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~ Executive Summary

In the analysis of individual Law School Admission Test (LSAT) questions and the assembly and evaluation
of LSAT forms, item response theory (IRT) is applied. IRT is a mathematical model that relates the probability
that a test taker will answer a test question correctly to the ability level of the test taker. In applying IRT, a
formal assumption of local item independence is made. This assumption states that, once the ability level of the
test taker is accounted for, the responses of the test taker to individual items on the test should be statistically
independent. In other words, test taker ability should be the only factor contributing to the test taker’s
performance on an item.

In a test taking situation, many circumstances arise that cause the local item independence assumption to be
violated to some degree. For instance, in the Reading Comprehension section of the LSAT, several test
questions are based on a common reading passage. Here, regardless of a test taker’s reading comprehension
ability, individual performance on all of the questions related to a particular passage may be enhanced or
hindered by a prior level of knowledge of the subject matter of the passage. To the extent that a factor such as
this causes a test taker to perform similarly on certain test questions, the test is said to exhibit some degree of
local item dependence (LID).

Because local item independence is formally assumed in applications of IRT, LSAT research related to the
local item independence assumption has centered primarily around IRT outcomes and measures. However, a
category of statistics commonly known as classical statistics is also applied for certain purposes in the analysis
of LSAT questions and test forms. Among the classical statistics applied in the analysis of LSAT data are an
item/test correlation statistic (called the r-biserial), an index of reliability, and the percentile rank associated
with each LSAT score. The r-biserial is an index of item discrimination used as an indicator of how well a test
question distinguishes between more and less able test takers. This statistic is a common index of the quality of
a test question. The reliability coefficient, calculated for each form of the LSAT, is an indicator of how
consistent an individual’s test score would be if they were to take the same form of the test many times. The
percentile rank associated with a particular test score is the percent of test takers falling below that test score.
Percentile ranks are routinely provided to test takers and law schools.

Although local item independence is not formally required for classical statistics, the impact of LID on these
measures should be better understood. That is, to the extent that these statistics are influenced by the unknown
effects of LID, the decisions made and procedures carried out using these statistics may be compromised.
Therefore, this study extends past LSAT research related to the IRT local item independence assumption into
the realm of classical test theory. Initially, results from the LSAT and two other tests were investigated to
determine the approximate state of LID found in actual test data. Based on these analyses, four levels of LID
(zero, low, medium, and high) were defined and associated data sets generated. Here, the medium LID level was
defined to represent the LSAT. The classical statistics described above were studied in order to determine the
effect of LID on these measures.

The results indicated that for extreme cases of LID, the discrimination power of individual items and the
reliability of the total LSAT are overestimated. Percentile ranks were also clearly affected by the introduction of
a high level of LID, indicating that the impact for individual test takers should be of concern. Because the LID
became problematic only at the most extreme level simulated, the less than extreme level of LID typically
displayed by the LSAT is probably not problematic with respect to these particular outcomes.

Abstract

This study extends past Law School Admission Council (LSAT) research related to the item response theory
(IRT) local item independence assumption into the realm of classical test theory. Initially, results from the
LSAT and two other tests were investigated to determine the approximate state of local item dependence (LID)
found in actual test data. Yen’s Qj statistic was employed for this purpose. Based on these analyses, four levels
of LID were defined and associated data sets generated. Here, the average case was defined to represent the
LSAT. Values of the r-biserial statistic and the a reliability index were studied to determine the effect of LID on
these measures. Percentile ranks were also studied in order to assess the impact of LID for individual test takers.
The results indicated that for extreme cases of LID, the discrimination power of individual items and the
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reliability of the total test are overestimated. Percentile ranks were also clearly affected by the introduction of a
high level of LID, indicating that the impact for individual test takers should be of concern. Because the LID
became problematic only at the most extreme level simulated, the less than extreme level of LID typically
displayed by the LSAT is probably not problematic with respect to these particular outcomes.

