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Executive Summary

Item response theory (IRT) models have been used extensively to address educational measurement and
psychometric concerns pertaining to a host of areas such as differential item functioning, equating, and
computer-adaptive testing due to their many advantages, such as item and ability parameter invariance
across test-taker subgroups and item pools, respectively. Another approach, which is gaining popularity in
educational measurement, is the one that treats IRT as a special case of nonlinear factor analysis (NLFA).
Several authors have shown that these models are mathematically equivalent (Goldstein & Wood, 1989;
Knol & Berger, 1991; McDonald, 1967, 1989, 1994). It would therefore appear reasonable to make use of
NLFA models to examine a multitude of educational measurement problems that had been, until quite
recently, looked at solely from an IRT perspective.

The purpose of this paper is to provide a brief overview of some of the research that has examined the
relationship between IRT and NLFA and to outline three NLFA models, emphasizing their major strengths
and weaknesses for practical applications. More precisely, McDonald’s (1967, 1982b) polynomial
approximation to a normal ogive model, Christoffersson’s (1975)/Muthén’s (1984) factor analytic model for
dichotomous variables, as well as Bock and Aitkin’s (1981)/Bock, Gibbons, and Muraki’s (1988)
full-information factor analytic model, will be summarized. Also, the items from two LSAT forms will be
calibrated using these three models in order to assess the degree of comparability of the IRT parameter
estimates using these procedures.

Introduction

Over the past three decades, the educational measurement and psychometric literature have been replete
with studies focusing on item response theory (IRT) models. The numerous textbooks that have been
written centering primarily, and in some instances exclusively, on IRT attest to the importance of these
models in the development and analysis of tests and items (Baker, 1992; Hambleton, 1983, 1989; Hambleton
& Swaminathan, 1985; Hulin, Drasgow, & Parsons, 1983; Warm, 1978). The use of IRT models has been
widespread in both testing organizations and departments of education for a variety of purposes such as
item analysis (Baker, 1985; Mislevy & Bock, 1990; Thissen, 1993; Wingersky, Patrick, & Lord, 1991), score
equating (Cook & Eignor, 1983; Lord, 1977, 1980, 1982; Petersen, Kolen, & Hoover, 1989; Skaggs & Lissitz,
1986), differential item functioning (Thissen, Steinberg, & Wainer, 1993), and computer adaptive testing
(Hambleton, Zaal, & Pieters, 1993; Kingsbury & Zara, 1991; Wainer, Dorans, Flaugher, Green, Mislevy,
Steinberg, & Thissen, 1990). The many properties of IRT models, among them that “sample-free” item
parameter estimates and “test-free” ability estimates can be obtained, have generated considerable interest
in their use to solve a host of measurement-related problems. : -

Another approach, which is currently gaining popularity in educational measurement is the one that treats
IRT as a special case of nonlinear factor analysis (NLFA). Several authors have shown that these models are
mathematically equivalent (Balassiano & Ackerman, 1995a, 1995b; Goldstein & Wood, 1989; Knol & Berger,
1991; McDonald, 1967, 1989, 1994).

A considerable body of research has been dedicated to examining the relationship between common IRT
models, e.g., logistic and normal ogive functions, and NLFA (Bartholomew, 1983; Goldstein & Wood, 1989;
Knol & Berger, 1991; McDonald, 1967, 1989; Takane & De Leeuw, 1987). Muthén (1978, 1983, 1984) has
demonstrated that commonly used models in IRT, for example the two-parameter normal ogive model, are
specific cases of a more general factor analytic model for categorical variables with multiple indicators (i.e.,
response categories). McDonald (1982b), starting from Spearman’s common factor model, also shows that
IRT models are a special case of NLFA and provides a general framework which includes
unidimensional/multidimensional, linear/nonlinear as well as dichotomous and polychotomous models.



