, 2, ... , T) with multiple tests (k = 1, 2, ... ,K)
is straightforward. Suppose we let 1, be the p x 1 unit vector and Ip be the p x p identity matrix
for some p. We further define Di to be the TKb x TKb (block-)diagonal matrix with elements

[(1) (2) (t) (T)nj , , , , , ni ,

each block of which represents the number of scores at time point t for the set of tests observed in

school j.
The general linear model for the occasion means is thus

Hi(1T 1K 0 v) = Hi(p3 0 1B) + 113(1T 0 ei) (10)

where, again, Di = HjIt. Here, 0 is the left Kronecker product, such that, for any p x q matrix

A andrxsmatrixB,A0Bisaprxqsmatrix
A e B = {au ,

t = 1, 2, ... ,p and 3 = 1, 2, ... , q. p.i is the TK x 1 vector of means with elements corresponding to
each time-point and test. Under similar distributional assumptions, the estimator for Equation (10)

is

[(IT 0 Ix 113)' Di (IT 0 Ix 0 113)i-1 (IT IK 1B)/ Di (1T 0 1K 0 IB) v (11)

The result may be more obvious by noting that (1T 0 1K ® v) = (1T 0 1K 0 IB)v, (Ai 0 1B) =
(IT ® 11{ 1B)Mj) and (1T ® ei) = (1T 0 1K 0 IB)e3. Its standard error s.e.(Ai) and the residual
variance &2 can be obtained from formulae analogous to Equations (6). For example, standard
errors can be shown, e.g., Bock (1975), to be

s.e. & x diag [(IT 0 IR' 0 1B)11)3 (IT 0 1K 012)] (12)

Significant subgroups. The PSAA also requires that the system monitor the progress ofsignifi-

cant subgroups (special education status, English language learners, socioeconomic status, gender,
and ethnic groupings). Note that we need only to modify slightly Equation (10) as

H0(17- 01K 0 v) =H9j(tzgi 01B) -FH0(17- 01K 0 egi) (13)

(t)so that the API, µ9k, for any significant subgroup g = 1, 2, ... , G may also be obtained. To keep
the notation simple however, we will not further consider subgroup estimates in the sequel.

Subject matter weighting. Weighting test APIs, pi, e.g., with w = (.15, .4, .3, .15) for elemen-
tary schools, is equivalent to estimating the linear composite p;!, where

ltd= (IT ®w')lij, (14)

with standard error

s.e. [A'] = & x diag [(IT 0 vi 0 1B)/ Di (IT 0 7-01 1B)] 2

if we rely on results (11) and (12).

5
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A simple growth model. A similar argument lends itself to estimating growth parameters if
we have a longer time-series, t = 1,2, ... , T. The linear growth model may now be represented by
projecting t on time. For example, we may pose

/1 0 \
1 1

M= 1 2 (16)

\1 (T 1)

to estimate the API at time point 1 and a linear growth rate. Note that "centering" the linear
growth predictor at the last time point can give an alternative and useful interpretation of special
interest for accountability purposes. Now Poi is an estimate for the current status of school j, i.e.,
at time T.

Setting p,'13! = Mph, we obtain__

13i = (m/m) -1 m,

and, again, standard errors for the growth parameters, s.e. [Ai], are

(17)

1

x diag (MM)-1 M' [(IT w' 0 1B)' Di (IT ®w' 0 1B)]
1

M (M'M)
2

. (18)

Note that these standard errors are based on prior estimates of the API components specific to
each time point and test, i.e., from Equation (15). They are too large because the model degrees
of freedom is TK as opposed to T if we are estimating the T annual APIs. If we treat w as weights
in the linear model, a more direct estimate of the API for each year is

11; (17- 0 1K 0 v) 1-ri:(2; 1B) + (1T 0 1K 0 e;) . (19)

The frequencies are now weighted as 11; = H3 x (IT 0 w* 0 IB), and w* is a diagonal matrix
containing the square-root of elements in w. The resulting solution takes a form similar to Equation
(11). Finally, for the growth model (16), we have

f3j = [(m iK ® 113)1D; (M 1K 0 1B)] (M 1K la D'jt (1T ®1K 0 v , (20)

where D
3 3

= H 11 */ The standard errors are smaller relative to (18), as they are now based on the
2 degrees of freedom for the growth model. We next provide estimates in an example of a school
with 4 waves of data.

Example 4 (Calculating and Modelling APIik over Time). In the following data from an
elementary school, test, time, p, f, and v are the variables for the tests, time, proportions,
frequencies, and values respectively. N defines the total number of students at each time
point. t codes the variable for linear growth, centered at the first time point. The first block
of SAS PROC GLM code produces the following f4 ? (s.e.) estimates:

Test \ Time 1 2 3 4

Language 607.50 (22.39) 607.50 (21.35) 645.00 (20.44) 725.00 (22.39)

Mathematics 637.50 (18.28) 675.00 (19.64) 742.50 (18.28) 692.50 (20.44)

Reading 655.00 (22.39) 575.00 (20.44) 772.50 (20.44) 742.50 (22.39)

Spelling 755.00 (21.35) 692.50 (19.64) 625.00 (21.35) 725.00 (21.35)

6



Weighting tests produces the API estimates (s.e.),4): 655.87 (10.96), 637.50 (10.87), 719.25
(10.52), and 717.25 (11.55) for time points 1 to 4, respectively (obtained by the lines be-
ginning with the command "estimate "). In terms of the school growth on the API, 13,j, we

estimate that the school API is 642.59 (9.18) at time point 1 and over the time span the
API grows linearly at about 26.59 (5.01) a year. Given the pooled error variance of 6-
223.88, the school API is growing at an annual rate of .12 standard deviation units. The
alternative solution, given by Equations (19) and (20), is implemented in the second block
of SAS PROC GLM code. t recodes the variable time, centering it at time point 1. For each
testis the corresponding PSAA weight, w. As expected, the standard deviation estimate is

appreciably reduced, to 115.45. The estimates and their s.e.'s are 642.65 (8.77) and 27.23
(4.78). While the location parameter estimates are roughly equivalent, they are now deter-
mined with more precision. When compared with background variation, the school has been
growing at a relatively larger estimate (about twice) of .23 s.d.'s a year.

Data and SAS PROC GLM code for Example 4

data;
input time test $ N pl-p5 @ @;
t=time-1;

if test="L" then w=.15;
else if test="M" then w=.40;
else if test="R" then w=.30;
else if test="S" then w=.15;
array p pl-p5;
array v vl-v5 (200 500 700 875 1000);
do over p;
value=v;
f=int(p*N);
output.;

end;
drop vl-v5 pl-p5;
cards;
1 L 100 .2 .2 .4 .1 .1 1 M 150
2 L 110 .2 .2 .4 .1 .1 2 M 130
3 L 120 .2 .1 .4 .2 .1 3 M 150
4 L 100 .1 .1 .4 .2 .2 4 M 120

.1 .3 .4 .1 .1 1 R 100 .1 .3 .3

.1 .2 .4 .2 .1 2 R 120 .2 .3 .3

.1 .1 .3 .3 .2 3 R 120 .0 .2 .3

.1 .2 .3 .3 .1 4 R 100 .1 .1 .3

.2

.2

.3

.3

.1 1 S 110 .0 .2 .4 .2 .2

.0 2 S 130 .1 .2 .3 .3 .1

.2 3 S 110 .1 .3 .4 .2 .0

.2 4 S 110 .1 .1 .4 .2 .2

proc glm; /*** Estimating Linear Composites ***/
class time test;
freq f;
model value=time*test / noint solution;
estimate "APIl" time*test .15 .4 .3 .15 0 0 0 0 0 0 0 0 0 0 0 0;
estimate "API2" time*test 0 0 0 0 .15 .4 .3 .15 0 0 0 0 0 0 0 0;
estimate "API3" time*test 0 0 0 0 0 0 0 0 .15 .4 .3 .15 0 0 0 0;
estimate "API4" time*test 0 0 0 0 0 0 0 0 0 0 0 0 .15 .4 .3 .15;
estimate "Int" time*test 0.105 0.28 0.21 0.105 0.06 0.16 0.12 0.06

0.015 0.04 0.03 0.015 -0.03 -0.08 -0.06 -0.03;
estimate "Slope" time*test -0.045 -0.12 -0.09 -0.045 -0.015 -0.04 -0.03 -0.015

0.015 0.04 0.03 0.015 0.045 0.12 0.09 0.045;

proc glm; /*** Linear Fixed Effects Growth ***/
freq f;
weight w;
model value=t / solution;

3.3 Measuring Progress the PSAA Way.

The above characterization of growth may not be immediately useful when the number of time
points are small and an "average gain," i.e., a growth rate, is not the object of inference. Adequate
annual progress, as defined by the PSAA, amounts to a 5% increase on the school API estimate

7
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from one year to the next, when compared with how far below the school was in the previous year
from the statewide target of 800. In terms of the estimated school API for the time points t and
t 1, from Equation (14), annual growth is estimated by the ratio

*(t) *(t-1)
A(t)

800 /27(tl)
(21)

Suppose that T = 4 and we are interested in the API growth from t = 1 to t = 2, or A.(i2). Because

the numerator is the linear contrast c'1 , where c'1 = [ 1, 1, 0, 0 ], and the denominator is
800 c2;67, where c2 = [ 1, 0, 0, 0 ], we see that

A(2) Clfl ;
3 800 c124$3:

Writing C = [c:1 , the variance-covariance matrix of the numerator and denominator contrasts
c2

1

Var (Cit;) = 6-2 x C [(IT 0 iv' 1B)' Di (IT 0 ID' 0 1B)] C'. (22)

Standard errors for the nonlinear parameter AY) cannot be obtained as directly, however, al-
though a commonly proposed asymptotic estimator may be derived using the 5-method (see Ap-
pendix. Letting

are

a12Var (CP7) = [ 2
C/21 (722

^(for any t > 2, then its standard error, s.e. [aft)] i, is given by

2
(800 P*(,17) ) (800 A;(t)) 10 -2

it,;(t-1)) 4 "1 -1 " ilVt-1)) 3 er12 + ii;(t-1))2 cr22

(800 (800 µ7(t

(23)

For large samples, and if the coefficient of variation of the denominator, 22/A*.(t-1), is less than
3

10%, this approximation seems reasonably accurate (Cochran, 1977, p. 166).

