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Executive Summary

With the increased use of computerized adaptive testing, which allows for continuous testing, new concerns
about test security have evolved, one being the assurance that items in an item pool are safeguarded from theft.
As the Law School Admission Council (LSAC) investigates implementing a computerized version of the Law
School Admission Test (LSAT), the risk to test security and tools for protecting test items should be explored.
The goals of this study include examining test taker success at achieving test score inflation when using item
preknowledge and the feasibility of using an odds ratio index as a tool for test security.

This project used simulations based on results from an operational computerized adaptive test (CAT). The
design applied a real-world approach to simulate the "item preknowledge" process by incorporating a two-
stage process. First, for each condition, the design sent in n sources to memorize test items from a 28-item
test. These n test takers memorized their items perfectly and then combined their lists. (Some overlap was
observed among the lists.) The complete list was memorized by another group of test takers, the beneficiaries.
Then, the beneficiaries were administered a 28-item test, and if they were administered any of the memorized
items, they answered them correctly. (Although we acknowledge that memorizers may not have perfect recall
of the item list, the simulation was designed to produce a worst-case scenario for the testing program.)

Simulated test takers were generated at true scores from a discrete uniform distribution at 11 ability, 0,
values. The 0 values were translated into a number correct true score on a linear 60-item reference test and
correspond to the operational test's score range (10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 59). Along with varying
the proficiency of the sources (50, 55, 59), groups of two, four, and eight sources were simulated for the
various memorizing conditions. A control or null condition in which test takers did not have item
preknowledge was included. One advantage for using this design is that it depicts a possible reality, especially
if recording equipment is used for item theft. Another advantage is that the design maintains the roles of
content constraints and the item selection algorithm in the success of using item preknowledge in the CAT
environment.

For the memorizing simulees, across all true scores, the mean test score was inflated upward. Therefore,
we conclude that by using the source-beneficiary preknowledge strategy, the test takers were successful in
attaining higher test scores. The estimates were, of course, more inflated when the test takers had memorized
the longer lists gathered by eight sources. Even the lower ability test takers for the eight sources condition had
an average estimated test score above 40 (out of a possible 60 score points). Also as expected, information
from four sources did not deliver as much test score gain as information from eight-sources. Similarly, item
information from two sources did not aid a beneficiary as much as information from four sources. The
estimates were more variable at the lower true scores, where the test takers have more room to benefit from the
preknowledge, depending on the peculiarities of item selection. The higher ability test takers do not benefit as
much from the memorization because they are already the higher scorers.

An odds ratio procedure to detect test takers using item preknowledge was developed and then evaluated.
Specifically, three classes of models were introduced for the probability that an item had been memorized.
Based on these models, seven Bayesian indices (FLOR1- FLOR7) were developed. Results from the simulated
CAT data indicated that these indices had the power to detect item preknowledge. Overall, the best
performing index of those studied is FLOR7, because it has the most power to detect those test takers who had
preknowledge of more than half of the items on their test. FLOR3 is selected as the second best performing
index for these successful test takers. This index has the extra appeal of being simple to compute without a
previous simulation.

Abstract

With the increased use of computerized adaptive testing, which allows for continuous testing, new concerns
about test security have evolved, one being the assurance that items in an item pool are safeguarded from theft.
In this paper, the risk of score inflation and procedures to detect test takers using item preknowledge are
explored. When test takers use item preknowledge, their item responses deviate from the underlying IRT
model, and estimated abilities may be inflated. This deviation may be detected through the use of person-fit
indices. A Bayesian posterior log odds ratio index is proposed for detecting the use of item preknowledge. In
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this approach to person-fit, the estimated probability that each test taker has preknowledge of items is updated
after each item response. These probabilities are based on the IRT parameters, a model specifying the
probability that each item has been memorized, and the test taker's item responses. Simulations based on an
operational computerized adaptive test (CAT) pool were used to demonstrate the risk of item preknowledge to
test security and the use of the odds ratio index.

Introduction

With the increased use of computerized adaptive testing, which allows for continuous testing, new concerns
about test security have evolved, such as how to assure that items in an item pool are safeguarded from theft.
In this paper, a new procedure to detect test takers using item preknowledge is explored. When test takers use
item preknowledge, their item responses may deviate from the underlying IRT model, and estimated abilities
may be inflated. This deviation may be detected through the use of person-fit indices.

A New Approach to Person-Fit

Lewis (1997) proposed a posterior log odds ratio index for detecting the use of prior knowledge in a CAT
environment. The concept of odds ratios was extended to describe the increased likelihood (based on item
responses) that a response pattern arises from the normal or aberrant models, which is much like the concept
behind optimal appropriateness indices developed by Drasgow and Levine (1986). In the posterior log odds
ratio approach to person-fit, c represents the dichotomous item preknowledge state ( c or c ). If the state is c ,

then the test taker's response pattern is "nonfitting" and the test taker has memorized at least one of the test
items. If the state is c , then the test taker's response pattern is "fitting," and the test taker has not memorized
any of the items and is using underlying proficiency to respond to the test. The probability p(c) that a test
taker is using item preknowledge is updated after each item response. These "item preknowledge"
probabilities are based on the IRT parameters (assumed known), a model describing the probability that each
item has been memorized, and the test taker's item responses (Lewis, 1997). The prior probability of item
preknowledge, pp (c), is a specified value that reflects the expected proportion of test takers believed to be
using item preknowledge (e.g. 0.0001). This number may be established using empirical evidence from
traditional approaches to detect cheaters, or prior elicitation based on the decision theory literature.

