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Abstract

This study explored the impact of various degrees of violations of the item response theory (IRT)-local
independence assumption on the Law School Admission Test (LSAT) calibration and score distribution
estimates. Initially, results from the LSAT and two other tests were investigated to determine the
approximate state of local item dependence (LID) found in actual test data. Yen's Q3 statistic was employed
for this purpose. Based on these analyses, four levels of LID were defined and associated data sets
generated. Estimates from the simulated data were compared to their corresponding LSAT generating
values in order to analyze the effects of the LID on IRT calibration and score distribution estimates.

The results indicated that LID causes low scores to be underestimated and high scores to be overestimated.
Effects on item and ability parameter and test characteristic curve estimation were clearly demonstrated.
Score distributions were also markedly changed by the introduction of LID. The effects observed were
mainly problematic for high LID levels. Deficiencies in Yen's Q3 statistic were also observed.



Introduction

For the purpose of equating new forms of the Law School Admission Test (LSAT) to previous forms,
performing item analyses, and assembling new test forms, Law School Admission Council (LSAC) employs
the three-parameter logistic (3PL)-item response theory (IRT) model. Here, the probability that a test taker
will correctly answer a particular item is defined by

Pi (A) = ci + (1-0{1 + exp[-Dai (1)

where, a i, b , and ci represent item i's discrimination, difficulty and guessing parameters, respectively;
0 represents the ability level of the test taker; and D is a scaling factor usually set to 1.7. To facilitate the
estimation of IRT parameters, an assumption of local item independence is usually made. This assumption
states that the responses of test takers to individual items on a test must be statistically independent after
conditioning on their ability levels. The local item independence assumption may be defined by the equation

Pij (0) = Pi (0)Pi (0), (2)

which states that the probability of observing a pair of correct responses to two items, i and j, is the product
of the individual correct item response probabilities. This equation holds only if the individual item
responses are statistically independent, given test takers' ability levels.

More than a decade ago, Goldstein (1980, p. 239) stated that "there seems to have been little systematic
attempt to carry out suitable experiments or to study the consequences for estimation and inference
procedures when [the local item independence assumption] is violated. Without the results of such studies it
is difficult to be sure how serious might be any failure of [the local item independence assumption]." A
review of the current research on the local item independence assumption would indicate that this
statement is no longer true. Many approaches have been taken in studying the issue of local item
dependence (LID). Some researchers have identified the situations in which LID is likely to occur (Yen,
1993), while others have identified some of the consequences of LID for IRT (Masters, 1988; Yen, 1993). Some
researchers have attempted to build models to account for the LID so that it might be allowed to occur
(Ackerman, 1987; Ackerman & Spray, 1987; Andrich, 1978, 1985; Bell, Pattison, & Withers, 1988; Embretson,
1984; Jarmarone, 1986, 1987, 1991a, 1991b, 1991c, in press; Kempf, 1977; Rosenbaum, 1988; Spray &
Ackerman, 1987; Wainer & Kiely, 1987), while others have developed statistics for detecting LID in order
that it might be avoided. (Kelderman, 1984; Lord, 1953; Van den Wollenberg, 1982; Yen, 1984). Some
researchers have approached the problem by applying their analyses to real data, while others have used a
data-generation framework in studying this problem.

While much has been done toward addressing LID, there are still issues that remain to be investigated.
Many researchers have attempted to develop measurement models which account for the LID found within
test data; however, most of these methods are not suitable for practical use. The application of item bundles
and testlets within an operational testing program seems more practical (Rosenbaum, 1988; Wainer & Kiely,
1987), but these solutions are specific to only one cause of LID. Also, the application of testlets could lead to
failure of the parameter invariance assumption in that the parameters may not be invariant with respect to
the specific items included in the testlet.

Stout (1987, 1990) suggested that in practice, the local item independence assumption could be weakened.
Stout proposed a monotone nonparametric IRT framework in which the assumption of local item
independence would be replaced with an assumption of "essential independence." In order to meet the
essential independence requirement, the covariances between items (conditional on ability) must be small
on average. Thus, rather than attempting to meet the strong requirement that the responses to test items be
conditionally unrelated, which is probably impossible to meet in most practical situations, it would be
sufficient to assure that the association between items is sufficiently weak. Other researchers (Holland, 1981;
Rosenbaum, 1984) have also proposed a weakening of the local item independence assumption.