Example 5 (Ratio of Gain to Distance from Target). We return to the data in Example 4
above, supposing that rt(jt, = 100 for simplicity. The APIs for years 1 through 4, according
to Equation (14), are 655.875, 637.5, 719.25, and 717.25, respectively. Because the numbers
of observations are equal for each test and year, the standard errors for the APIs are uni-
formly 11.336. (See columns API and Var in table to follow.) Annual API estimates are also
uncorrelated. We estimated the coefficients of variation for years 1 through 3, listed under
column CV. These are generally in the 1% to 2% range, suggesting that the approximated
standard errors for the ratios are acceptably precise. Applying Equations (21) and (23), the
ratios of gain for years t > 2 over distance of the school's API at time t 1 through 3 from
the target API of 800, 54°, and their standard errors, all expressed as percentages, are given
in columns Lambda and SE(Lambda) below.

8



Year API Var CV Lambda SE(Lambda)

1 655.875 128.50 0.017
2 637.5 128.50 0.018 -12.75 18.938
3 719.25 128.50 0.016 50.31 11.003

4 717.25 128.50 -2.48 31.857

An important point to note from these results is that, even when the standard errors of the
APIs are equal from year to year, the standard errors of their ratios are far less predictable.
As can be seen from Equation (23), the sampling variance of ratios of APIs depends on
weighted linear composites of the ratios of powers of the API estimates themselves.

Even as we are able to approximate the standard errors for quantities such as the API growth
ratio, its properties need close scrutiny in practice. We will merely list two major concerns here and
return to them in Section 7, where we consider better procedures for making inferences regarding
ratios of estimates.

as the denominator becomes small, ratio estimators such as Equation (21) becomes in-
creasingly inchoate. In our case, such situations arise when schools have initial APIs that are close
to the 800 target. When its absolute value is less than 1.0, the ratio is wildly unstable. At zero,
it is undefined. When it is negative, the meaning of the resulting ratio bears little resemblance to
what is originally intended. Currently, all these difficulties are "avoided" by appealing to various
administrative rules that essentially treat schools that are "close" to the target as also meeting the
growth target. Second, even when the denominator is reasonable, the approximated standard errors
may be large, and they may vary widely from one year to the next, as can be seen in Example 5.
Taken together, these considerations suggest that decisions based on these ratio estimates are to
be made only with extreme caution. Drawing on Thum (2002), we suggest a remedy in Section 7.

3.4 Missing Test Data

Although the API is not defined for individual students under the PSAA, an API-like index may
be calculated for the individual student if the student has her full complement of test scores. It is
easy to show that with the full complement of subject matter test scores, the student-level API is
exactly its school-level counterpart in that when we apply the API definition at the student-level,
the school-level API is exactly the mean of student APIs. However, if a student does not have a
test score for, say, Language, his API is not defined (at least not one that is consistent in the sense
given above) while the definition of the school-level API is unaffected.

For many analysts, that a student API for students with missing scores is undefined appears as
an inconsistency to be remedied. It is sometimes suggested that, when one or several component
scores are missing, a student API can still be calculated by first (conveniently) assigning missing
scores the weight of zero and then re-distributing the weight for each component at the school-level
among the available student scores.

To better understand this proposal, suppose an API-like index weighs its two components, Test
A at WA and Test B at wB, with WA + wB = 1. Individual student scores on Test A will be weighted
wA/NA while scores on Test B will be weighted wB/NB, if NA and NB are the number of valid
scores for Test A and Test B respectively. The goal here is to ensure that E wA/NA = wA and
I wB/NB = wB over students. As

WA /NA WA

WB /NB WB
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unless NA = NB, this definition of the student index will be dictated purely by happenstance.
For student without valid scores on both Test A and Test B, the ratio of subject matter weights
will generally not be WA : wB respectively as required but (wA/NA) : (wB/NB). This approach
effectively redefines the mandated subject matter weighting of wA for Test A and wB for Test B,
rendering the procedure highly unpredictable because it is now sensitive to the specific missing data
pattern observed. It alters the weights given to the different subjects matter components even for

the students with the full complement of test scores. It also weighs students unequally, depending
on their specific missing data pattern when calculating the school aggregate. Because such attempts
to provide an estimate for the student index in the presence of missing scores on some components
are not in keeping with the original API definitions, they are seriously misguided.

This less-than-satisfactory aspect regarding the (lack of) definition of the student API reveals
a significant flaw that arises whenever, as for the API, school progress is defined independently of
student growth, a point to be further elaborated when we suggest some alternative approaches to
measuring school productivity in the next sections.

4 What the API Measures

At the risk of appearing as if we have put "the cart before the horse," we nevertheless ask: Now
that we know how to calculate and also how to make statistical inferences with the school API,
what does it all mean? Let us suppose for now that an API component summarizes in some sensible
way an aggregate attainment level of its students. Then the key to interpreting the construct being
measured by an API component lies with the value assignment approach integral to this index. By
assigning a numerical value to the student NPR the API has effectively altered a normative test
score to reflect the subjective worth of ordered levels of student normative attainment. Generically,
indicators such as the API component produce a subjective scale based on normative performance.
Its subsequent employment in various arithmetic comparisons, within and between schools, also
reveals the presumption that the new outcome variable is measured on an interval scale.

Many educators will no doubt lament that the new performance scoring scheme has little to
say about the level of content or curriculum attainment, a prerequisite of most alternative systems.
The API scheme appears to have more in common with the mechanics of commodity pricing,
or with earlier developments in the construction of social welfare functions. However, while this
approach may represent a critical design flaw for measuring content-anchored learning levels, the
goal of formulae like the API is different. It seeks only to depict normative status. Additionally, by
focusing on attainment in terms of norms, the API procedure allows for further combining normed
achievement results from different tests disregarding content and grade level. The results from any
candidate for inclusion need only be expressed in terms of normative attainment. Thus, the API
scoring scheme is not an accident of design but a deliberate template to facilitate, by extension,
the "rolling in" of other tests and indicators.2

Suppose that we accept the proposition that the school API summarizes the normative attain-
ment level of its students; it is then fair to ask: In what sense does the API measure student and
school normative attainment? The answer to this question turns principally on a set of design issues

2 Currently, the API rests on student results on the Stanford 9, Form T, which is part of the States Standardized
Testing and Reporting (STAR) program. Its mature form will, however, include additional components such as
results on the California Standards Tests and the High School Exit Examination, as well as student graduation
and attendance rates. By law, test scores are to make up 60 percent of this index. Even more inclusive composite
indices have been proposed elsewhere (see Rothstein, 2000).
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that has received considerable attention in the methodological research literature on the measure-
ment of growth and change over the past four decades. As defined by the PSAA, the API is a
cross-sectional statistic. In an early investigation, which compared alternative designs for tracking
progress in schools, Dyer, Linn, and Patton (1969) anticipated the current assessment design con-
cerns regarding cross-sectional analyses of longitudinal data. They concluded that, conceptually, the
most appropriate method for measuring growth employed a matched-longitudinal design. In con-
ventional regression terminology, an average of within (student) slopes appeared most promising
for yielding useful information about growth when compared with slopes from the total regression
slope, or the between regression slope (see also Bryk & Raudenbush, 1992, Table 5.9).

An updated rendition of these concerns may be located in the methodological literature on the
measurement of growth and change, and their progressive resolution aided by the application of
multilevel modelling. Here, we will not attempt a detailed recounting of the issues as they apply
to the measurement of student and school progress. The reader may consult Thum (2002) for a
brief survey of the conceptual and statistical issues on the measurement of change as it relates
to accountability modelling drawn from early work by, for example, Cronbach and Furby (1970),
Rogosa et al. (1982), Rogosa and Willett (1985), Willett (1988), Rogosa (1995), and on more recent
contributions by Collins (1996), Williams and Zimmerman (1996, Maris (1998), Mellenbergh and
van de Brink (1998), Mellenbergh (1999), Raykov (1999)). For further discussions framed around
the measurement of school performance, see Willms and Raudenbush (1989), Willms (1992), and
Meyer (1996).

Earlier investigations of school and student performance had also stalled until it was recognized
that, by design, students are nested within schools and, consequently, statistical analyses should no
longer routinely assume that student observations are independent within the school (see Cronbach,
1976; Burstein, 1980a; Burstein, 1980b; Bryk & Raudenbush, 1992, pp. 1-3). The literature on ap-
plying multilevel modelling, hierarchical linear modelling, or mixed-effects modelling to measuring
student outcomes and school effects has since exploded (Raudenbush & Bryk, 1986; Raudenbush,
1988; Willms and Raudenbush, 1989; Gray et al. 1995; Willms, 1992; Goldstein & Spiegelhalter,
1996). Thum (2002) suggested that the recent educational research on monitoring student learning
and school productivity for accountability purposes generally (1) endorses a multilevel approach
that, within a unified model, allows for simultaneously modelling student and school variability and
leads also to a more accurate assessment of uncertainty, and (2) favors defining growth as intra-
individual change as measured by some model of student gain (Sanders & Horn, 1994; Thum
& Bryk, 1997; Bryk, Thum, Easton, & Luppescu, 1998; Thum, 2002) rather than relying on an
indirect and questionable measure of gain in the predicted residual gain score (Gray et al. 1995;
Meyer, 1996; Harker & Nash, 1996; Webster & Mendro, 1997). Analytically, we think of a value-
added model for school assessment data in terms of its two essential components. First, we measure
improvement beginning with a model for student gains. Then, we contextualize student or school
improvement in a model with relevant student, family, teacher, cohort, and school correlates.

Collectively, therefore, the literature would caution that, by mistaking cross-sectional school
aggregates for representative student behavior, indices such as the school API ignore the important
conceptual incongruence between student progress and school productivity, with serious interpretive
consequences. Changes in indicators such as the API for a school from one year to another do not
substitute adequately for indicators of student growth, even when we restrict the analysis, as is
currently the case for the API, to only students who have been in the school or district for two
consecutive years. A simple illustration serves to clarify the basic problems. Table 1 presents the
API assessment data for a three-year longitudinal cohort of students who attended an elementary
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Table 1. API performance data for a LBUSD elementary school.