The odds ratio is based on two alternative models for an item response: one that assumes an item
preknowledge state ( c ), and one that assumes a normal CE ) state. The "normal" model is the (usual) 3PL
model. The 3PL model produces the probability of an item response for varying values of O. For a correct
response to the item, denoted by ui = 1, the value is

where

=11U)=Te(ui =1119)= gi +
(1 gi)

1+ exp[Dai(0 bi)]

ai is the slope, or discrimination power of an item, which is proportional to the slope
of the curve at its inflection point;

bi is the threshold or inflection point of the curve, which is the point on the proficiency
scale where the probability of a correct response is 0.5*(I-g,);

gi is the lower asymptote, which is the probability of a correct response for test takers
with very low proficiency;

D is a constant (1.7) chosen to make the scale of the logistic closer to that of a
cumulative standard normal; and

0 is the continuous latent trait.

For an incorrect item response, the value is 1- Tu (ui = 1) for each value of 6.

6
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The "item preknowledge" model is a modified 3PL model. For this model, the probability of a correct
response to an item is the combination of (1) the probability of answering the item correctly based on the test
taker's preknowledge of the item and (2) the probability of answering the item correctly based on the test
taker's underlying proficiency in the case that the test taker did not have preknowledge of the specific item.
Specifically, if a test taker does have preknowledge of an item (has memorized the item), the item will be
answered correctly. If a test taker has not memorized the item, the probability of a correct response is

(ui = 1) . The additional quantity that must be specified is the probability that an item has been
memorized.

This paper will focus on three classes of models proposed for the probability p(m i) that an item i has been
memorized. The first class is simply a constant probability for all items in the pool. For example, p(mi) may
be set to 0.75, meaning that each item administered has a 75% chance of being memorized.

It may be assumed that cheating test takers will be more likely to memorize the more difficult test items.
Hence, another approach is to model p(m i) as a function of each item's estimated difficulty, the threshold
parameter estimate. Two such functions are

and

1

Am, I b) (2)
1 + exp(b,)

1
P(mi I b,) =

1 + exp(1 b)
(3)

The third class of models for the probability of memorization is a function of the specific item pool and
item selection algorithm used to generate the CAT. This class is empirical because it uses the operational
administration procedures to compute the probability that a specific item could potentially be memorized. The
probability that an item has been memorized is computed using simulations in which some number of simulees
memorize their tests. For example, suppose a pair of "source" simulees are sent into a test center to memorize
items. If each test is 28 items long and the members of the pair do not receive any of the same items, the pair
may take (and memorize) 56 distinct items. In most cases there will be some overlap in the items administered
to a pair, and the sources will not see, (and thus memorize,) the maximum possible number of items. Because
of content constraints and the use of exposure control algorithms, some items will be administered more often
than others. The empirical class of models for the probability that an item has been memorized has the
advantage that it incorporates all of the underlying factors in the constraints and the item-selection algorithm to
produce a value for the expected vulnerability of an item. Using the empirical approach, a value for the
probability that an item has been memorized may be specified for each pool used for a CAT. For example,
suppose an item has been exposed to 357 of the 500 simulee pairs administered in a CAT using a specific pool.
The probability that the item has been memorized using this model is 357/500, or 0.714.

The models proposed by this study for the probability that an item has been memorized are not an
exhaustive set. They represent a subset of models that are independent of a test taker's proficiency. Other
models considered include those based on the length of time that an item has been in the item pool and ability-
dependent models such as one based on the relative difficulty of an item for a test taker. The ability-dependent
models are a more difficult class to evaluate because they rely on the reliability and precision of the estimation
technique used to compute test taker abilities.

Combining the probability of a correct response, whether the result of memorizing or of using underlying
proficiency, with the probability that an item has been memorized, gives the overall probability of a correct
response given that the test taker is using item preknowledge:

= 11c) = Tc (ui = 1) (4)

= p(m,)+ p(mi))Te(u; =1)

(1 g 1)
= p(mi)+(gi +

1+ exp[Dai (0 bi)])

7
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(1 gi)
p(m,)(g, +

1+ exp[Dai (0 b,)])

= p(m,)+ g, +
(1 gi)

1 + exp[Dai (0 b,)]

(1 gi)gip(m,) p(m,)
1+ exp[Dai (0 b,)]

1

(P(mi) giP(mi ) (1
P(mi))(1 gi) 1 + exp[ Dai b1)]

(1 (p(m,) + g, g,p(m,)))
=(p(m,)+ g, g p(m,)) +

1+ exp[Da, (0 b,)]

The model may also be written as

(1 g1')
Tc(ui =1)

gi'+ 1+ exp[Da (0 bi)]' (5)

where gi' is a modified lower asymptote, p(mi) + gi - gi(p(md), and the other parameters are defined
previously (in Equation 1). Tc (ui = 1) is a modified 3PL. With the incorporation of p(m), the model
replaces the "guessing" parameter (g) with a new "guessing-plus-item-preknowledge" combination parameter,
gi', that inflates the probability of a correct response. The new gi' is always greater than or equal to g. For an
incorrect item response, the probability Tc (ui = 0) is 1- Tc (u1 = 1) for each value of O.

We now have the equations for the probability of a correct response, the probability of an incorrect
response, and a prior probability that a test taker is using item preknowledge. Using Bayes' Theorem, these
components combine with each item response to give us the posterior probability that a test taker is using item
preknowledge. The initial probability that a test taker is using item preknowledge is the prior po(c). After
each item is administered to a test taker, this probability is updated in a manner that depends on the response to
that item. For the first item, we assume that the question of whether test takers cheat is independent of their
proficiency. (There are various pressures to cheat on a test at all ranges of proficiency.) So, the joint density
of c and 9 for the first item response is p(c,e= = po(c)k)(0). The probability that a test taker is using
item preknowledge after lie first item response is p,(c) ec Tc (ui )po(c)p0(0)d9 , where Tc (u1) is
Tc (u = Dul Tc (u = 0) u1 , which is Tc (u = 1) or Tc (u = 0) , depending on the item response u,.