Given that most researchers would probably agree with the assertions of Stout, Holland, and Rosenbaum, the task
of determining the effects of various levels of LID remains to be accomplished. The current study conducts analyses
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to determine the effect of various levels of LID on IRT calibration and the score distribution estimates
for the LSAT.

The study was approached from both a real-data analysis and a data-generation framework, in that real data
were first analyzed to determine the levels of LID that were likely to arise in actual testing situations. These
levels of LID were used as a baseline in defining the levels of LID to be simulated in the data-generation
phase of the study. The measurement statistics identified as susceptible to the effects of LID were then
studied to determine how these outcomes were affected by the levels of LID simulated.

Local Item Dependence in Real Data

In order to realistically model LID, estimates of the true state of LID found within actual test data had to be
obtained. Since it was desirable that these levels of LID be realistic, data from the LSAT were studied, along
with data from the Pre-American College Test Plus (P-ACT+) and the Graduate Management Admission
Test (GMAT). All three tests are similar in that they are large-scale high-stakes tests of acquired skills. The
LSAT and GMAT are used as aids in graduate-level admissions decisions, while the P-ACT+ is administered
to 10th-grade students. All of the tests have a large verbal component, and all contain a reading
comprehension section. However, the GMAT and P-ACT+ add a quantitative dimension, and the P-ACT+
also includes a science measure. The data for these three tests were calibrated using BILOG (Mislevy &
Bock, 1990), with default priors for the item and ability parameters.

The level of LID displayed by the real data was explored by employing Yen's (1984) Q3 statistic. For two
items i and j, the statistic is

Q3 = rdidi

a correlation among di and dj values. For test taker k (adding an identifying subscript),

dik=14i1Pi (8k),

(3)

(4)

where Uik represents the score of the kth test taker on item i (one if correct, zero otherwise) and Pi (Ok)
represents the probability of test taker k responding correctly to item i.

Q3 values were calculated for each pair of items for each of the three tests studied. Summary statistics of the
Q3 statistics were evaluated within and between test sections and within and between item sets. The results
of these analyses (see Reese, 1995) were then used to define the levels of LID to be simulated. It should be
noted here that Yen (1993) has observed that Q3 tends to have a slightly negative bias due to the fact that IRT
item probabilities that assume local item independence are used in its calculation. Therefore, she suggests
that a Q3 value of -1/(n-1), where n represents the number of items in the test being analyzed, is expected
when there is no LID. The deviation of the Q3 statistic from this value, referred to here as the "criterion"
value, was used in the definition of the LID levels to be simulated in this study.

Tables 1 through 4 present the starting values for the zero, low, medium, and high LID levels, respectively.
The cells of these tables represent the four sections of the test data to be simulated, with the diagonal
elements representing the average within-section LID and the off-diagonal elements representing the
average between-section LID. Since LSAT item parameters were used as the generating parameters, a
four-section, 101-item test was simulated. The sections have 24, 24, 25, and 28 items, section sizes typically
found in the LSAT sections.