Year Worth

With Missing Tests
(N=4192)

No Missing Tests
(N=4060)

Lang Math Read Spell Lang Math Read Spell

1998 200 113 93 124 118 97 77 117 100

500 59 45 48 46 55 42 44 41

700 23 42 29 24 22 39 29 23

875 24 32 10 19 23 31 10 19

1000 7 15 4 21 7 15 4 21

1999 200 137 117 173 166 134 112 170 161

500 90 77 85 74 88 76 84 73
700 61 68 58 49 59 65 58 47
875 44 57 23 37 44 57 23 37
1000 23 38 13 30 23 38 13 30

2000 200 169 116 177 150 166 113 176 147
500 113 117 132 104 112 116 132 104
700 82 91 77 84 81 89 76 84
875 68 87 49 82 67 86 49 80
1000 38 59 30 51 37 59 30 48

school in the Long Beach Unified School District (LBUSD) in 2000. Columns 3-6 display all available
scores over the years from 1998 to 2000 for SAT 9 Language, Mathematics, Reading and Spelling
for students in the cohort. Columns 7-10 are tallies for those students with a full complement of
test scores. Estimates and standard errors for the annual school APIs and their differences using
all available scores are given in columns 2-5 in Table 2. These fixed-effects analyses assumed that
for the same period all students gained the same amount, however unlikely this seemed in practice.
In standard regression terminology, they represent estimates from the total regression, which treats
all observations as independent and any individual differences in gains as random error. Note that
with missing test data, a student API is not defined and only the school API conforms to the PSAA
definition. Although a student analog to the school API may be defined when there is no missing
data (columns 6-9), its school mean, it is argued, still does not represent how much students in
the school have progressed on average because individual student gains are not distinguishable in
the model. Differences in mean attainment from one year to another can yield a very different
picture than the average gain made by an identified (matched) cohort of individuals. Again, in
regression terminology, a conceptually more congruent indicator of overall student progress is the
school average of student within regression slopes.

Foreshadowing the multilevel modelling which we will recommend for analyzing API growth in
the following sections, columns 10-11 in Table 2 display the means and their standard errors that
estimate how much students have individually gained on average on the student API defined and
tracked over time for each student. As is evident, the average of student gains over time, 55.91
and 37.48 for 1999 and 2000 respectively, can be quite different from gains computed from the
averages at each time point, 39.41 and 50.29. These results, stemming form differences in design
and analysis, i.e., between a fixed-effects (Panel (a)) and a random-effects (Panel (b)) model, are
reproduced in Figure 1.
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Table 2. API Estimates and SE for elementary school data given in Table 1.

With Missing Tests No Missing Tests

Status Gains Status Gains Gains

Year Est se Est se Est se Est se Est se

1998 445.56 9.34 445.56 9.34 457.90 9.81 457.90 9.81 454.28 14.23
1999 494.91 7.41 49.35 11.92 497.31 7.51 39.41 12.35 55.91 12.69
2000 548.33 6.45 53.42 9.82 547.60 6.51 50.29 9.94 37.48 7.82

t Random effects model results.

5 Measuring Student and School Progress in Long Beach USD
-USiiig-the API-

In the following sections, we explore a multivariate multilevel model for measuring student and
school productivity in terms of the API similar to that employed by (Thum, 2002) for modelling
growth in scale scores3 for a set of elementary schools in Arizona. In this analysis, we are interested
in estimating the amount of growth in the school API for a cohort of students who are in the
Long Beach Unified School District in 2000. We will employ only student scores with the full
complement of subject matter test results.4 In all, we used 389,184 test scores from 41,920 students
nested within 69 LBUSD schools. Considering the size of this problem, and we have in mind an even
larger analysis involving every student the entire state system over a period of time, we adopted a
two-stage procedure similar to Raudenbush, Fotiu, and Cheong (1999).

The initial step is to estimate a multivariate two-level model for each school. In our within-
student repeated measures model, we estimate a student's API in 1998, and his API gain in 1999 and
in 2000, treating test scores for each student as correlated over time. At the student-level, we pool
student API estimates to arrive at an estimate for the school. We provide a computational strategy
for estimating the school API, pi, with some suggestions for a SAS PROC MIXED specification.

The second step performs a random-effects multivariate meta-analysis employing the school-level
1998 API estimates, its 1999 and 2000 API gains as summary inputs, along with their precision
estimates.5 Although our analysis shares similar motivation as described by Raudenbush, Fotiu,
and Cheong (1999), our present study does not attribute the variability in school performance to
various school-level factors. Furthermore, we take this Bayesian turn in our analysis principally as
a vehicle for effecting simple and direct estimation of functions of parameter estimates, such as
the PSAA productivity ratio, An given by Equation (21). We will show how our analysis enables
straightforward inferences on school API status and gain estimates, and their ranks, in addition to
the all-important API productivity ratio, At).

3 Though a more generic term, scale scores here refer to scores based on item-response theory models.
4 The issue of missing tests will require a separate and lengthier treatment. When a test is unavailable, it gets at

the very definition of the API itself. As such, it cannot be mistaken for a missing data problem.
5 See Smith et al. (1995) and Normand (1999) for a general discussion of the Bayesian approach to random-effects

meta-analysis.
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Fig. 1. Comparing school API estimates can be misleading for understanding growth.

5.1 Step 1: A Multivariate Multilevel Model for the School API, pi

To facilitate our rather abbreviated discussion of multivariate multilevel modelling, we employed
as much as possible the notation of Thum (1997).6 If student i in school j scores 4it)k on test k at

time t, then we may estimate the student API, 7:1t), by weighting each Equation (24)

Student Growth Model : (t) t)
Vt.ik =

(t)
+ ei(jk (24)

*(t
by its corresponding subject matter weight, N/143 ei)9k. The residual, jk , is often assumed to be iden-

tically and independently distributed normal, or 43(kt) ,--, JV(0,93 ). In an application with multiple
outcomes, we may also consider alternative error structures. Assuming that the error variances are
heterogeneous and that the errors are correlated over time, for example, we may set

-,./V(0,IK 0 0j)

where ei is the unstructured T x T matrix. When some of the time points are unobserved, rows
and columns in ei will be deleted accordingly, leading to patterns of 0,i that are unique to the

6 Thum (1997) gave a detailed development of a multivariate generalization of the standard two-level multilevel
linear model that essentially replaced the univariate level one mixed-effects model with a multivariate mixed-
effects analysis of covariance model. Other sources, from the Bayesian hierarchical modelling perspective, include
Congdon (2001, ch. 8) and Raudenbush and Bryk (2001, ch. 13). Recently, Yang et al. (2001) employed a multilevel
multivariate model for examination results to assess the effects of self-selection on exam subjects by individuals.
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student (see the discussion in Thum (1997, pp. 82-83) regarding the treatment of missing outcomes

when the errors take a more general structure than i.i.d.).
Students within each school j contribute to an estimate of the school API, which we now denote
(t)as , for each time point t as given by

Students within School : *(t) (t) (t)rii /Li uii (25)

The school-level residuals, uij, are assumed to be identically and independently distributed T-

variate normal, uij AfT(OT,
For longitudinal data, we may also model student scores with, for example, a design for linear

growth such as implied by Equation (16). For our illustration with three time points, it will be
more useful to employ a design on time that provides direct estimates of the student API at time
point 1, the gain between time point 2 compared with time point 1, and the gain from time point
2 to time point 3. Thus, setting 7r 7i = Mijf3ii, the unknown parameters, f3ii, now correspond to
each _columns. in_

1 0 0
Mij (1 1 0

1 1 1

The alternative school-level model may be written as

Students within School' : Oij + rii (26)

with rij Ar3(03, wi). It may then be shown that vij is marginally distributed multivariate normal
as

vij .AT(Mii73, Ei) (27)

where Ej = Mij413M'ii eij. Using standard results for the multilevel model, e.g. from Thum
(1997), the estimated profile of API growth factors for school j is given by

no 1 no
[Em/..27t)1m..]

3 2.7 3 '13

i =1 i =1

with variance-covariance matrix, Var (y6), or

no -1E ,,,,,i3.2.7imid

i=i

(28)

(29)

The reader should note that our model specifies unique components of variance for each school j
because there is no compelling reason to assume that these structural factors should be identical
across the diverse student bodies in the school system.?

Example 6 (A Multivariate Multilevel Model for School j). To estimate the 1998 API status
and gains in 1999 and 2000 for school 407, we employ the school data file (Sch407) containing
the following variables: stuid identifies the student; subject identifies the subject matter;
year identifies the year; yr1, yr2, and yr3 encode the year as given by the matrix Mij;

7 It is also clear from the previous sections that the analysis here may be easily adapted to provide grade or significant
subgroup specific estimates.
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(t) (t)
score2 is the outcome viik weighted by its corresponding weight wgt2, or N/wi For the
data described, the SAS PROC MIXED statements below will produce school estimates
as well as REML estimates of the variance components, 413 and (53. The option covbi in
the model statement prints the estimate for V3. For an introduction to multilevel modelling
using PROC MIXED, consult Singer (1998).

Data and SAS PROC MIXED code for Example 6

proc mixed data=Sch407 covtest noclprint=10 noitprint empirical noprofile method=reml;

class stuid year subject;
model score2=wgt2*yr1 wgt2*yr2 wgt2*yr3

/ noint solution covbi ddfm=residual;
random wgt2*yr1 wgt2*yr2 wgt2*yr3 / sub=stuid type=un;
repeated year/ sub=subject(stuid) type=un rcorr;

titlel "1998 API Status and Gains in 1999 and 2000 in School 407";

5.2 Step 2: A Bay-egan-MEta-Analysis

In the previous section, we show how we may obtain the restricted maximum likelihood estimate
of and its variance-covariance matrix V3 for each individual school j. While it is now useful to

regard the estimates ..73) as providing reasonable information about the "true" performance at
each school site, -yi, the information on individual school performance can be made more precise
by viewing individual schools as members in a group or sub-groups. In general, pooling school
estimates in a multilevel model produces an improved version of the same school estimates (ij),
termed empirical Bayes or shrinkage estimates, that, although biased, have minimum mean squared
error (deGroot, 1975). The model will also provide an estimate of the average performance of the
system of schools. We also gain some assessment of the graded heterogeneity of school performance
that is sensitive to the relative precision of the information from individual schools. However,
because our group of schools is not a random sample in any sense, like Raudenbush, Fotiu, and
Cheong (1999), we would adopt a model aggregation view of this model (also see Spiegelhalter
Marshall, 1998, and Congdon, 2001, ch. 5).