Introduction

Past research concerning violations of the local item independence assumption for the Law School
Admission Council (LSAT) has centered primarily around item response theory (IRT) outcomes and measures.
This is quite natural, given that the local item independence assumption is a formal requirement for IRT
applications. However, classical statistics are still derived for the LSAT and utilized for some purposes.
Statistics such as the item/test correlation (r-biserial) are useful tools for evaluating item quality, and many
practitioners still use this statistic in the test assembly process. Although the r-biserial is not used in the
assembly of LSAT forms, this statistic is studied in evaluating the quality of individual LSAT pretest items.
Classical reliability indices are also useful for evaluating individual test forms, and a reliability index is
routinely calculated for each form of the LSAT. In terms of the individual test taker, percentile ranks are often
used to evaluate the standing of an individual with respect to other test takers, and such indices are reported to
LSAT takers. Although local item independence is not formally assumed for these measures, the impact of local
item dependence (LID) on these measures should be better understood. That is, to the extent that these statistics
are influenced by the unknown effects of LID, the decisions made and procedures carried out using these
statistics may be compromised. Therefore, the effect that LID has on these measures is still of interest to the
practitioner. Given this concern, the goal of this study was to extend past LID research beyond the realm of IRT
to determine the impact of this property for classical statistics. The results obtained should aid in the
interpretation of these statistics for various purposes.

Local Item Dependenée in Real Data

In order to realistically model LID, estimates of the true state of LID found within actual test data had to be
obtained. Because it was desirable that these levels of LID be realistic, data from the LSAT were studied, along
with data from the Pre-American College Test Plus (P-ACT+) and the Graduate Management Admission Test
(GMAT). All three tests are similar in that they are large-scale high-stakes tests of acquired skills. The LSAT
and GMAT are used as aids in graduate-level admissions decisions, while the P-ACT+ is administered to tenth-
grade students. All of the tests have a large verbal component, and all contain a reading comprehension section.
However, the GMAT and P-ACT+ add a quantitative dimension, and the P-ACT+ also includes a science
measure.

The level of LID displayed by the real data was explored by employing Yen's (1984) Q; statistic. For two
items i and j, the statistic is

O;=rau, 1)

a correlation among d; and d; values. For test taker k (adding an identifying subscript),

dik = uix — Pi( G ), (2)

where u; represents the score of the A test taker on item i (one if correct, zero otherwise) and Py(6)) represents
the probability of test taker k responding correctly to item i. The data for these three tests were calibrated using
BILOG (386 BILOG 3, Mislevy & Bock, 1990) to obtain estimates of P(6). The default scoring method,
number of quadrature points, and priors for the item and ability parameters were used. All calibrations
converged normally.

Q; values were calculated for each pair of items for each of the three tests studied. Summary statistics of the
Q; statistics were evaluated within- and between-test sections and within- and between-item sets. The results of
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these analyses (see Reese, 1995a) were then used to define the levels of LID to be simulated. It should be noted
here that Yen (1993) has observed that Q; tends to have a slightly negative bias because IRT item probabilities
that assume local item independence are used in its calculation. Therefore, she suggests that a Q; value of
-1/(n-1), where n represents the number of items in the test being analyzed, is expected when there is no LID.
The deviation of the Q; statistic from this “criterion” value (Q; - criterion value) was used in the definition of
the LID levels to be simulated in this study.

Tables 1 through 4 present the starting Q; values and the simulated Q; values for the zero, low, medium, and
high LID levels, respectively. The cells of these tables represent the four sections of the test data to be
simulated, with the diagonal elements representing the within-section LID and the off-diagonal elements
representing the between-section LID. Since LSAT item parameters were used as the generating parameters, a
four-section, 101-item test was simulated. The sections have 24, 24, 25, and 28 items; section sizes typically
found in the LSAT. The starting values in these tables represent the Q; values specified in the data generation
step, whereas the simulated values represent the mean Q; values actually recovered by the data generation
process. Each of these cells will be discussed in greater detail below.

TABLE 1
Q3 starting values and simulated recovered values for the zero LID level
Section 1 Section 2 Section 3 Section 4
Section 1
Starting 0.000
Simulated 0.000
Section 2
Starting 0.000 0.000
Simulated 0.001 0.001
Section 3
Starting 0.000 0.000 0.000
Simulated 0.000 0.000 0.000
Section 4
Starting 0.000 0.000 0.000 0.000
Simulated -.001 0.000 0.000 0.000
TABLE 2
Q3 starting values and simulated recovered values for the low LID level
Section 1 Section 2 Section 3 Section 4
Section 1
Starting 0.010
Simulated 0.012
Section 2
Starting 0.000 0.010
Simulated 0.000 0.012
Section 3
Starting 0.000 0.010 . 0.010
Simulated 0.000 0.012 0.010
Section 4
Starting 0.000 0.000 0.000 0.010
Simulated 0.000 0.001 0.000 0.011