TABLE 1
Q3 Values to be Simulated for the Zero LID Level

Section 1 2 3 4

1 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00

TABLE 2
Q3 Values to be Simulated for the Low LID Level

Section 1 2 3 4

1 0.01 0.00 0.00 0.00

2 0.00 0.01 0.01 0.00

3 0.00 0.01 0.01 0.00

4 0.00 0.00 0.00 0.01

TABLE 3
Q3 Values to be Simulated for the Medium LID Level

Section 1 2 3 4

1 0.05 0.01 0.01 0.01

2 0.01 0.02 0.02 0.01

3 0.01 0.02 0.02 0.01

4 0.01 0.01 0.01 0.03

TABLE 4
Q3 Values to be Simulated for the High LID Level

Section 1 2 3 4

1 0.3 0.05 0.05 0.05

2 0.05 0.3 0.3 0.05

3 0.05 0.3 0.3 0.05

4 0.05 0.05 0.05 0.3



The zero LID level, represented by Table 1, was generated by simulating zero LID between each pair of
items. As displayed in Table 2, the low LID level was defined by assigning a low within-section starting
value of .01 for all within-section cells. This value represents the lowest degree of within-section LID
observed in the real-data analyses rounded to the nearest significant digit. Note that for the low, medium,
and high LID levels, the LID between sections 2 and 3 was assigned the same level as assigned within
sections, since on the LSAT, these sections represent the same content, Logical Reasoning. For all other
between-section cells, a value of 0.00, representing no LID, was assigned. Medium LID was defined by the
values presented in Table 3. The within-section LID displayed by the LSAT was used here to define the
within-section LID. The between-section value, for which a constant was chosen, was determined by
studying the within-section LID displayed by each of the three tests analyzed. The value of .01 represented
an approximately average level of between-section LID. Finally, Table 4 represents the starting values for the
high LID level. The within-section LID was defined as the highest within-set LID observed, and the
between-section LID was defined by the highest between-set LID observed.

Data Generation

To create simulated data, item responses (0 or 1) were generated to match the LID structures defined in
Tables 1 through 4. Item parameter estimates obtained from a typical LSAT calibration were treated as true
item parameters. Figure 1 overlays all of the item characteristic curves for this test and demonstrates the
diversity of the item parameters being used as true parameters. For each level of LID defined, responses to a
101-item test consisting of four sections were simulated for 4,000 test takers with standard normally
distributed ability values (for further details, see Pashley & Reese, 1995). The sample of generated ability
values was rescaled by a linear transformation to ensure that the sample mean and standard deviation were
exactly zero and one, respectively.

1.0

0.8

8 0.8

21 0.4

o

0.0
-9 -2 -1 0

AM,

FIGURE 1. Overlay plot of true item characteristic curves

The simulated data were calibrated using BILOG (Mislevy & Bock, 1990). To assure that the item and ability
parameter estimates for the true and dependent data were on a common scale, the ability parameters from
each calibration were transformed to have a mean of zero and a standard deviation of one. (Note: The
results for BILOG were again standardized in this way to ensure that all samples of ability estimates had
means and standard deviations exactly equal to zero and one, respectively.) An associated transformation
was applied to the a- and b-parameters as described by Hambleton and Swaminathan (1985, p. 126).



Evaluation of Simulated Data

Before any observations could be made based on analyses of the simulated data, it was necessary to verify that
the data simulation method had produced data sets with the intended properties. This evaluation was made on
two levels. First, the accuracy of the data simulation was evaluated. Next, analyses were carried out to determine
the extent to which the true LID defined for the simulated data was recovered by the Q3 statistic.

Accuracy of Data Simulation

At the outset, it was important to verify that the data generation had produced the desired LID structure.
Tables 5 through 8 represent the true levels of LID achieved in the simulated data. These values were
calculated by utilizing the true item and ability parameters and the simulated item responses. Comparing
these values to those defined in Tables 1 through 4 reveals the high degree to which the LID was recovered
in the simulated data. The zero LID level was recovered almost exactly. The low LID level was also
recovered very well, with discrepancies found only in the third decimal place. Differences of this degree are
not considered problematic. For the medium LID level, all dependencies recovered round to the desired
values. Finally, for the high LID level, the within-section dependence of .3 and the between-section
dependence of .05 were both recovered quite well.

TABLE 5
Dependence Levels Recovered, Using True Item and Ability Parameters, from Zero LID Simulated Data

Section 1 2 3 4

1 0.000 0.001 0.000 -.001

2 0.001 0.001 0.000 0.000

3 0.000 0.000 0.000 0.000

4 -.001 0.000 0.000 0.000

TABLE 6
Dependence Levels Recovered, Using True Item and Ability Parameters, from Low LID Simulated Data

Section 1 2 3 4

1 0.012 0.000 0.000 0.000

2 0.000 0.012 0.012 0.001

3 0.000 0.012 0.010 0.000

4 0.000 0.001 0.000 0.011
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TABLE 7
Dependence Levels Recovered, Using True Item and Ability Parameters, from Medium LID Simulated Data