Bartholomew (1983) proposed a general latent trait model on which several IRT as well as factor analvtic
functions for dichotomous variables are founded. The author states that common factor analytic models,
such as those proposed by Christoffersson (1975) and Muthén (1978), are special cases of this general latent
trait model. The model is of the form

q

G(mi(y) = B; + Zain(y,-),i =12..,p. "
j=1

Bartholomew states that the models outlined by Christoffersson (1975) and Muthén (1978) use the probit
function, {G(u) = & -1(u)} for both G and H. Lord and Novick (1968), whose discussion on IRT models is
restricted to the 4= 1 (i.e, unidimensional) case, treat yjs as parameters and use the logit for G and the probit
for H. Within the unidimensional IRT framework, the terms in Equation 1 would correspond to the
following: ’

G(mi) = the response function indicating the probability of obtaining a correct response to item i;
y = avector of ability (in this case, a scalar, given that g = 1);

Bi = a parameter related to the difficulty of itemi;

ajj = aparameter related to the discrimination of item i on latent trait j; and

H(yj) = the density function for a given latent trait j.

Takane and De Leeuw (1987) also established that IRT models are mathematically equivalent to NLFA.
These authors provided a systematic series of proofs that show the equivalence of these models with
dichotomous as well as polychotomous item responses. Finally, Knol and Berger (1991) compared Bock and
Aitkin’s (1981) full-information factor analysis (FIFA) model and McDonald’s (1967) polynomial
approximation to a normal ogive model to the two-parameter logistic IRT function and showed that they
were equivalent.

Thus, it appears as though IRT and NLFA models represent two equivalent formulations of a more general
latent trait model. Given the equivalence of IRT and NLFA, it would seem reasonable to make use of the
latter models to examine a multitude of educational measurement problems that had been, until quite
recently, looked at solely from an IRT perspective. In fact, several NLFA models, with potential applications
to measurement and psychometric issues, have been proposed in the literature (Bock & Aitkin, 1981; Bock,
Gibbons, & Muraki, 1988; Bock & Lieberman, 1970; Christoffersson, 1975; McDonald, 1967, 1982b; Muthén,
1978, 1984).

Three NLFA models that have been used to address measurement issues will be presented in this paper.
McDonald’s (1967, 1982b) polynomial approximation to a normal ogive model, Christoffersson’s
(1975)/Muthén’s (1978) factor analytic model for dichotomous variables, as well as Bock and Aitkin’s
(1981)/Bock, Gibbons, and Muraki’s (1988) FIFA model, will be summarized. Also, the relationship that
exists between these parameterizations and the normal ogive model will be emphasized. Finally, some of the
strengths and weaknesses of the models for practical applications will be underscored.

The Normal Ogive Model

A common IRT model that outlines the probability that a randomly selected test taker of ability 6; will
correctly answer item i is the three-parameter normal ogive model. The item response function (IRF) for the
model is given by

Zij
Pi®) =ci + (1 - ci)JT—;—Ee“‘Z/Z dt, 2
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where ci is the lower asymptote or “pseudo-guessing” parameter indicating the lowest probability of
obtaining a correct response to item i and t is the variable of integration. Several parameterizations of Zij

have been proposed in the literature (Bock & Aitkin, 1981; Christoffersson, 1975; Lord, 1952; McDonald,
1967). Four common formulations are presented in the next sections of the paper.

Lord’s Parameterization

Lord (1952) proposed the following parameterization of Zijj for item i,

Zij = ai® — Bi),
®)
where
8j = the latent parameter estimate or ability value for test taker j;
Bi = the item difficulty parameter estimate for item i or the 8 value at the point of inflexion of the item
response function (IRF); and
ai = the item discrimination parameter estimate for item i related to the slope of the IRF at its point of
inflexion.
Based on this model, the probability of obtaining a correct response to item i is given by
P(Yi = 116) = ci + (1 - ci)N [0i(6j — Bi)), 4)

where, 4, b, and c have been defined in Equation 3 and N corresponds to the normal ogive function given in
Equation 2. Lord and Novick (1968) also proposed a logistic approximation to the normal ogive model
which is computationally simpler and nearly identical given the relationship between the two functions,

©)
where Zj; = ai(6j - Bi) has been defined in Equation 3.
These logistic functions have been implemented in several computer programs, among them, BILOG
(Mislevy & Bock, 1990) and LOGIST (Wingersky, Patrick, & Lord, 1991), that respectively utilize marginal
and joint maximum likelihood estimation procedures to derive IRT item and ability parameter values.
Currently, BILOG is used by the Law School Admission Council (LSAC) to calibrate Law School Admission
Test (LSAT) items.