Integrating this with respect to 9 for both cases ( c and c ) and normalizing, we have the equation for the
posterior probability that a test taker is using item preknowledge (given that he or she responded u, to the first
item) which is not conditional on proficiency level

JTc(u1)p0(c)p0(6)d8

p1(c) Tc(ui )P0(c)P0(0)cle + To (lii)Po()P0(0)d0 (6)

After the first item, we may no longer assume that c and 0 are independent because we have updated the
distribution of proficiency using an item response that may or may not have used prior item knowledge. So,
after the test taker is administered the next item, we build our new estimate for the probability of item
preknowledge using the previous joint density of c and 0,
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Pt (c, 0)
Tc (111)130 (c)P0 (0)

f Tc (ul ) P 0 lc ) P 0 lu)dt9 + 5 Tc (ui )Po (c)P0(19)d0

which is proportional to Tc(ul)po(c)po(0) .

The probability that the test taker is using item preknowledge after the second item is

f Tc(u2 )pi (c,O)c10
P2 (c) 5 Tc(u2 )pi (c,60)d0 + 5 75(u2 )pi (e , Oa

(7)

(8)

and p2(c) cc 5 Tc (u2 )Pi (c, 9)d9 , which is the area of the posterior distribution of Ogiven item
preknowledge. The posterior probability that the test taker is using item preknowledge after n items is

Pri(c) cc 5 Tc(un)Pn_i (c , 9)d 0 .
The magnitude of pn(c) could provide a simple index for identifying test takers with item preknowledge.

However, a more useful index is a ratio between the current odds (after n items) and the prior oddsthe final
odds ratio. For numerical convenience, the log (base 10) of the odds ratio is used for analyses. The final log
odds ratio index is

login [P,, (c) 41 P,, (Oil
Po (c) IP Po (c)]

(9)

For example, a final log odds ratio of 0 implies that after the 28 items we do not have any more suspicion
that this test taker is using item preknowledge than we had before the 28 items were administered. Therefore,
we assume the probability that the test taker is using item preknowledge to be the base rate for item
preknowledge use. A final log odds ratio of 1 implies that we are 10 times more suspicious that a test taker is
cheating than we were before the 28 items were administered. It follows that with a final log odds ratio of -1
we are 10 times less suspicious that a test taker is cheating than we were before the 28 items were
administered. In general, a negative log odds ratio suggests evidence that the test taker is not cheating.

Method

The current project used simulations based on an operational CAT. Simulees were generated at true scores
from a discrete uniform distribution at eleven 0 values. The 0 values were translated into a number correct
true score on a linear 60-item reference test and correspond to the operational test's score range (10, 15, 20,
25, 30, 35, 40, 45, 50, 55, 59). At each true score there were 10,000 simulees generated for the null group and
10,000 simulees generated for each of the nine memorizing-group conditions. For each simulee, a 28-item
response pattern was generated using an operational CAT item pool and weighted deviations item selection
criteria (Stocking & Swanson, 1993).

The item pool contained 494 items. Of these, 341 were discrete items and 153 were part of item sets (i.e.,
associated with one of 22 reading passages or other type of stimuli). Although preknowledge of stimuli is
another possible strategy for inflating test scores, this research treats all items as discrete and ignores the
stimulus component of preknowledge tactics. For the memorizing conditions, if a simulee was administered
one of the memorized items, a correct response was automatically given. The 3PL IRT model with operational
item parameter estimates was used to generate a response when one of the remaining items was administered.

Population weights were used in some analyses to allow comparisons that are representative of an
operational distribution of proficiencies. See Table 1 for the relationship between true scores, 0 values, and
population weights. True scores ranged from 7.84 to 59.
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TABLE I
True test scores, 0 values, and corresponding
simulation population weights representative
of an operational administration of the test used
in the simulation study

True Score 0 Weight
10 -3.8394 0.001442
15 -2.1841 0.029116
20 -1.3811 0.100307
25 -0.8118 0.158306
30 -0.3482 0.171876
35 0.0534 0.154741
40 0.4271 0A25484
45 0.8074 0.106487
50 1.2419 0.094023
55 1.8824 0.054866
59 3.5462 0.003353

Null Group Response Patterns

The simulation design for the null group generated 28-item response vectors for 10,000 simulees at each of
the 11 true-score values. No item preknowledge was assumed. These data served as a baseline to compare
CAT response patterns that fit the 1RT model with CAT response patterns based on item preknowledge.

Memorizing Group-Response Patterns

The simulation design for each memorizing group generated 28-item response vectors for 10,000 simulees
at each of the 11 true score values. Item preknowledge was assumed. The design used a real-world approach
to simulate the item preknowledge process by incorporating a two-stage process. First, for each condition, the
design sent in n sources to memorize test items. These n test takers memorized their items perfectly and then
combined their lists. (Some overlap was observed among the lists.) The complete list was memorized by
another group of test takers, the beneficiaries. Then the beneficiaries were administered a 28-item test, and if
they were administered any of the memorized items, they answered them correctly. (Although we
acknowledge that memorizers may not have perfect recall of the item list, the simulation was designed to
produce a worst-case scenario for the testing program.) The three highest true scores were used for the
sources' proficiency levels. One advantage of using this design is that it is a model of a possible reality,
especially if recording equipment is used for item theft. Another advantage is that the design maintains the
roles of content constraints and the item selection algorithm in the success of using item preknowledge in the
CAT environment.

Design

Table 2 shows the 10 different source-beneficiary conditions for the CAT response patterns. Nine test
conditions were formed from three source-true score conditions completely crossed with three number-of-
sources conditions. A null case in which response patterns were generated using each simulee=s underlying
proficiency was also included. For each cell in Table 2, 10,000 CAT response patterns were generated at each
of 11 beneficiary true score values. The total number of simulees for the design was 1,100,000.