We relate the performance estimate (-3,i, V,) for each school j to its "true" but unknown pop-
ulation value, -y3, using the meta-analysis model

and

i3 i7j tiN(.7;,vj)

-ri I Ar(<",(')

(30)

(31)

Because we supply the precision estimates via V j in Equation (30), this otherwise familiar multi-
variate two-level model is often known as a "v-known" problem.

We employ noninformative priors throughout to reflect our lack of specific prior information that
would influence the results of our analysis.8 Our prior for C, which may be interpreted as the per-
formance profile for this collection of LBUSD schools, is accordingly assumed to be uninformative,
each of which is distributed as

Ar(0.0, cs)

8 Another compelling perspective for us is that this choice of prior indirectly reveals our interest in obtaining a
likelihood-based solution via a Bayesian setup of the problem. For more elaboration, see Wasserman (2000).
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for some suitably large constant c, (so that (", "can be anywhere"). We further assume that the
noninformative prior for (1), the variance-covariance matrix of the school performance factors -yi in
the collection of schools, is an inverse Wishart

v)

with precision Y on v degrees of freedom.
We illustrate this computational strategy with a sketch of effective WINBUGS© program spec-

ification (Spiegelhalter et al. 1999). In this application, the value for v is 3. Reasonable alternative
initial values for Y are conveniently culled from our set of Vg's. Ten thousand updates give a stable
solution. Convergence issues for MCMC and on approaches for assessing convergence are treated
by Cowles and Carlin (1995) and Brooks and Roberts (1998). Basic WINBUGS program code for
our model is given in Example 7.

Example 7 (A Bayesian Meta-analysis via WINBUGS). Suppose we have the estimates for
the 1998 API status and the gains in 1999 and 2000 for each j of M schools stored in a
matrix g [j ,1: 3] and the inverse of their corresponding variance-covariance matrix stored
as V [j ,1:3,1:3]. We relied on WINBUGS for fitting our model. The Markov chain Monte
Carlo (MCMC) approach employed in this program simulates the posterior distribution for
each parameter by repeatedly drawing values from the appropriate full conditionals. Within
a loop for schools, indexed by j, the following statements gives the core of a WINBUGS
program:

WINBUGS code segment for Example 7

# Model section
model
{

for(j in 1:M){
g[j,1:3] dmnorm(gm[j,l,V[j,,l);
gm[j,1:3] dmnorm(ze[],omega.gm[,]);
1

# Specify Priors
for(i in 1:3){

ze[i] dnorm(0.0,.0001);}
omega.gm[1:3,1:3] dwish(R(,],3);
for(k in 1:3){ for(1 in 1:3){
Sig2.gm[k,1]<-inverse(omega.gm[,],k,1); }}

}

The correspondence between terms in the code and our model as specified in Equations (30)
and (31) is strikingly clear and so our code requires no further clarification. The important
point to note is that, by convention, WINBUGS assumes omega. gm to be 43-1. Thus our
outputs from this specification are simulations from the marginal posterior distribution of
^yj in gm[j ,], of in ze [] , and of cD in Sig2 gm . For an introduction to multilevel
modelling using WINBUGS, consult Spiegelhalter et al. (1999).

6 API Growth for the Long Beach USD 2000 Longitudinal Cohort

Table 3 displays the aggregate results from our Bayesian meta-analysis. Note in particular that
tabled entries are selected features (mean, standard deviation, and values corresponding to the
2.5%, the 50%, and the 97.5%) of the simulated marginal posterior distribution of each estimate.

Our set of LBUSD schools typically attained an API of 545.80 (0) in 1998. Judging from the
range of estimates ±1.0 x SD from the posterior mean, about 68% of LBUSD schools obtained an
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Table 3. Results for the Long Beach USD 2000 Cohort.

Parameter

Posterior Estimates

Mean SD 2.5% 50% 97.5%

System Average
1998 APIs 545.80 14.37 517.40 545.90 573.40

1999 API Gains 43.39 2.80 37.94 43.34 48.95

2000 API Gains 6 21.93 2.99 15.96 21.95 27.80

Variance Components
1998 APIs 011 117.30 10.34 98.83 116.70 139.60

1999 Gains and 1998 Status P12 -0.31 0.12 -0.52 -0.32 -0.07
2000 Gains and 1998 Status /313 -0.52 0.09 -0.68 -0.52 -0.32

1999 API Gains 022 21.02 2.30 16.96 20.87 26.01
1999 and 2000 Gains p23 0.06 0.14 -0.21 0.06 0.33

2C1-00A PFG ariS -033 23.35 2.22 19.49 23.17 28.16

1998 API status between 428.50 Chi) and 663.10 (6 + (7,11). Schools gained 43.39 ((;2) on the
API in 1999. About 70% of the schools gained from 22.27 (6 q522) to 64.41 + ik22). The school
system then saw a less impressive gain, of about 21.93 (<3), in 2000. Gains have about the same
spread in 2000 (q.22 = 21.02) as in 1999 (.33 = 23.35) but are typically smaller, ranging from -1.42

33) to 45.28 (6 + .1k33). It appears that, in 2000, a fair number of schools, as many as 15%,
posted no gain on the API at all.

6.1 Relating Gains to Initial Status: From Associations to Predictions

Is there a relationship between where a school starts out in 1998 and how much it gains in 1999
and in 2000? The scatter plots in Figure 2 suggest that while 1998 API attainment is negatively
correlated with 1999 gain, at about -.31 (12 in Table 3), an even stronger relationship, 1613 = -.52,
characterizes school 1998 API status and school API gain in 2000. Moreover, school API gains in
1999 are not predictive of gains in 2000 (1323 ^ 0).

Beyond considering such correlations, we may estimate predictive models of (true) gains from
(true) initial status that take into account the uncertainties in our status and gains estimates.
Because the estimator for 1998 status and subsequent gains are latent variables, the resulting so-
called latent variable regression (LVR) model.9 for predicting 1999 API gains from 1998 API status
begins with Equation (30), but replaces (31) with

Af(Ci On)

7;2 - Ar(61 022) 7

= + (4 X (1) (32)

9 Recently, Raudenbush and Bryk (2001, pp. 361-364) provided an example of a multilevel model with LVR for
clarifying the gender gap in growth rates for mathematics attainment in high schools. Latent variable regression
applications in the Bayesian hierarchical modelling framework are given by Congdon (2001, section 8.6.2) and by
Seltzer, Choi, and Thum (2001). These possibilities relate directly. to earlier suggestions by Raykov (1993) who
pointed out that the residual from an LVR with covariates, formulated within the structural equations modeling
framework (SEM), may be employed as a residualized true gain estimate.
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Fig. 2. School API gain estimates and 95% interval estimates in 1999 and 2000 against their 1998 API status.

for regressing 1999 API gains on 1998 API status, and with

1'j3 Ar(j2, 033)

j2= +<-6 x (33)

for predicting 2000 gains using 1998 API status.
In this LVR model, .71[ and represent the new latent outcomes (in place of ryi2 and -yi3

respectively) conditional on our measure of 1998 API status, -y3i. The model, now comprising
Equations (30), (32), and (33), and with uncorrelated residual errors, is also easily implemented
in WINBUGS by straightforward elaborations of the code segment provided in Example 7. Our
results in Table 4 show that the average API gain in 1999 is 43.47 ((2), and for each unit increase
in a school's 1998 API status, schools gain at a rate that is about 6% API points less (C4 = .06)
on average. Controlling for 1998 status explains only about 4% of the variation in 1999 gains (by
stating the variance reduced as a proportion of the parameter variance in the unconditional model).
Adjusting for its 1998 API status, a typical school expects to gain at a rate of about a tenth of an
API point less for each point increase in its 1998 API ((5 = .10). More importantly, 1998 API
status accounts for some 13% of the between school variation in 2000 API gains in 2000.

That initial status has, in this instance, better predicted more distal achievement gains at
the school-level when we restrict ourselves to longitudinal student cohorts may very well be an
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Table 4. Latent Variable Regression Results for the Long Beach USD 2000 Cohort.

Parameter

Posterior Estimates

Mean SD 2.5% 50% 97.5%

System Average
1998 APIs ei 545.40 14.32 516.50 545.50 573.10

1999 API Gains 43.47 2.84 38.03 43.46 49.14

1998 API Rate -0.06 0.02 -0.10 -0.06 -0.01

2000 API Gains 6 21.99 3.03 16.04 21.98 27.91

1998 API Rate (''5 -0.10 0.02 -0.12 -0.10 -0.06

Variance Components
1998 APIs (1511 118.40 10.59 100.10 117.60 141.60

1999 API Residual Gains c7)22 20.40 2.25 16.44 20.27 25.14

2000 API Residual Gains ..)33 20.24 1.98 16.72 20.13 24.50

indication that failing schools have worked harder at meeting the system challenge while schools

that are performing well initially have less room to grow. Rather than speculate about alternative
explanations here, we will leave these intriguing questions for a separate study. In the next sections,
we focus instead on some troublesome issues when using our estimates, '5-'3 , to characterize the
productivity of individual schools.

6.2 Working with School API Estimates: Reliabilities and Comparisons

We will employ our school-level API estimates, 5,j, in various ways to characterize individual school

productivity. Columns 3-8 of Table 5 displays the means and standard deviations of the simulated
marginal posterior distributions10 of the API estimates for 1998, 1999, and 2000 for each school.

Means and standard deviations of the simulated marginal posterior distributions for individual
school 1999 and 2000 API gains are given in columns 10-11 and columns 13-14 respectively (both
means are plotted against the mean for the school 1998 API status in Figure 2 above). Note further
that, because we are employing available data for the 2000 cohort, there will be more data at the
school-level as the year increases from 1998 to 2000. This aspect of the data design explains why
the reported standard deviations get smaller with year. Similarly, our pooled school estimate of
within-student gains employs matched student data for every t and t - 1; thus standard deviations
of school gain estimates are smaller in 2000 than in 1999.