Bock and Aitkin’s Parameterization

Bock and Aitkin’s (1981) parameterization of Zjj, based on an m-factor model is given by
Zij=hio+ X101 + X202, ..., + Xim O m;j. (6)

That is, the unobservable response process for person j to item i is a linear function of m normally
distributed latent variables 8j = [81j, 82, ., 6mj] and factor loadings A; = [Ai1, A2, ..., Aim]. The latent response



process, yij is related to the binary (observed) item response xij through a threshold parameter ¥; for item i in
the following fashion:

if Yij 2y then X = 1,

if y,] <Y then x,} =0.

The probability that test taker j with abilities 6; = [01;,82;, .., 8mj] will correctly answer item i is given by the
function

m
P(xij = 116) = N((y; - X, Mik 0k) /i),
k=1 e

)

where N corresponds to the normal ogive function and o is the standard deviation of the unobserved
random variable &ij ~N(0,62;) in the common factor model

Yij=Rhio+ 201 + Ai202), ..., + Aim O mj + €. (8)

Bock and Aitkin (1981) proposed a marginal maximum likelihood (MML) procedure to estimate the
parameters in the model based on Dempster, Laird, and Rubin’s (1977) EM algorithm. The threshold and
factor loadings are estimated so as to maximize the following multinomial probability function,

71! 72!

Lm = P(X) = — PPy BT,
S.

)

where, 75 is the frequency of response pattern s and Ps is the marginal probability of the response pattern
based on the item parameter estimates. The function outlined in Equation 7, with the MML parameters
estimated by means of the EM algorithm, is commonly referred to as full-information item factor analysis
(Bock, Gibbons, & Muraki, 1988) and has been implemented in the computer program TESTFACT (Wilson,
Wood, & Gibbons, 1987). ’

Advantages and Limitations of Bock and Aitkin’s / Bock, Gibbons, and Muraki’s
Full-information Item Factor Analysis

The main advantage of FIFA is that it utilizes all available information in the estimation procedure. Contrary
to most factor analytic models, which are restricted to lower-order marginals, FIFA is based on the
estimation of item response vectors and hence uses all available information in the data.

Also, the procedure is implemented in the computer program TESTFACT (Wilson, Wood, & Gibbons, 1987).
The output from a TESTFACT analysis contains, among other things, classical item statistics and factor
analytic parameter estimates as well as their associated standard errors. In addition, a likelihood-ratio
chi-square test is provided to help the user determine the fit of a model, or of alternative models. However,
the use of all information contained in the 27 item vectors by FIFA, where p is equal to the number of items,
requires that there be no empty cells, which is usually not feasible unless some collapsing is done. In other
words, the full information is never utilized when estimating parameters in practical testing situations.
McDonald (1989) underscored this limitation of full-information methods when he stated:

It is not impossible that to obtain acceptably precise estimates of the more flexible item
response functions we would require a sample larger than the population for which the test
is intended, at least for countries with smaller populations than that of China. (p.213)

8




In addition, as Mislevy (1986) and Berger and Knol (1990) have noted, the G2 goodness-of-fit statistic
computed by TESTFACT tends to be unreliable with data sets containing more than 10 items due to the
small expected number of test takers per cell. More precisely, Mislevy (1986) states that the approximation to
the chi-square distribution might be poor in these instances. Wilson, Wood, and Gibbons (1987) also caution
against relying on the G2 fit statistic when a large number of cells have expected frequencies near zero. As
an alternative, the authors, based on work undertaken by Haberman (1977), recommend using the G2
difference test to compare two competing models given that the statistic follows a chi-square distribution in
large samples, even in the presence of a sparse frequency table. Also, the FIFA model, as currently
implemented in TESTFACT, constrains the user to fit exploratory orthogonal solutions to item response data
which may not adequately reflect some testing situations.