1 0
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TABLE 2
Condition numbers for the research design

Number of
Sources

Source True
Score Level

Condition
Number

0 1

2 50 2
4 50 3

8 50 4

2 55 5

4 55 6

8 55 7

2 59 8

4 59 9

8 59 10

Two hundred beneficiary replications were generated for each source true score level condition. Each
replication contained 50 simulees at each of the 11 proficiency levels, for a total of 10,000 beneficiary
simulees at each true score value (200 X 50= 10,000).

Within a replication, the two-stage process included a source simulation followed by a beneficiary
simulation. For example, Condition 3 used four sources at true score of 50. Within a replication, four test
takers at true score of 50 were administered a test. Then their item lists were concatenated and used by 550
beneficiary simulees (50 at each of 11 proficiency levels) when they were administered tests. The process was
repeated 200 times simulating additional sources and beneficiaries. For this project, source replications were
simulated for two, four, and eight sources at source true scores of 50, 55, and 59. Eight sources were selected
as the highest number of sources because preliminary analyses showed that the average list length gathered by
eight sources was 122-138 items. For this study, we assumed beneficiaries would not be willing to memorize
more than 122 to 138 items.

For each simulee, seven final log odds ratios (FLOR1-FLOR7) were calculated based on the responses to
the 28 items administered. Each odds ratio was computed using a different model for the probability that an
item had been memorized. Table 3 shows the seven models used for the probability that an item had been
memorized.

TABLE 3
Models used for the probability that an item has been memorized

Final Log
Odds Ratio Model Class 13(111,)

FLORI constant p(m,)= 0.1
FLOR2 constant p(m,) = 05

1

FLOR3 difficulty P(m, lb) 1+ exp(b,)
1

P(m,lb) 1+ exp(1b,)
FLOR5 empirical Item relative frequency using 2 sources
FLOR6 empirical Item relative frequency using 4 sources
FLOR7 empirical Item relative frequency using 8 sources

FLOR4 difficulty

11.
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Calculation of the Empirical Indices

FLOR5 to FLOR7 approaches use preliminary relative item frequency data averaged over pairs,
quadruples, or sets of eight sources at true scores of 50, 55, and 59 from a simulation of 10,000 simulees at
each of the 11 true scores. FLOR5 is based on pairs of sources. FLOR6 is based on sets of four sources.
FLOR7 is based on sets of eight sources. For example, to compute p(mi) for FLOR6, an item was
administered to 71.4 percent of the simulee quadruples at true score 50. This same item was administered to
68 percent of the simulee quadruples at true score 55 and 44.8 percent of the simulee quadruples at true score
59. The probability, p(m), used for the Bayesian index is the average of these three cases, or 0.614. The
empirical approach is unique for each item selection algorithm and item pool combination. Different values
for p(mi) are expected if either the item selection algorithm or item pool is altered.

Results

Number of Items Memorized

Table 4 shows the mean and standard deviation of the number of memorized items received under the nine
memorizing CAT conditions. By using the source-beneficiary strategy, simulees were successful in receiving
items that had been memorized. If the simulees had access to a list of items memorized by two sources, they
would expect to receive an average of about six of those items when taking the 28-item test. More items were
received if the simulee had a list from more sources. (Note: as the number of sources increases, the longer the
list, and the more items a beneficiary has to memorize.) Average list lengths for two, four, and eight sources
were approximately 50, 85, and 125 items, respectively. The item pool contained 494 items. The number of
items received by a beneficiary did not seem to be influenced by the ability of the source as much as the
number of sources.

TABLE 4
Mean and standard deviations (in parentheses) of the number of memorized items
received by the memorizing group (Test length was 28 items)

Number of Sources' True Score
Sources 50 55 59
2 5.86 (3.78) 5.56 (4.07) 5.48 (4.16)
4 11.36 (5.29) 11.20 (6.17) 10.99 (6.43)
8 18.10 (4.99) 19.61 (6.47) 19.58 (7.04)

Test Score Inflation

Table 4 contains evidence that the source-beneficiary strategy was successful at helping test takers gain
preknowledge of items that were later administered to them. It also shows that the ability of the source does
not have as large an effect on the number of memorized items received by the beneficiaries as the number of
sources. However, the table does not show the success of the strategy at inflating these beneficiaries' test
scores. Table 5 presents the mean and standard deviation of the estimated test scores for the test takers.
Because the number of sources has a larger effect on success than the source's ability, Table 5 contains the
average estimated test score by the number of sources and the beneficiary's true score. When comparing the
beneficiaries' estimated test scores with those of the null group, note that the null group's test scores represent
the variability and bias produced by the CAT item selection algorithm, the item pool's characteristics, and the
estimation method.

12
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TABLE 5
Mean and standard deviation of the estimated test scores by memorizing group and true score level

Number of True Score Level
Sources 10 15 20 25 30 35 40 45 50 55 59
None

Mean 10.18 15.02 20.08 25.10 30.17 35.06 40.04 44.90 49.94 54.98 59.27
SD 1.54 2.58 3.01 3.36 3.61 3.69 3.60 3.27 2.65 1.69 0.79

Two
Mean 12.74 17.87 23.34 29.14 35.12 40.71 45.49 49.51 53.07 56.37 59.45
SD 6.96 7.01 7.07 7.12 6.85 5.97 4.78 3.59 2.48 1.51 0.70

Four
Mean 22.03 26.58 31.94 37.43 42.72 47.12 50.47 53.04 55.16 57.32 59.59
SD 16.44 14.85 13.28 11.51 9.26 6.80 4.66 3.13 2.06 1.36 0.63

Eight
Mean 40.35 43.43 46.67 49.78 52.55 54.48 55.60 56.50 57.35 58.44 59.74
SD 20.25 17.42 14.37 11.08 7.61 4.74 3.01 2.02 1.53 1.17 0.51

The first block in Table 5 shows the mean estimated test score and standard deviation for the noncheating
or null group. Note that for fixed true scores, the mean estimated true score was slightly inflated, except for
three of the four highest abilities. The estimates were more variable in the middle true scores, but even at these
scores the standard deviations were less than four score points. (Range of possible true scores was 7.84 to 59.)