TABLE 3
Q3 starting values and simulated recovered values for the medium LID level
Section 1 Section 2 Section 3 Section 4
Section 1
Starting 0.050
Simulated 0.046
Section 2
Starting 0.010 0.020
Simulated 0.011 0.017
Section 3
Starting 0.010 0.020 0.020
Simulated 0.012 0.017 0.016
Section 4
Starting 0.010 0.010 0.010 0.030
Simulated 0.014 0.009 0.010 0.027
TABLE 4
Q3 starting values and simulated recovered values for the high LID level
Section 1 Section 2 Section 3 Section 4
Section 1
Starting 0.300
Simulated 0.329
Section 2
Starting 0.050 0.300
Simulated 0.053 0.308
Section 3 L
Starting 0.050 0.300 0.300
Simulated 0.049 0.299 0.288
Section 4
Starting 0.050 0.050 0.050 0.300
Simulated 0.054 0.053 0.049 0.326

The starting values for simulating various levels of LID are presented as the top values in each cell of Tables
1 through 4. Data for the zero LID level, represented by Table 1, were simply generated by specifying zero LID
between each pair of items. As displayed in Table 2, the low LID level was defined by assigning a low within-
section starting value of .01 for all within-section cells. This value represents the lowest degree of within-
section LID observed in the real data analyses rounded to the nearest significant digit. Note that for the low,
medium, and high LID levels, the LID between sections 2 and 3 was assigned the same starting value as
assigned within sections, because on the LSAT, these sections represent the same content, logical reasoning. For
all other between-section cells, a value of 0.00, representing no LID, was assigned. Medium LID was defined
by the values presented in Table 3. The within-section LID displayed by the LSAT was used here to define the
within-section LID, because the LID displayed by this test was judged to be about average in comparison to the
other two tests studied. The between-section value, for which a constant was chosen (with the exception of the
between-section value for sections 2 and 3, as discussed above), was determined by studying the within-section
LID displayed by each of the three tests analyzed. The value of .01 represented an approximately average level
of between-section LID. Finally, Table 4 represents the starting values for the high LID level. The within-
section LID was defined as the highest within-set LID observed, and the between-section LID was defined by
the highest between-set LID observed.

8
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Data Generation

To create simulated data, item responses (0 or 1) were generated to match the LID structures defined in
Tables 1 through 4. Item parameter estimates obtained from a typical LSAT calibration were treated as true item
parameters. Figure 1 overlays all of the item characteristic curves for this test and demonstrates the diversity of
the item parameters being used as true parameters. For each level of LID defined, responses to a 101-item test
consisting of four sections were simulated for 4,000 test takers with standard normally distributed ability values.
The same sample of ability values was used in the data generation for each of the LID levels. The sample of
generated ability values was rescaled by a linear transformation to ensure that the sample mean and standard
deviation were exactly zero and one, respectively. Specifically, the steps followed in the data generation are as

follows:
Step 1:

Step 2:

Step 3:

Step 4:

Step S:

A desired Q; correlation structure among the items was defined (see top row in each cell of
Tables 1 through 4).
The target correlations were adjusted by applying the equation

Q%35 = 1.8Qy;, : €)

where Q3;; may be found in the top row of each cell of Tables 1 through 4. The reason for this
adjustment will be discussed further below.

A vector x of multivariate random deviates was generated according to the adjusted Q; values
derived in step 2. :
Using the inverse normal transformation, x was transformed to y, a vector of uniform (0,1)
deviates. The adjustment applied in step 2 was necessary because the inverse normal
transformation applied here is nonlinear. Results described below will demonstrate that the
adjustment was quite effective.

Each uniform deviate was compared to individual item correct probabilities in order to obtain 0
or 1 item responses.

For a more detailed description of the data generation method, see Pashley and Reese (1999).
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FIGURE 1. Overlay plot of true item characteristic curves

Accuracy of Data Simulation

At the outset, it was important to verify that the data generation had produced the desired LID structure. The
lower values presented in each cell of Tables 1 through 4, labeled as “simulated,” represent the levels of LID
achieved in the simulated data. These values were calculated by utilizing the true item and ability parameters
and the generated item responses. Comparing these values to those directly above them in each cell of these
tables reveals the high degree of accuracy achieved by the data generation method. The zero LID level was
achieved almost exactly. The low LID level was also achieved very well, with discrepancies found only in the
third decimal place. Differences of this degree are not considered problematic. For the medium LID level, all
local dependencies achieved round to the desired values. Finally, for the high LID level, the within-section LID
of .3 and the between-section LID of .05 were both achieved quite well.