Christoffersson’s (1975)/Muthén’s (1978) Parameterization

Christoffersson’s (1975) parameterization of Zij, is given by

Zil-=('Yi+7»i9j)/(1 _7\42)1’2; (10)
where v is a threshold parameter, A;is the factor loading on item i and 6; corresponds to the ability
parameter value previously defined in Equation 3.

Christoffersson (1975) proposed a factor analytic model for dichotomous variables in which it is also
postulated that response variables Xi are accounted for by the latent continuous variables Y; and threshold

variables v isuch that,
Xi=1,1ifYi>y,
Xi =0, otherwise,
where
Y = A6 + E, (11)
Y =(Yi, ..., Yn), 8 =(61,02,..., 6n)and A = (i1, Ai2, ..., Aim). The model outlined in Equation 11 is identical to
the common factor model with the exception that Y is unobserved. Assuming that 6 ~ MVN(0,I), E ~

MVN(0,¥2), that is multivariate normal, where ¥ 2 is a diagonal matrix of residual covariances, and cov(6,E)
= 0, the covariance matrix £ among the Y latent variables can be expressed as

Y = ADA + g2 (12)

where
A = amatrix of factor loadings [Ai1, Ai2, ..., Aim];
¢ = amatrix of factor correlations; and
Y2 = a matrix of residual covariances.

Also, assume that,

Y ~“MVN(O,ADA’ + ¥ 2). (13)



The probability of a correct response based on Christoffersson’s model is given by

1 2
P(yi=1)= I( Tt A dr=H ),
Y (14)

The probability of correctly answering a pair of items is given by

©oo0

1 P
POi=Lyi = 1) = [ [ ermi Yatn
W (15)

Christoffersson (1975), using the tetrachoric expansion (Kendall, 1941) re-expresses Equation 15 as

co

P(y, =1, y} =1) = ZGi/'STs('Yi) Ts('Yj),

s=10 (16)
where 15 is the s-th tetrachoric function defined by
Ts(x) = Hs-1(x) f (x)/s")*, : (17)
Hs is the s-th Hermite polynomial given by
d S
He(x) f(x) = [— g;] fx)
(18)

and ij S is the 7,j-th element of the latent covariance matrix X . Given the rapid convergence of the series,
Christoffersson (1975) states that, in most applications, the expansion can be cut after 10 terms.

The parameters of Christoffersson’s (1975) model are estimated using a generalized least-squares (GLS)
estimation procedure that minimizes the fit function,

F = (p-PYSe-1(p- P), (19)
where
Se = a consistent estimator of Ze, the residual covariance matrix;
P = a vector of expected proportions of test takers correctly answering Pj items and jointly answering
Pjk items; and
p = a vector of observed proportions of test takers correctly answering pjitems and jointly answering
pjk items.

10




§
Muthén (1978, 1983, 1984, 1988) proposed a GLS estimator that is equivalent to that outlined by
Christoffersson (1975) but is computationally more efficient. According to Muthén (1978), the parameters of
the factor analytic model for dichotomous variables can be estimated by minimizing the weighted
least-squares fit function,

=%@—0YW54G-GL

(20)
where
6 = population threshold and tetrachoric correlation values;
s = sample estimates of the threshold and tetrachoric correlation values; and

W5 = a consistent estimator of the asymptotic covariance matrix of s, multiplied by the total
sample size.

This approach, also referred to as GLS estimation using a full-weight matrix approach (Muthén, 1988), is
asymptotically equivalent to Christoffersson’s solution and slightly less demanding in terms of
computational requirements. It is referred to as a full-weight matrix approach because, as Muthén (1988)
states, the GLS estimator uses a weight matrix of size p* x p*, where p* corresponds to the total number of
elements in the s vector.