For the memorizing simulees, across all true scores, the mean test score was inflated. Therefore, we
conclude that by using the source-beneficiary preknowledge strategy, the test takers were successful in
attaining higher test scores. The estimates were more inflated when the test takers had memorized the longer
lists gathered by eight sources. Even the lower ability test takers for the eight-sources condition had an
average estimated test score above 40 (out of a possible 60 score points). Information from four sources did
not deliver as much test-score gain as information from eight sources. Similarly, item information from two
sources did not aid a beneficiary as much as information from four sources. The' estimates were more variable
at the lower true scores, where the takers had more room to benefit from the preknowledge, depending on the
peculiarities of item selection. The higher ability test takers did not benefit as much from the memorization
because they were already the higher scorers.

Distributional Characteristics of the Bayesian Index

Table 6 shows the means of the seven indices by memorizing condition and test taker true score. Across
index and true score, average values for the null condition were lower than for the memorizing conditions. In
most cases, there was more difference between the averages for the null and memorizing groups at the lower
true scores and more difference between the null and eight-sources group. Only FLOR3, FLOR6 and FLOR7
attained average final log odds ratios above 1, implying 10 times the suspicion after the 28-item test that the
test takers are using item preknowledge. However, some reservation should be used when judging Table 6
because it includes all simulees at each condition. Some of these may have achieved more success at test-score
inflation than others in the same condition.
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TABLE 6
Mean of the final log odds ratios (FLOR1-FLOR7) for the null and memorizing groups by true
score level. (Each null cell contains data from 10,000 simulees. Other cells contain data
from 30,000 simulees)

Number of True Score Level
Sources 10 15 20 25 30 35 40 45 50 55 59

FLOR1 p(mi)=0.1
Null -0.70 -0.34 -0.15 -0.08 -0.04 -0.01 0.02 0.05 0.06 0.08 0.10
Two -0.24 -0.01 0.09 0.14 0.16 0.16 0.15 0.13 0.11 0.09 0.10
Four 0.05 0.16 0.20 0.22 0.22 0.20 0.17 0.14 0.11 0.10 0.10
Eight 0.11 0.14 0.15 0.15 0.15 0.14 0.13 0.12 0.11 0.10 0.11

FLOR2 p(mi)=0.5
Null -5.90 -3.77 -2.38 -1.59 -1.15 -0.86 -0.55 -0.17 0.18 0.44 0.60
Two -4.27 -2.57 -1.45 -0.69 -0.19 0.14 0.37 0.51 0.56 0.56 0.63
Four -2.39 -1.19 -0.34 0.24 0.60 0.78 0.81 0.76 0.68 0.60 0.64
Eight -0.54 0.06 0.45 0.71 0.84 0.85 0.80 0.74 0.67 0.62 0.66

FLOR3 Difficulty
Null -3.67 -2.73 -2.10 -1.97 -2.15 -2.33 -2.30 -1.96 -1.36 -0.19 1.16
Two -2.49 -1.86 -1.48 -1.31 -1.24 -1.13 -0.91 -0.62 -0.23 0.44 1.23
Four -1.19 -0.79 -0.51 -0.28 -0.10 0.06 0.18 0.30 0.45 0.77 1.28
Eight 0.36 0.55 0.71 0.88 0.98 1.03 1.00 0.98 0.97 1.05 1.33

FLOR4 Shifted Difficulty
Null -1.51 -1.07 -0.78 -0.74 -0.83 -0.91 -0.87 -0.68 -0.42 0.08 0.71
Two -0.59 -0.33 -0.19 -0.11 -0.06 -0.01 0.06 0.12 0.19 0.40 0.76
Four 0.27 0.40 0.48 0.56 0.63 0.65 0.61 0.55 0.51 0.55 0.78
Eight 0.78 0.80 0.83 0.89 0.91 0.89 0.82 0.75 0.68 0.67 0.81

FLORS Empirical (2 sources)
Null -0.43 -0.35 -0.29 -0.32 -0.39 -0.45 -0.39 -0.21 0.05 0.27 0.32
Two 0.42 0.37 0.33 0.33 0.33 0.33 0.33 0.35 0.35 0.34 0.33
Four 0.96 0.85 0.77 0.76 0.74 0.69 0.61 0.51 0.42 0.36 0.34
Eight 0.84 0.73 0.67 0.66 0.64 0.60 0.54 0.47 0.42 0.37 0.35

FLOR6 Empirical (4 sources)
Null -0.95 -0.82 -0.73 -0.81 -1.02 -1.25 -1.22 -0.89 -0.25 0.46 0.63
Two 0.17 0.13 0.07 0.04 -0.01 0.00 0.09 0.28 0.48 0.65 0.65
Four 1.02 0.91 0.84 0.85 0.87 0.86 0.84 0.79 0.75 0.70 0.66
Eight 1.29 1.19 1.14 1.15 1.14 1.09 1.01 0.91 0.81 0.72 0.67