The Effects of Local Item Dependence on Classical Statistics
The Effect of LID on the R-biserial Statistic

In the analyses carried out to determine the effect of LID on the r-biserial statistic, the zero LID level, which
represents the case of perfect local item independence, was used as the reference for comparison. That is, the
r-biserial statistic calculated for the low, medium, and high LID levels was compared to those calculated for the
zero LID level.

Tables 5 and 6 present summary statistics and correlation coefficients for the r-biserial statistic for each LID
level. These were inspected visually in order to gain a general sense of where differences arise. The summary
statistics for the r-biserial presented in Table 5 indicate that the mean value of this statistic increases as the LID
increases. The change in the mean for this statistic is very slight as we go from the zero LID level to the low and
medium LID levels. The high LID level shows the greatest change. The standard deviation remains fairly
constant, however, across all four LID levels. The correlation coefficients for this statistic, presented in Table 6,
are consistent with these results, as the r-biserials for the low and medium LID levels are very strongly
correlated with the r-biserials for the zero LID level (.97 and .95, respectively), but the correlation between the
zero and high LID levels drops to .72.

Q
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TABLE 5
Summary statistics for the r-biserial by LID level
Zero Low Medium High
Mean 0.42 0.43 0.45 0.63
S.D. 0.09 0.09 0.08 0.09

TABLE 6
Pearson correlation coefficients among r-biserial values by LID level
Low Medium High
Zero 0.97 0.95 . 0.72
Low 0.96 0.72
Medium 0.65

The root mean squared error (RMSE) statistic was calculated to compare the values of the r-biserial statistics
for each of the dependent LID levels (low, medium, and high) to the zero LID level. This was accomplished by
calculating .

RMSE= LS a-p 7%, )

ni=;

where n represents the number of items, I represents the independent r-biserial statistic ( zero LID level), and
D represents the r-biserial for the low, medium, or high LID level. The bias statistic comparing the r-biserial
values was calculated as follows

Bias = iz":(l -D). (%)
n

i=l

Table 7 presents the bias and RMSE statistics for the r-biserial. The results presented here are consistent
with results discussed earlier. The overestimation of the r-biserial is clearly borne out in this analysis. A slight
negative bias at the low and medium LID levels becomes much stronger for the high LID level. Similarly, the
error in this statistic increases as the LID increases.

TABLE 7
RMSE and bias statistic between the independent and
dependent r-biserial values

LID Level
Low Medium High
Bias -01 -.03 -21
RMSE 0.02 0.04 0.22

The results presented here for the classical index of discrimination are consistent with what has been
observed for IRT statistics. Here, analyses of the zero through high LID data revealed that the a-parameter is
overestimated for the high LID level (Reese, 1995b). Masters (1988) and Yen (1993) have also noted that an
increase in LID causes the a-parameter to be overestimated. They attribute this overestimation to the fact that a
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strengthening of the relationship between two items causes the relationship between an item and the total test to
be strengthened, thereby causing the item to appear to be more discriminating than it really is. It seems logical
that this same effect would be observed for both classical and IRT indices of item discrimination. For the LSAT,
these results are very positive in that the r-biserial statistic was not seriously affected by the degree of LID

defined for the medium LID level. This result indicates that this statistic is not adversely affected by the degree
of LID generally present for LSAT data.

The Effect of LID on Reliability

A coefficient a reliability index (Nunnally, 1978) was calculated for each of the simulated datasets; and these
values are presented in the first column of Table 8. This statistic is fairly high for the zero LID level (0.91), as
would be expected for a 101-item test. Reliability values for the low and medium LID levels represent only a
slight increase over the zero LID value, but the reliability index for the high LID level is more extreme. To
clarify the magnitude of these differences, a derivation of the Spearman-Brown prophesy formula (Nunnally,
1978, p. 211) was applied to determine the extent to which a test of zero LID would have to be lengthened in
order to achieve each of the three dependent reliability indexes. The equation applied in this analysis is given by

_ry-(ryr)

n n. .
new rl_(rDrl) old

where n,,,,, is the new test length, n,,, is the length of the zero LID test (i.e., 101 items), ry, is the reliability
coefficient calculated for the dependent data (low, medium, or high LID), and r, is the reliability coefficient
calculated for the zero LID data. This analysis revealed that the zero LID test would have to be lengthened by
14 items to achieve the reliability index that was observed for the low LID level. Thirty-two additional items
would be needed to achieve the reliability index that was observed for the medium LID level. In sharp contrast,
the length of the zero LID test would have to be more than tripled in order to achieve the reliability index of .97
estimated for the high LID data. On the surface, these results might suggest that LID is actually good for a test
as it seems to increase reliability. However, these results are deceiving.