Section 1 2 3 4

1 0.046 0.011 0.012 0.014

2 0.011 0.017 0.017 0.009

3 0.012 0.017 0.016 0.010

4 0.014 0.009 0.010 0.027

TABLE 8
Dependence Levels Recovered, Using True Item and Ability Parameters, from High LID Simulated Data

Section 1 2 3 4

1 0.329 0.053 0.049 0.054

2 0.053 0.308 0.299 . 0.053

3 0.049 0.299 0.288 0.049

4 0.054 0.053 0.049 0.326

Recovery of Local Item Dependence in Calibrated Data

After the data were calibrated and scaled, Q3 values were studied again to determine the extent to which
this statistic could recapture the various LID levels. Tables 9 through 12 present the results of this analysis.
Recall that in calculating the Q3 statistic from the estimated parameters, there is a tendency for the statistic to
have a slightly negative bias due to the fact that IRT item probabilities that assume local item independence are
used in its calculation. Therefore, a Q3 value of -1/(n-1), or -.01, represents zero LID for a 101-item test (Yen,
1993). This criterion value is presented in parentheses in Tables 9 through 12. Also in these tables, the Q3
values observed within sections are presented on the diagonal, with the deviation from the criterion value
presented in parentheses. The off-diagonal elements represent the between-section Q3 values, with the
deviation of these values from the criterion value presented in parentheses.



TABLE 9
Within- and Between-Section Summary of Q3 Statistics Using Estimated Item and Ability Parameters for the Zero
LID Simulated Data

Section 1 2 3 4
(-.01) (-.01) (-.01) (-.01)

1 -.005
(0.005)

2 -.006 -0.009
(0.004) (0.001)

3 -.006 .009 .009
(0.004) (0.001) (0.001)

4 -.008 -.010 -.010 -.010
(0.002) (0.000) (0.000) (0.000)

TABLE 10
Within- and Between-Section Summary of Q3 Statistics
Using Estimated Item and Ability Parameters for the Low LID Simulated Data

Section 1 2 3 4
(-.01) (-.01) (-.01) (-.01)

1 0.006
(0.016)

2 -.010 -.005
(0.000) (0.005)

3 -0.10 -0.004 -0.004
(0.000) (0.006) (0.006)

4 -.009 -.014 -.014 -.002
(0.001) (-.004) (-.004) (0.008)

For the zero LID level presented in Table 9, the Q3 statistic recaptured the LID quite well. A deviation from
the criterion value of .005 is the highest observed within sections, while a value of .004 is the highest
observed between sections. For the low LID level, Table 10 shows that all within-section deviations round to
.01, with the exception of section 1 which rounds to .02. This is very encouraging. Between-section LIDs are
all very close to zero, with some slightly negative values.



TABLE 11
Within- and Between-Section Summary of Q3 Statistics Using Estimated Item and Ability Parameters for the Medium
LID Simulated Data

Section 1 2 3 4
(-.01) (-.01) (-.01) (-.01)

1 0.021
(0.031)

2 -.013 -.004
(-.003) (0.006)

3 -.012 -.004 -.004
(-.002) (0.006) (0.006)

4 -.014 -.014 -.014 0.001
(-.004) (-.004) (-.004) (0.011)

TABLE 12
Within- and Between-Section Summary of Q3 Statistics Using Estimated Item and Ability Parameters for the High
LID Simulated Data

Section 1 2 3 4
(-.01) (-.01) (-.01) (-.01)

1 0.294
(0.304)

2 -.073 0.038
(-.063) (0.048)

3 -.074 0.039 0.039
(-.064) (-.049) (0.049)

4 0.002 -.109 -.107 0.286
(0.012) (-.099) (-.097) (0.296)

The medium LID results that are presented in Table 11 are not quite as encouraging as those observed for
the zero and low LID. Recall that the LID levels defined here were intended to emulate the LSAT. The
within-section values are all a bit lower than what was built into the simulated data. For the between-section
values, the Q3 statistic indicates negative LID. The results for the high LID level, found in Table 12, are
similar to the medium LID level. For sections 1 and 4, the within-section LID was recaptured by the Q3
statistic, but the LID within sections 2 and 3, while higher than that observed for any other LID levels, falls
short of what was simulated. The between-section LID, while fairly strong, is displayed as negative LID in
all but one case.