FLOR7 Empirical (8 sources)
Null -2.04 -1.83 -1.70 -1.95 -2.52 -3.20 -3.44 -3.02 -1.72 0.31 1.23
Two -0.73 -0.78 -0.89 -1.11 -1.39 -1.54 -1.37 -0.86 -0.04 0.92 1.26
Four 0.31 0.19 0.07 0.05 0.04 0.10 0.25 0.51 0.84 1.19 1.28
Eight 1.46 1.37 1.35 1.41 1.45 1.47 1.45 1.42 1.39 1.35 1.30

For the indices based on constant models, FLORI and FLOR2, the average index value increased as the
beneficiaries' true scores increased for the null group. This implies that we are more suspicious of test takers
who score high on the test, in general. For the two-, four-, and eight-sources conditions, average FLOR1
values increased as beneficiaries' true scores increased for the lower ability simulees. For the higherability
simulees, the average index values decreased. FLOR2 behaved much like FLOR1 for the four- and eight-
sources conditions. Average FLOR1 values ranged from -0.70 to 0.22. Average FLOR2 values ranged from
-5.90 to 0.85.

14
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FLOR3 and FLOR4, the indices based on the threshold estimates, also had increasing average values across
beneficiaries' true scores for the null group. FLOR3 maintained a systematic increase for the memorizing
group across true score, except for the eight-sources condition. For this case, the averages dipped for the 40-
45 true score range before increasing at 55 and 59. Average values ranged from -3.67 to 1.33 and -1.51 to
0.91 for FLOR3 and FLOR4, respectively.

The empirically based indices, FLOR5, FLOR6, and FLOR7 exhibited more variation in their average
values. The average values did not systematically increase as beneficiaries' true scores increased, even for the
null condition. FLOR5's average values ranged from -0.45 to 0.96. FLOR6's average values ranged from -
1.25 to 1.29. FLOR7 had a larger range at -3.44, for a null condition, to 1.47, for an eight-sources condition.

Table 7 shows the standard deviations of these three indices. The least variable index was FLOR1, and the
most variable index was FLOR7. Index values were more variable for those beneficiaries at the lower ability
ranges. The variability at these levels may have been due, in part, to the range of success at test-score
inflation.

TABLE 7
Standard deviation of the final log odds ratios (FLOR1-FLOR7) for the null and memorizing groups by true
score level. (Each null cell contains data from 10,000 simulees. Other cells contain data from 30,000 simulees.)

Number of True Score Level
Sources 10 15 20 25 30 35 40 45 50 55 59

FLOR1 p(m,)=0.1
Null 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0
Two 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.0
Four 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0
Eight 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

FLOR2 p(m,)=0.5
Null 1.2 1.2 0.9 0.8 0.7 0.6 0.6 0.6 0.5 0.4 0.2
Two 2.1 1.7 1.3 1.1 1.0 0.8 0.7 0.6 0.5 0.3 0.1

Four 2.9 2.2 1.7 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.1

Eight 2.4 1.7 1.2 0.8 0.6 0.5 0.4 0.4 0.3 0.2 0.1

FLOR3 Difficulty
Null 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.1 0.5
Two 1.5 1.3 1.2 1.2 1.2 1.3 1.3 1.3 1.2 1.0 0.4
Four 1.9 1.7 1.5 1.5 1.4 1.3 1.3 1.2 1.1 0.8 0.4
Eight 1.8 1.6 1.5 1.3 1.2 1.1 1.1 1.0 0.9 0.7 0.3

FLOR4 Shifted Difficulty
Null 0.7 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.7 0.3
Two 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.6 0.3
Four 1.4 1.3 1.2 1.1 1.1 1.0 0.9 0.8 0.7 0.5 0.3
Eight 1.1 1.0 1.0 0.9 0.8 0.8 0.7 0.6 0.6 0.4 0.2

FLOR5 Empirical (2 sources)
Null 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.4 0.2 0.1

Two 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.4 0.3 0.2 0.1

Four 1.0 0.9 0.9 0.8 0.7 0.6 0.5 0.3 0.2 0.1 0.1
Eight 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1

FLOR6 Empirical (4 sources)
Null 0.6 0.6 0.5 0.6 0.7 0.8 0.9 0.9 0.8 0.4 0.1
Two 1.1 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.3 0.1
Four 1.2 1.2 1.2 1.1 1.0 0.9 0.8 0.6 0.5 0.3 0.1
Eight 0.9 0.9 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

FLOR7 Empirical (8 sources)
Null 1.0 1.0 1.0 1.1 1.4 1.5 1.5 1.5 1.4 1.0 0.3
Two 1.3 1.2 1.2 1.3 1.4 1.6 1.6 1.5 1.2 0.7 0.2
Four 1.4 1.4 1.4 1.4 1.5 1.5 1.4 1.2 0.9 0.5 0.2
Eight 1.2 1.1 1.1 1.1 1.0 0.9 0.8 0.7 0.5 0.4 0.2

15 BJEST COPY MAMA



12

Table 8 shows the number of simulees in each category by condition and true score. Note that, in general,
as the beneficiary true score increased, more simulees received many memorized items. Table 8 supports the
suggestion that the number of source<s is more important than sources' true score for a beneficiary's success at
receiving memorized items. Table 8 also suggests an interaction between beneficiary true score, number of
sources, and the number of memorized items received. A pattern appears across the columns in Table 8.

TABLE 8
Number of simulees by number of memorized items received.