(6)

TABLE 8
Analysis of the coefficient a and p by LID level
Number of Number of
items needed items needed
for zero LID for zero LID
a test of this a G2 62 62 p test of this p
Zero 0.91 101 211.6 230.3 18.7 0.92 101
Low 0.92 115 211.6 239.2 27.6 0.88 64
Medium 0.93 133 211.6 264.9 53.3 0.80 35
High 0.97 323 211.6 518.3 306.7 0.41 6

The remainder of Table 8 presents a true-score analysis of these effects. Using the generating item and ability
parameters, an estimate of the true-score variance (67 ) was derived. The observed-score variance (6}) was
simply calculated from the observed-score data for each LID level. Using these values, an estimate of the true
reliability (5 ) was derived by applying the equation

"_ O
p==
(o}

(7

a2 b L
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In studying these values, found in column 6 of Table 8, it is clear that the LID modeled here actually reduces
the true reliability of the test, as would be expected.

The final column of Table 8 confirms the true influence of LID on reliability. Here, the Spearman-Brown
prophesy formula was again applied to determine the effective test length for each of the levels of LID. We see
that a 101-item test of low LID is actually comparable to a 64-item test of zero LID and a 101-item test of
medium LID is comparable to a zero LID test of 35 items. Again, the results for the high LID level are the most
alarming. A 101-item test of high LID is actually comparable to a zero LID test of only 6 items. Clearly, LID
does not add to the precision of the test, but rather distracts from it.

Returning to the results obtained for the coefficient a, it is clear that the degree of LID displayed by the low
and medium LID data causes some overestimation of this reliability index, whereas the LID simulated for the
high LID level results in a strong overestimation of the reliability index. This overestimation is a direct result of
the systematic error introduced into the data in the form of LID. In calculating coefficient a, split-halves of the
test were analyzed, and the usual assumption was made that the errors on these split-halves were uncorrelated; a
clearly incorrect assumption. Stronger LID results in more systematic error, and thus a stronger overestimation
of the reliability coefficient. The true-score analyses presented in Table 8 demonstrate that not only can
coefficient a overestimate the reliability of a test, as was reported by Sireci, Thissen, and Wainer (1991) and
Wainer and Thissen (1996), but LID actually reduces the reliability of a test.

The IRT analog to the reliability coefficient is the test information function. Research has shown that LID
causes this function to be overestimated (Reese, 1995b; Yen, 1993). So again, the results observed here for the
classical statistics are consistent with what has been observed for IRT.

The Effect of LID on Percentile Ranks

Because it was of interest to determine the impact of LID for individual test takers, percentile ranks were
studied. Percentile ranks for the LSAT are reported to test takers along with their individual LSAT scores, so the
accuracy of this measure is certainly of interest. Initially, the percentile rank of each individual test taker was
determined for each level of LID. Analyses were then carried out in order to compare the percentile ranks
observed for the low, medium, and high LID levels to those observed for the zero LID level.

The RMSE and bias statistics were calculated to compare the values of the percentile ranks for each of the
dependent LID levels (low, medium, and high) to the zero LID level. This was accomplished by applying
Equations 4 and 5, where n represents the number of test takers,  represents the independent percentile ranks
(zero LID level), and D represents the percentile ranks for the low, medium, or high LID levels.

The top row of Table 9 presents the results of this analysis. For the bias statistic, a positive value is observed
for the low LID level, while a negative value is observed for the medium and high LID levels. These values are
negligible in all instances. The RMSE statistic, however, more than doubles as the LID level increases from low
to high. The reason for the disparity between these two statistics is borne out in the next set of analyses.

13
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TABLE9
RMSE and Bias statistic between the independent and dependent
percentile ranks calculated for the total sample by quartile

LID Level

Low Medium High
Total sample percentile rank
Bias 0.04 -.06 -.01
RMSE 12.14 14.84 24.92
Independent percentile rank from 0 to 25
Bias -3.63 -5.32 -14.56
RMSE 11.49 14.18 26.50
Independent percentile rank from 26 to 50 :
Bias -1.18 -1.78 -4.54
RMSE 13.99 16.71 24.73
Independent percentile rank from 51 to 75
Bias 2.43 2.60 6.05
RMSE 13.90 16.52 24.45
Independent percentile rank from 76 to 100
Bias 2.60 4.41 13.48
RMSE 8.36 11.36 23.81

In order to determine if the impact of the LID varied according to the ability level of the test taker, test takers
were grouped into four quartiles based on their percentiles for the zero LID level. The RMSE and bias statistics
were then calculated again based on these groupings in order to determined if test takers at a particular level of
ability are disadvantaged to a greater or lesser extent as a result of the LID.