The results presented here for the simulated medium and high LID data were somewhat troublesome and
may call into question the usefulness of the Q3 statistic for monitoring LID. The LID simulated for the
medium LID level was that observed for an average test. These results indicate that the Q3 statistic
underestimates LID at this level and at higher levels. For the high LID level, it is clear that the true LID is
underestimated when a large block of items is being considered. Here, for section 1 and section 4, consisting
of 24 and 28 items, respectively, the high LID level is recovered. It is for the between-section LID and the LID
within and between sections 2 and 3 that the LID is underestimated. This result indicates that for a long
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string of dependent items, the Q3 statistic underestimates the actual LID in the data. Perhaps Yen's
correction factor of -1/(n-1), while appropriate for zero and low LID, is too conservative for average and
high LID levels, especially for large blocks of dependent items.

The Effects of Local Item Dependence on Calibration Results

One goal of this research was to determine the effect of the various levels of LID on the calibration results.
This evaluation was made by first studying the effect of LID on the item and ability parameters. As the item
parameters combine to define the item characteristic curve, the effect on this variable was studied next,
along with the effect on the test characteristic curve.

Analysis of Item and Ability Parameters

Table 13 presents the summary statistics of the true and estimated IRT item parameters for each level of LID.
The ability parameter 0, is not included in this table, since this parameter was scaled to a mean of zero and
standard deviation of one for all LID levels. For the a-parameter, the summary statistics are very similar
with the exception of those for the high LID level for which the mean and standard deviation are both
somewhat higher. This is consistent with the findings of Masters (1988) and Yen (1993) who observed that
for positive LID, the relationship between some items is strengthened, thereby strengthening the
relationship between the item and the total test. This results in an inflation of the a-values. The correlation of
the a-parameter with the true parameters reported in Table 14 is quite high for the zero through medium
LID leirels (.91 to .88), but drops to a very low value of .256 for the high LID level.

TABLE 13
Summary Statistics for Item Parameter Estimates

Level of LID

True Zero Low Medium High

a-parameter

Mean

S.D.

0.6585

0.1682

0.6583

0.1675

0.6627

0.1756

0.6597

0.1410

1.0031

0.3692

b-parameter

Mean

S.D.

0.3275

1.0611

0.3925

1.0805

0.3678

1.0572

0.2843

1.0318

0.0742

0.7236

c-parameter

Mean

S.D.

0.2005

0.0765

0.2189

0.0667

0.2135

0.0706

0.1884

0.0627

0.1082

0.0689
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TABLE 14
Pearson Correlation Coefficients among Item Parameters

a- parameter

LID Level Zero Low Medium High

True 0.9106 0.9084 0.8815 0.2563

Zero 0.8060 0.8218 0.2423

Low 0.8126 0.1939

Medium 0.2651

b-parameter

LID Level Zero Low Medium High

True 0.9934 0.9889 0.9888 0.9445

Zero 0.9878 0.9874 0.9509

Low 0.9841 0.9484

Medium 0.9484

c-parameter

LID Level Zero Low Medium High

True 0.8756 0.7978 0.7960 0.2263

Zero 0.7620 0.7722 0.2569

Low 0.7069 0.3251

Medium 0.3872

For the c-parameters, the standard deviations remain fairly constant while the mean values decrease. For the
b-parameters, the means and standard deviations decrease as the LID increases. The correlation of the
estimated b-parameters with the true b-parameters is not as alarming as that observed for the a-parameters,
with this correlation dropping to only .94 for the high LID level. The correlations of the estimated
c-parameters with the true c-parameters are lower overall than those observed for the a- and b-parameters,
but such instability is typical for this parameter. This correlation does, however, drop sharply to .226 for the
high LID level.

The correlation coefficients in Table 15 indicate that the relationship with the true ability parameters
decreased slowly as the LID level increased, but dropped sharply for the high LID level.