Beneficiary
True Score

Number
of

Mem.
Items

Number of Sources
Two Four Eight

Source True Score

50 55 59 50 55 59 50 55 59
10 00-07 9255 9510 9502 6340 7043 7097 2924 3401 3519

08-14 694 456 472 1448 1283 1488 89 177 334
15-21 51 33 22 2195 1602 1315 5159 2089 1702
22-28 1 4 17 72 100 1828 4333 4445

15 00-07 9093 9388 9360 5986 6626 6874 2468 3012 3176
08-14 854 580 599 1656 1516 1567 147 203 372
15-21 53 32 39 2341 1791 1462 5542 2317 1843
22-28 2 17 67 97 1843 4468 4609

20 00-07 8790 9210 9236 5019 5969 6374 1777 2409 2751
08-14 1145 735 714 2237 1868 1861 311 272 398
15-21 65 55 50 2735 2094 1669 5985 2545 2002
22-28 9 69 96 1927 4774 4849

25 00-07 8157 8848 8884 3747 5125 5463 983 1741 2072
08-14 1781 1100 1056 3080 2335 2400 451 412 542
15-21 62 52 60 3160 2468 2028 6674 2916 2242
22-28 13 72 109 1892 4931 5144

30 00-07 7108 8274 8393 2205 3728 4269 326 894 1237
08-14 2820 1651 1517 4086 3245 3042 456 586 720
15-21 72 75 87 3697 2926 2571 7315 3275 2585
22-28 3 12 101 118 1903 5245 5458

35 00-07 5836 7356 7607 983 2292 2818 64 308 483
08-14 4060 2539 2315 4785 4043 4045 318 536 770
15-21 104 105 78 4222 3566 2999 7769 3722 2972
22-28 10 99 138 1849 5434 5775

40 00-07 4566 6085 6471 335 1025 1401 10 67 152
08-14 5343 3781 3409 5329 4593 4716 229 334 617
15-21 91 134 120 4328 4280 3742 8008 3967 3353
22-28 8 102 141 1753 5632 5878

45 00-07 3794 4715 5051 110 372 522 6 23
08-14 6108 5116 4780 5767 4515 4580 221 152 305
15-21 98 169 169 4116 5013 4726 8135 4137 3356
22-28 7 100 172 1644 5705 6316

50 00-07 3726 3270 3717 77 105 138 1 2
08-14 6192 6508 6037 6568 4273 3826 386 49 106
15-21 82 222 246 3347 5513 5872 8076 4244 3217
22-28 8 109 164 1537 5707 6675

55 00-07 4621 2493 2354 201 24 19 1

08 -14 5329 7267 7313 7115 4092 3102 569 21 16
15-21 50 240 330 2677 5779 6688 7931 4376 3103
22-28 3 7 105 191 1499 5603 6881

59 00-07 4883 2607 2047 229 33 9 -- --
08 -14 5069 7161 7610 7061 4149 3007 601 16 3

15-21 48 230 341 2701 5721 6801 7884 4416 3086
22-28 -- 2 2 9 97 183 1515 5568 6911

16
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ROC Curve Analysis

Marginal probability ROC curves (Green & Swets, 1966) offer an evaluation of the Bayesian indices. As
the points on an ROC curve represent the ratio of false alarms to hits, such curves provide a visual tool for
assessing the power of these indices in this simulated CAT environment. Empirical ROC curves were
calculated using the simulation data for FLOR1-FLOR7. For each point on the ROC curve, the value on the
horizontal axis is the proportion of those from the null group (falsely) detected by an index using a particular
cut-off value (false-alarm rate), and the detected proportion of those from the beneficiary group is indicated
by the vertical-axis value (hit rate). These are weighted proportions using the population weights given in
Table 1.

Figure 1 shows the partial ROC curve for those beneficiaries who received at least 15 memorized items out
of the 28 items administered. The FLOR7 index shows the steepest slope, quickly approaches 1.0, and is,
therefore, the most powerful index for beneficiaries receiving at least 15 memorized items. For example, for
5% false-alarm rate, over 84% of the memorizing beneficiaries were detected using FLOR7. FLOR6 performs
only slightly worse, and the difficulty index holds third place in order by power to detect memorizing
beneficiaries.
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FIGURE 1. Weighted ROC curve for those simulees that received at least 15 memorized items in the
simulation based on 28 items
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The distributions for the seven indices for these beneficiaries are displayed in Figure 2 using box plots.
The top, bottom, and middle lines through each box correspond to the 75th percentile, 25th percentile, and the
50th percentile (or median) of each distribution, respectively. The end of the top whisker shows the 90th
percentile, and the end of the bottom whisker represents the 10th percentile. The dot in each box represents
the mean. For each index, the left box plot shows the distribution for the null simulees; these simulees did not
receive any memorized items. The right box plot shows the distribution for the simulees who received at least
15 memorized items on the 28-item test. For each index, the null distribution was more variable and always
more negative than that for the successful memorizing group. It also appeared that an index that assigned
more items higher p(mds, was also more variable. (Refer to the Appendix for the distribution ofp(mi) for the
item pool used.)
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FIGURE 2. Box plots of FLOR1-FLOR7 values for the simulation by number of memorized items received

The FLOR7 index showed the largest separation between the two groups. The FLOR3 index showed the
next highest amount of separation, and FLOR I showed the most overlap. The most variable indices were
FLOR2, FLOR3, and FLOR7.

Overall, the best performing index of those studied is FLOR7, because it has the most power to detect those
beneficiaries who had preknowledge of more than half of the items on their test. FLOR3 is selected as the
second best performing index for the successful beneficiaries. It has theextra appeal of being simple to
compute without a previous simulation.
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Correlation Analyses

Table 9 presents the pairwise weighted correlations among the seven indices for simulation data. The
correlations using the null group (N=110,000) are in the upper triangle, and the successful memorizing group
(N=407,900) that received at least 15 memorized items are in the lower triangle. For the null group, the
correlations among the indices in the same class (constant, difficulty, or empirical) were higher than among
those in different classes. In the memorizing group, the correlations were generally lower within the classes.
(FLOR1 and FLOR2 were the exceptions.) For example FLOR7 correlated 0.83 with FLOR5 in the null group
and 0.54 in the memorizing group. These lower correlations may reflect the decreased variability for each
index in the memorizing group.