Advantages and Limitations of Christoffersson’s / Muthén's
Factor Analytic Model for Dichotomous Variables

Muthén’s solution is incorporated in the computer program LISCOMP (Muthén, 1988). LISCOMF, unlike the
current version of TESTFACT, enables the user to fit both exploratory and confirmatory unidimensional or
multidimensional models. As was the case with FIFA, statistical tests of model fit are readily available. The F
functions minimized in the GLS solution (cf. Equations 19 and 20) asymptotically follow a chi-square
distribution, with df = k(k-1)/2 - t, where k is equal to the number of items and ¢ the number of parameters
estimated in the model. Standard errors for the parameters estimated in the model can also be obtained
quite easily. However, the GLS estimation procedure, unlike FIFA, utilizes terms solely from the one-way,
two-way, three-way, and four-way margins, that is, the proportions of test takers correctly answering one to
four items taken at the same time. In other words, the GLS estimator ignores higher-level interactions in the
data and in that sense does not fully utilize all of the available information. Nonetheless, McDonald (1994)
and Muthén (1978) have suggested that one should not lose too much information in the absence of
higher-order marginals in most practical testing situations. ' -

Also, GLS estimation can be computationally burdensome. Although Muthén’s (1978) solution is more
efficient than Christoffersson’s (1975), the procedure, as implemented in LISCOMP (Muthén, 1988), is still
impractical using a personal computer with tests containing more than 25 items (Mislevy, 1986; Muthén,
1988).

McDonald’s Parameterization

McDonald (1981, 1982a, 1994) also examined the relationship between common IRFs and NLFA.
McDonald’s (1994) parameterization of Zjj is given by

Zij=fio+ fib}, (21)

11



where, in the unidimensional case, fio = -eiBiand fil = & in Lord’s parameterization, The parameter fj) is
equal to the factor loading of factor ! on item i. McDonald (1967, 1994) states that the normal ogive model
can be approximated by a polynomial function of the general form,

Zij=fio+ fu®j + fn8;2+ ... + fd k.

(22)
where fik8jk = the factor loading of factor j on item i of polynomial degree k.
Specifically, the IRFs for this model are approximated by a third-degree Hermite-Tchebycheff polynomial.
The probability of obtaining a correct response to item i based on this model is given by
Pi=116) = ¢i + (1 ~ c)N[fo+fu 8], (23)

where cj corresponds to the lower asymptote parameter estimate outlined in Equation 3 and N is the normal
ogive function. Function Equation 23, which is referred to by McDonald (1994) as the latent trait model, also
generalizes to the multidimensional case as

Pyi = 118) =ci+(1-c)N[fio+[f',8] (24)

where, f'i is a vector of scale parameters. Fraser and McDonald (1988) and McDonald (1981, 1994) also
demonstrated that the latent trait model shown in Equation 23 could be derived according to
Christoffersson’s (1975) parameterization in the form

PYi =118y =c + (1 —ci)N[tio+!1_’i§/mi]. (25)
The parameters modeled in Equations 24 and 25 are related by,
to = fio/ (1 + £ ® f )%
hi=f/ L+
mi2=1/si2,

and
si= 1+ [f@f)%

here (i=1, ..., m) and ® is the m x m matrix containing the correlations among the dimensions, assuming the
latent traits have been standardized. A detailed discussion of this relationship is found in McDonald (1994).

12




The unweigh/t\ed least squares (ULS) function that is minimized in the estimation of the pairwise
probabilities mjj = P(Xi=1, Xj = 1) is

F =Y pi-nil2 8)
i<j

where pjj corresponds to the proportion of test takers correctly answering both items i and j.

Advantages and Limitations of McDonald’s Polynomial Approximation to a Normal Ogive Model

As was previously stated, McDonald’s (1967) approach to NLFA employs ULS estimation of the model
parameters. ULS estimation is quite economical as compared to generalized least-squares and maximum
likelihood procedures and hence has the practical advantage of allowing for the analysis of tests with a
fairly large number of iterfis and /or dimensions.