TABLE 15
Pearson Correlation Coefficients among Ability Values

Level of LID

Zero Low Medium High

True

Zero

Low

Medium

0.9573 0.9445

0.9238

0.9115

0.8877

0.9008

0.6396

0.6352

0.6769

0.8371

Analysis of the Item and Test Characteristic Curves

Up to this point, findings have been discussed with respect to the effect of LID on the item and ability
parameters. However, it is possible that looking at the a-, b-, and c-parameters separately may be misleading
as these parameters co-vary in practice. The a-, b-, and c-parameters work together in equation 1 to produce
an item characteristic curve (ICC) for an item. Therefore, studying the effect of LID on, say, the a-values is
not very meaningful without considering the corresponding changes in the b- and c-parameters for a
particular item. Various combinations of a-, b-, and c-parameters can produce ICCs that appear to be similar
throughout most of the range of ability. Therefore, in this section, the impact of the various simulated
degrees of LID on the item and test characteristic curves will be described and discussed.

Figures 2 through 4 present three sets of examples of overlay plots of the ICCs for each of the four LID
levels. These plots tie together the results cited so far. Figure 2 presents the overlay plots for Item 5, which
displayed only mild effects as a result of the increase in LID. For the zero and low LID levels, the ICCs are
very similar. For the medium LID level, a slight crossing of the ICCs begins to emerge, with the estimated
ICC dipping slightly below the true ICC at the lower end of the ability scale and rising slightly above the
true ICC at the high end of the ability scale. At the high LID level, the ICCs diverge slightly more and in the
same direction as for the medium LID condition.
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Figure 3 represents the typical effect displayed for the ICCs at the various LID levels. Here, slight effects are
observed even at the low LID level, but the effect becomes stronger as the LID is increased. Finally, Figure 4
shows a strong effect of the LID, particularly for the high LID level. A large number of items showed this
degree of effect for the high LID. These effects highlight the underestimation of the c-parameters, as the
success probabilities for low scoring test takers are underestimated. The overestimation of the a-parameters
is also evidenced by the increase in the steepness of the ICC.
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The test characteristic curve (TCC) overlay plot presented in Figure 5 demonstrates the effects of the LID
over the entire test. For the zero, low, and medium LID levels, there is essentially no difference from the true
TCC. For the high LID level, however, the underestimation of low scores and the overestimation of high
scores is readily apparent.
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The Effect of Local Item Dependence on Scores

Up to this point, the effect of LID was analyzed at the item level. However, it was also important to deter-
mine the effect of LID on test scores. In order to study the effect of LID at this level, both score distributions
and rank order correlations were evaluated.

Score Distributions

While studying the effects of LID on item parameters and ICCs are interesting and useful, many
practitioners are also concerned with the effect of LID on score distributions. The overlay plots of the score
distributions for the four levels of LID presented in Figures 6 through 9 provide global pictures of the effect
of LID on this outcome measure. In each of these figures the true score distribution derived using the true
item and ability parameters, the estimated true score distribution derived using the item and ability
parameters estimated for the simulated data, and the observed score distributions are overlayed on a single
plot. The estimated true and true score distributions were derived by applying Lord's (1980) method for
estimating score distributions. The observed score distribution was derived by calculating a number-right
score for each test taker and then calculating the frequency distributions for these scores.
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For the zero LID level presented in Figure 6, the three distributions are very similar. The estimated true
score distribution is shifted slightly to the right and peaks slightly higher as compared to the true
distribution, but this difference appears to be nonsignificant. For the low LID level in Figure 7, the three
distributions are practically identical. Figure 8 demonstrates that for the medium LID level, some slight
differences begin to emerge, with the observed and estimated true score distributions peaking somewhat lower
than the true score distribution. Figure 9 shows that at the high LID level, the differences become dramatic. The
observed and estimated true score distributions are still very similar to one another, but they lose their normality
and do not resemble the true score distribution. The distributions for the high LID data spread out for reasons
related to what was observed for the item characteristic curves in the previous section. Again, the scores of low
ability test takers are underestimated and the scores of high ability test takers are overestimated. This effect
causes the score distribution to spread out at the tails and flatten in the middle.