The remaining portion of Table 9 presents the results of the analyses for the grouped percentile ranks. Here,
the bias statistic indicates a tendency for the percentile ranks to be overestimated for the two lower quartiles and
underestimated for the two higher quartiles. The bias for all quartiles starts off fairly low for the low LID level,
increases for the medium LID level, and more than doubles for the high LID level. The extreme quartiles show
the greatest effect due to the increasing LID. The degree of bias is similar for these two extreme groups, though
opposite in direction. It seems clear that these values canceled each other out in the analyses run for the total
group.

In terms of the RMSE statistic, the results indicate that the error increases as the LID increases for all
quartiles. As has been the case for all other outcome measures evaluated in this research, a slight increase in this
statistic occurs between the low and medium LID conditions, and a much greater increase occurs between the
medium and high LID conditions. The error essentially doubles from the low to high LID level for the first three
quartiles, and it nearly triples for the highest quartile as the LID is increased from low to high. The greatest error
is incurred for the lowest quartile at the high LID level, but the RMSE values at this level are quite high and
fairly similar for all four groups. For all three LID levels, RMSE values are a bit lower for the extreme
percentile groups as compared to the two middle percentile groups. In fact, for all three levels of LID, the lowest
RMSE values are observed for the highest quartile.

Previous research has reported that a high degree of LID causes low scores to be underestimated and high
scores to be overestimated (Reese, 1995b). The results presented here indicate that at the high LID level, the
underestimation of low scores results in higher percentile ranks for lower scoring test takers and the
overestimation of high scores results in lower percentile ranks for higher scoring test takers. Therefore, when

.actual test scores are of interest, high LID results in an unfair advantage for high scoring test takers and an
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unfair disadvantage for low scoring test takers. However, the opposite is true when percentile ranks are
considered.

With respect to the LSAT, again, there is not much cause for concern. The introduction of medium LID did
not have an extreme effect on the percentile ranks of individual test takers. To the extent that the LID observed
for the LSAT remains constant across test forms, the percentile ranks of individual test takers are not adversely
affected by this characteristic of the test data.

Discussion

The results obtained in this research should be of interest to those who rely on classical item and test statistics
for the LSAT and for other tests. Fortunately, at the level of LID displayed by the LSAT, the effects are minimal
and not problematic. However, an item presented in a high LID test or test section will appear to be more
discriminating than is actually the case. Therefore, any decisions made concerning the quality of that item or its
contribution to a test may be invalid. In terms of test assembly, a test assembled based on statistics derived
within a test form or section displaying a high level of LID will not possess the level of discrimination or
reliability predicted by the classical statistics. A better understanding of these issues should prove to be very
valuable to those carrying out such procedures.

In terms of the results presented for the percentile ranks, the implications for individual test takers are clear.
A high level of LID results in an unfair bias for this index of test taker performance. Here, the high scoring test
taker is at a disadvantage while the performance of the low scoring test taker is overestimated. Because most
admissions decisions are likely made at the middle and high scoring levels, the implications for the low scoring
test takers are probably not as problematic. For LSAT takers, again, because no significant effects on this index
were observed at the medium LID level, there is no cause for concern. The results presented here do, however,
indicate that the effects of LID should be monitored for classical test theory outcomes as well as IRT outcomes
for any testing program utilizing these measures.

With respect to item-level statistics, this study did not address the effect of LID on the estimation of item
difficulty. In the data simulation routine applied here, the value of the p+ statistic, or the percent of test takers
answering an item correctly, was held constant. Therefore, it was not possible to assess the effect of LID on this
statistic with the data sets analyzed here. Previous research has indicated that high LID causes low scores to be
underestimated and high scores to be overestimated (Reese, 1995b). It seems to logically follow that the effect
of high LID on the p+ statistic would differ based on the ability level of the test takers. The p+ would be
underestimated for low scoring test takers and overestimated for high scoring test takers. Such effects may wash
out when an entire group of test takers is considered, resulting in minimal overall impact for this statistic.
Further research should be carried out to verify this hypothesis.
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