Also, McDonald’s model has been implemented in the computer program NOHARM (Fraser & McDonald,
1988). The program enables the user to fit confirmatory or exploratory unidimensional and
multidimensional models to item response matrices. The NOHARM output includes the results from the
latent trait parameterization, the common factor model reparameterization as well as, in the unidimensional
case, Lord’s parameterization. In addition, a residual joint-proportions matrix is included in the output
which can be useful to assess the fit of a given model. However, the greater degree of computational
efficiency associated with the ULS estimation procedure is achieved at the sacrifice of information (Mislevy,
1986). That is, only the information in the one-way marginals (proportion of test takers who correctly
answer each item) and two-way marginals (proportion of test takers who correctly answer pairs of items) is
utilized by NOHARM in the estimation of parameters, thus explaining why it is often referred to as a
“limited” or “bivariate” factor analytic method. Knol and Berger (1991) compared NOHARM parameter
estimates to those obtained based on FIFA (i.e., using TESTFACT) and generally found only slight
differences between the two procedures with respect to their ability in recovering (simulated) factor analytic
parameters. However, these findings were based on a limited number of replications (10) and should be
interpreted cautiously. Nonetheless, from a practical perspective, it would seem that there might not be
much to be gained in using full-information methods. Balassiano and Ackerman (1995b) have also shown
that the overall performance of NOHARM, with respect to recovering simulated item parameter values, was
satisfactory, even with small sample sizes (N = 200).

Another limitation of the model, again attributable to the ULS estimation procedure, is the-absence of
standard errors for the parameter estimates and a fit statistic for the given model. However, McDonald
(1994) and Balassiano and Ackerman (1995b) have suggested criteria (e.g., the inverse of the square root of
the sample size) that may be used as approximate standard errors for the parameters of the model. Also, an
approximate x2 statistic, based on the residuals obtained after fitting a NLFA (NOHARM) model to an item
response matrix, was proposed and investigated by De Champlain (1992) and Gessaroli and De Champlain
(1996). Results obtained with a variety of simulated data sets showed that the approximate x2 statistics were
quite accurate in correctly determining the number of factors underlying simulated item responses. This
would suggest that these procedures might be useful as practical guides for the assessment of model fit,
even though they are perhaps not the theoretically preferred statistics due to the ULS estimation method on
which they’re based. Nonetheless, further research needs to be undertaken in order to evaluate the behavior
of these approximate 2 statistics in a larger number of conditions before making any definite statements
about their usefulness.

Finally, some authors have noted that another problem with McDonald’s model is the absence of an index
that would indicate the appropriate number of polynomials to retain in a series (Hambleton & Rovinellj,
1986). Findings pertaining to this question, however, seem to indicate that terms beyond the cubic can
generally be ignored (McDonald, 1982b; Nandakumar, 1991).
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Illustration '
In order to determine the degree of similarity between the BILOG, NOHARM, and TESTFACT IRT item
discrimination and difficulty parameter estimates for LSAT datasets, separate calibrations were undertaken
for two forms. More precisely, item difficulty and discrimination parameters were estimated for 101 October
1992 and 101 October 1994 LSAT items using the three above mentioned procedures. Pseudo-guessing
parameters that are usually estimated during LSAT equatings were not estimated here. The October 1992
LSAT form was administered to 45,918 test takers while the October 1994 LSAT form was given to 42,361

test takers. Both datasets excluded test takers who required an accommodated testing situation. Item
parameter descriptive statistics are presented for both test forms by estimation procedure in Table 1.

TABLE 1
IRT parameter descriptive statistics by form and estimation procedure

October 1992 LSAT October 1994 LSAT
Statistics BILOG NOHARM TESTFACT BILOG NOHARM TESTFACT
Mean a 0.773 0.661 0.546 0.632 0.652 0.557
Standard deviation a 0.177 0.163 0.117 0.177 0.195 0.153
Minimum a 0.407 0.352 0.295 0.259 0.277 0.238
Maximum a 1.383 1.390 0.922 1.188 1.604 1.047
Mean b 0.187 0.029 0.046 -0.001 0.026 0.043
Standard deviation b 0.961 1.156 1.145 1.156 1.168 1.354
Minimum b -2.133 -2.425 -3.328 _ -2.514 -2.524 -2.877
Maximum b 2.044 2.246 2.837 2.476 2.483 3.135