Rank Order

Table 16 presents the Spearman rank order correlation coefficients among the true, estimated true, and
observed scores for the various levels of LID. These correlations are all .9 and over until the high LID level is
reached. Here, the correlations between the rank orderings drop to .625 for the true and estimated true
scores and .638 for the true and observed scores. The rank order correlation between the observed and
estimated true scores remains high at .973. This indicates that when the LID becomes severe, not only are
high scores overestimated and low scores underestimated, but the relative standing of individuals is also
affected.

TABLE 16
Spearman Rank Order Correlations

Level of LID True Observed

Zero Estimated True 0.9598 0.9942

True 0.9547

Low Estimated True 0.9448 0.9943

True 0.9374

Medium Estimated True 0.9115 0.9953

True 0.8956

High Estimated True 0.6254 0.9730

True 0.6383
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Conclusions and Future Directions

The impact of LID was explored for both the calibration results and score distributions. Some observations
regarding the Q3 statistic were also made. This section discusses some conclusions that may be drawn based
on the findings reported here. The implication of these findings for measurement are also discussed, and
some future directions are suggested.

Impact of Local Item Dependence on Calibration Results

Overall, the results observed for the calibration of the dependent data revealed that violations of the local
item independence assumption cause low scores to be underestimated and high scores to be overestimated.
This effect has the expected impact on the IRT calibration results. The underestimation of low scores causes
the c-parameter to drop, and the increased steepness of the item characteristic curve causes the a-parameter
to become inflated. The b-parameter tends to be underestimated. The item and test characteristic curve
overlay plots demonstrate these outcomes most effectively. The impact was mainly observed for the high
LID level, while the effects for the low and medium LID levels appeared to be minimal. Fortunately, the
LSAT appears to exhibit at most only medium levels of LID.

At the medium LID level, some mild effects of the LID were observed. This would imply that the effect of
violations of local item independence on LSAT calibration results should be monitored, but the effects are
not likely to be problematic. The effects of high LID on the calibration results are very problematic, and the
application of unidimensional IRT to data displaying this level of LID may not always be appropriate.
Again, it should be noted that the Q3 statistic has a tendency to underestimate high LID. Therefore, it is
possible that the LSAT does have a higher level of LID than was defined here as "medium," but the LID was
underestimated by the Q3 statistic.

Impact of Local Item Dependence on the Score Distribution

The effects of LID observed for the calibration results manifest themselves in predictable ways in the score
distributions. As LID levels were increased, the underestimation of low scores and overestimation of high
scores caused the score distribution to be spread out at the tails and flatten in the center. This effect was
observed most clearly for the high LID level. One very encouraging result was observed, however, with
respect to the score distributions. While a high level of LID caused the observed and estimated score
distributions to depart dramatically from the true distribution, the observed score distribution was modeled
quite well by the score distribution predicted from the dependent IRT parameters. Therefore, when our
purpose is to model observed data, IRT performs quite well, even in cases of extreme LID.

Again, these results imply that for tests displaying only a low degree of LID, there is no reason for concern.
Even for the medium LID level, representing the LSAT, the results do not appear to be problematic. It is at
the high LID level that these effects become troublesome for certain purposes.

The Q3 Statistic

The results presented in this study suggest that the Q3 statistic should be studied further. The simulation
portion of this study indicated that for medium and high LID levels, the true LID was not adequately
reflected by the Q3 statistic after the data were calibrated. This result is due to the fact that the item and
ability parameter estimates, which are contaminated by the LID of the data, are used in the calculation of the
statistic. It seems logical that as the LID level increases, this contamination becomes more extreme, and the
true LID is underestimated. This problem is greater when a high level of LID exists for a large block of
items. As was discussed in the results section, perhaps the correction factor of -1/(n-1) suggested by Yen is
appropriate only in cases of zero and low LID and is inappropriate when the dependence becomes greater.
This also implies that the results observed for the real-data analyses may represent an underestimate of the
true state of LID. Throughout this study, the high LID level has been described as an extreme case of LID
that would only be observed in rare situations. However, it is possible that the higher levels of LID that do
exist in the real data have been underestimated and the high LID level simulated is not as rare as implied
here. Further research should be carried out in order to investigate this em.
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Implications for Measurement