In terms of estimates of their 1998 status or their 1999 and 2000 gains, no schools stand out
in Table 5 more than School 460.11 Student who are in this school in 2000 generally started at
( '46,1 = 409.3), gained about 41.66 (5,46,2) on the API in 1999, and added a very high gain in 2000
of about 107 (5,46,3). Although the identity of the school is unknown to us, and we do "cut" the
data differently, we are able to confirm one such spectacularly performing school among the LBUSD

elementary schools in 2000.

I° The marginal posterior distributions approximate the "sampling distributions" of each school estimate. Thus its
standard deviation may be interpreted as the (conventional) standard error.

11 School 460 is unit 46 on our subscript j.
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Reliability. When we work with school-level estimates it is important to question their reliability.
Conventional approaches have essentially sketched prototypical estimates for outcomes, drawn from
psychometric test reliability studies that are perhaps keyed on general factors such as school size,
school income and ethnic composition, etc. While it is important to understand the inherent relia-
bility of our instruments, these estimates are generally irrelevant because our interest goes beyond
the question about how predictable a test is for some typical examinee. Assuming we only field
tests with reasonable reliability, we also need an estimate of the precision of the individual student
score to weight our analysis accordingly (see Bryk et al., 1998; AERA, APA, & NCME, 1999, p.
29). In the case of the API, we need to start the analysis with some assessment of the misclassifi-
cation errors that are incurred when individuals are recast into the PSAA performance deciles.12
Unfortunately, this information is not available for our analysis, and we proceed for now on the
necessary assumption that the precision of scores is comparable. Our analysis will then be more
concerned about the precision of estimates for the school, as conveyed by comparing the variability
of individual components with the estimated background variation. In the context of our multilevel
model, the reliability of each of :the individual school growth factors, ,j,s, is measured by

k3 {4-1 + -(7.T1]-14)-1}
ss

(34)

where {Z }35 denotes the s diagonal element of the matrix Z.13
Estimates of the reliability of each school gain estimates in 1999 (k2) and 2000 (k3) are given in

column 12 and column 15 of Table 5. Approximate standard errors for the reliability estimates are
also available from our analysis. As is evident from Table 5, the reliabilities of these gain estimates
are relatively high and uniform, as indicated by their estimated posterior means (SDs) of .81 (.03)
and .88 (.02) for 1999 and 2000 respectively.14 When reliabilities are uniformly high, as is the case
with both school gains estimates, shrinkage is relatively uniform. Consequently, we do not expect
to see any dramatic re-ordering of schools when we employ the empirical Bayes school estimates,
'5j, instead of the school estimates, '5,j, from our separate multilevel analysis.

Comparing Schools. Comparing two schools, or subsets of schools, based on a performance
component (such as the schools' 2000 API gains) can be done just as easily. Using the MCMC
computational approach, we simply monitor and examine the distribution of the difference between
;7i,3 and 5/j/,3 for two schools indexed by j and j'. For example, to contrast the performance in
2000 by School 431 with that by School 613, we examine the marginal posterior of (5'20,3 5151,3)

We find that, in 2000, School 431 gained considerably more than School 613 on the API, with a
posterior mean at 29.25 and standard deviation at 6.275 (see Panel (a) in Figure 3). Clearly, any
contrast between pairs of schools, or between a school and the mean of a previously identified school
group, can be similarly obtained. However, when estimating multiple contrasts, the Type 1 error
rate for each (pairwise or more) comparison needs to be adjusted in order to hold the average error
rate at some pre-specified level. Goldstein and Healy (1995) proposed a procedure that aids visual
determination of the significance of a contrast by adjusting the confidence intervals of the schools

12 Although not always delivered to the user, standard errors of measurement (sem) are available for scale scores.
Classification errors require further effort on the part of the user.

13 See Bryk & Raudenbush (1992, p. 43, equation 3.51) for a brief discussion of the multivariate reliability matrix,
41141 + jr.

14 This interpretation of reliability will nonetheless depend, through 4,, on the particular collection of schools employed
in the analysis. It is relatively unproblematic when the set of schools approaches a simple random sample, or the
schools make up the "population."
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Fig. 3. (a) Comparing School 431 and School 613 on their 2000 API gains via the simulated posterior distribution of
(52o,3 751,3). Reference lines mark estimated mean difference at the 2.5%, the mean, and 97.5% points. (b) Ranking
(with ties) of LBUSD Schools according to their median APIs in 2000, set within their estimated 95% credibility
intervals.

being compared, so that non-overlapping intervals mean a significant difference at the specified
level. Again, when employing MCMC estimation, similar confidence statements may be estimated
directly by simulating the sampling distribution of the desired contrast.

We also need to caution against the common practice of simply ranking schools according to
components of their performance estimates, whether employing or ;y-3. Because ranks based on
estimates are themselves estimates, they should be treated as such. Arguing as did Laird and Louis
(1989), we concur that school rankings should reflect the imprecision of school estimates in the
distribution of the ranks. As shown by Goldstein and Spiegelhalter (1996), it is straightforward
to estimate the ranking among schools for any of the components in 5, when using the MCMC
approach. As an illustration, we have provided the posterior mean of each school's median rank on
the 2000 API status (=y3i ;y-32 + ry33) in column 9 of Table 5. Panel (b) in Figure 3 orders each
school according to its median rank set within the 95% credibility interval of the school's rank
estimates. As with many such orderings, whether by the size of their estimates or their ranks, clear
separations between schools on a criterion emerge only when the units are quite distinct. Making
explicit the uncertainty in rank estimates will also help to inform rankings when shrinkage among
the school estimates is modest.
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Quantifying the statistical separation between a randomly selected pair of schools in terms of
their ranks will also require adjusting their individual credibility intervals to control for a pre-
specified Type 1 error rate, for reasons similar to those that Goldstein and Healy (1995) provided
for making inferences on multiple comparisons on a continuous outcome. Using MCMC estimation,
we may define and monitor the ranks for a subset of schools to achieve similar results. Without
such adjusted intervals, schools cannot be judged to be equal in rank when their 95% credibility
intervals overlap on a plot such as Panel (b) in Figure 3.

7 Measuring Productivity: The PSAA Ratio vs Productivity Profile

As explained earlier in Section 3.3, the PSAA evaluates school productivity by comparing the
productivity ratio estimates, 100 x (t)

, from Equation (21) to selected percentile targets, say
100 x at, where at = .00, .03, .05, .10, .15, .20, .25, etc. We caution that such a casual use of the
productivity ratio may be misleading because any comparisons using estimates should take into

- account-their-relative imprecision._We_describe two_obstacles when we attempt a direct comparison

to determine if a school's productivity ratio AV is at least as large as some at.'5 We then suggest
the use of a probability statement instead that not only presents how much relative gain a school
has made towards to the 800 API target over the year but also an estimate of the level of confidence
in our judgement.

We have previously shown in Section 3.3 that when the denominators in the productivity ratio
approach zero, taking either small positive or negative values, these ratios are unstable. This has
been clearly the case for several of our schools. Columns 2 and 3 in Table 6 provide the posterior
means and standard deviations of the PSAA ratio for 1999 and columns 11 and 12 give the estimates
for 2000, based on the shrunken estimates ;y-i. In particular, the estimated 1999 productivity ratios
for Schools 427, 428, 440, 442, 449, 450, 458, and 628 are unstable. For 2000, in addition to these
schools, we also have several instances, such as Schools 440 and 442, where schools lose ground on
the API. The precision of ratio estimates is also wildly inflated under these conditions, thus making
them unusable for inference.

Leaving aside schools whose base year API status closes on or exceeds the target of 800,16 we
nevertheless find that both the estimated ratios (V)) and their standard deviations (SD(V))) are

3

usable. Under these favorable circumstances, our shrunken ratio estimator, Aft), compares reason-

ably closely with its counterpart, ST), which is based on ;y3 from our separate school models. This
is clearly depicted in Panel (a) of Figure 4. However, Panel (b) in Figure 4 also suggests that we
obtain relatively higher precision if we employ our shrunken estimates, (1). Their standard devia-

tion estimates, SD( A(3t)), are, on the whole, systematically smaller than the standard errors SE(V))
3

approximated by the 6method (see Appendix; also Indurkhya et al., 2001).
Even when working only with reasonable estimates (-AT), SD(5(iti), how can a claim that A(;)

at least meet some at be crafted that will take into account the inherent uncertainty of our ratio
estimator? Thum (2002), drawing on recent advances by 0' Hagan et a/.(2000, 2001) in analyzing
cost-effectiveness ratios for selecting among competing clinical alternatives, suggests that a simple
restatement of

Probability (AV > at)

15 5% is the primary threshold for a school to have shown adequate improvement. Other conditions, such as attaining
a gain of 5 API points or more, may be similarly treated.

16 Such cases require a different interpretation of the PSAA productivity ratio and will be treated elsewhere.
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Fig. 4. Estimates of "reasonable" productivity ratios. (a) Estimates based on the Method for separate multivariate
multilevel HMs for each school, 5t(;), are in good agreement with ratios based on the shrunken school estimates, Vit),
from the meta-analysis. For 1999 (o), these ratios correlate .99 and for 2000 ( ), they correlate .97. (b) Precision
measures do not agree as well, with SE(Ar) being consistently larger than SD()(t)). (Equivalent estimates will fall
about the dotted reference line in each panel.)

is a useful probability statement of the form
t-1

P(te ) = Probability (kit > ae x [800 E;yjs] ,i
s=1

(35)

-where t = 2, 3 and, under our present parameterization (Section 5.1), Es=it-1 -Kis estimates the API
status at time (t 1). Then, Equation (35) simply states the probability that a school's gain estimate
is at least as large as some pre-specified fraction of the distance its estimated pre-test is from the 800
API target.17 Additionally, by varying at and graphing the probabilities {PN, PN.03, P3105, ...},
we generate a productivity profile18 for each school that answers the question: How much is gained,
and at what precision? Note that the approach is effective whenever we wish to assess whether a
difference in the school means exceeds some preset difference, w, such as for (;),..i,3 > + w))
above.

17 It should be clear that the ratio of any two estimated quantities may be similarly displayed to facilitate their
comparison.