For both LSAT forms that were examined, the parameter estimates tended to be similar, irrespective of the
procedure employed. The mean absolute difference between BILOG and NOHARM item discrimination
parameter estimates was equal to 0.116 for the October 1992 administration and 0.031 for the October 1994
administration. The mean absolute difference between BILOG and TESTFACT item discrimination
parameter estimates was equal to 0.227 for the October 1992 administration and 0.075 for the October 1994
administration. The mean absolute difference between BILOG and NOHARM item difficulty parameter
estimates was equal to 0.213 for the October 1992 administration and 0.036 for the October 1994 )
administration. Finally, the mean absolute difference between BILOG and TESTFACT item difficulty
parameter estimates was equal to 0.374 for the October 1992 administration and 0.173 for the October 1994
administration. Plots of the BILOG and NOHARM item discrimination and difficulty parameter estimates
are provided in Figures 1a, 1b, 1c, and 1d.
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The relationship between the parameter estimates obtained using BILOG and NOHARM was very strong.
The correlation between the BILOG and NOHARM item discrimination parameter estimates was high for
both the October 1992 (r = 0.942) and October 1994 (r = 0.963) LSAT forms. In addition, the correlation
between the BILOG and NOHARM item difficulty parameter estimates was nearly perfect for the October
1992 (r = 0.999) as well as October 1994 (r = 0.999) LSAT forms. Plots of the BILOG and TESTFACT item
discrimination and difficulty parameter estimates are provided in Figures 2a, 2b, 2¢, and 2d.
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The relationship between the parameter estimates obtained using BILOG and TESTFACT was also very
strong. The correlation between the BILOG and NOHARM item discrimination parameter estimates was
high for both the October 1992 (r = 0.969) and October 1994 (r = 0.983) LSAT forms. In addition, the
correlation between the BILOG and TESTFACT item difficulty parameter estimates was nearly perfect for
the October 1992 (r = 0.999) as well as October 1994 (r = 0.998) LSAT forms.

Although these results are preliminary, as they are based on only two data sets, some tentative conclusions
can be drawn based on the analyses. Beforehand, it is important to point out that the criterion utilized
against which to compare NOHARM and TESTFACT item parameter estimates (i.e., BILOG) is by no means
infallible and should be viewed as such. BILOG seemed to be the most appropriate yardstick given that it is
an extensively used and studied calibration procedure and is the one currently being used by LSAC staff.
Having said this, the evidence gathered would seem to indicate that the item difficulty and discrimination
parameter estimates, on the whole, differ only slightly across procedures. However, the scatterplots do
reveal the presence of a few outlying pairs of item discrimination parameter estimates that should be examined
in future research in order to better understand the limitations of each calibration method. Also, these
preliminary findings suggest that the item discrimination parameters are underestimated by TESTFACT, as
compared to BILOG, which is consistent with past simulation studies (Boulet, 1995). Finally, it appears as
though the IRT item parameters were more similar for the October 1994 LSAT form. Again, a larger number of
analyses should be undertaken across multiple LSAT forms and simulated data sets before any definite
conclusions are made with respect to the usefulness of these three calibration procedures with LSAT data sets.

Conclusion

IRT models have been used extensively in the past few decades not only in the development and analysis of
educational test items but also in a host of other applications, such as for the equating of alternate test forms
and the detection of differentially functioning items. Several researchers have suggested, however, that
common IRT models are really specific cases of more general NLFA models (Goldstein & Wood, 1989; Knol
& Berger, 1991; McDonald, 1967; Takane & De Leeuw, 1987). The research conducted by the last mentioned
authors clearly shows that common IRT models, such as those based on the normal ogive and logistic
functions, can easily be expressed with factor analytic parameterizations. The findings obtained in these
studies would therefore seem to suggest that NLFA might provide a useful framework with which to
address measurement-related issues that had been primarily investigated using IRT models.