The results observed and discussed here indicate that applying unidimensional item response theory to test
data that exhibit a high degree of LID may not always be appropriate. For any test displaying the highest
level of LID studied here, the application of IRT would unfairly advantage some test takers and
disadvantage others. Even at the medium LID level, some degree of caution should be applied. While the
effects at this level are not as dramatic as those observed for the high LID level, some effect is readily
apparent. In any case, the degree of violation of the local item independence assumption should be
investigated for any operational testing program, as there are likely to be many tests that display a degree of
LID that falls somewhere in between the medium and high LID levels studied here. As has been discussed,
there are also likely to be some testing situations in which the level of LID is in fact as high as the high LID
level. For these cases, the application of IRT is obviously problematic.
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FIGURE 10. Test information function overlay plot
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In terms of various IRT applications, these results are very problematic. The LSAT is assembled to match
target test information functions and target score distributions. While information functions were not
studied here, it has been shown that LID causes an overestimation of this measure (Yen, 1993). Figure 10
overlays the test information functions for the true parameters and the parameters derived for the high LID
level. The overestimation of this measure for high LID is clearly apparent. A test assembled to match target
test information curves when the local item independence assumption is being violated to a significant
degree would result in a test that is not providing as much information as is intended.

In terms of a target score distribution, an assembly based on essentially independent data might result in a
test with higher LID due to context effects. The test thus assembled might not have the intended IRT
characteristics due to LID influences.

Possibly the widest current application of IRT is to test equating, and the effect of LID has clear implications
for this procedure. LSAC equates the LSAT using IRT true-score equating. Consider, for example, the case
where an operational test form is administered to a group of test takers along with a test section containing
pretest items. A situation may arise where the operational form has a high level of LID while the pretest
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section does not. When the operational form and the pretest section are calibrated together, the operational
items will have the greatest impact on the ability scale. Thus, the LID will have a contaminating effect upon
the experimental items even though they do not show a high degree of LID on their own. In this particular
situation, the common population has a contaminating effect on the pretest items even though the LID
among these items is not problematic.

In the application of IRT to computerized adaptive testing (CAT), violations of the local item independence
assumption becomes a serious issue. Here, the test taker is presented with test items via computer
administration. As the test progresses, information functions are derived for the available items, and the
item providing the maximum information at the current estimate of the test taker's ability is selected for
administration. Usually, when the standard error of the test taker's ability estimate has been lowered to a
predefined level, the testing session is terminated. Since the standard error in IRT is the reciprocal of
information, the overestimation of information discussed earlier (see Figure 10) is clearly a problem. While
the information function is overestimated, the standard error is underestimated, and the test taker's ability
is not being estimated with as much precision as we think. Perhaps the greatest problem with CAT is that
the effect of LID is difficult to assess since each test taker responds to a different set of items that may in
combination yield varying degrees of LID. Some researchers have been addressing this problem with the
use of testlets or item bundles. The potential for inequities in the CAT environment should definitely be
addressed in some way.

Future Directions

The results observed here make it clear that much more research is needed on this vital assumption of IRT.
More research should be carried out with the Q3 statistic in order to determine how to interpret this statistic
more clearly or to improve upon it.

While this study thoroughly investigated the overall effects of violations of the local item independence
assumption on the calibration results and score distribution, the impact of this problem for the individual
test taker was not directly investigated. The results observed for the Spearman rank order correlation
coefficient revealed that the relative standing of test takers is affected by LID. Future research should
explore the extent to which the percentile ranks of test takers at different points along the ability scale are
changed from their true percentile ranks when LID is introduced into the data. ,

As was mentioned above, the results observed have implications for the use of IRT in many testing
applications. The effect of LID on test assembly based on both target information functions and target test
characteristic curves should be explored. Also, the impact of LID on IRT equating should be investigated
thoroughly. Finally, future research should proceed toward equalizing the effects of LID for test takers in the
CAT environment.
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