TABLE 9
Pairwise weighted correlations among the seven indices using the null group (N=110,000)
in the upper triangle and the memorizing group (N= 407, 920) in the lower triangle. The
memorizing group used for this table consists of simulees that received at least 15
memorized items.

FLOR1 FLOR2 FLOR3 FLOR4 FLOR5 FLOR6 FLOR7
FLOR I 1.000 0.862 0.643 0.721 0.610 0.480 0.274
FLOR2 0.911 1.000 0.640 0.626 0.500 0.426 0.243
FLOR3 0.548 0.742 1.000 0.964 0.683 0.743 0.729
FLOR4 0.787 0.928 0.919 1.000 0.748 0.754 0.684
FLOR5 0.875 0.857 0.454 0.717 1.000 0.962 0.827
FLOR6 0.764 0.849 0.583 0.773 0.947 1.000 0.944
FLOR7 0.353 0.522 0.715 0.639 0.538 0.743 1.000

Discussion

The goals of this study included examining test taker success at test-score inflation when using item
preknowledge and the feasibility of using an odds ratio index as a tool for test security. The results of this
study show that test takers may be very successful at test-score inflation when using item preknowledge.
Furthermore, increasing the number of sources rather than the sources' true score yields more success at test-
score inflation. In addition, results for the FLOR7 index show that the combination of the empirical model
based on eight sources and 3PL IRT model is useful for modeling behavior that mimics the source-beneficiary
strategy. The findings from the simulation study indicate that FLOR7 shows some promise for that application.
The correlation analysis results indicate that the empirical models show a moderate amount of agreement for
identifying simulees that were using item preknowledge.

Application

The final log odds ratio proposed in this study may be used as an index to detect test takers who use item
preknowledge to inflate their test scores. Before doing so, criteria for detection must be established. A
straightforward way to set a criterion would be based on the value of the final log odds ratio. A value of 2
means that the probability that a test taker is using item preknowledge is 100 times more than before we knew
his or her responses to the test items. A value of -2 means that we are about 100 times less suspicious that a
person is using item preknowledge than before we knew his or her responses to the test items. A viable
criterion may be 2.0, meaning that anyone receiving a final log odds ratio value of 2.0 or more would be
flagged as having item preknowledge.
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Conclusions and Future Research

Individuals who behave aberrantly on large-scale tests are currently detected using several techniques.
These techniques flag response patterns that have discrepancies from a ?fitting =_ response pattern. They do not
model the behavior they are designed to detect, but simply look for discrepancies from the behavior that ?fits...-4
In the approach developed in this paper, the ?nonfitting-.- or aberrant behavior is also modeled. A traditional
IRT model is used for the fitting patterns and a new model is used for the nonfitting patterns (in our case,
patterns that reflect the use of item preknowledge). Then, the concept of odds ratios is extended to describe
the increased likelihood (based on the item responses) that a response pattern arises from the old or new
models. From the results of the simulations, the new approach shows promise for use as a test-security index
in the CAT environment.

The purpose of this research was not to investigate the performance of an index to identify subjects who
were using item preknowledge of random items from the item pool, but to identify those using preknowledge
of items that sources would be administered given an adaptive test. Therefore, results should be viewed within
the specific strategy described.

Another limitation of this study was the source strategy used. Sources gain access to those items received
by higher ability test takers. The purpose of this strategy is to gain knowledge of items that would give a
higher test score due to the adaptive nature of the test. However, the lower ability subjects may not do well
enough on the first items of the test to receive any memorized items. Other strategies will be studied in future
research. For example, for another strategy sources may manipulate the type of items they receive by
choosing to give incorrect responses to administered items. The strategies may prove more advantageous for
lower proficiency users.

Because the use of the Bayesian index ?onlineL-- during an actual CAT may be expensive, other uses for the
index may be more practical. One possible use is that of a quality-control device for the item pool. The index
might be used to track the ?freshness= or security of a pool using test takers' response patterns. It is hoped that
this 'work will enable testing-program management to more effectively decide how long to leave an item pool
in the field.
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Appendix

Three different classes of models were proposed for the probability that an item had been memorized,
p(mi). The first class was simply a constant probability for all items in the pool. FLOR1 used p(mi) =0.1 and
FLOR2 used p(md= 0.5.

The second class was based on the difficulty of the test items. FLOR3 and FLOR4 used logistic functions
of each item's estimated difficulty, the threshold parameter estimate. FLOR3 used

and FLOR4 used

1

1+ exp(-bi)

1

P(milbi)- 1+ exp(1- bi)

(Al)

(A2)

The third class of models for the probability of memorization were functions of the specific item pool and
item selection algorithm used to generate the CAT. FLOR5 was based on the relative item frequency when
teams of size 2 were sent in to memorize items. FLOR6 used teams of size 4 and FLOR7 used teams of size 8.
Table A 1 presents descriptive statistics (maximum, minimum, mean, and standard deviation) for the item pool
used and the five models used for the probability that an item has been memorized for the item pool used for
this project. (The item pool contained 494 items.)

TABLE Al
Comparison of item parameters and p(m) 's used for FLOR1-FLOR7 in the
CAT simulation.

Descriptive statistics

Max Min Mean
Standard
Deviation

Item Parameters
a 1.8 0.2 0.8 0.3
b 2.7 -4.6 0.0 1.2

g 0.5 0 0.1 0.1

P(m)
FLOR1 0.1 0.1 0.1

FLOR2 0.5 0.5 0.5
FLOR3 0.9 0.0 0.5 0.2
FLOR4 0.8 0.0 0.3 0.2
FLOR5 0.4 0.0 0.1 0.1
FLOR6 0.7 0.0 0.2 0.2
FLOR7 0.9 0.0 0.3 0.3
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