Three factor analytic models were briefly outlined. More precisely, McDonald’s (1967, 1982b) polynomial
approximation to a normal ogive model, Christoffersson’s (1975)/Muthén’s (1978) factor analysis model for
dichotomous variables and Bock and Aitkin’s (1981)/Bock, Gibbons, and Muraki’s (1988) full-information
factor analytic model, were described. In addition, the major strengths and weaknesses of each model were
delineated. Table 2 provides a comparison of the main features of these models.

TABLE 2
A comparison of three nonlinear factor analytic models
Polynomial Factor analytic model for Full-information
approximation dichotimized variables factor analysis
(McDonald, 1967) (Christoffersson, 1975) (Bock & Aitkin, 1981)
Estimation procedure ULS GLS MML
Computer program NOHARM (Fraser & LISCOMP (Muthén, TESTFACT (Wilson,
McDonald, 1988) 1988) Wood, & Gibbons, 1987)
Fit confirmatory analyses? Yes Yes No
Information used Lower-order marginals =~ Lower-order marginals  Higher-order marginals
Standard errors for
parameter estimates? No Yes Yes
Tests of model fit? No Yes Yes
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Based on this information, are there any conditions that might dictate the use of one model rather than
another as they are currently implemented in the various software packages? As shown in Table 2, the fit of
confirmatory factor analytic models to item response matrices can, at present, be estimated using either
NOHARM or LISCOMP. As previously stated, the current version of TESTFACT restricts users to fitting
exploratory models. It is important to point out, however, that Muraki (1991) has undertaken research
aimed at incorporating prior information in TESTFACT estimation procedures. Also, the estimation of factor
correlations cannot be undertaken with TESTFACT given the orthogonal structure of the factor analytic
model.

Another issue that might be considered by practitioners interested in fitting a factor analytic model to item
response data is the amount of information utilized by the estimator. With respect to this point, the FIFA
model implemented in TESTFACT would seem to be the preferred choice given its use of higher-order
marginals in the estimation process. However, in practice, the use of the full information is usually not
feasible. For example, in order to utilize all of the information contained in a 30-item test when fitting a FIFA
model, 230 or 1,073,741,824 test takers are required. Hence, in most situations, FIFA reduces to a
limited-information model.

Also, the availability of standard errors and fit statistics might be a factor to consider when selecting one of
the factor analytic models. For example, the ULS estimation procedure implemented in NOHARM does not
allow for a valid chi-square test to aid the practitioner in selecting the best fitting model. In addition,
standard errors for the parameters estimated in a given model are unavailable with ULS estimation. On the
other hand, the output from both TESTFACT (Wilson, Wood, & Gibbons, 1987) and LISCOMP (Muthén,
1988) contains chi-square fit statistics as well as standard errors. It must be noted, however, that
approximate chi-square fit statistics (De Champlain, 1992; Gessaroli & De Champlain, 1996) and standard
errors (Balassiano & Ackerman, 1995b; McDonald, 1994) have been proposed to accompany the NOHARM
(Fraser & McDonald, 1988) output.

To illustrate similarities and differences in IRT item difficulty and discrimination parameter estimation, two
LSAT forms were analyzed using the procedures implemented in BILOG, NOHARM, and TESTFACT.
Findings show that the parameter estimates tended to be quite similar, regardless of the calibration
procedure. However, additional research should be conducted with a larger number of LSAT forms before
reaching any definite conclusions as to the degree of comparability of the calibration procedures.

In summary, the purpose of this paper was to underscore the usefulness of the NLFA framework in
addressing common educational measurement problems, as well as to provide practitioners with an
overview of the strengths and limitations of three factor analytic models. Also, empirical analyses were_
undertaken using LSAT item response data in order to provide evidence to support the claim that the
calibration procedures provide very similar item parameter estimates. Hopefully, this overview and these
preliminary analyses will help the practitioner in arriving at a more informed decision when contemplating
the selection of a NLFA model and foster future research with respect to the potential application of these
models in educational measurement and more specifically, with the LSAT.
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