18 It is termed the acceptability curve in a cost-benefit analysis.
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Table 5. Posterior Means and Standard Deviations of 1998, 1999, and 2000 School API Estimates and Gains in 1999
and 2000 for the Long Beach USD 2000 Longitudinal Cohort, along with School Rank on the 2000 API Status, as
well as the Reliability of Gain Estimates, k,..

School j

School API Estimates and SD School API Gains Estimates and SD

1998 1999 2000 1999 2000

Mean S.D. Mean S.D. Mean S.D. Rank Mean S.D. ki2 Mean S.D. ki3

404 1 634 16.52 682.1 14.69 696.4 12.81 52 48.03 10.85 0.69 14.38 10.31 0.72
407 2 456.8 13.75 510.4 11.62 547.3 10.97 18 53.55 10.83 0.69 36.87 7.234 0.86
910 3 520.1 12.11 564.9 10.96 630.5 8.744 42 44.8 10.1 0.74 65.55 7.631 0.85
412 4 484.4 11.74 557.8 10.68 557.6 10.47 21 73.42 9.043 0.79 -0.1371 6.724 0.88
413 5 591.5 13.34 652.6 12.24 682.3 11.86 51 61.15 10.47 0.71 29.63 7.523 0.85
414 6 601.5 16.14 623.9 14.45 646.8 14.45 46 22.39 9.146 0.77 22.87 6.933 0.87
415 7 602.9 18.52 640.4 17.02 653.3 15.6 47 37.51 12.29 0.59 12.88 10.91 0.68
416 8 605.4 16,97 653.2 15.24 675.7 14.37 50 47.72 11.27 0.65 22.52 8.352 0.81
417 9 484 12.42 539.9 10.42 575.6 9.521 25 55.91 10.2 0.72 35.73 6.949 0.87
418 10 574.7 14.73 587.5 12.58 609.9 12.57 36 12.76 9.645 0.76 22.42 6.816 0.87
419 11 468.3 12.13 490.1 9.628 552.8 9.363 20 21.71 10.12 0.73 62.71 6.017 0.90
420 12 659.5 18.82 697.7 16.47 701.9 15.93 53 38.2 10.77 0.70 4.185 9.839 0.74
421 13 612.6 15.06 658.4 13.66 648.8 13.79 46 45.78 8.654 0.80 9.626 6.595 0.88
422 14 629.8 14.37 647.5 12.88 643.1 12.16 45 1.7.7.5 8.732 0.80 4.469 7.268 0.86
425 15 532.7 19.79 567 14.3 611.5 13.6 36 34.34 9.05 0.78 44.43 7.485 0.85
427 16 768.5 16.94 807.4 14.49 795.9 14.23 65 38.86 10.93 0.69 11.49 8.358 0.81
428 17 795.5 11.93 842.3 9.461 842.5 10.02 69 46.81 7.221 0.86 0.1906 6.763 0.88
429 18 430 10.18 455.3 9.766 499.9 9.42 10 25.31 7.861 0.83 44.61 6.697 0.88
430 19 518.2 12.09 563.9 11.59 610.4 11.35 36 45.65 7.837 0.84 46.54 6.144 0.90
431 20 479.8 9.946 522 8.78 564.7 8.215 23 42.19 6.736 0.88 42.68 5.513 0.92
432 21 482.4 10.25 568.5 9.383 592.9 9.044 30 86.17 8.002 0.83 24.4 5.76 0.91
433 22 518.9 13.16 590.3 11.99 618.2 11.59 39 71.41 9.203 0.78 27.88 6.849 0.87
434 23 570 14.36 625.3 13.2 630.6 13.07 42 55.28 10.39 0.71 5.327 7.659 0.84
435 24 452.4 11.85 478.9 11.37 481.9 11.26 5 26.46 8.504 0.81 3.004 6.756 0.88
436 25 486.2 10.73 543.4 10.08 548.1 9.745 19 57.23 8.726 0.79 4.634 7.539 0.85
437 26 465.3 11.17 561.2 11 595.9 10.54 31 95.85 9.369 0.78 34.72 7.279 0.86
439 27 461.4 10.86 532.4 9.943 543.6 9.613 17 70.97 7.365 0.85 11.18 6.967 0.87
440 28 768.2 11.46 788.4 9.18 776.3 9.09 63 20.17 8.403 0.81 -12.01 6.11 0.90
441 29 647.6 17.02 720.7 14.92 742.9 13.56 59 73.11 11.03 0.69 22.19 8.93 0.78
442 30 790.9 12.23 823.2 10.05 828.5 9.572 68 32.3 8.343 0.81 5.271 6.194 0.90
443 31 511.8 12.64 545.6 11.71 580.7 11.3 26 33.78 7.219 0.86 35.11 6.804 0.88
444 32 715.1 13.74 737 12.5 730.2 12.03 57 21.85 8.91 0.79 -6.821 8.065 0.83
445 33 638.3 18.63 630.3 15.84 630.5 15.03 42 -7.94 12.51 0.62 0.1346 8.511 0.81
446 34 405.3 11.01 469.3 10.74 481.6 10.48 5 63.96 7.824 0.84 12.34 6.972 0.87
447 35 514.9 14.39 549.7 13.15 578 12.38 26 34.77 8.188 0.81 28.34 7.875 0.84
448 36 468.2 11.76 516.7 11.39 539.8 11.06 17 48.52 8.269 0.81 23.04 7.647 0.84
449 37 708.2 19.92 770.4 17.18 784.8 15.96 64 62.19 12.33 0.61 14.45 7.35 0.85
450 38 751.6 13.34 777.3 11.74 766.9 11.47 62 25.63 8.742 0.80 -10.32 6.201 0.89
451 39 536.3 12.55 569.6 11.69 591.5 11.4 30 33.31 8.142 0.82 21.86 6.572 0.89
453 40 577.8 12.17 649.2 10.84 668.7 10.33 49 71.33 8.778 0.80 19.55 6.879 0.87
454 41 503.8 13.1 556.2 10.95 596.3 10.3 31 52.48 9.52 0.75 40.05 6.974 0.87
455 42 540.6 10.52 604.6 10.38 586.9 9.669 28 64.08 7.408 0.85 -17.69 6.506 0.89
457 43 378.8 16.37 441.1 13.56 491 12.93 8 62.28 12 0.62 49.89 8.904 0.79
458 44 760.1 11.26 799.4 10.03 813.5 9.294 67 39.32 7.059 0.87 14.07 5.841 0.91
459 45 437.2 14.99 470.8 12.86 512.1 12.08 12 33.57 12.34 0.60 41.31 9.729 0.75
460 46 409.3 8.27 450.9 8.337 557.9 8.395 21 41.66 7.255 0.86 107 6.768 0.89
461 47 491.4 11.61 562.9 10.71 604.9 9.515 34 71.49 8.294 0.82 41.94 6.526 0.88
466 48 672.1 18.88 709 16.52 705.6 16.15 53 36.91 10.9 0.68 -3.415 8.137 0.82
611 49 373.6 6.69 414.8 6.985 469 7.203 3 41.19 4.702 0.94 54.24 4.207 0.95
612 50 424 6.083 470.5 6.182 487.7 5.977 7 46.42 3.808 0.96 17.21 3.446 0.97
613 51 695.1 7.477 721.7 7.222 735.1 6.916 58 26.57 3.251 0.97 13.42 3.004 0.98
614 52 433.8 7.358 468.4 7.367 498 7.368 10 34.57 5.283 0.92 29.6 4.254 0.95
615 53 687.7 6.885 729.1 6.56 720.6 6.402 55 41.4 3.708 0.96 -8.494 3.874 0.96
616 54 401.1 6.213 442.4 6.496 458 6.423 1 41.35 3.887 0.96 15.61 3.333 0.97
617 55 524.3 7.778 552.4 7.547 579.8 7.262 26 28.09 3.694 0.96 27.44 3.481 0.97
618 56 690.8 9.9 720.9 9.158 739.5 8.903 59 30.18 4.235 0.95 18.57 3.745 0.96
619 57 679.2 8.125 705.2 7.885 729.7 7.44 57 25.91 3.391 0.97 24.51 3.025 0.97
620 58 487.7 8.934 537.6 8.836 535 8.937 16 49.91 5.026 0.93 -2.681 4.432 0.95
622 59 372.8 6.974 425.5 7.294 479.9 7.434 5 52.77 5.001 0.93 54.39 4.247 0.95
624 60 481.2 7.456 508.8 7.209 526.4 7.3 14 27.56 3.767 0.96 17.58 3.6 0.96
625 61 558.4 8.684 593.6 8.309 611.8 8.196 37 35.18 4.013 0.96 18.17 3.562 0.96
626 62 490.7 8.212 514.1 8.31 518.1 8.127 13 23.41 4.204 0.95 3.993 3.578 0.97
627 63 440.9 8.493 485.1 8.432 493.1 8.448 9 44.28 5.029 0.93 7.959 4.274 0.95
628 64 766.3 8.114 800.8 7.185 794.9 7.081 65 34.43 4.818 0.94 -5.9 3.77 0.96
629 65 709.1 8.579 728.5 7.954 753.3 7.537 61 19.4 4.837 0.94 24.79 4.28 0.95
630 66 547.5 11.53 598.7 10.82 604.1 10.53 34 51.25 6.033 0.90 5.306 5.825 0.91
631 67 510.5 10.46 573.9 10.05 625.3 9.509 41 63.4 6.833 0.87 51.32 5.82 0.91
642 68 407.1 17.05 455.6 17.19 468.3 16.63 3 48.44 8.885 0.79 12.7 8.482 0.81
671 69 605.5 13.97 602.9 13.35 641.4 12.18 45 -2.617 10.39 0.72 38.46 8.28 0.82
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Table 6. Marginal Posterior Means and Standard Deviations of School PSAA Ratios (A) followed by the Marginal
Posterior Means of the Probability of a School Achieving Set Proportions (at) towards the PSAA Target of 800 on
the API for 1999 and 2000. Last row gives the counts of schools gaining at least a. at 90% confidence.

1999 Gains 2000 Gains

AI Probability of Achieving at 5 Probability of Achieving at

School Mean S.D. 0 3 5 10 15 20 25 Mean S.D. 0 3 5 10 15 20 25

404 0.289 0.058 1.00 1.00 1.00 1.00 0.99 0.94 0.76 0.118 0.084 0.91 0.85 0.80 0.61 0.37 0.16 0.04
407 0.156 0.029 1.00 1.00 1.00 0.97 0.58 0.06 0.00 0.127 0.023 1.00 1.00 1.00 0.88 0.16 0.00 0.00
410 0.160 0.033 1.00 1.00 1.00 0.96 0.63 0.11 0.00 0.279 0.027 1.00 1.00 1.00 1.00 1.00 1.00 0.86
412 0.232 0.026 1.00 1.00 1.00 1.00 1.00 0.90 0.25 0.000 0.028 0.49 0.13 0.03 0.00 0.00 0.00 0.00
413 0.293 0.044 1.00 1.00 1.00 1.00 1.00 0.98 0.84 0.201 0.048 1.00 1.00 1.00 0.98 0.86 0.51 0.15
414 0.112 0.043 1.00 1.00 0.92 0.62 0.19 0.02 0.00 0.130 0.039 1.00 0.99 0.98 0.78 0.30 0.03 0.00
415 0.189 0.057 1.00 1.00 0.99 0.94 0.76 0.43 0.14 0.078 0.066 0.88 0.78 0.68 0.38 0.13 0.03 0.00
416 0.245 0.052 1.00 1.00 1.00 1.00 0.97 0.81 0.46 0.153 0.054 1.00 0.99 0.97 0.84 0.53 0.19 0.03
417 0.176 0.029 1.00 1.00 1.00 0.99 0.82 0.21 0.00 0.137 0.025 1.00 1.00 1.00 0.93 0.30 0.00 0.00
418 0.055 0.041 1.00 1.00 0.57 0.13 0.01 0.00 0.00 0.105 0.031 1.00 0.99 0.96 0.57 0.08 0.00 0.00
419 0.065 0.029 1.00 1.00 0.70 0.11 0.00 0.00 0.00 0.202 0.018 1.00 1.00 1.00 1.00 1.00 0.55 0.00
420 0.272 0.069 1.00 1.00 1.00 0.99 0.96 0.85 0.64 0.036 0.099 0.66 0.55 0.46 0.26 0.12 0.04 0.01
421 0.244- 0.042 1.00 1.00 1.00 1.00 0.99 0.85 0.45 -0.070 0.049 0.08 0.02 0.00--0:00 0.00 0.00 0.00
422 0.103 0.048 1.00 1.00 0.87 0.53 0.17 0.02 0.00 -0.032 0.049 0.27 0.11 0.04 0.00 0.00 0.00 0.00
425 0.128 0.032 1.00 1.00 0.99 0.81 0.25 0.01 0.00 0.191 0.030 1.00 1.00 1.00 1.00 0.92 0.38 0.02
427 1.386 35.22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.932 67.25 0.08 0.08 0.09 0.09 0.09 0.10 0.11
428 -4.134 838.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.017 0.181 0.51 0.59 0.64 0.75 0.84 0.91 0.95
429 0.068 0.021 1.00 1.00 0.81 0.06 0.00 0.00 0.00 0.129 0.018 1.00 1.00 1.00 0.94 0.13 0.00 0.00
430 0.162 0.026 1.00 1.00 1.00 0.99 0.68 0.07 0.00 0.197 0.025 1.00 1.00 1.00 1.00 0.97 0.45 0.02
431 0.132 0.019 1.00 1.00 1.00 0.95 0.17 0.00 0.00 0.153 0.018 1.00 1.00 1.00 1.00 0.57 0.00 0.00
432 0.271 0.022 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.105 0.024 1.00 1.00 0.99 0.59 0.03 0.00 0.00
433 0.254 0.029 1.00 1.00 1.00 1.00 1.00 0.97 0.56 0.133 0.031 1.00 1.00 0.99 0.86 0.29 0.01 0.00
434 0.240 0.041 1.00 1.00 1.00 1.00 0.98 0.84 0.41 0.030 0.044 0.76 0.51 0.32 0.05 0.00 0.00 0.00
435 0.076 0.024 1.00 1.00 0.86 0,15 0.00 0.00 0.00 0.009 0.021 0.67 0.16 0.02 0.00 0.00 0.00 0.00
436 0.182 0.025 1.00 1.00 1.00 1.00 0.89 0.24 0.00 0.018 0.029 0.73 0.34 0.13 0.00 0.00 0.00 0.00
437 0.286 0.025 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.145 0.029 1.00 1.00 1.00 0.94 0.44 0.03 0.00
439 0.210 0.020 1.00 1.00 1.00 1.00 1.00 0.69 0.02 0.041 0.026 0.94 0.68 0.37 0.01 0.00 0.00 0.00
440 0.677 1.355 1.00 1.00 0.99 0.99 0.98 0.97 0.96 -26.71 1728.0 0.02 0.02 0.02 0.01 0.01 0.01 0.00
441 0.482 0.066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.280 0.108 0.99 0.99 0.98 0.96 0.89 0.78 0.62
442 3.538 159.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.058 30.730 0.80 0.84 0.86 0.90 0.94 0.96 0.97
443 0.117 0.023 1.00 1.00 1.00 0.77 0.08 0.00 0.00 0.138 0.025 1.00 1.00 1.00 0.93 0.31 0.01 0.00
444 0.256 0.098 1.00 1.00 0.98 0.95 0.87 0.73 0.53 -0.124 0.154 0.20 0.14 0.10 0.04 0.01 0.00 0.00
445 -0.055 0.084 1.00 1.00 0.09 0.02 0.00 0.00 0.00 0.000 0.051 0.51 0.28 0.16 0.02 0.00 0.00 0.00
446 0.162 0.019 1.00 1.00 1.00 1.00 0.74 0.02 0.00 0.037 0.021 0.96 0.64 0.27 0.00 0.00 0.00 0.00
447 0.122 0.027 1.00 1.00 0.99 0.80 0.14 0.00 0.00 0.113 0.030 1.00 1.00 0.98 0.67 0.10 0.00 0.00
448 0.146 0.023 1.00 1.00 1.00 0.97 0.44 0.01 0.00 0.081 0.026 1.00 0.97 0.88 0.24 0.00 0.00 0.00
449 0.697 0.158 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.805 13.73 0.98 0.97 0.97 0.95 0.93 0.89 0.84
450 0.553 0.279 1.00 1.00 1.00 0.99 0.99 0.98 0.96 -0.660 35.66 0.05 0.04 0.03 0.02 0.01 0.01 0.00
451 0.126 0.029 1.00 1.00 0.99 0.82 0.20 0.00 0.00 0.095 0.027 1.00 0.99 0.94 0.43 0.02 0.00 0.00
453 0.321 0.034 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.129 0.043 1.00 0.99 0.96 0.75 0.32 0.04 0.00
454 0.177 0.029 1.00 1.00 1.00 0.99 0.83 0.21 0.00 0.164 0.027 1.00 1.00 1.00 0.99 0.71 0.09 0.00
455 0.247 0.027 1.00 1.00 1.00 1.00 1.00 0.96 0.45 -0.092 0.036 0.00 0.00 0.00 0.00 0.00 0.00 0.00
457 0.147 0.026 1.00 1.00 1.00 0.97 0.46 0.02 0.00 0.139 0.023 1.00 1.00 1.00 0.95 0.32 0.00 0.00
458 1.086 2.422 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.555 595.0 0.99 0.99 0.99 1.00 1.00 1.00 1.00
459 0.092 0.032 1.00 1.00 0.90 0.41 0.03 0.00 0.00 0.125 0.028 1.00 1.00 1.00 0.82 0.18 0.00 0.00
460 0.107 0.018 1.00 1.00 1.00 0.65 0.01 0.00 0.00 0.306 0.018 1.00 1.00 1.00 1.00 1.00 1.00 1.00
461 0.232 0.024 1.00 1.00 1.00 1.00 1.00 0.91 0.22 0.177 0.025 1.00 1.00 1.00 1.00 0.86 0.17 0.00
466 0.289 0.077 1.00 1.00 1.00 0.99 0.96 0.88 0.70 -0.044 0.098 0.34 0.22 0.16 0.05 0.02 0.00 0.00
611 0.097 0.011 1.00 1.00 1.00 0.38 0.00 0.00 0.00 0.141 0.011 1.00 1.00 1.00 1.00 0.19 0.00 0.00
612 0.123 0.010 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.052 0.010 1.00 0.98 0.59 0.00 0.00 0.00 0.00
613 0.254 0.031 1.00 1.00 1.00 1.00 1.00 0.96 0.54 0.172 0.037 1.00 1.00 1.00 0.97 0.72 0.22 0.02
614 0.094 0.014 1.00 1.00 1.00 0.34 0.00 0.00 0.00 0.089 0.012 1.00 1.00 1.00 0.19 0.00 0.00 0.00
615 0.369 0.033 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.123 0.060 0.01 0.00 0.00 0.00 0.00 0.00 0.00
616 0.104 0.009 1.00 1.00 1.00 0.65 0.00 0.00 0.00 0.044 0.009 1.00 0.93 0.25 0.00 0.00 0.00 0.00
617 0.102 0.013 1.00 1.00 1.00 0.56 0.00 0.00 0.00 0.111 0.013 1.00 1.00 1.00 0.79 0.00 0.00 0.00
618 0.277 0.038 1.00 1.00 1.00 1.00 1.00 0.98 0.76 0.237 0.049 1.00 1.00 1.00 1.00 0.97 0.77 0.38
619 0.215 0.028 1.00 1.00 1.00 1.00 0.99 0.70 0.11 0.259 0.032 1.00 1.00 1.00 1.00 1.00 0.97 0.60
620 0.160 0.015 1.00 1.00 1.00 1.00 0.74 0.00 0.00 -0.010 0.017 0.27 0.01 0.00 0.00 0.00 0.00 0.00
622 0.124 0.011 1.00 1.00 1.00 0.98 0.01 0.00 0.00 0.145 0.011 1.00 1.00 1.00 1.00 0.33 0.00 0.00
624 0.086 0.011 1.00 1.00 1.00 0.11 0.00 0.00 0.00 0.060 0.012 1.00 0.99 0.80 0.00 0.00 0.00 0.00
625 0.146 0.016 1.00 1.00 1.00 1.00 0.39 0.00 0.00 0.088 0.017 1.00 1.00 0.99 0.24 0.00 0.00 0.00
626 0.076 0.013 1.00 1.00 0.97 0.03 0.00 0.00 0.00 0.014 0.012 0.87 0.10 0.00 0.00 0.00 0.00 0.00
627 0.123 0.013 1.00 1.00 1.00 0.96 0.02 0.00 0.00 0.025 0.013 0.97 0.36 0.03 0.00 0.00 0.00 0.00
628 1.080 0.506 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.687 74.97 0.06 0.06 0.06 0.06 0.06 0.06 0.06
629 0.213 0.049 1.00 1.00 1.00 0.99 0.90 0.61 0.23 0.349 0.060 1.00 1.00 1.00 1.00 1,00 0.99 0.96
630 0.203 0.022 1.00 1.00 1.00 1.00 0.99 0.55 0.02 0.026 0.029 0.82 0.45 0.20 0.00 0.00 0.00 0.00
631 0.219 0.022 1.00 1.00 1.00 1.00 1.00 0.81 0.07 0.227 0.024 1.00 1.00 1.00 1.00 1.00 0.87 0.17
642 0.123 0.022 1.00 1.00 1.00 0.86 0.11 0.00 0.00 0.037 0.024 0.94 0.61 0.29 0.00 0,00 0.00 0.00
671 -0.015 0.054 1.00 1.00 0.11 0.01 0.00 0.00 MO 0.195 0.038 1.00 1.00 1.00 0.99 0,88 0.45 0.07

63 63 55 42 24 14 6 45 40 36 22 9 4 2
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Fig. 5. Constructing school API productivity profiles: For set proportions of API gains, at, simply replace the
sampling distribution (solid line) of a gain estimate with its corresponding cumulative probability (dashed line) given
by Equation (35). The height of the curve corresponding to an API gain of magnitude at is the probability of observing
an API gain of at least as large as at. Panels (1), (2), and (3) give examples of three estimates with different location
and spread, and Panel (4) overlays the results. We may easily determine the relative productivity gain for each school
for fixed confidence levels (horizontal reference lines). Reproduced from Thum (2002), and included for completeness.
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Fig. 6. (a): Productivity profiles for API gains schools made in 1999 against how far in 1998 each school was from
the statewide API target of 800. (b): Productivity profiles for API gains schools made in 2000 against how far in
1999 each school was from the statewide API target of 800. Schools 427, 428, 442, 458, and 628 are excluded because
in 1999 they are either close to or have exceeded the 800 mark and therefore do not have meaningful productivity
profiles.

Figure 5, taken from Thum (2002), shows how to represent a school's gain with its productivity
profile. For our LBUSD schools, their productivity profiles for 1999 gain are given in columns 4-10
of Table 6 while columns 13-19 contain the estimates for 2000. Profiles for schools with reasonable
estimates for 1999 and 2000 are plotted in Panel (a) and Panel (b) of Figure 6, respectively. In 1999,
only School 418 and School 671 failed to show any growth at the 90% confidence level while four
schools did not register productivity improvement of at least 3% at the 90% confidence level. Six
of the 69 schools failed to achieve the 5% goal at the 90% confidence level. Productivity in 2000 is
however quite mixed, with only 31 schools attaining the 5% relative improvement target with 90%
confidence.19 The display allows the user complete flexibility to set both the improvement target as
well as the level of confidence of any judgement. In contrast, the current PSAA ratio has none of
these essential properties to make it a useful starting point for commenting on school improvement.

8 Summary and Discussion

In this paper, we set out to provide a coherent statistical framework for thinking about educational
performance indicators such as the API, and for its improvement measure in the PSAA productivity
ratio. With the help of several computational examples and sample code segments, we reason aloud
the steps needed for an initial analysis. We consider this foundation a useful first stride towards

19 The last row in Table 6 counts the number of schools gaining at least the corresponding at at the 90% confidence
level.
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a deeper appreciation for the conceptual underpinnings of a class of growth indicators. We hope
that, in turn, this would foster their proper use.

We begin by pointing to the lack of a realistic assessment of the precision of published results
without which we have scant statistical basis for detecting school progress over time. We show how
conventional computations of the school API and the productivity ratio may be easily represented
in the form of the standard weighted linear regression model. We note in particular that our
formulation provides standard inferences for year-to-year gains and, by employing the (5method,
deduces approximate standard errors for the PSAA productivity ratio. The immediate result of
this preliminary step is that we may now begin to "model" rather than "compute" these indicators
at the school-level.

If the productivity result for a school is to represent how its students perform, we find that
the current school API definition is silent about student progress. We see a clear indication of
a conceptual incongruity between school and student performance when we try to accommodate
students with missing scores on one or several of the tests by re-distributing the student weights
as explained in Section 3.4. This is a mistaken effort in our judgement, although we do not suggest
a remedy here. Until some resolution is found, we are content to show that for students without
any missing test scores, the school API can reflect aggregate student performance when we employ
a multivariate-multilevel model (tests over time within student, students within school). In this
approach, the school API estimates are the average of the API estimates for each student.

Even when we employ students with a full set of scores, we have not skirted the issue. First,
we alluded to the cross-sectional nature of its design. Second, there is no assessment of student
variability in the school API. If student variability is taken to be null, this amounts to the untenable
presumption that students perform comparably when in reality assessment results vary considerably
among students in a school. The problem is clearly demonstrated, with a numerical example in
Section 4, when we showed how the change in the school API from one year to the next may
sharply contradict the pattern of change as conveyed in an average of student growth (also see
Meyer, 1996).

With the individual school results as input, we next introduce a meta-analysis model to ag-
gregate over the results from our set of schools. The primary reason for preferring a meta-analysis
over a larger multilevel model (e.g., tests over time within student, students within school, schools
within school system) is that sample sizes for schools are typically large and their estimates are
quite likely to be well estimated. We do not expect large differences between the separate school
estimates and those obtained from a larger model for the system. Secondly, with good school es-
timates as input, a meta-analysis is far less demanding computationally. Third, the model also
provides better estimates of the true performance of individual schools. We expect that this com-
bination of school-specific multivariate multilevel modelling and a meta-analysis for the collection
of schools can easily accommodate the nearly 5000 elementary schools in California utilizing only
modest computing resources.

We have further illustrated several significant advantages with a Bayesian formulation of our
meta-analysis model as implemented in WINBUGS. We obtain the marginal posterior distributions
of all unknown parameters, in our case, school API status and gain estimates as well as the between
school components of variance. In addition, it is a straightforward matter to simulate the posterior
marginal distribution of any function (linear or otherwise) of unknown parameters, such as the
PSAA school productivity ratio, reliability estimates for gains, and contrasts between schools on
any of these indicators, as well as the rank of a school. When we predicted school gains from prior
school initial status, we have also illustrated a simple application of latent variable regression within
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the multilevel framework. For reasons of scope and space, we have not employed any covariates in

our discussion although the reader should be well aware that they are critical to a fuller analysis
and that covariates are also easily accommodated within our modelling framework.

Contrary to present practice, we argue that any judgement about how much a school has
improved in terms of an estimate should also take into account the uncertainty of that estimate.
We provided an adequate strategy in the school productivity profile. In a display which juxtaposes
the amount of gain with its corresponding confidence level, the user is given all the information
for making a proper statistical determination. Not illustrated here are extensions of this procedure
to describe the productivity of different grade levels, significant subgroups, school clusters, and
districts, and to include adjustments on appropriate covariates (Thum, 2002).

Like many researchers (e.g., Goldstein & Spiegelhalter, 1996; Thum & Bryk, 1997; Linn, 2000),
we recognize that sound accountability decisions require more than a set of modelling procedures
and guidelines on its use, particularly in the present climate of school reform. Both the purveyors of
school indicators and their consumers alike understand that the validity of our results is contingent
upon careful analysis, identifying the appropriate contextual factors and a good theory about
their roles in impacting how students, parents, teachers, and schools perform. Beyond the need
to contextualize comparisons, the absence of precision estimates is at the core of many of the
criticisms aimed at the so-called "league tables" and the now numerous public postings of school
report cards. In this study, we have detailed the beginnings of a workable modelling approach for the
API that, by making explicit the inherent uncertainties in our estimates, would greatly enhance the
credibility of the evaluations we make using student assessment data. When implemented within a
responsible program that includes technical audits and open reviews (Thum, 1999), the core tools
we have introduced above should help to produce diagnostics more trustworthy than most now in
circulation.

For more information please contact

Yeow Meng Thum
Department of Education

Graduate School of Education and Information Studies
University of California, Los Angeles

2019A Moore Hall, Box 951521
Los Angeles, CA 90095-1521

thumOucla.edu
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a.

Appendix
The 8-Method for Inference on the PSAA Ratio

The 6-method provides an argument for approximating the asymptotic variances (and covari-
ances) of functions of parameters. Here, we will only provide a simple motivation for a more general
result.

Suppose we have an estimate, en, based on n observations for the population parameters 0.
For large n, we may assume that VT2(en 0) converges in distribution to N.(0, Z(0)). Thus, by, is
distributed asymptotic normal with mean vector 0 and asymptotic variance-covariance matrix of
E(9)In. If f(9n) is a scalar function for which its first derivatives &me exist, then for large n, an
approximation of f(9n) can be obtained by a Taylor-series expansion of by, about 0:

f(en) f(0) 0) (a')
Theorem 1. Given the above and, taking expectations, the asymptotic distribution of f(0n) is

af
(f(bn) f(0))] AT [0, (4) E(e) (Y3

) 1

Bishop, Fienberg, and Holland (1975, pp. 492) also gave a version of Theorem (1) in their Theorem
14.6-2 for a vector-valued function f (en).

This approach is especially useful in the case of non-linear functions, such as, in our case, a
ratio of parameters, as in Equation (21) in Section 3.3,

(m *.i(t) itt*i(t-1))

(800tc;(t-1))

The approximation is obtained by deducing the first partial derivatives of A(I) with respect to

/Li .*(t-1) and *(t) They are

(800 *(t)itj

(*(t-1) 2
800

and
1

(800 *(t-1)

respectively. Alternative results for functions of other time points include, for example, a comparison
of yearly gains relative to performance at the initial time point,

/2,;(t-1)1

(800

Given E(0), the standard errors for f(en) are easily obtained.
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